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Summary. In ZF (i.e. Zermelo–Fraenkel set theory without the Axiom of Choice AC),
we investigate the relationship between UF(ω) (there exists a free ultrafilter on ω) and
the statements “there exists a free ultrafilter on every Russell-set” and “there exists a
Russell-set A and a free ultrafilter F on A”. We establish the following results:

1. UF(ω) implies that there exists a free ultrafilter on every Russell-set. The impli-
cation is not reversible in ZF.

2. The statement “there exists a free ultrafilter on every Russell-set” is not provable
in ZF.

3. If there exists a Russell-set A and a free ultrafilter on A, then UF(ω) holds. The
implication is not reversible in ZF.

4. If there exists a Russell-set A and a free ultrafilter on A, then there exists a free
ultrafilter on every Russell-set.

We also observe the following:

(a) The statements BPI(ω) (every proper filter on ω can be extended to an ultrafil-
ter on ω) and “there exists a Russell-set A and a free ultrafilter F on A” are
independent of each other in ZF.

(b) The statement “there exists a Russell-set and there exists a free ultrafilter on
every Russell-set” is, in ZF, equivalent to “there exists a Russell-set A and a
free ultrafilter F on A”. Thus, “there exists a Russell-set and there exists a free
ultrafilter on every Russell-set” is also relatively consistent with ZF.
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2 E. Tachtsis

1. Terminology, known results and aim

Definition 1. (a) A Russell-set is a countable disjoint union A =⋃
{An : n ∈ ω} of 2-element sets such that the family {An : n ∈ ω} has

no partial choice function (i.e. {An : n ∈ ω} has no infinite subfamily with
a choice function). The notion of a Russell-set was introduced in [9]. The
existence of a Russell-set is relatively consistent with ZF—see the second
Cohen modelM7 in [11] (or in [12, Section 5.4]), in which there is a count-
able family of pairs of sets of reals with no partial choice function. For an
extensive study on Russell-sets and generalizations of this notion, the reader
is referred to [5]–[10].

(b) LetX be a non-empty set. A non-empty subcollection F of P(X)\{∅}
is called a filter on X if

(i) if F1, F2 ∈ F then F1 ∩ F2 ∈ F ,
(ii) if F ∈ F , F ′ ∈ P(X) \ {∅} and F ⊆ F ′ then F ′ ∈ F .

A non-empty collection H ⊆ P(X) \ {∅} is called a filter base if for any
H1, H2 ∈ H there is an H3 ∈ H such that H3 ⊆ H1 ∩ H2. A filter base
H ⊆ P(X)\{∅} is called free (or non-principal) if

⋂
H = ∅. Otherwise, H is

called non-free (or principal).

A maximal, with respect to inclusion, filter on X is called an ultrafilter
on X.

Notation. As usual, ω denotes the set of all natural numbers.

UF(ω) is the statement: There exists a free ultrafilter on ω.

BPI(ω) is the statement: Every proper filter on ω can be extended to an
ultrafilter on ω.

For a set X, [X]<ω denotes the set of all finite subsets of X, and Fn(X, 2)
denotes the set of all finite partial functions from X into 2 = {0, 1}, i.e.
p ∈ Fn(X, 2) if and only if p is a function, dom(p) ∈ [X]<ω and ran(p)
⊆ 2.

It is clear that, in ZF, BPI(ω) → UF(ω). Recently, in [3], it has been
proved that the above implication is not reversible in ZF. To show this,
a symmetric model N of ZF was constructed [3, Theorem 5.2], in which
UF(ω) is true, whereas BPI(ω) is false. We label this result as Theorem 1
below.

Theorem 1 ([3]). UF(ω) does not imply BPI(ω) in ZF.

For the prospective reader, who may need more information on the prin-
ciples UF(ω) and BPI(ω), we also recall a couple of known results which
link these principles with compactness and forms of compactness of the Ty-
chonoff product 2R, where R is the set of the real numbers and 2 is the
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discrete 2-element space {0, 1}. Further information can also be found in
[4], [11], and [12].

Theorem 2.

(i) ([14]) BPI(ω) if and only if the Tychonoff product 2R is compact.
(ii) ([3], [15]) 2R fails to be countably compact in the second Cohen

model M7 and in the symmetric model constructed in [3], hence
BPI(ω) fails in these models.

(iii) ([17]) UF(ω) if and only if every countably infinite subset of 2R

has an accumulation point.

