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ON THE PARTIAL SUMS OF WALSH–FOURIER SERIES

BY

GEORGE TEPHNADZE (Tbilisi and Luleå)

Abstract. We investigate convergence and divergence of specific subsequences of
partial sums with respect to the Walsh system on martingale Hardy spaces. By using
these results we obtain a relationship of the ratio of convergence of the partial sums of
the Walsh series and the modulus of continuity of the martingale. These conditions are in
a sense necessary and sufficient.

1. Introduction. It is well-known (see e.g. [2] and [24]) that the Walsh
system does not form a basis in the space L1. Moreover, there exists a func-
tion f in the dyadic Hardy space H1 such that the partial sums of f are not
bounded in L1-norm, but the partial sums Sn of the Walsh–Fourier series of
every function f ∈ L1 converge in measure (see also [7] and [12]).

Onneweer [16] showed that if the modulus of continuity of f ∈ L1[0, 1)
satisfies the condition

(1) ω1(δ, f) = o(1/log(1/δ)) as δ → 0,

then the Walsh–Fourier series of f converges in L1-norm. He also proved
that condition (1) cannot be improved.

It is also known that a subsequence Smk of partial sums is bounded
from L1 to L1 if and only if {mk : k ≥ 0} has uniformly bounded variation.
In [24, Ch. 1] it was proved that if f ∈ L1(G) and {mn : n ≥ 1} is a
subsequence of N such that

(2) ω1(1/mn, f) = o(1/LS(mn)) as n→∞,

where LS(n) is the nth Lebesgue constant, then Smnf converges in L1-norm.
Goginava and Tkebuchava [11] proved that condition (2) cannot be improved.
Since (see [14] and e.g. [18])

(3) V (n)/8 ≤ LS(n) ≤ V (n),

condition (2) can be rewritten in the form

ω1(1/mn, f) = o(1/V (mn)) as n→∞.
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In [20] it was proved that if F ∈ Hp and

(4) ωHp(1/2
n, F ) = o(1/(n[p]2(1/p−1)n)) as n→∞,

where 0 < p ≤ 1 and [p] denotes the integer part of p, then SnF → F
as n → ∞ in Lp,∞-norm. Moreover, it was shown there that condition (4)
cannot be improved.

Uniform and pointwise convergence and some approximation properties
of partial sums in L1-norm were investigated by Goginava [8] (see also [11],
[9]), Nagy [15] and Avdispahić and Memić [1]. Fine [4] obtained sufficient
conditions for the uniform convergence which are in complete analogy with
the Dini–Lipschitz conditions. Guličev [13] estimated the rate of uniform
convergence of a Walsh–Fourier series by using Lebesgue constants and the
modulus of continuity. These problems for Vilenkin groups were considered
by Blahota [3], Fridli [5] and Gát [6].

The main aim of this paper is to find characterizations of boundedness
of a subsequence of partial sums of the Walsh series of Hp martingales in
terms of measure properties of a Dirichlet kernel corresponding to partial
summation. As a consequence we get corollaries about the convergence and
divergence of some specific subsequences of partial sums. For p = 1 a simple
numerical criterion for the index of a partial sum in terms of its dyadic ex-
pansion is given which governs the convergence (or the ratio of divergence).
Another type of result is a relationship of the ratio of convergence of the par-
tial sums of the Walsh series and the modulus of continuity of the martingale.
The conditions given below are in a sense necessary and sufficient.

2. Preliminaries. Let N+ denote the set of positive integers, and
N := N+ ∪ {0}. Denote by Z2 the discrete cyclic group of order 2, that is,
Z2 := {0, 1}, where the group operation is the modulo 2 addition and every
subset is open. The Haar measure on Z2 gives measure 1/2 to each singleton.

Define the group G as the complete direct product of the group Z2,
with the product of the discrete topologies of Z2’s. The elements of G are
represented by sequences x := (x0, x1, . . . ), where xk = 0 or 1.

It is easy to give a base of neighborhoods of x ∈ G:

I0(x) := G, In(x) := {y ∈ G : y0 = x0, . . . , yn−1 = xn−1} (n ∈ N).
Denote In := In(0), In := G \ In and en := (0, . . . , 0, 1, 0, . . . ) ∈ G,

n ∈ N, with 1 in the nth place. Then it is easy to show that

(5) IM =
M−1⋃
s=0

Is\Is+1.

