ON THE PARTIAL SUMS OF WALSH-FOURIER SERIES
 BY GEORGE TEPHNADZE (Tbilisi and Luleå)

Abstract

We investigate convergence and divergence of specific subsequences of partial sums with respect to the Walsh system on martingale Hardy spaces. By using these results we obtain a relationship of the ratio of convergence of the partial sums of the Walsh series and the modulus of continuity of the martingale. These conditions are in a sense necessary and sufficient.

1. Introduction. It is well-known (see e.g. [2] and [24]) that the Walsh system does not form a basis in the space L_{1}. Moreover, there exists a function f in the dyadic Hardy space H_{1} such that the partial sums of f are not bounded in L_{1}-norm, but the partial sums S_{n} of the Walsh-Fourier series of every function $f \in L_{1}$ converge in measure (see also [7] and [12]).

Onneweer [16] showed that if the modulus of continuity of $f \in L_{1}[0,1)$ satisfies the condition

$$
\begin{equation*}
\omega_{1}(\delta, f)=o(1 / \log (1 / \delta)) \quad \text { as } \delta \rightarrow 0 \tag{1}
\end{equation*}
$$

then the Walsh-Fourier series of f converges in L_{1}-norm. He also proved that condition (1) cannot be improved.

It is also known that a subsequence $S_{m_{k}}$ of partial sums is bounded from L_{1} to L_{1} if and only if $\left\{m_{k}: k \geq 0\right\}$ has uniformly bounded variation. In [24, Ch. 1] it was proved that if $f \in L_{1}(G)$ and $\left\{m_{n}: n \geq 1\right\}$ is a subsequence of \mathbb{N} such that

$$
\begin{equation*}
\omega_{1}\left(1 / m_{n}, f\right)=o\left(1 / L_{S}\left(m_{n}\right)\right) \quad \text { as } n \rightarrow \infty, \tag{2}
\end{equation*}
$$

where $L_{S}(n)$ is the nth Lebesgue constant, then $S_{m_{n}} f$ converges in L_{1}-norm. Goginava and Tkebuchava [11] proved that condition (22) cannot be improved. Since (see [14] and e.g. [18])

$$
\begin{equation*}
V(n) / 8 \leq L_{S}(n) \leq V(n), \tag{3}
\end{equation*}
$$

condition (2) can be rewritten in the form

$$
\omega_{1}\left(1 / m_{n}, f\right)=o\left(1 / V\left(m_{n}\right)\right) \quad \text { as } n \rightarrow \infty
$$

[^0]In [20] it was proved that if $F \in H_{p}$ and

$$
\begin{equation*}
\omega_{H_{p}}\left(1 / 2^{n}, F\right)=o\left(1 /\left(n^{[p]} 2^{(1 / p-1) n}\right)\right) \quad \text { as } n \rightarrow \infty, \tag{4}
\end{equation*}
$$

where $0<p \leq 1$ and $[p]$ denotes the integer part of p, then $S_{n} F \rightarrow F$ as $n \rightarrow \infty$ in $L_{p, \infty}$-norm. Moreover, it was shown there that condition (4) cannot be improved.

Uniform and pointwise convergence and some approximation properties of partial sums in L_{1}-norm were investigated by Goginava [8] (see also [11, [9]), Nagy [15] and Avdispahić and Memić [1]. Fine [4] obtained sufficient conditions for the uniform convergence which are in complete analogy with the Dini-Lipschitz conditions. Guličev [13] estimated the rate of uniform convergence of a Walsh-Fourier series by using Lebesgue constants and the modulus of continuity. These problems for Vilenkin groups were considered by Blahota [3, Fridli [5] and Gát [6].