The aim of this paper is to investigate the relationship—in ZF—between
the existence of free ultrafilters on ω and the existence of free ultrafilters on
Russell-sets. It turns out that there is a strong connection between the two
situations. In particular, we will show that, in ZF,

(there exists a Russell-set A and a free ultrafilter F on A)

→ UF(ω)→ (there exists a free ultrafilter on every Russell-set),

and that none of these implications is reversible in ZF (Theorems 5 and 3,
respectively). We also show (in Theorem 4) that “there exists a free ultra-
filter on every Russell-set” is not provable in ZF. In particular, we prove
that the latter statement is false in Blass’ model constructed in [1], where
all ultrafilters are principal.

Finally, in Theorem 7 we observe that BPI(ω) and “there exists a
Russell-set A and a free ultrafilter F on A” are independent of each other in
ZF, and in Theorem 8 we show that the statement “there exists a Russell-set
and there exists a free ultrafilter on every Russell-set” is, in ZF, equivalent
to “there exists a Russell-set A and a free ultrafilter F on A”. Hence, “there
exists a Russell-set and there exists a free ultrafilter on every Russell-set” is
also relatively consistent with ZF.

2. Main results

Theorem 3. UF(ω) implies that there exists a free ultrafilter on ev-
ery Russell-set. Thus, the statement “there exists a free ultrafilter on every
Russell-set” is relatively consistent with ZF+¬AC. Furthermore, the above
implication is not reversible in ZF.

Proof. Assume UF(ω). Let A =
⋃
{An : n ∈ ω} be a Russell-set. Let

f : A → ω be defined by f(a) = n if and only if a ∈ An, and let F be a
free ultrafilter on ω. Let G be the filter on the set A, which is generated by
the free filter base f−1(F) = {

⋃
{An : n ∈ F} : F ∈ F}. (f−1(F) is indeed

a filter base since F is a filter, and it is free since F is free: Assuming the
contrary, let x ∈

⋂
f−1(F). Let n0 be the unique n ∈ ω such that x ∈ An.
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By the definition of f−1(F), it follows that An0 ⊆ H for all H ∈ f−1(F),
hence An0 ∈ {An : n ∈ F} for every F ∈ F . Consequently, n0 ∈

⋂
F ,

contradicting the fact that F is free.) We assert that G is a (free) ultrafilter
on A. If not, suppose B ⊆ A meets every element of G in an infinite set, but
does not include any of them. Let M = {n ∈ ω : B ∩An 6= ∅}.

If M is finite, then B ⊆
⋃
{An : n ∈ M}. Since F is a free ultrafilter

on ω, it must contain every cofinite subset of ω, hence ω \M ∈ F . Thus,
U =

⋃
{An : n ∈ ω\M} ∈ f−1(F) ⊆ G. However, U∩B = ∅, a contradiction.

Thus, we may assume that M is infinite. Since A does not have a partial
choice function, we may also conclude that there is a subset N ⊆M which is
cofinite in M and such that An ⊆ B for all n ∈ N . We claim that N ∩F 6= ∅
for all F ∈ F . Assume on the contrary that N ∩ F = ∅ for some F ∈ F .
Then (

⋃
{An : n ∈ N}) ∩ (

⋃
{An : n ∈ F}) = ∅. As M \N is a finite subset

of ω, and F is a free ultrafilter on ω, it follows that K = ω \ (M \N) ∈ F .
Since F is a filter, K ∩ F ∈ F and consequently C =

⋃
{An : n ∈ K ∩ F} ∈

f−1(F) ⊆ G. It can be easily verified that C ∩ B = ∅. (If x ∈ C ∩ B,
then x ∈ An for some n ∈ K ∩ F . Since x is also in B and A is disjoint,
we must have n ∈ N . Therefore, N ∩ F 6= ∅, a contradiction.) But this
contradicts the fact that B meets every element of G. Hence, N ∩F 6= ∅ for
all F ∈ F and consequently N ∈ F , since F is an ultrafilter on ω. It follows
that G =

⋃
{An : n ∈ N} ∈ f−1(F) ⊆ G. Since G ⊆ B, this contradicts

our assumption that B does not include any element of G. Thus, G is an
ultrafilter on A, proving our assertion.

The second assertion follows from the above result and the fact that
UF(ω) is true in the basic Cohen model M1 (see [11]).

For the third assertion, consider Solovay’s forcing modelM5(ℵ), in which
the axiom of countable choice (i.e. AC restricted to countable families of
non-empty sets) is true (see [11]), hence inM5(ℵ) there are no Russell-sets.
It follows that the statement “there exists a free ultrafilter on every Russell-
set” is trivially true in this model. On the other hand, it is known that
UF(ω) fails in M5(ℵ) (see [11]), hence the implication in the statement
of the theorem is not reversible in ZF. This completes the proof of the
theorem.

