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ON THE PARTIAL SUMS OF WALSH-FOURIER SERIES

GEORGE TEPHNADZE (Thilisi and Lule&)

Abstract. We investigate convergence and divergence of specific subsequences of
partial sums with respect to the Walsh system on martingale Hardy spaces. By using
these results we obtain a relationship of the ratio of convergence of the partial sums of
the Walsh series and the modulus of continuity of the martingale. These conditions are in
a sense necessary and sufficient.

1. Introduction. It is well-known (see e.g. [2] and [24]) that the Walsh
system does not form a basis in the space L;. Moreover, there exists a func-
tion f in the dyadic Hardy space H; such that the partial sums of f are not
bounded in Li-norm, but the partial sums S,, of the Walsh—Fourier series of
every function f € L; converge in measure (see also 7] and [12]).

Onneweer [16] showed that if the modulus of continuity of f € L1[0,1)
satisfies the condition

(1) wi(6, f) = o(1/log(1/6)) as 6 — 0,

then the Walsh—Fourier series of f converges in Lj-norm. He also proved
that condition (1) cannot be improved.

It is also known that a subsequence S, of partial sums is bounded
from Ly to L; if and only if {my : £ > 0} has uniformly bounded variation.
In |24, Ch. 1] it was proved that if f € Li(G) and {m, : n > 1} is a
subsequence of N such that

(2) w1(1/mn, f) = 0(1/Ls(mn)) s n — oo,

where Lg(n) is the nth Lebesgue constant, then S,,, f converges in Lj-norm.
Goginava and Tkebuchava [IT] proved that condition ([2]) cannot be improved.
Since (see [14] and e.g. [18])

(3) V(n)/8 < Ls(n) < V(n),
condition (2)) can be rewritten in the form
wi(l/my, f) =0(1/V(m,)) asn— oco.
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In [20] it was proved that if F' € H, and
(4) wi, (1/2", F) = o(1/(nPl20/P=Dn))  as n — oo,

where 0 < p < 1 and [p] denotes the integer part of p, then S, F — F
as n — 0o in L o-norm. Moreover, it was shown there that condition
cannot be improved.

Uniform and pointwise convergence and some approximation properties
of partial sums in L;-norm were investigated by Goginava [§] (see also [11],
[9]), Nagy [15] and Avdispahi¢ and Memi¢ [I]. Fine [4] obtained sufficient
conditions for the uniform convergence which are in complete analogy with
the Dini-Lipschitz conditions. Guli¢ev [I3] estimated the rate of uniform
convergence of a Walsh—Fourier series by using Lebesgue constants and the
modulus of continuity. These problems for Vilenkin groups were considered
by Blahota [3], Fridli [5] and Gat [6].

The main aim of this paper is to find characterizations of boundedness
of a subsequence of partial sums of the Walsh series of H, martingales in
terms of measure properties of a Dirichlet kernel corresponding to partial
summation. As a consequence we get corollaries about the convergence and
divergence of some specific subsequences of partial sums. For p = 1 a simple
numerical criterion for the index of a partial sum in terms of its dyadic ex-
pansion is given which governs the convergence (or the ratio of divergence).
Another type of result is a relationship of the ratio of convergence of the par-
tial sums of the Walsh series and the modulus of continuity of the martingale.
The conditions given below are in a sense necessary and sufficient.

2. Preliminaries. Let N, denote the set of positive integers, and
N := N4 U {0}. Denote by Z, the discrete cyclic group of order 2, that is,
Zy := {0, 1}, where the group operation is the modulo 2 addition and every
subset is open. The Haar measure on Zs gives measure 1/2 to each singleton.

Define the group G as the complete direct product of the group Zs,
with the product of the discrete topologies of Zy’s. The elements of G are
represented by sequences x := (z9,z1,...), where xp =0 or 1.

It is easy to give a base of neighborhoods of z € G:

In(z) =G, L(z)={yeG:yo==x0,...,Yn—1=2Tn-1} (n€N).