The main aim of this paper is to find characterizations of boundedness of a subsequence of partial sums of the Walsh series of H_{p} martingales in terms of measure properties of a Dirichlet kernel corresponding to partial summation. As a consequence we get corollaries about the convergence and divergence of some specific subsequences of partial sums. For $p=1$ a simple numerical criterion for the index of a partial sum in terms of its dyadic expansion is given which governs the convergence (or the ratio of divergence). Another type of result is a relationship of the ratio of convergence of the partial sums of the Walsh series and the modulus of continuity of the martingale. The conditions given below are in a sense necessary and sufficient.
2. Preliminaries. Let \mathbb{N}_{+}denote the set of positive integers, and $\mathbb{N}:=\mathbb{N}_{+} \cup\{0\}$. Denote by Z_{2} the discrete cyclic group of order 2, that is, $Z_{2}:=\{0,1\}$, where the group operation is the modulo 2 addition and every subset is open. The Haar measure on Z_{2} gives measure $1 / 2$ to each singleton.

Define the group G as the complete direct product of the group Z_{2}, with the product of the discrete topologies of Z_{2} 's. The elements of G are represented by sequences $x:=\left(x_{0}, x_{1}, \ldots\right)$, where $x_{k}=0$ or 1 .

It is easy to give a base of neighborhoods of $x \in G$:

$$
I_{0}(x):=G, \quad I_{n}(x):=\left\{y \in G: y_{0}=x_{0}, \ldots, y_{n-1}=x_{n-1}\right\} \quad(n \in \mathbb{N}) .
$$

Denote $I_{n}:=I_{n}(0), \overline{I_{n}}:=G \backslash I_{n}$ and $e_{n}:=(0, \ldots, 0,1,0, \ldots) \in G$, $n \in \mathbb{N}$, with 1 in the nth place. Then it is easy to show that

$$
\begin{equation*}
\overline{I_{M}}=\bigcup_{s=0}^{M-1} I_{s} \backslash I_{s+1} . \tag{5}
\end{equation*}
$$

Every $n \in \mathbb{N}$ can be uniquely expressed as $n=\sum_{k=0}^{\infty} n_{j} 2^{j}$, where $n_{j} \in Z_{2}$ ($j \in \mathbb{N}$) and only a finite number of n_{j} 's are not zero.

Let

$$
\langle n\rangle:=\min \left\{j \in \mathbb{N}: n_{j} \neq 0\right\}, \quad|n|:=\max \left\{j \in \mathbb{N}: n_{j} \neq 0\right\}
$$

that is, $2^{|n|} \leq n \leq 2^{|n|+1}$. Set

$$
d(n)=|n|-\langle n\rangle \quad \text { for all } n \in \mathbb{N} .
$$

Define the variation of $n \in \mathbb{N}$ with binary coefficients $\left(n_{k}: k \in \mathbb{N}\right)$ by

$$
V(n)=n_{0}+\sum_{k=1}^{\infty}\left|n_{k}-n_{k-1}\right|
$$

The norms (or quasi-norms) of the spaces $L_{p}(G)$ and $L_{p, \infty}(G)(0<p<\infty)$ are respectively defined by

$$
\|f\|_{p}^{p}:=\int_{G}|f|^{p} d \mu, \quad\|f\|_{L_{p, \infty}}^{p}:=\sup _{\lambda>0} \lambda^{p} \mu(f>\lambda) .
$$

The k th Rademacher function is defined by

$$
r_{k}(x):=(-1)^{x_{k}} \quad(x \in G, k \in \mathbb{N})
$$

Now, define the Walsh system $w:=\left(w_{n}: n \in \mathbb{N}\right)$ on G by

$$
w_{n}(x):=\prod_{k=0}^{\infty} r_{k}^{n_{k}}(x)=r_{|n|}(x)(-1)^{\sum_{k=0}^{|n|-1} n_{k} x_{k}} \quad(n \in \mathbb{N})
$$

