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Summary. We consider a mathematical model which describes the equilibrium between
a viscoelastic body in frictionless contact with an obstacle. The contact is modelled with
normal compliance, associated with Signorini’s conditions and adhesion. The adhesion is
modelled with a surface variable, the bonding field, whose evolution is described by a
first-order differential equation. We establish a variational formulation of the mechanical
problem and prove the existence and uniqueness of the weak solution. The proof is based
on arguments of evolution equations with multivalued maximal monotone operators, dif-
ferential equations and the Banach fixed point theorem.

1. Introduction. Contact problems involving deformable bodies are
quite frequent in industry as well as in daily life and play an important
role in structural and mechanical systems. Contact processes involve com-
plicated surface phenomena, and are modelled with highly nonlinear initial
boundary value problems. Taking into account various contact conditions
associated with more and more complex behavior laws leads to the intro-
duction of new and nonstandard models, expressed with the aid of evolution
variational inequalities.

An early attempt to study contact problems within the framework of
variational inequalities was made in [13]. Recently, a book [23] appeared
that represents a broad insight into the theory of inclusions, hemivariational
inequalities, and their applications to contact mechanics. The mathemati-
cal, mechanical and numerical state of the art can be found in [28] where
we find detailed mathematical and numerical studies of adhesive contact
problems.
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Adhesion may take place between parts of contacting surfaces. It may
be intentional, when the surfaces are bonded with glue, or unintentional,
as a seizure between very clean surfaces. The adhesion contact is modelled
by a bonding field on the contact surface, denoted in this paper by β; it
describes the pointwise fractional density of active bonds on the contact
surface, and is sometimes referred to as the intensity of adhesion. Following
[16, 17], β satisfies 0 ≤ β ≤ 1; when β = 0 all the bonds are severed and
there are no active bonds, when β = 1 all the bonds are active; when
0 < β < 1 the adhesion is partial and only a fraction β of the bonds
is active. Basic modelling can be found in [16, 18]. Recall that unilateral
contact problems involving Signorini’s condition with or without adhesion
were studied by several authors (see for instance [1–3,8–12,14,20,21,25,26,
28,29,32,33]).

Contact problems for elastic and viscoelastic bodies with adhesion and
friction appear in many applications of solid mathematics such as the fiber-
matrix interface of composite materials. A consistent model coupling unilat-
eral contact, adhesion and friction was proposed in [25]. Several models for
dynamic or quasistatic processes of adhesive contact between a deformable
body and an obstacle have been studied in [5–7,9,10,15,18,19,22,23,25,27,
28,30–33] and the references therein.

The novelty in all the above papers is the introduction of a surface in-
ternal variable, the bonding field β. In [19], an adhesive contact problem
for viscoelastic materials with long memory was studied. The authors ob-
tain existence and uniqueness results for abstract inclusions and variational-
hemivariational inequalities, which they apply to prove the existence of a
unique weak solution to the contact problem.

The aim of this paper is to continue the study of the contact problem
begun in [33]. The novelty of this paper is the study of a viscoelastic friction-
less contact problem with unilateral constraint and adhesion. Recall that this
type of contact was used for the first time in [20]. We establish a variational
formulation of the mechanical problem, for which we prove the existence and
uniqueness of solution. The proof is based on a general result on evolution
equations with multivalued maximal monotone operators and fixed point
arguments.

The paper is structured as follows. In Section 2 we list the assumptions on
the data, derive the variational formulation and present our main existence
and uniqueness result, Theorem 2.1. Its proof is provided in Section 3.

2. Problem statement and variational formulation. We consider
a viscoelastic body which occupies a domain Ω ⊂ Rd (d = 2, 3) and assume
that its boundary Γ is regular and partitioned into three measurable and
disjoint parts Γ1, Γ2, Γ3 such that meas(Γ1) > 0. The body is acted upon by
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a volume force of density f1 in Ω and a surface traction of density f2 on Γ2.
On Γ3 the body is in adhesive frictionless contact with an obstacle.