Remark 1. (a) The proof of Theorem 3 can be used without alterations
in order to prove that UF(ω) implies “for a pairwise disjoint family A =
{An : n ∈ ω} with |An| ≥ 2 for each n ∈ ω, if there is no partial Kinna–
Wagner selection function (i.e. A has no infinite subfamily B and a function
f on B such that for every B ∈ B, f(B) is a non-empty proper subset of B),
then there is a free ultrafilter on

⋃
A”.

(b) Since UF(ω) holds in every Fraenkel–Mostowski permutation model
(see [11]) of ZFA (i.e. ZF with the Axiom of Extensionality modified in
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order to allow the existence of atoms), it follows (by Theorem 3) that the
statement “there exists a free ultrafilter on every Russell-set” holds in each
such model.

(c) The statement “there exists a free ultrafilter on every Russell-set”
is relatively consistent with ZF + ¬BPI(ω). This follows from Theorems 1
and 3.

Theorem 4. The statement “there exists a free ultrafilter on every Rus-
sell-set” is not provable in ZF.

Proof. We shall use Blass’ forcing model N from [1] (this is the model
M15 in [11]): Start with a countable transitive model M of ZF + V = L.
By forcing with finite partial functions from ω × ω into 2 (i.e. the par-
tially ordered set of forcing conditions is Fn(ω×ω, 2) equipped with reverse
inclusion), obtain a model M [G] with a sequence (an)n∈ω of generic sub-
sets of ω (for n ∈ ω, an = {m ∈ ω : ∃p ∈ G, p(n,m) = 1}, hence (by
standard density arguments) ω \ an = {m ∈ ω : ∃p ∈ G, p(n,m) = 0};
further, ȧn = {(m̌, p) : m ∈ ω, p ∈ Fn(ω × ω, 2), p(n,m) = 1} and

˙ω \ an = {(m̌, p) : m ∈ ω, p ∈ Fn(ω × ω, 2), p(n,m) = 0} are names for
an and ω \ an, respectively). For any x ⊆ ω, let δ(x) be the set of reals
whose symmetric difference with x is finite. Let f ∈ M [G] be the function
defined by f(n) = {δ(an), δ(ω \ an)}, n ∈ ω, and let

S =
⋃
{δ(an) ∪ δ(ω \ an) : n ∈ ω} ∪ {f}.

Let N be the submodel of M [G] consisting of all sets in M [G] which are
hereditarily ordinal definable from S and finitely many members of S, i.e.
N = HOD(S), or N is HOD over S in the terminology and notation of [13].
As Blass points out in [1, p. 329], N can also be described as consisting of the
sets that are HOD from (finitely many) members of S—but not S itself—in
M [G], since S is certainly definable from f . (We note that Blass’ model N
is similar to Feferman’s model constructed in [2] (and labeled as modelM2
in [11]), however N differs from Feferman’s model in that f belongs to N .)

In [1], it is shown that all ultrafilters in N are principal. Now, by the
definition of N , it follows that R = {f(n) : n ∈ ω} = {{δ(an), δ(ω \ an)} :
n ∈ ω} is a countable family of pairs in N (because f ∈ N), and we assert
that R has no partial choice function in the model, thus

⋃
R is a Russell-set

in N . To see this, assume, for contradiction, that there is an infinite subset
K ⊆ ω and a bijection g : ω → D, where D =

⋃
{f(k) : k ∈ K} =⋃

{{δ(ak), δ(ω \ ak)} : k ∈ K} (note that our assumption that there exists
an infinite subfamily of R with a choice function is equivalent to “

⋃
R is a

Dedekind-infinite set”, i.e.
⋃
R has a countably infinite subset).

Since g is HOD from finitely many elements of S, there is a formula
φ(x,w, z1, . . . , zn, y1, . . . , ym) in the language of set theory and elements



6 E. Tachtsis

s1, . . . , sn of S \ {f} and ordinals α1, . . . , αm such that

(1) M [G] |= ∀x, (φ(x, f, s1, . . . , sn, α1, . . . , αm)⇔ (x = g)).