Every n ∈ N can be uniquely expressed as n =
∑∞

k=0 nj2
j , where nj ∈ Z2

(j ∈ N) and only a finite number of nj ’s are not zero.
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Let

〈n〉 := min{j ∈ N : nj 6= 0}, |n| := max{j ∈ N : nj 6= 0},
that is, 2|n| ≤ n ≤ 2|n|+1. Set

d(n) = |n| − 〈n〉 for all n ∈ N.

Define the variation of n ∈ N with binary coefficients (nk : k ∈ N) by

V (n) = n0 +

∞∑
k=1

|nk − nk−1| .

The norms (or quasi-norms) of the spaces Lp(G) and Lp,∞(G) (0<p<∞)
are respectively defined by

‖f‖pp :=
�

G

|f |p dµ, ‖f‖pLp,∞ := sup
λ>0

λpµ(f > λ).

The kth Rademacher function is defined by

rk(x) := (−1)xk (x ∈ G, k ∈ N).

Now, define the Walsh system w := (wn : n ∈ N) on G by

wn(x) :=

∞∏
k=0

rnkk (x) = r|n|(x)(−1)
∑|n|−1
k=0 nkxk (n ∈ N).

The Walsh system is orthonormal and complete in L2(G) (see e.g. [18]).
If f ∈ L1(G) we define the Fourier coefficients, the partial sums of the

Fourier series, and the Dirichlet kernels with respect to the Walsh system in
the usual manner:

f̂(k) :=
�

G

fwk dµ (k ∈ N),

Snf :=

n−1∑
k=0

f̂(k)wk, Dn :=

n−1∑
k=0

wk (n ∈ N+).

Recall that

(6) D2n(x) =

{
2n if x ∈ In,
0 if x /∈ In,

and

(7) Dn = wn

∞∑
k=0

nkrkD2k = wn

∞∑
k=0

nk(D2k+1 −D2k) for n =

∞∑
i=0

ni2
i.

Define the nth Lebesgue constant by

LS(n) := ‖Dn‖1.
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The σ-algebra generated by the intervals {In(x) : x ∈ G} will be denoted
by ζn (n ∈ N). Denote by F = (Fn : n ∈ N) a martingale with respect to zn

(n ∈ N) (for details see e.g. [22]).
The maximal function of the martingale F is defined by

F ∗ = sup
n∈N
|Fn|.

In case f ∈ L1(G), the maximal function is also given by

f∗(x) = sup
n∈N

1

µ(In(x))

∣∣∣ �

In(x)

f(u) dµ(u)
∣∣∣.

For 0 < p <∞ the Hardy martingale space Hp(G) consists of all martin-
gales F for which

‖F‖Hp := ‖F ∗‖p <∞.

The best approximation of f ∈ Lp(G) (1 ≤ p <∞) is defined as

En(f, Lp) = inf
ψ∈pn

‖f − ψ‖p,

where pn is the set of all Walsh polynomials of order less than n ∈ N.
The integrated modulus of continuity of f ∈ Lp is defined by

ωp(1/2
n, f) = sup

h∈In
‖f(·+ h)− f(·)‖p.

The modulus of continuity in Hp(G) (0 < p ≤ 1) can be defined in the
following way:

ωHp(1/2
n, F ) := ‖F − S2nF‖Hp .

Watari [21] showed that there are close connections between

ωp(1/2
n, f), E2n(f, Lp), ‖f − S2nf‖p, p ≥ 1, n ∈ N.

In particular,

(8) 1
2ωp(1/2

n, f) ≤ ‖f − S2nf‖p ≤ ωp(1/2n, f)

and
1
2‖f − S2nf‖p ≤ E2n(f, Lp) ≤ ‖f − S2nf‖p.

A bounded measurable function a is called a p-atom if there exists a
dyadic interval I such that

�

I

a dµ = 0, ‖a‖∞ ≤ µ(I)−1/p, supp(a) ⊂ I.

The dyadic Hardy martingale spaces Hp for 0 < p ≤ 1 have an atomic
characterization (see [19] and [23]):
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Theorem W. A martingale F = (Fn : n ∈ N) is in Hp (0 < p ≤ 1) if
and only if there exists a sequence (ak : k ∈ N) of p-atoms and a sequence
(µk : k ∈ N) of real numbers such that, for every n ∈ N,

(9)
∞∑
k=0

µkS2nak = Fn,

∞∑
k=0

|µk|p <∞.

Moreover,

‖F‖Hp v inf
( ∞∑
k=0

|µk|p
)1/p

,

where the infimum is taken over all decompositions of F of the form (9).