The classical formulation of this mechanical problem is as follows.

Problem P1. Find a displacement field u : Ω × [0, T ] → Rd and a
bonding field β : Γ3 × [0, T ]→ [0, 1] such that

div σ(u, u̇) = −f1 in Ω × (0, T ),(2.1)
σ(u, u̇) = Aε(u̇) + Bε(u) in Ω × (0, T ),(2.2)

u = 0 on Γ1 × (0, T ),(2.3)
σν = f2 on Γ2 × (0, T ),(2.4)

uν ≤ g, σν + p(uν)− cνβ2Rν(uν) ≤ 0

(uν − g)
(
σν + p(uν)− cνβ2Rν(uν)

)
= 0, στ = 0

}
on Γ3 × (0, T ),(2.5)

β̇ = −[βcν(Rν(uν))2 − εa]+ on Γ3 × (0, T ),(2.6)

u(0) = u0 in Ω,(2.7)
β(0) = β0 on Γ3.(2.8)

Equation (2.1) represents the equilibrium equation where σ = σ(u, u̇) de-
notes the stress tensor. Equation (2.2) is the viscoelastic constitutive law
of the material in which A and B are the viscosity and elasticity operators,
respectively, and ε(u) is the small strain tensor. Here and below, a dot above
a variable represents the time derivative.

Relations (2.3) and (2.4) are the displacement and traction boundary
conditions, respectively, in which ν denotes the unit outward normal vector
on Γ and σν represents the Cauchy stress vector.

Condition (2.5) represents the unilateral and frictionless contact with
adhesion on the contact surface Γ3 where uν is the normal displacement, σν
is the normal constraint, στ is the tangential constraint and p is a normal
compliance function. Here g ≥ 0 is a maximal value of the penetration of
the viscoelastic body in the obstacle (see [20]); Rν is a truncation operator
defined by

Rν(s) =


L if s < −L,
−s if −L ≤ s ≤ 0,
0 if s > 0,

where L > 0 is a characteristic length of the bonds; and the parameter cν is
an adhesion coefficient.

Equation (2.6) represents the ordinary differential equation which de-
scribes the evolution of the bonding field where εa is an adhesion coefficient
and [s]+ = max(s, 0) for s ∈ R. This equation was already used in several
papers (see for example [28]). Since β̇ ≤ 0 on Γ3 × (0, T ), once debonding
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occurs, bonding cannot be reestablished. Also we wish to make it clear that
from [24] it follows that the model does not allow for a complete debonding
field in finite time.

Finally, (2.7) and (2.8) represent respectively the initial displacement
field and the initial bonding field.

We recall that the inner products and the corresponding norms on Rd
and Sd are given by

u.v = uivi, |v| = (v.v)1/2 ∀u, v ∈ Rd,

σ.τ = σijτij , |τ | = (τ.τ)1/2 ∀σ, τ ∈ Sd,

where Sd is the space of second order symmetric tensors on Rd (d = 2, 3).
Here and below, the indices i and j run between 1 and d and the summation
convention over repeated indices is adopted.

Now, to proceed with the variational formulation, we need the following
function spaces:

H = (L2(Ω))d, H1 = (H1(Ω))d,

Q = {σ = (σij) : σij = σji ∈ L2(Ω)},
Q1 = {σ ∈ Q : div σ ∈ H}.

Note that H and Q are real Hilbert spaces endowed with the respective
canonical inner products

(u, v)H =
�

Ω

uivi dx, (σ, τ)Q =
�

Ω

σijτij dx.