(We may as well assume that f is a parameter.) For each k ∈ ω, δ(ak) (and
each element of δ(ak)) and δ(ω \ ak) (and each element of δ(ω \ ak)) have
canonical names, for example,

˙δ(ak) = {( ˙ak4x, ∅) : x ∈ [ω]<ω},
where

˙ak4x = {(m̌, p) : (m ∈ (ω \ x) ∧ p(k,m) = 1) ∨ (m ∈ x ∧ p(k,m) = 0)},
and similarly for δ(ω \ ak). Therefore, each si has a canonical name ṡi =

˙ami4xi, or ṡi = ˙(ω \ ami)4xi (similar to ˙ami4xi), where mi ∈ ω and xi is
a finite subset of ω. Further, f has a canonical name

ḟ = {(op(ň,up( ˙δ(an), ˙δ(ω \ an))), ∅) : n ∈ ω},
where op and up are the functions from Kunen [16, p. 191] (if ā is a name
for a and b̄ is a name for b, then op(ā, b̄) and up(ā, b̄) are names for (a, b)
and {a, b}, respectively).

Since K is an infinite set, there must be an element k ∈ K such that
k /∈ {mi : i = 1, . . . , n}. This implies that the parameters s1, . . . , sn of φ do
not belong to δ(ak)∪ δ(ω \ak). Recall here that the generic subsets of ω, ai,
i ∈ ω, form an independent family of subsets of ω, which implies that if r, s
are distinct natural numbers, then |ar4as| = ℵ0. As g is a function from ω
onto D =

⋃
{{δ(am), δ(ω \ am)} : m ∈ K}, there exists an n∗ ∈ ω such that

g(n∗) = δ(ak). Then

(2) M [G] |= ∃x, (φ(x, f, s1, . . . , sn, α1, . . . , αm) ∧ (x(n∗) = δ(ak))).

Thus, there is a forcing condition p ∈ G such that

(3) p 
 ∃x, (φ(x, ḟ , ṡ1, . . . , ṡn, α̌1, . . . , α̌m) ∧ (x(ň∗) = ˙δ(ak))).

Since p is finite, let m0 ∈ ω be such that

(4) ∀m ≥ m0, (k,m) /∈ dom(p),

and let
X = {(k,m) ∈ ω × ω : m ≥ m0}.

Define πX : Fn(ω × ω, 2)→ Fn(ω × ω, 2) by

πX(s)(u, v) =

{
s(u, v) if (u, v) /∈ X,

1− s(u, v) if (u, v) ∈ X,

where s is any forcing condition and the equations above are interpreted to
mean that if either side is defined then so is the other and they are equal.
It is not hard to verify that πX is an order automorphism of the partially
ordered set (Fn(ω×ω, 2),⊇). From (4) and the definitions of X (which is a
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subset of {k} × ω) and πX , we conclude that:

1. πX(p) = p.

2. πX fixes the canonical names ˙δ(ar) and ˙δ(ω \ ar) of δ(ar) and δ(ω\ar)
for r ∈ ω \ {k}, pointwise. Since s1, . . . , sn ∈

⋃
{δ(ar)∪ δ(ω \ ar) : r ∈

ω \ {k}}, we infer that πX(ṡi) = ṡi for all i = 1, . . . , n.

3. πX interchanges the names ˙δ(ak) and ˙δ(ω \ ak).
4. πX(ḟ) = ḟ (due to items 2 and 3).

Applying πX to (3) gives

(5) p 
 ∃x, (φ(x, ḟ , ṡ1, . . . , ṡn, α̌1, . . . , α̌m) ∧ (x(ň∗) = ˙δ(ω \ ak))).

So since p ∈ G, we conclude that

(6) M [G] |= ∃x, (φ(x, f, s1, . . . , sn, α1, . . . , αm) ∧ (x(n∗) = δ(ω \ ak))).

Then relations (1), (2) and (6) contradict the fact that g is a function. Thus,⋃
R is a Russell-set in the model N as asserted.
By [1, Theorem, p. 331], there is no free ultrafilter on

⋃
R in N , finishing

the proof of the theorem.

Theorem 5. If there exists a Russell-set A and a free ultrafilter F on A,
then UF(ω) holds. The latter implication is not reversible in ZF.