It is easy to check that for every martingale F = (Fn : n ∈ N) and every
k ∈ N the limit

(10) F̂ (k) := lim
n→∞

�

G

Fn(x)wk(x) dµ(x)

exists; it is called the kth Walsh–Fourier coefficient of F.
If F := (Enf : n ∈ N) is a regular martingale, generated by f ∈ L1(G),

then F̂ (k) = f̂(k), k ∈ N.
For the martingale

F =

∞∑
n=0

(Fn − Fn−1)

the conjugate transforms are defined as

F̃ (t) =
∞∑
n=0

rn(t)(Fn − Fn−1),

where t ∈ G is fixed. Note that F̃ (0) = F. As is well known (see e.g. [22]),

(11) ‖F̃ (t)‖Hp = ‖F‖Hp , ‖F‖pHp ∼
�

G

‖F̃ (t)‖pp dt, S̃nF (t) = SnF̃ (t).

3. Formulation of main results

Theorem 1. (a) Let 0 < p < 1 and F ∈ Hp. Then there exists an
absolute constant cp, depending only on p, such that

‖SnF‖Hp ≤ cp2d(n)(1/p−1)‖F‖Hp .

(b) Let 0 < p < 1, {mk : k ≥ 0} be any increasing sequence in N+ such
that

(12) sup
k∈N

d(mk) =∞,
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and Φ : N+ → [1,∞) be any nondecreasing function satisfying

(13) lim sup
k→∞

2d(mk)(1/p−1)

Φ(mk)
=∞.

Then there exists a martingale F ∈ Hp such that

sup
k∈N

∥∥∥∥ SmkFΦ(mk)

∥∥∥∥
Lp,∞

=∞.

Corollary 1. (a) Let 0 < p < 1 and F ∈ Hp. Then there exists an
absolute constant cp, depending only on p, such that

‖SnF‖Hp ≤ cp(nµ{suppDn})1/p−1‖F‖Hp .

(b) Let 0 < p < 1, {mk : k ≥ 0} be any increasing sequence in N+ such
that

(14) sup
k∈N

mkµ{suppDmk} =∞,

and Φ : N+ → [1,∞) be any nondecreasing function satisfying

(15) lim sup
k→∞

(mkµ{suppDmk})1/p−1

Φ(mk)
=∞.

Then there exists a martingale F ∈ Hp such that

sup
k∈N

∥∥∥∥ SmkFΦ(mk)

∥∥∥∥
Lp,∞

=∞.

Corollary 2. Let n ∈ N and 0 < p < 1. Then there exists a martingale
F ∈ Hp such that

(16) sup
n∈N
‖S2n+1F‖Lp,∞ =∞.

Corollary 3. Let n ∈ N and 0 < p ≤ 1 and F ∈ Hp. Then

(17) ‖S2n+2n−1F‖Hp ≤ cp‖F‖Hp .

Theorem 2. (a) Let n ∈ N+ and F ∈ H1. Then there exists an absolute
constant c such that

‖SnF‖H1 ≤ cV (n)‖F‖H1 .

(b) Let {mk : k ≥ 0} be any increasing sequence in N+ such that

(18) sup
k∈N

V (mk) =∞,
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and Φ : N+ → [1,∞) be any nondecreasing function satisfying

(19) lim sup
k→∞

V (mk)

Φ(mk)
=∞.

Then there exists a martingale F ∈ H1 such that

sup
k∈N

∥∥∥∥ SmkFΦ(mk)

∥∥∥∥
1

=∞.

Theorem 3. Let 2k < n ≤ 2k+1. Then there exists an absolute constant
cp, depending only on p, such that

‖SnF − F‖Hp ≤ cp2d(n)(1/p−1)ωHp(1/2k, F ) (0 < p < 1)

and

(20) ‖SnF − F‖H1 ≤ c1V (n)ωH1(1/2
k, F ).

Theorem 4. (a) Let 0 < p < 1, F ∈ Hp and {mk : k ≥ 0} be a sequence
of nonnegative integers such that

(21) ωHp(1/2
|mk|, F ) = o(1/2d(mk)(1/p−1)) as k →∞.

Then

(22) ‖SmkF − F‖Hp → 0 as k →∞.

(b) Let {mk : k ≥ 0} be any increasing sequence in N+ satisfying (12).
Then there exists a martingale F ∈ Hp and a subsequence {αk : k ≥ 0} ⊂
{mk : k ≥ 0} for which

ωHp(1/2
|αk|, F ) = O(1/2d(αk)(1/p−1)) as k →∞

and

(23) lim sup
k→∞

‖SαkF − F‖Lp,∞ > cp > 0 as k →∞,

where cp is an absolute constant depending only on p.