The strain tensor is

ε(u) = (εij(u)), where εij(u) =
1

2
(ui,j + uj,i);

div σ = (σij,j) is the divergence of σ. For every v ∈ H1, we also write v
for the trace of v on Γ and we denote by vν and vτ the normal and the
tangential components of v on the boundary Γ given by

vν = v.ν, vτ = v − vνν.
Similarly, for a regular function σ ∈ Q1, we define its normal and tangential
components by

σν = (σν).ν, στ = σν − σνν
and we recall the Green formula

(σ, ε(v))Q + (div σ, v)H =
�

Γ

σν.v da ∀v ∈ H1,

where da is the surface measure element.
In the study of Problem P1 we assume that the viscosity operator A and

the elasticity operator B satisfy the conditions:
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(2.9)



(a) A : Ω × Sd → Sd;

(b) A(x, τ) = (aijkl(x)τij) for all τ ∈ Sd and a.e. x ∈ Ω;

(c) aijkl = aklij = ajikl ∈ L∞(Ω);

(d) there exists mA > 0 such that
aijklτijτkl ≥ mA|τ |2 for all τ = (τij) ∈ Sd and a.e. in Ω,

and

(2.10)



(a) B : Ω × Sd → Sd;

(b) there exists LB > 0 such that
|B(x, ε1)− B(x, ε2)| ≤ LB|ε1 − ε2|
for all ε1, ε2 in Sd and a.e. x ∈ Ω;

(c) the mapping x 7→ B(x, ε) is Lebesgue measurable on Ω,
for any ε in Sd;

(d) x 7→ B(x, 0) is in Q.

Let V be the closed subspace of H1 defined by

V = {v ∈ H1 : v = 0 on Γ1}.

Since meas(Γ1) > 0 and the viscosity tensor satisfies the assumption (2.9),
it follows that V is a real Hilbert space endowed with the inner product

(u, v)V = (Aε(u), ε(v))Q;

let ‖·‖V be the associated norm. Moreover by Sobolev’s trace theorem, there
exists dΩ > 0 which depends only on the domain Ω, Γ1 and Γ3 such that

(2.11) ‖v‖(L2(Γ3))d ≤ dΩ‖v‖V ∀v ∈ V.

We suppose that the adhesion coefficients cν and εa satisfy

(2.12) cν ∈ L∞(Γ3), εa ∈ L2(Γ3) cν , εa ≥ 0 a.e. on Γ3.

For the Signorini problem, we use the convex subset of admissible dis-
placement fields given by

K = {v ∈ V : vν ≤ g a.e. on Γ3}.

We assume that the initial data satisfy

u0 ∈ K,(2.13)

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3.(2.14)

Next, we define the functional j : L2(Γ3)× V × V → R by

j(β, u, v) =
�

Γ3

(−cνβ2Rν(uν) + p(uν))vν da, ∀(β, u, v) ∈ L2(Γ3)× V × V,
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where the normal compliance function p : Γ3 × R→ R+ satisfies:

(2.15)



(a) there exists Lp > 0 such that
|p(x, r1)− p(x, r2)| ≤ Lp|r1 − r2|
for all r1, r2 ∈ R and a.e. x ∈ Γ3;

(b) (p(x, r1)− p(x, r2))(r1 − r2) ≥ 0

for all r1, r2 ∈ R and a.e. x ∈ Γ3;
(c) the mapping x 7→ p(x, r) is measurable on Γ3, for any r ∈ R;
(d) p(x, r) = 0 for all r ≤ 0 and a.e. x ∈ Γ3.

We suppose that the body forces and surface tractions have the regularity

(2.16) f1 ∈W 1,1(0, T ;H), f2 ∈W 1,1(0, T ; (L2(Γ2))
d),

and we use Riesz’s representation to define a function F : [0, T ]→ V by

(2.17) (F (t), v)V =
�

Ω

f1(t).v dx+
�

Γ2

f2(t).v da ∀v ∈ V, t ∈ [0, T ].

We see that (2.16) and (2.17) imply

F ∈W 1,1(0, T ;V ).

We also need to introduce the following set for the bonding field:

B = {θ : [0, T ]→ L2(Γ3) : 0 ≤ θ(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3}.

Finally, for p ∈ [1,∞], we use the usual notation for the Lebesgue spaces
Lp(0, T ;V ) and Sobolev spaces W k,∞(0, T ;V ), k = 1, 2, . . . .