Denote I, := I,(0), I, := G \ I, and e, := (0,...,0,1,0,...) € G,
n € N, with 1 in the nth place. Then it is easy to show that
M—1
(5) Iy = U JAVAEE
s=0

Every n € N can be uniquely expressed asn = Y ,— nj2j , where n; € Zo
(j € N) and only a finite number of n;’s are not zero.
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Let
(n) :=min{j € N:n; #0}, |n|:=max{j € N:n; #0},
that is, 2/l < n < 2/"+1 Set
d(n) = |n| — (n) for all n € N.
Define the variation of n € N with binary coefficients (ny : k € N) by

[ee]
V(n) =no+ Z [ng — ng_1] -
k=1
The norms (or quasi-norms) of the spaces L,(G) and Ly, oo (G) (0<p < 00)
are respectively defined by

FI1E = V1 F1Pdp, AN o= sup NPu(f > N).
G ’ A>0

The kth Rademacher function is defined by
re(x) == (=) (x € G, keN).
Now, define the Walsh system w := (w, : n € N) on G by

[n|—1

wp(z) == H k() = r‘n|(a:)(—1)zk:0 Mk (n e N).
k=0

The Walsh system is orthonormal and complete in Ly(G) (see e.g. [1§]).

If f € Li(G) we define the Fourier coefficients, the partial sums of the
Fourier series, and the Dirichlet kernels with respect to the Walsh system in
the usual manner:

~

f(k) =\ fordp (k€N),

G
n—1 R n—1
Spf = (K)wg, Dy := Zwk (n e Ny).
k=0 k=0
Recall that
2 ifx e I,
6 Don =
©) (@) {o itz ¢ I,
and
(7) Dy =wy anTkDQk = wy, Z ng(Dokt1 — Do) for n = Z n;2".
k=0 k=0 1=0

Define the nth Lebesque constant by
Ls(n) := || Dnll1.
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The o-algebra generated by the intervals {I,,(x) : © € G} will be denoted
by (» (n € N). Denote by F' = (F, : n € N) a martingale with respect to fp,
(n € N) (for details see e.g. [22]).

The maximal function of the martingale F' is defined by

F* = sup |F,|.
neN

In case f € L1(G), the maximal function is also given by

*(z) = su 1 U U
@ =y, ) fw o)

For 0 < p < oo the Hardy martingale space Hy(G) consists of all martin-
gales F' for which

1Flla, = IF, < oo
The best approximation of f € L,(G) (1 < p < 00) is defined as
E,(f,L,) = inf — ,
(L) = jnt |f =l

where p,, is the set of all Walsh polynomials of order less than n € N.
The integrated modulus of continuity of f € L, is defined by

wp(1/2%, f) = sup 1FC+h) = FO)llp-

The modulus of continuity in H,(G) (0 < p < 1) can be defined in the
following way:
wr,(1/2",F) := ||F — Son F|| g,

Watari [2I] showed that there are close connections between

wp(1/2% f),  Ean(f,Lyp), |f = Sonfllp, p=1,neN

In particular,

(8) Twp(1/27, F) < |If — San fllp < wp(1/27, f)
and

LI = Sonfllp < Bon(f, Lp) < [|f — Son fll-

A bounded measurable function a is called a p-atom if there exists a
dyadic interval I such that

Vadn=0, Jallew <p(D)~",  supp(a) C I.
I

The dyadic Hardy martingale spaces H), for 0 < p < 1 have an atomic
characterization (see [19] and [23]):
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THEOREM W. A martingale F = (F,, : n € N) is in H, (0 <p < 1) if
and only if there exists a sequence (ay : k € N) of p-atoms and a sequence
(ux : k € N) of real numbers such that, for every n € N,

(o] o0
(9) > ukSamar = Fo, Y |pl? < oo.
k=0 k=0
Moreover,
. > 1/p
1, = it (3 )
k=0
where the infimum is taken over all decompositions of F' of the form @D

It is easy to check that for every martingale F' = (F), : n € N) and every
k € N the limit

(10) F(k) := lim | F,(x)wy(z) dp(z)

n—o0

exists; it is called the kth Walsh—Fourier coefficient of F.
If F:= (E,f:n € N)is aregular martingale, generated by f € L1(G),
then F(k)= f(k), k€ N.