Corollary 4. (a) Let 0 < p < 1, F ∈ Hp and {mk : k ≥ 0} be a
sequence of nonnegative integers such that

(24) ωHp(1/2
|mk|, F ) = o(1/(mkµ{suppDmk})

1/p−1) as k →∞.

Then (22) is satisfied.
(b) Let {mk : k ≥ 0} be any increasing sequence in N+ satisfying (14).

Then there exists a martingale F ∈ Hp and a subsequence {αk : k ≥ 0} ⊂
{mk : k ≥ 0} for which

ωHp(1/2
|αk|, F ) = O(1/(αkµ{suppDαk)

1/p−1}) as k →∞,

and (23) is satisfied.
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Theorem 5. (a) Let F ∈ H1 and {mk : k ≥ 0} be a sequence of non-
negative integers such that

(25) ωH1(1/2
|mk|, F ) = o(1/V (mk)) as k →∞.

Then

(26) ‖SmkF − F‖H1 → 0 as k →∞.
(b) Let {mk : k ≥ 0} be any increasing sequence in N+ satisfying (18).

Then there exists a martingale F ∈ H1 and a subsequence {αk : k ≥ 0} ⊂
{mk : k ≥ 0} for which

ωH1(1/2
|αk|, F ) = O(1/V (αk)) as k →∞

and

(27) lim sup
k→∞

‖SαkF − F‖1 > c > 0 as k →∞,

where c is an absolute constant.

4. Proofs of the results

Proof of Theorem 1. Suppose that

(28) ‖2(1−1/p)d(n)SnF‖p ≤ cp‖F‖Hp .
By combining (11) and (28) we get

(29) ‖2(1−1/p)d(n)SnF‖Hp ≤ cp
�

G

‖2(1−1/p)d(n)S̃nF (t)‖p dµ(t)

= cp
�

G

‖2(1−1/p)d(n)SnF̃ (t)‖p dµ(t) ≤ cp
�

G

‖F̃ (t)‖Hp dµ(t) ≤ cp‖F‖Hp .

By using Theorem W and (29), the proof of Theorem 1(a) will be complete
if we show that

(30)
�

G

|2(1−1/p)d(n)Sna|p dµ ≤ cp <∞

for every p-atom a with support I and µ(I) = 2−N .
We may assume that I = IM . It is easy to see that Sna = 0 when 2M ≥ n.

Therefore, we can suppose that 2M < n. Since ‖a‖∞ ≤ 2M/p we can write

|2(1−1/p)d(n)Sna(x)| ≤ 2(1−1/p)d(n)‖a‖∞
�

IM

|Dn(x+ t)| dµ(t)(31)

≤ 2M/p2(1−1/p)d(n)
�

IM

|Dn(x+ t)| dµ(t).

Let x ∈ IM . Since V (n) ≤ d(n), by applying (3) we get

|2(1−1/p)d(n)Sna| ≤ 2M/p2(1−1/p)d(n)V (n) ≤ 2M/pd(n)2(1−1/p)d(n)
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and

(32)
�

IM

|2(1−1/p)d(n)Sna|p dµ ≤ d(n)2(1−1/p)d(n) < cp <∞.

Let t ∈ IM and x ∈ Is\Is+1, 0 ≤ s ≤M−1 < 〈n〉 or 0 ≤ s < 〈n〉 ≤M−1.
Then x+ t ∈ Is\Is+1. By using (7) we get Dn(x+ t) = 0 and

|2(1−1/p)d(n)Sna(x)| = 0.

Let x ∈ Is\Is+1 and 〈n〉 ≤ s ≤M − 1. Then x+ t ∈ Is\Is+1 for t ∈ IM .
By using (7) we can write

|Dn(x+ t)| ≤
s∑
j=0

nj2
j ≤ c2s.

If we apply (31) we get

(33) |2(1−1/p)d(n)Sna(x)| ≤ 2(1−1/p)d(n)2M/p 2s

2M
= 2〈n〉(1/p−1)2s.

By combining (5) and (33) we have

�

IM

|2(1−1/p)d(n)Sna(x)|p dµ(x) =
M−1∑
s=〈n〉

�

Is\Is+1

|2〈n〉(1/p−1)2s|p dµ(x)

≤ c
M−1∑
s=〈n〉

2〈n〉(1−p)

2s(1−p)
≤ cp <∞.

Let us prove Theorem 1(b). Under condition (13), there exists a subse-
quence {αk : k ≥ 0} ⊂ {mk : k ≥ 0} such that

(34)
∞∑
η=0

Φp/2(αη)

2d(αη)(1−p)/2
<∞.