For every real Banach space (X, ‖ · ‖X) and T > 0 we write C([0, T ];X)
for the space of continuous functions from [0, T ] toX; recall that C([0, T ];X)
is a real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

Now assuming that the solution is sufficiently regular, by using Green’s
formula we find that Problem P1 has the following variational formulation.

Problem P2. Find a displacement field u : [0, T ] → V and a bonding
field β : [0, T ]→ L2(Γ3) such that

u(t) ∈ K,(
Aε(u̇(t)), ε(v)− ε(u(t))

)
Q
+
(
Bε(u(t)), ε(v)− ε(u(t))

)
Q

(3.1)

+ j(β(t), u(t), v − u(t)) ≥ (F (t), v − u(t))V , ∀v ∈ K, a.e. t ∈ (0, T ),

(3.2) β̇(t) = −[β(t)cν(Rν(uν(t))2 − εa]+, a.e. t ∈ (0, T ),
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u(0) = u0,(3.3)
β(0) = β0.(3.4)

The main result of this section, to be proved in the next one, is the
following theorem.

Theorem 2.1. Assume that (2.9), (2.10) and (2.12)–(2.16) hold. Then
there exists a unique solution to Problem P2 which satisfies

u ∈W 1,∞(0, T ;V ), β ∈W 1,∞(0, T ;L2(Γ3)) ∩B.

3. Proof of Theorem 2.1. As in [3], the proof of Theorem 2.1 will be
carried out in several steps and we need the following abstract results. Let
X be a Hilbert space with the inner product (·, ·)X and the associated norm
‖ · ‖X . The domain D(A) of a multivalued operator A : D(A) ⊂ X → 2X is
defined as

D(A) = {x ∈ X : Ax 6= ∅},
where 2X represents the set of all subsets of X. We say that the operator A
is monotone if

(u1 − u2, v1 − v2)X ≥ 0 ∀v1 ∈ Au1, v2 ∈ Au2, ∀u1, u2 ∈ D(A).

We say that A is maximal monotone if there exists no monotone multivalued
operator B : D(B) ⊂ X → 2X that is a proper extension of A.

For a function φ : X → ]−∞,∞] we denote the subdifferential of φ at
u ∈ X as

∂φ(u) = {f ∈ X : φ(v)− φ(u) ≥ (f, v − u)X ∀v ∈ X}.
It can be shown that if φ : X → ]−∞,∞] is a proper, convex, and lower

semicontinuous function, then ∂φ is a maximal monotone operator. It can
also be shown that if A1 : D(A1) ⊂ X → 2X is a maximal monotone operator
and A2 : X → X is a single-valued, monotone, and Lipschitz continuous
operator, then A1+A2 is a maximal monotone operator. The proofs of these
results and of the theorem below can be found in [4].

Theorem 3.1. Let X be a Hilbert space and let A : D(A) ⊂ X → 2X

be a multivalued operator such that A+ωIX is a maximal operator for some
real ω. Then, for every f ∈ W 1,1(0, T ;X) and u0 ∈ D(A), there exists a
unique function u ∈W 1,∞(0, T ;V ) which satisfies

u̇(t) +Au(t) 3 f(t), a.e. t ∈ (0, T ),

u(0) = u0.

Next, we use this result to prove Theorem 2.1.

Proof of Theorem 2.1. In the first step, for a given η ∈W 1,∞(0, T ;V ) we
consider the following variational problem.
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Problem Pη. Find uη : [0, T ]→ V such that

uη(t) ∈ K,(
Aε(u̇η(t)), ε(v)− ε(uη(t))

)
Q
+
(
Bε(uη(t)), ε(v)− ε(uη(t))

)
Q

+(η(t), v − uη(t))V ≥ (F (t), v − uη(t))V ∀v ∈ K, a.e. t ∈ (0, T ),

uη(0) = u0.

We show the following result.