Proof. Assume that there exists a Russell-set A =
⋃
{An : n ∈ ω} and a

free ultrafilter F on A. Let f : A→ ω be defined by f(a) = n if and only if
a ∈ An. Define

G = {M ∈ P(ω) : f−1(M) ∈ F}.
Then G is free, that is,

⋂
G = ∅, since G contains all the cofinite subsets

of ω. Indeed, let M be a cofinite subset of ω. Since for all K ∈ [ω]<ω,⋃
{An : n ∈ K} is finite and F is a free ultrafilter on A, it follows that⋃
{An : n ∈ ω \ K} ∈ F for all K ∈ [ω]<ω. Since M is cofinite in ω, we

thus have f−1(M) =
⋃
{Am : m ∈ M} ∈ F , hence M ∈ G. (Using the

same argument, we see that G cannot contain any finite subset of ω.) Now,
F being a filter on A easily implies that G is a filter on ω. Further, if N is
an (infinite) subset of ω, then since F is an ultrafilter on A, it follows that
either W =

⋃
{An : n ∈ N} ∈ F or A \W =

⋃
{An : n ∈ ω \ N} ∈ F . By

the definition of G, this means that either N ∈ G or ω \N ∈ G. Therefore,
G is an ultrafilter on ω.

The second assertion of the theorem follows from the fact (see [11]) that
UF(ω) holds in the basic Cohen model M1, whereas there are no Russell-
sets in M1 (since the Boolean prime ideal theorem, that every non-trivial
Boolean algebra has a prime ideal, and hence the axiom of choice for families
of non-empty finite sets, are true in that model (see [11])).

In view of Theorems 3 and 5, we immediately obtain the following result.
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Theorem 6. If there exists a Russell-set A and a free ultrafilter F on A,
then there exists a free ultrafilter on every Russell-set. The implication is not
reversible in ZF.

Remark 2. We point out that the fact that UF(ω) lies in strength
between the statements “there exists a Russell-set A and a free ultrafilter
F on A” and “there exists a free ultrafilter on every Russell-set” (due to
Theorems 3 and 5) was crucial to obtaining the result of Theorem 6. Indeed,
in [9, Proposition 18], it was established that the Russell-set X =

⋃
{Xn :

n ∈ ω} in the second Cohen model (model M7 in [11]) satisfies: for any
two subsets M and K of ω with infinite differences M \K and K \M , the
cardinalities |

⋃
{Xm : m ∈ M}| and |

⋃
{Xk : k ∈ K}| are incomparable in

that model (i.e. there is neither a one-to-one function f :
⋃
{Xm : m ∈ M}

→
⋃
{Xk : k ∈ K} nor a one-to-one function g :

⋃
{Xk : k ∈ K} →

⋃
{Xm :

m ∈ M}). It is also worth recalling here that in the second Cohen model,
there exist 2ℵ0 Russell-sets with pairwise incomparable cardinalities (see [9,
Proposition 20]). Yet, we recall that if there exists a Russell-set, then there
exist many Russell-sets; for example, if X is a Russell-set, then so are the
sets n×X with n ∈ ω \ {0} (see [9, Proposition 7]).

Finally, taking also into account the previous results, we deduce the
subsequent two results.

Theorem 7. The statements BPI(ω) and “there exists a Russell-set A
and a free ultrafilter F on A” are independent of each other in ZF.

Proof. In the proof of [3, Theorem 5.2], a symmetric model N was
constructed in which UF(ω) holds, whereas BPI(ω) fails. Furthermore,
in [3], it was shown that, in N , there is a disjoint countably infinite family
T = {Ti : i ∈ ω} of pairs of sets of reals, having no partial choice function
in N . Thus,

⋃
T is a Russell-set in N . Since N satisfies UF(ω), by Theo-

rem 3 there is a free ultrafilter on
⋃
T . Hence, the statement “there exists

a Russell-set A and a free ultrafilter F on A” holds in N .

The second assertion of the theorem follows from the fact that in the
basic Cohen modelM1, BPI(ω) is true, whereas there are no Russell-sets.

Theorem 8. The statement “there exists a Russell-set and there exists
a free ultrafilter on every Russell-set” is, in ZF, equivalent to “there exists
a Russell-set A and a free ultrafilter F on A”. Thus, “there exists a Russell-
set and there exists a free ultrafilter on every Russell-set” is also relatively
consistent with ZF.

Problem 1. Does the statement “there exists a Russell-set A and a
free ultrafilter on A”, or UF(ω), hold in the second Cohen model M7? We
conjecture that the answer to this question is in the affirmative.
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3. Summary of results. In the diagram below, we summarize the
results of the paper.

There exists a Russell-set and there exists a free ultrafilter on every Russell-set

l
There exists a Russell-set A and a free ultrafilter F on A

X ↑ X ↓ ↓
BPI(ω) → UF(ω)

↓ X ↑
There exists a free ultrafilter on every Russell-set

ZF 0 there exists a free ultrafilter on every Russell-set

Positive results and independence results for the principles studied in the paper
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