Let
Fn =

∑
{k:|αk|<n}

λkak,

where

(35) λk =
Φ1/2(αk)

2d(αk)(1/p−1)/2
, ak = 2|αk|(1/p−1)(D2|αk|+1 −D2|αk|).

By combining TheoremW and (34) we conclude that F = (Fn : n ∈ N) ∈ Hp.
By a simple calculation we get
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(36) F̂ (j)

=


Φ1/2(αk)2

(|αk|+〈αk〉)(1/p−1)/2 if j ∈ {2|αk| , . . . , 2|αk|+1 − 1},
k = 0, 1, . . . ,

0 if j /∈
⋃∞
k=0{2|αk| , . . . , 2|αk|+1 − 1}.

Since

(37) Dj+2n = D2n + w2nDj when j ≤ 2n,

by applying (36) we have

(38)
SαkF

Φ(αk)
=

1

Φ(αk)

k−1∑
η=0

2|αη |+1−1∑
v=2|αη |

F̂ (v)wv +
1

Φ(αk)

αk−1∑
v=2|αk|

F̂ (v)wv

=
1

Φ(αk)

k−1∑
η=0

2|αη |+1−1∑
v=2|αη |

Φ1/2(αη)2
(|αη |+〈αη〉)(1/p−1)/2wv

+
1

Φ(αk)

αk−1∑
v=2|αk|

Φ1/2(αk)2
(|αk|+〈αk〉)(1/p−1)/2wv

=
1

Φ(αk)

k−1∑
η=0

Φ1/2(αη)2
(|αη |+〈αη〉)(1/p−1)/2(D2|αη |+1 −D2|αη |+1)

+
2(|αk|+〈αk〉)(1/p−1)/2w2|αk|Dαk−2|αk|

Φ1/2(αk)
=: I+ II.

By using (34) for I we can write

(39) ‖I‖pLp,∞ ≤
1

Φp(αk)

×
k−1∑
η=0

Φp/2(αη)

2d(αη)(1−p)/2
‖2|αη |(1/p−1)(D2|αη |+1 −D2|αη |+1)‖pLp,∞

≤ 1

Φp(αk)

∞∑
η=0

Φp/2(αη)

2d(αη)(1−p)/2
≤ c <∞.

Let x ∈ I〈αk〉\I〈αk〉+1. Under condition (7) we can show |αk| 6= 〈αk〉. It
follows that 〈αk − 2|αk|〉 = 〈αk〉. By combining (6) and (7) we have

|Dαk−2|αk| | =
∣∣∣(D2〈αk〉+1 −D2〈αk〉) +

|αk|−1∑
j=〈αk〉+1

(αk)j(D2i+1 −D2i)
∣∣∣(40)

= |−D2〈αk〉 | = 2〈αk〉
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and

(41) |II| = 2(|αk|+〈αk〉)(1/p−1)/2

Φ1/2(αk)
|Dαk−2|αk|(x)| =

2|αk|(1/p−1)/22〈αk〉(1/p+1)/2

Φ1/2(αk)
.

By using (39) we see that∥∥∥∥ SαkFΦ(αk)

∥∥∥∥p
Lp,∞

≥ ‖II‖pLp,∞ − ‖I‖
p
Lp,∞

≥ 2(|αk|)(1/p−1)/22〈αk〉(1/p+1)/2

Φ1/2(αk)

× µ
{
x ∈ G : |II| ≥ 2(|αk|)(1/p−1)/22〈αk〉(1/p+1)/2

Φ1/2(αk)

}1/p

≥ 2(|αk|)(1/p−1)/22〈αk〉(1/p+1)/2

Φ1/2(αk)
(µ{I〈αk〉\I〈αk〉+1})1/p

≥ c2
d(αk)(1/p−1)/2

Φ1/2(αk)
→∞ as k →∞.

Theorem 1 is proved.

Proof of Corollaries 1–3. By combining (6) and (7) we obtain

I〈n〉\I〈n〉+1 ⊂ suppDn ⊂ I〈n〉, 2−〈n〉−1 ≤ µ{suppDn} ≤ 2−〈n〉.

It follows that

2d(n)(1/p−1)

4
≤ (nµ{suppDn})1/p−1 ≤ 2d(n)(1/p−1).

Corollary 1 is proved.
To prove Corollary 2 we only have to calculate that

(42) |2n + 1| = n, 〈2n + 1〉 = 0, d(2n + 1) = n.