Lemma 3.2. Problem Pη has a unique solution which satisfies uη ∈
W 1,∞(0, T ;V ).

Proof. We see that Problem Pη is equivalent to Problem Qη defined
below.

Problem Qη. Find uη : [0, T ]→ V such that

(3.5)
uη(t) ∈ K,(
Aε(u̇η(t)), ε(v)− ε(uη(t))

)
Q
+
(
Bε(uη(t)), ε(v)− ε(uη(t))

)
Q

≥ (Fη(t), v − uη(t))V ∀v ∈ K, a.e. t ∈ (0, T ),

(3.6) uη(0) = u0,

where Fη ∈W 1,1(0, T ;V ) is defined as Fη = F − η.
Next, by the Riesz representation theorem we can define an operator

C : V → V by

(Cu, v)V = (Bε(u), ε(v))Q ∀u, v ∈ V.
It follows from the assumptions (2.9) and (2.10) that

(3.7) ‖Cu1 − Cu2‖V ≤
LB
mA
‖u1 − u2‖V ∀u1, u2 ∈ V,

i.e., C is a Lipschitz continuous.
For V1 ⊂ V , we denote by IV1 : V → ]−∞,∞] the indicator function of

the set V1, defined by

IV1(v) =

{
0 if v ∈ V1,
∞ if v /∈ V1.

Since K is a nonempty convex closed subset of V, it follows that ∂IK is a
maximal monotone operator on V and D(∂IK) = K.

Using (3.7), we see that the operator

C +
LB
mA

IV : V → V

is monotone and Lipschitz continuous. Therefore,

∂IK + C +
LB
mA

IV : K ⊂ V → 2V
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is a maximal monotone operator. Conditions (2.12) and (3.6) allow us to
apply Theorem 3.1 with X = V endowed with the inner product (·, ·)A,
A = ∂IK + C, D(A) = K ⊂ V , and ω = LB/mA. We deduce that there
exists a unique element uη ∈W 1,∞(0, T ;V ) such that

u̇η(t) + ∂IK(uη(t)) + Cuη(t) 3 Fη(t), a.e. t ∈ (0, T ),(3.8)
uη(0) = u0.(3.9)

We recall that for each u, z ∈ V we have the following equivalence:

z ∈ ∂IK(u) ⇔ u ∈ K, (z, v − u)V ≤ 0 ∀v ∈ K.
Thus, the differential inclusion (3.8) is equivalent to the following variational
inequality:

(3.10)
uη(t) ∈ K,
(u̇η(t), v − uη(t))V + (Cuη(t), v − uη(t))V

≥ (Fη(t), v − uη(t))V ∀v ∈ K, a.e. t ∈ (0, T ).

It follows from (3.10) that uη satisfies the variational inequality

(3.11)
uη(t) ∈ K,(
Aε(u̇η(t)), ε(v)− ε(uη(t))

)
Q
+
(
Bε(uη(t)), ε(v)− ε(uη(t))

)
Q

≥ (Fη(t), v − uη(t))V ∀v ∈ K, a.e. t ∈ (0, T ).

Therefore, we deduce from (3.11) and (3.9) the existence part of Theorem
2.1. The uniqueness of solution which satisfies (3.5) and (3.6) is guaranteed
by Theorem 3.1.

In the second step we consider the following initial value problem.

Problem Rη. Find a bonding field βη : [0, T ]→ L2(Γ3) such that

β̇η(t) = −[βη(t)cν(Rν(uην(t)))2 − εa]+, a.e. t ∈ (0, T ),(3.12)
βη(0) = β0.(3.13)

We have the following result.

Lemma 3.3. There exists a unique solution to Problem Rη and it satisfies

βη ∈W 1,∞(0, T ;L2(Γ3)) ∩B.
Proof. Consider the mapping F (t, θ) : [0, T ] × L2(Γ3) → L2(Γ3) defined

by
F (t, θ) = −[cνθ(Rν(uην(t)))2 − εa]+.