For the martingale
oo
F = Z(Fn — Fo_1)
n=0

the conjugate transforms are defined as

e}

FO =Y "ry(t)(Fn — Fao1),

n=0

where ¢ € G is fixed. Note that FO) = F. As is well known (see e.g. [22]),
(1) NFOlm, = [Fla,  FI, ~ §IFOEd,  S,F® = 5,F0).
G

3. Formulation of main results

THEOREM 1. (a) Let 0 < p < 1 and F € H,. Then there exists an
absolute constant cp, depending only on p, such that

150 Flla, < 2PV F| g,

(b) Let 0 < p < 1, {my : k > 0} be any increasing sequence in N4 such
that

(12) sup d(my) = oo,
keN
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and @ : NL — [1,00) be any nondecreasing function satisfying

(13) . 9d(m)(1/p—1)
msup —————— = OQ.
k~>oop ¢<mk)

Then there exists a martingale F' € Hy, such that

S

ren || B(my)

keN

= Q.

Lp,oo

COROLLARY 1. (a) Let 0 < p < 1 and F € Hp. Then there ezists an
absolute constant cp,, depending only on p, such that

1S F |1, < ep(nufsupp Dp}) P74 F |,

(b) Let 0 < p < 1, {my : k > 0} be any increasing sequence in Ny such
that

(14) sup myp{supp D, } = 00,
keN

and @ : Ni — [1,00) be any nondecreasing function satisfying

1/p—1
(15) lim sup (mypi{supp D, }) = 0.

k—00 D(my,)

Then there exists a martingale F' € Hy, such that

S

ren || (my)

keN

= OQ.

Lip,oo
COROLLARY 2. Letn € N and 0 < p < 1. Then there exists a martingale
F € H, such that

(16) sup ||Sen 1 F||L, .. = 0.
neN

COROLLARY 3. Letn €N and 0 <p <1 and F € H,. Then
(17) [Son 1 on—1 F|| 1, < cpl| F|m,-

THEOREM 2. (a) Letn € Ny and F' € Hy. Then there exists an absolute
constant ¢ such that

1SnE [y < V()| F|a -

(b) Let {my, : k > 0} be any increasing sequence in Ny such that

(18) sup V() = o0,
keN
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and @ : N — [1,00) be any nondecreasing function satisfying
: V(mp)

19 lim su =

Then there exists a martingale F' € Hy such that

S F

P(my)

= Q.
1

sup
keN

THEOREM 3. Let 28 < n < 2511, Then there exists an absolute constant
cp, depending only on p, such that

1SnF — Fllg, < ¢,2W0p =Dy (1/28 F)  (0<p<1)
and
(20) 1S F = Fllm, < e1V(n)wn, (1/2%, F).

THEOREM 4. (a) Let 0 <p <1, F € H, and {my, : k > 0} be a sequence
of nonnegative integers such that

(21) wr, (1/2mxl F) = o(1/24m0/p=1)) g5 | — 0.
Then
(22) |Sm F' — Fllg, =0 as k — oo.

(b) Let {my, : k > 0} be any increasing sequence in Ny satisfying (12)).
Then there exists a martingale F' € Hy and a subsequence {ay : k > 0} C
{my : k > 0} for which

wi, (1/21%1 F) = O(1/2%en(/p=Dy g5 | — o
and

(23) limsup ||Se, F' — F|l1, . > ¢ >0 ask— oo,
k—ro00 7

where ¢, 1s an absolute constant depending only on p.

COROLLARY 4. (a) Let 0 < p < 1, F € H, and {my, : k > 0} be a
sequence of nonnegative integers such that

(24) pr(l/QIm“,F) = o(1/(mgp{supp D, P71 as k — oo.

Then is satisfied.