By using Theorem 1(b) we see that there exists a martingale F =(Fn : n∈N)
∈ Hp (0 < p < 1) such that (16) is satisfied.

Let us prove Corollary 3. Analogously to (42) we can write

|2n + 2n−1| = n, 〈2n + 2n−1〉 = n− 1, d(2n + 2n−1) = 1.

By using Theorem 1(a) we immediately get (17) for all 0 < p ≤ 1.
Corollaries 1–3 are proved.

Proof of Theorem 2. By using (3) we have

(43)
∥∥∥∥ SnFV (n)

∥∥∥∥
1

≤ ‖F‖1 ≤ ‖F‖H1 .
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By combining (11) and (43), after similar steps to (29) we see that

(44)
∥∥∥∥ SnFV (n)

∥∥∥∥
H1

∼
�

G

∥∥∥∥ S̃nF (t)

V (n)

∥∥∥∥
1

dµ(t) ≤ ‖F‖H1 .

Now, we prove part (b). Let {mk : k ≥ 0} and Φ : N+ → [1,∞)
be as in the hypothesis. By (19) there exists an increasing subsequence
{αk : k ≥ 0} ⊂ {mk : k ≥ 0} of N+ such that

(45)
∞∑
k=1

Φ1/2(αk)

V 1/2(αk)
≤ β <∞.

Let
Fn :=

∑
{k: |αk|<n}

λkak,

where

(46) λk =
Φ1/2(αk)

V 1/2(αk)
, ak = D2|αk|+1 −D2|αk| .

Analogously to Theorem 1, if we apply Theorem W and (45) we conclude
that F = (Fn : n ∈ N) ∈ H1.

By a simple calculation we get

(47) F̂ (j) =


Φ1/2(αk)

V 1/2(αk)
if j ∈ {2|αk| , . . . , 2|αk|+1 − 1}, k = 0, 1, . . .

0 if j /∈
⋃∞
k=0{2|αk| , . . . , 2|αk|+1 − 1}.

From (37) and (47) analogously to (38) we obtain

SαkF =
k−1∑
η=0

Φ1/2(αη)

V 1/2(αη)
(D2|αη |+1 −D2|αη |) +

Φ1/2(αk)

V 1/2(αk)
w2|αk|Dαk−2|αk| .

By combining (3) and (45) we have∥∥∥∥ SαkFΦ(αk)

∥∥∥∥
1

≥ Φ1/2(αk)

Φ(αk)V 1/2(αk)
‖D

αk−2|αk|
‖1 −

1

Φ(αk)

k−1∑
η=0

Φ1/2(αη)

V 1/2(αη)

≥ V (αk − 2|αk|)Φ1/2(αk)

8Φ(αk)V 1/2(αk)
− 1

Φ(αk)

∞∑
η=0

Φ1/2(αη)

V 1/2(αη)

≥ cV 1/2(αk)

Φ1/2(αk)
→∞ as k →∞.

Theorem 2 is proved.
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Proof of Theorem 3. Let 0 < p < 1 and 2k < n ≤ 2k+1. By using
Theorem 1(a) we see that

‖SnF − F‖Hp ≤ cp‖SnF − S2kF‖Hp + cp‖S2kF − F‖Hp(48)
= cp‖Sn(S2kF − F )‖Hp + cp‖S2kF − F‖Hp
≤ cp(1 + 2d(n)(1/p−1))ωHp(1/2

k, F )

≤ cp2d(n)(1/p−1)ωHp(1/2k, F ).

The proof of estimate (20) is analogous to that of (48).
Theorem 3 is proved.

Proof of Theorem 4. Let 0 < p < 1, F ∈ Hp and {mk : k ≥ 0} sat-
isfy (21). By using Theorem 3 we see that (22) holds.

Let us prove part (b). Under condition (12), there exists a subsequence
{αk : k ≥ 0} ⊂ {mk : k ≥ 0} such that

(49) 2d(αk) ↑ ∞ as k →∞, 22(1/p−1)d(αk) ≤ 2(1/p−1)d(αk+1).

We set
Fn =

∑
{i:|αi|<n}

ai

2(1/p−1)d(αi)
,

where ai is defined by (35). Since ai is a p-atom, if we apply Theorem W
and (49) we conclude that F ∈ Hp. On the other hand,

(50)

F − S2nF = (F (1) − S2nF (1), . . . , F (n) − S2nF (n), . . . , F (n+k) − S2nF (n+k))

= (0, . . . , 0, F (n+1) − F (n), . . . , F (n+k) − F (n), . . . )

=
(
0, . . . , 0,

n+k∑
i=n

ai

2(1/p−1)d(αi)
, . . .