It follows from the properties of the truncation operator R that F is Lipschitz
continuous with respect to the second argument, uniformly in time. Moreover,
for any θ ∈ L2(Γ3), the mapping t 7→ F (t, θ) belongs to L∞(0, T ;L2(Γ3)).
Then, from a version of the Cauchy–Lipschitz theorem (see [28]), we deduce
the existence of a unique function βη ∈ W 1,∞(0, T ;L2(Γ3)) which satisfies
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(3.12), (3.13). The regularity βη ∈ B follows from (3.12), (3.13) and (2.14),
(see also [28]).

Next, in the third step for η ∈ W 1,∞(0, T ;V ) we denote by uη and βη
the solutions of Problem Pη and Rη respectively. Using Riesz’s representation
theorem we define the function

Λη : [0, T ]→ V

by

(3.14) (Λη(t), v)V = j
(
βη(t), uη(t), v

)
∀v ∈ V, t ∈ [0, T ].

We have the lemma below.

Lemma 3.4. For each η ∈ W 1,∞(0, T ;V ) the function Λη belongs to
W 1,∞(0, T ;V ). Moreover, there exists a unique η∗ ∈ W 1,∞(0, T ;V ) such
that Λη∗ = η∗.

Proof. Let η ∈W 1,∞(0, T ;V ) and t1, t2 ∈ [0, T ]. Using (3.14), it follows
that there exists a constant c1 > 0 such that

‖Λη(t1)− Λη(t2)‖V ≤ c1
(
‖β2η(t1)Rν(uην(t1))− β2η(t2)Rν(uην(t2))‖L2(Γ3)

+ ‖p(uν(t1))− p(uν(t2))‖L2(Γ3)

)
.

Now, keeping in mind (2.14), the inequalities 0 ≤ βη(t) ≤ 1 for all t ∈ [0, T ]
and the properties of the truncation operator Rν , we find that

(3.15) ‖Λη(t1)− Λη(t2)‖V
≤ c2(‖uη(t1)− uη(t2)‖V + ‖βη(t1)− βη(t2)‖L2(Γ3))

with some c2 > 0. Since uη ∈ W 1,∞(0, T ;V ) and βη ∈ W 1,∞(0, T ;L2(Γ3))
∩B, we deduce from (3.15) that Λη ∈W 1,∞(0, T ;V ).

Let now η1, η2 ∈ W 1,∞(0, T ;V ). For t ∈ [0, T ] we integrate (3.12) with
the initial condition (3.13) to obtain

βηi(t) = β0 −
t�

0

[βηi(s)cν(Rν(uηiν(s))
2 − εa]+ da.

Using the definition of Rν , the inequality |Rν(uηiν)| ≤ L, (2.11) and writing
βη1 = βη1 − βη2 + βη2 , we see that for some constant c3 > 0,

‖βη1(t)− βη2(t)‖L2(Γ3)

≤ c3
( t�

0

‖βη1(s)− βη2(s)‖L2(Γ3) + dΩ

t�

0

‖uη1(s)− uη2(s)‖V ds
)
.

By a Gronwall-type inequality, it follows that

(3.16) ‖βη1(t)− βη2(t)‖L2(Γ3) ≤ c4
t�

0

‖uη1(s)− uη2(s)‖V ds
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with some c4 > 0. On the other hand, using arguments similar to those in
the proof of (3.15), we find that there exists a constant c5 > 0 such that

‖Λη1(t)− Λη2(t)‖V ≤ c5
(
‖uη1(t)− uη2(t)‖V + ‖βη1(t)− βη2(t)‖L2(Γ3)

)
.

Then, by (3.16) we have

(3.17) ‖Λη1(t)− Λη2(t)‖V

≤ c5
(
‖uη1(t)− uη2(t)‖V + c4

t�

0

‖uη1(s)− uη2(s)‖V ds
)
.

Next, we use (3.11) to find that(
u̇η1(t)− u̇η2(t), uη1(t)− uη2(t)

)
V
≤
(
η2(t)− η1(t), uη1(t)− uη2(t)

)
V

+
(
Buη1(t)− Buη2(t), uη1(t)− uη2

)
V
.