(b) Let {my, : k > 0} be any increasing sequence in Ny satisfying (14)).
Then there exists a martingale F' € Hy, and a subsequence {ay, : k > 0} C
{my : k > 0} for which

wir, (1/21% F) = O(1/(cwp{supp Do, )/P71Y)  as k — oo,
and is satisfied.
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THEOREM 5. (a) Let F' € Hy and {my, : k > 0} be a sequence of non-
negative integers such that

(25) wir, (1/2M ] FY = 0(1/V(my))  as k — oc.
Then
(26) | S B — F|lg, =0 as k — oo.

(b) Let {my, : k > 0} be any increasing sequence in N satisfying (18).
Then there exists a martingale F' € Hy and a subsequence {ay : k > 0} C
{my : k > 0} for which

wir, (1/2% FY = 0(1/V(ag))  as k — oo
and

(27) limsup ||So, F — F|i >¢c>0 as k — oo,

k—o0

where ¢ is an absolute constant.

4. Proofs of the results

Proof of Theorem 1. Suppose that
(28) [20-PA g, Pl < ol F'l| -
By combining and we get

(20) 20RO G P, < ¢ | 207D S, FO |, dut)
G
= ¢, | 1207 S, PO, du(t) < e | [FO||m, du(t) < ¢l Fllm,-
G G
By using Theorem W and (29), the proof of Theorem 1(a) will be complete
if we show that
(30) | [20/Pm g ol dpy < ¢, < 00
G

for every p-atom a with support I and p(I) =277,

We may assume that I = Ij;. It is easy to see that S,a = 0 when 2M > n.
Therefore, we can suppose that 2M < n. Since ||a||oo < 2M/P we can write

(31)  RUTPEO S a()| < 207D g oo || D + 1) dpa(t)
In
< M/po(=1/Ddm) [ D, (2 4 1) dps(t).
Iy
Let x € Ip;. Since V(n) < d(n), by applying we get
|20=1/P)dm) g o| < 2M/Po(1=1/p)d(n) Y/ () < 2M/P(p)2(1=1/P)d(n)
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and

(32) S ’2(1—1/p)d(n)sna|l7du§d(n)Q(l—l/p)d(n) <e, < .

Ing

Lett € Ipjand @ € Is\Ig41, 0 <s < M—-1<(n)or0<s< (n) < M-1.
Then z +t € I;\Is4+1. By using we get Dy (x +t) =0 and

1201/ g o ()| = 0.
Let € Is\Is41 and (n) < s < M — 1. Then z +t € I,\Is41 for t € Ip;.
By using we can write

S
Dplz+1)| <Y ni2l <28
\ j

=0

If we apply we get

— n —_ n 25 n - S
(33) 120=1/P)d0) g q(2)] < 201-1/p)( )2M/p27M — 9(m(1/p=1)9s

By combining and we have

M-1
S 120=1/P)d0) G o) du(z) = Z S |20mA/P=D)9s|P 4 (2)
In s=(n) Is\Ls+1
M—1 5(n)(1-p)
<c < 55(1p) <cp <00

Let us prove Theorem 1(b). Under condition , there exists a subse-
quence {ay : k> 0} C {my : k > 0} such that

— ¢p/2(an)
(34) z;) a1 p)2 < %

’r]:
Let

Fo= ) g,

(ko <}
where
PL/2 Qay a _

(35) M= W(/p_i)/z ap = 20l (p L p

By combining Theorem W and we conclude that F' = (F, : n € N) € H),.
By a simple calculation we get
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(36)  F(j)

B2 (o) 20kl Hax)(M/p=1)/2 if § e folenl | el — 1},

= k=0,1,...,

0 i ¢ U of2en,..., 2 — 1),
Since
(37) Djjion = Don +won Dy when j < 2",
by applying we have

k—12lenl+1_1 ag—1
Sa, F 1 ~ 1 N

38 s = F(v)wy + —— F(v)w,
(38) D(ag)  P(ow) = v:%;n (v) o(ay) UZQZ% (v)