)
, k ∈ N+

is a martingale. By combining (49) and Theorem W we get

(51) ωHp

(
1

2|αk|
, F

)
≤
∞∑
i=k

1

2(1/p−1)d(αi)
= O

(
1

2(1/p−1)d(αk)

)
as n→∞.

It is easy to show that

(52) F̂ (j) =

{
2(1/p−1)〈αk〉 if j ∈ {2|αk| , . . . , 2|αk|+1 − 1}, k = 0, 1, . . . ,

0 if j /∈
⋃∞
k=0{2|αk| , . . . , 2|αk|+1 − 1}.

Analogously to (40) we can write

|Dαk | ≥ 2〈αk〉 for I〈αk〉\I〈αk〉+1.
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Since

‖Dαk‖Lp,∞ ≥ 2〈αk〉µ{x ∈ I〈αk〉\I〈αk〉+1 : |Dαk | ≥ 2〈αk〉}1/p

≥ 2〈αk〉(µ{I〈αk〉\I〈αk〉+1})1/p ≥ 2〈αk〉(1−1/p)

by using (52) we have

‖SαkF − F‖Lp,∞ ≥ ‖2
(1/p−1)〈αk〉(D2|αk|+1 −Dαk)‖Lp,∞

−
∥∥∥ ∞∑
i=k+1

2(1/p−1)〈αi〉(D2|αi|+1 −D2|αi|)
∥∥∥
Lp,∞

= 2(1/p−1)〈αk〉‖Dαk‖Lp,∞ − 2(1/p−1)〈αk〉‖D2|αk|+1‖Lp,∞

−
∑
i≥k+1

‖2(1/p−1)|αi |(D
2|αi |+1 −D2|αi |

)‖Lp,∞
2(1/p−1)d(αi)

≥ c− 1

2(1/p−1)d(αk)
−
∑
i≥k+1

1

2(1/p−1)d(αi)

≥ c− 2

2(1/p−1)d(αk)
.

Theorem 4 is proved.

Proof of Theorem 5. Let F ∈ H1 and {mk : k ≥ 0} satisfy (25). By using
Theorem 3 we see that (26) holds.

Let us prove part (b). Under the conditions of this part, there exists a
subsequence {αk : k ≥ 0} ⊂ {mk : k ≥ 0} such that

(53) V (αk) ↑ ∞ as k →∞, V 2(αk) ≤ V (αk+1).

We set
Fn =

∑
{i: |αi|<n}

ai
V (αi)

,

where ai is defined by (46). Since ai is a 1-atom, if we apply Theorem W
and (53) we conclude that F = (Fn : n ∈ N) ∈ H1.

Analogously to (50), by (53) and Theorem W we can show that

F − S2nF =

(
0, . . . , 0,

n+k∑
i=n

ai
V (αi)

, . . .

)
, k ∈ N+,

is a martingale and

‖F − S2nF‖H1 ≤
∞∑

i=n+1

1

V (αi)
= O

(
1

V (αn)

)
as n→∞.
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It is easy to show that

F̂ (j) =

{
1/V (αk) if j ∈ {2|αk| , . . . , 2|αk|+1 − 1}, k = 0, 1, . . . ,

0 if j /∈
⋃∞
k=0{2|αk| , . . . , 2|αk|+1 − 1},

which implies

‖F − SαkF‖1 ≥
∥∥∥∥D2|αk|+1 −Dαk

V (αk)
+

∞∑
i=k+1

D2|αi|+1 −D2|αi|

V (αi)

∥∥∥∥
1

≥ ‖Dαk‖1
V (αk)

−
‖D2|αk|+1‖1
V (αk)

−
∥∥∥∥ ∞∑
i=k+1

D2|αi|+1 −D2|αi|

V (αi)

∥∥∥∥
1

≥ 1

8
− 1

V (αk)
−

∞∑
i=k+1

1

V (αi)
≥ 1

8
− 2

V (αk)
.

Theorem 5 is proved.

Acknowledgements. The author would like to thank the referee for
helpful suggestions.

The research was supported by Shota Rustaveli National Science Foun-
dation grants no. 13/06 and DO/24/5-100/14.

REFERENCES

[1] M. Avdispahić and N. Memić, On the Lebesgue test for convergence of Fourier series
on unbounded Vilenkin groups, Acta Math. Hungar. 129 (2010), 381–392.

[2] N. K. Bary, Trigonometric Series, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1961 (in
Russian).