Using the Cauchy–Schwarz inequality and (3.7) we obtain(
u̇η1(t)− u̇η2(t), uη1(t)− uη2(t)

)
V
≤
(
η2(t)− η1(t), uη1(t)− uη2(t)

)
V

+
LB
mA
‖uη1(t)− uη2(t)‖2V .

We integrate the inequality above with respect to time to find that

‖uη1(t)− uη2(t)‖2V ≤ 2

t�

0

‖η2(s)− η1(s)‖V ‖uη1(s)− uη2(s)‖V ds

+ 2
LB
mA

t�

0

‖uη1(s)− uη2(s)‖2V ds.

Applying the inequality

2ab ≤ a2 + b2 ∀a, b ∈ R,

we obtain

‖uη1(t)− uη2(t)‖2V ≤ 2

t�

0

‖η1(s)− η2(s)‖2V ds

+

(
2
LB
mA

+ 1

) t�

0

‖uη1(s)− uη2(s)‖2V ds.

Using now a Gronwall-type inequality we get

(3.18) ‖uη1(t)− uη2(t)‖2V ≤ c6
t�

0

‖η1(s)− η2(s)‖2V ds
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for some constant c6 > 0. Using (3.17) after some calculations we find that
there exists a constant c7 > 0 such that

‖Λη1(t)− Λη2(t)‖2V

≤ 2c27

(
‖uη1(t)− uη2(t)‖2V +

( t�
0

‖uη1(s)− uη2(s)‖V ds
)2)

.

Then, using the Cauchy–Schwarz inequality we find

(3.19) ‖Λη1(t)− Λη2(t)‖2V

≤ 2c28

(
‖uη1(t)− uη2(t)‖2V +

t�

0

‖uη1(s)− uη2(s)‖2V ds
)

for some positive constant c8. Therefore by (3.18) and (3.19), it follows that
there exists a constant c9 > 0 such that

(3.20) ‖Λη1(t)− Λη2(t)‖2V ≤ c9
t�

0

‖η1(s)− η2(s)‖2V ds.

Let now α > 0, and denote

‖η‖α = sup
t∈[0,T ]

e−αt‖η(t)‖V ∀η ∈ C([0, T ];V ).

Clearly ‖ · ‖α defines a norm on the space C([0, T ];V ) which is equivalent to
the standard norm ‖ · ‖C([0,T ];V ). Using (3.20), we get

‖Λη1 − Λη2‖α ≤
c10√
2α
‖η1 − η2‖α ∀η1, η2 ∈ C([0, T ];V ),

for some c10 > 0. So for α sufficiently large, the operator Λ is a contraction on
the space C([0, T ];V ) endowed with the norm ‖·‖α. Then by the Banach fixed
point theorem it follows that Λ has a unique fixed point η∗ ∈ C([0, T ];V )
such that Λη∗ = η∗. The regularity η∗ ∈ W 1,∞(0, T ;V ) follows from the
regularity Λη∗ ∈W 1,∞(0, T ;V ), which concludes the proof.

Now, we have all the ingredients to prove Theorem 2.1.

Proof of Theorem 2.1. Existence. Let η∗ ∈ W 1,∞(0, T ;V ) be the fixed
point of Λ and let u, β be the functions defined in Lemmas 3.3 and 3.4,
respectively, for η = η∗, i.e. u = uη∗ , β = β∗. Clearly equalities (3.2) and
(3.4) hold from Lemma 3.3. Moreover, since Λη∗ = η∗, it follows from (3.5)
and (3.6) that (3.1) and (3.3) hold too. The regularity of solution to Problem
P2 follows fom Lemmas 3.2 and 3.3.

Uniqueness. The uniqueness of the solution follows from the uniqueness
of the fixed point of Λ and the uniqueness parts of Lemmas 3.3 and 3.4.
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