k—12lenl+1_1

= @(i ) @1/2(an)2(|an‘+<an>)(1/17—1)/2w
k n=0 y—=2lon]
L / (lo|+(ek))(1/p—1)/
+ @1 2 o ag|+(ag))(1/p—1
v=21%
;| kel
= %) 3 @12 (a2l e Op=D2(D D)
0
+ 2(‘0%|+<ak>)(1/p_1)/2w2\ak\Dak*2|ak\ =:1+1I
DL/2(a,) o '
By using for I we can write
1
P <
39 I, . < Goras

k—1
gpp/2( n)
- Z WHQO&O‘ 1/p 1)(D lan|+1 — D2|an\+1)”ip,oo
=0
1 > @p/Z(a
<

n
~ PP (ay) =0 9d(om)(1-p)/2

Let € Iig,)\1(a)+1- Under condition (7) we can show |ag| # (ag). It
follows that (ay, — 2/%l) = (a}). By combining @ and (7)) we have

<c < oo.

oz |—1

(40)  |D,, _sloyil = |(Dgtagr+1 — Doytay) + Z j(Dait1 — Dyi)
<O‘k>+1

= |=Dytep| = 2]
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and
olak|+{ax))(1/p—1)/2 9lakl(1/p—1)/29 () (1/p+1)/2
(41) ’II| - @1/2(0%:) "Dak—2|0‘k‘ €T | - 451/2(05]@)
By using we see that
s,z U, = W,
9(lew])(1/p—1)/29(ak)(1/p+1)/2
>
- @1/2(0%)
o(lax])(1/p=1)/29(ax)(1/p+1)/2 ) 1/P
<nfzecim 57 () }
9(lew])(1/p—1)/29(a)(1/p+1)/2 1p
> 7% () ({ L) \ Loy +1})
9d(ax)(1/p—1)/2
>¢c—————— 300 ask— oo.
/2 ()

Theorem 1 is proved. =
Proof of Corollaries 1-3. By combining @ and @ we obtain
I(n)\I<n>+1 C supp D, C I(n)a 2—<n>—1 < M{Supp Dn} < 2—<n)‘

It follows that
9d(n)(1/p—1)
4
Corollary 1 is proved.

< (np{supp Dy })/P~1 < 2dm(/p=1),

To prove Corollary 2 we only have to calculate that
(42) 2"+1]=n, (2"4+1)=0, d2"+1)=n.

By using Theorem 1(b) we see that there exists a martingale F'=(F,, : n€N)
€ H, (0 <p < 1) such that is satisfied.
Let us prove Corollary 3. Analogously to we can write

2"+ 2n ) =n, @42 D =n—-1, d2"+2"Y)=1.

By using Theorem 1(a) we immediately get forall 0 <p <1.
Corollaries 1-3 are proved. m

Proof of Theorem 2. By using we have

H SpF
V(n) 1

(43) < Fl < -
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By combining and , after similar steps to (29) we see that

2 S, F(0
44 ~ ——|| du(t) < ||F 1

Now, we prove part (b). Let {my : &k > 0} and & : Ny — [1,00)
be as in the hypothesis. By there exists an increasing subsequence
{ag : k >0} C {my : k> 0} of N; such that

oo @)1/2( )
" X T <7<
Let
Foi= > Mag,
{k:|ag|<n}
where
&2 (o

Analogously to Theorem 1, if we apply Theorem W and we conclude
that F' = (F, :n € N) € H;.
By a simple calculation we get

@1/2(ak)
~ —————% ifje {2l .. 2l — 1} k=0,1,...
(47) F(j) = { V172(ay) if j € {20k k }
0 if j ¢ Upeo{2exl, ..., 2lenl+1 — 1},
From and (47) analogously to we obtain
< P2 (q D'/ (o)
S ' = Z Vi2(a) Dyjayit1 = Dyjayi) + VlT()wﬂ%‘Dakdw.
By comblmng and we have
H So F PPo) p L L g 2y
Do) ||y = Do) V2 () onalek 1 () =V (o)
V(g =22 (ay) 1 = 92 (ay)
8P (ap) V2 () Do) i V2 (a)
V12(y)

_W—)OO as k — oo.