[3] I. Blahota, Approximation by Vilenkin–Fourier sums in Lp(Gm), Acta Acad.
Paedagog. Nyházi. Mät.-Inform. Közl. 13 (1992), 35–39.

[4] N. I. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372–414.
[5] S. Fridli, Approximation by Vilenkin–Fourier sums, Acta Math. Hungar. 47 (1986),

33–44.
[6] G. Gát, Best approximation by Vilenkin-like systems, Acta Math. Acad. Paedagog.

Nyházi. (N.S.) 17 (2001), 161–169.
[7] G. Gát, U. Goginava and G. Tkebuchava, Convergence in measure of logarithmic

means of quadratical partial sums of double Walsh–Fourier series, J. Math. Anal.
Appl. 323 (2006), 535–549.

[8] U. Goginava, On the uniform convergence of Walsh–Fourier series, Acta Math.
Hungar. 93 (2001), 59-70.

[9] U. Goginava, On the approximation properties of partial sums of Walsh–Fourier
series, Acta Sci. Math. (Szeged) 72 (2006), 569–579.

[10] U. Goginava, On the approximation properties of Cesàro means of negative order of
Walsh–Fourier series, J. Approx. Theory 115 (2002), 9–20.

[11] U. Goginava and G. Tkebuchava, Convergence of subsequences of partial sums and
logarithmic means of Walsh–Fourier series, Acta Sci. Math. (Szeged) 72 (2006),
159–177.

http://dx.doi.org/10.1007/s10474-010-0023-9
http://dx.doi.org/10.1090/S0002-9947-1949-0032833-2
http://dx.doi.org/10.1007/BF01949122
http://dx.doi.org/10.1016/j.jmaa.2005.10.056
http://dx.doi.org/10.1006/jath.2001.3632


242 G. TEPHNADZE

[12] B. I. Golubov, A. V. Efimov and V. A. Skvortsov, Walsh Series and Transforms,
Nauka, Moscow, 1987 (in Russian); English transl.: Math. Appl. (Soviet Ser.) 64,
Kluwer, Dordrecht, 1991.

[13] N. V. Guličev, Approximation to continuous functions by Walsh–Fourier sums, Anal.
Math. 6 (1980), 269–280.

[14] S. F. Lukomskii, Lebesgue constants for characters of the compact zero-dimensional
Abelian group, East J. Approx. 15 (2009), 219–231.

[15] K. Nagy, Approximation by Cesàro means of negative order of Walsh–Kaczmarz–
Fourier series, East J. Approx. 16 (2010), 297–311.

[16] C. W. Onneweer, On L-convergence of Walsh–Fourier series, Int. J. Math. Math.
Sci. 1 (1978), 47–56.

[17] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math.
Soc. 34 (1932), 241–279.

[18] F. Schipp, W. Wade, P. Simon and J. Pál, Walsh Series. An Introduction to Dyadic
Harmonic Analysis, Akadémiai Kiadó, Budapest, and Adam Hilger, Bristol, 1990.

[19] P. Simon, A note on the of the Sunouchi operator with respect to Vilenkin systems,
Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 43 (2001), 101–116.

[20] G. Tephnadze, On the partial sums of Vilenkin–Fourier series, J. Contemp. Math.
Anal. 49 (2014), 23–32.

[21] C. Watari, Best approximation by Walsh polynomials, Tôhoku Math. J. 15 (1963),
1–5.

[22] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis,
Lecture Notes in Math. 1568, Springer, Berlin, 1994.

[23] F. Weisz, Hardy spaces and Cesàro means of two-dimensional Fourier series, in:
Bolyai Soc. Math. Stud. 5, János Bolyai Math. Soc., Budapest, 1996, 353–367.

[24] A. Zygmund, Trigonometric Series, Vol. 1, 2nd ed., Cambridge Univ. Press, Cam-
bridge, 1959.

George Tephnadze
Department of Mathematics
Faculty of Exact and Natural Sciences
Tbilisi State University
Chavchavadze St. 1
Tbilisi 0128, Georgia
and
Department of Engineering Sciences and Mathematics
Luleå University of Technology
SE-971 87 Luleå, Sweden
E-mail: giorgitephnadze@gmail.com

Received 10 March 2014;
revised 11 March 2015 (6193)

http://dx.doi.org/10.1007/BF02053633
http://dx.doi.org/10.1155/S016117127800006X
http://dx.doi.org/10.3103/S1068362314010038
http://dx.doi.org/10.2748/tmj/1178243865

	1 Introduction
	2 Preliminaries
	3 Formulation of main results
	4 Proofs of the results
	REFERENCES