Theorem 2 is proved. =
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Proof of Theorem 3. Let 0 < p < 1 and 2 < n < 21 By using
Theorem 1(a) we see that

(48)  [ISnF = Flla, < ¢pllSnk = SorF |l m, + cpl| S F = Fllm,
= pl|Sn(Sor F' = F)|m, + cpl| S F = Fllm,
< ep(1 420"y (1/2% F)
< Cpgd( n)(1/p=1) , (1/2k F).

The proof of estimate is analogous to that of (48] .

Theorem 3 is proved. =

Proof of Theorem 4. Let 0 < p < 1, F € H, and {my, : k > 0} sat-
isfy . By using Theorem 3 we see that holds.

Let us prove part (b). Under condition , there exists a subsequence
{ag : k> 0} C {my : k > 0} such that

(49) 2990t oo as koo,  220/p-Ddler) < o(/p-d(akn),

a;
Fo= Y. Sapia)

{#:|ai|<n}

We set

where a; is defined by . Since a; is a p-atom, if we apply Theorem W
and we conclude that F' € H,. On the other hand,
(50)
F—8pF =(FY) —Soup®  pM) _ g p) phtk) _ g, pnth))
=(0,...,0, D) _p) phtk) _pi)
n+k

( OZ 1/p1 ) keN,

is a martingale. By combining and Theorem W we get

oo

1 1 1
(1) wn, <2|ak| ! F) <2 5@ = 0<2<1/p1>d<ak>> as = 00,

It is easy to show that

~ 2(/p=fow) if j € {2lerl ... 2lexltt — 1} k=0,1,..
(52)  F(j) = g { - }
0 if j ¢ Uk:0{2|ak‘7 oL, el — 1}

Analogously to we can write

)

Doy | > 2% for Iy \Iiay)s1-
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Since
||Dak||Lp,oo Z 2<ak>lu{$ € I<Oék>\l<ak>+1 : |Dak| Z 2<ak>}1/p
> 2<ak>(,U'{I<ozk>\[<ozk>+l})l/p > 9lar)(1-1/p)
by using we have
1SarF = Flizy 0 = 20777 (Do 141 = D)2
- H > 2PN Dy — D2lai\)’ .

i=k+1
= 2/p=Dlew)| D, |

p,00

— o(t/p=1)ew)| D

’Lp,oo 2‘O‘k|+1HLp,oo
Hz(l/p_l)‘ai‘(Dﬂ%‘“ _ Dg\%\)”Lp,oo
2(1/p—1)d(cxi)

i>k+1

1 1
2 ¢~ S haey 2 U da)

1>k+1

2

Z €= S Tyden)

Theorem 4 is proved. =

Proof of Theorem 5. Let F € Hy and {my, : k > 0} satisfy (25)). By using
Theorem 3 we see that holds.

Let us prove part (b). Under the conditions of this part, there exists a
subsequence {ay : k> 0} C {my, : k > 0} such that

(53) Viag) too ask —o00, VZap) < Vi)
We set
@
Fo= D Y
Vi
{i: |ozi|<n} (a )

where a; is defined by . Since a; is a l-atom, if we apply Theorem W
and we conclude that F = (F,, : n € N) € H;.
Analogously to , by and Theorem W we can show that

n+k
F— SouF = <002V?’0)) ke Ny,

is a martingale and

— 1 1
|E — SonF|| g, < E Vo) —O( > as n — oo.
i=n+1 ¢
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It is easy to show that

ﬁ( ) = 1/V(ay) if j e {2, . 2+t — 1} k=0,1,...,
= 0 if j ¢ Upogf2lexl, ..., 2lexltt — 1}

which implies

D lagl+1l — Dak > D2\a'|+1 - D2|oc-\
i surt s | ony
A V(Oék) ,_;_1 V(Oél) 1
[ Dayll1 ||D2|ak\+1||1 ” gwalm — Dyjayl
n V(ak) ikt 1 Z) 1
1 1
> = _ > - ,
~8 V(ap) Z.zk;rl V( i) 8 V(ak)

Theorem 5 is proved. =
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