The Walsh system is orthonormal and complete in $L_{2}(G)$ (see e.g. [18]).
If $f \in L_{1}(G)$ we define the Fourier coefficients, the partial sums of the Fourier series, and the Dirichlet kernels with respect to the Walsh system in the usual manner:

$$
\begin{gathered}
\widehat{f}(k):=\int_{G} f w_{k} d \mu \quad(k \in \mathbb{N}) \\
S_{n} f:=\sum_{k=0}^{n-1} \widehat{f}(k) w_{k}, \quad D_{n}:=\sum_{k=0}^{n-1} w_{k} \quad\left(n \in \mathbb{N}_{+}\right)
\end{gathered}
$$

Recall that

$$
D_{2^{n}}(x)= \begin{cases}2^{n} & \text { if } x \in I_{n} \tag{6}\\ 0 & \text { if } x \notin I_{n}\end{cases}
$$

and

$$
\begin{equation*}
D_{n}=w_{n} \sum_{k=0}^{\infty} n_{k} r_{k} D_{2^{k}}=w_{n} \sum_{k=0}^{\infty} n_{k}\left(D_{2^{k+1}}-D_{2^{k}}\right) \quad \text { for } n=\sum_{i=0}^{\infty} n_{i} 2^{i} \tag{7}
\end{equation*}
$$

Define the nth Lebesgue constant by

$$
L_{S}(n):=\left\|D_{n}\right\|_{1} .
$$

The σ-algebra generated by the intervals $\left\{I_{n}(x): x \in G\right\}$ will be denoted by $\zeta_{n}(n \in \mathbb{N})$. Denote by $F=\left(F_{n}: n \in \mathbb{N}\right)$ a martingale with respect to \digamma_{n} $(n \in \mathbb{N})$ (for details see e.g. [22]).

The maximal function of the martingale F is defined by

$$
F^{*}=\sup _{n \in \mathbb{N}}\left|F_{n}\right|
$$

In case $f \in L_{1}(G)$, the maximal function is also given by

$$
f^{*}(x)=\sup _{n \in \mathbb{N}} \frac{1}{\mu\left(I_{n}(x)\right)}\left|\int_{I_{n}(x)} f(u) d \mu(u)\right|
$$

For $0<p<\infty$ the Hardy martingale space $H_{p}(G)$ consists of all martingales F for which

$$
\|F\|_{H_{p}}:=\left\|F^{*}\right\|_{p}<\infty
$$

The best approximation of $f \in L_{p}(G)(1 \leq p<\infty)$ is defined as

$$
E_{n}\left(f, L_{p}\right)=\inf _{\psi \in p_{n}}\|f-\psi\|_{p}
$$

where p_{n} is the set of all Walsh polynomials of order less than $n \in \mathbb{N}$.
The integrated modulus of continuity of $f \in L_{p}$ is defined by

$$
\omega_{p}\left(1 / 2^{n}, f\right)=\sup _{h \in I_{n}}\|f(\cdot+h)-f(\cdot)\|_{p}
$$

The modulus of continuity in $H_{p}(G)(0<p \leq 1)$ can be defined in the following way:

$$
\omega_{H_{p}}\left(1 / 2^{n}, F\right):=\left\|F-S_{2^{n}} F\right\|_{H_{p}}
$$

Watari [21] showed that there are close connections between

$$
\omega_{p}\left(1 / 2^{n}, f\right), \quad E_{2^{n}}\left(f, L_{p}\right), \quad\left\|f-S_{2^{n}} f\right\|_{p}, \quad p \geq 1, n \in \mathbb{N}
$$

In particular,

$$
\begin{equation*}
\frac{1}{2} \omega_{p}\left(1 / 2^{n}, f\right) \leq\left\|f-S_{2^{n}} f\right\|_{p} \leq \omega_{p}\left(1 / 2^{n}, f\right) \tag{8}
\end{equation*}
$$

and

$$
\frac{1}{2}\left\|f-S_{2^{n}} f\right\|_{p} \leq E_{2^{n}}\left(f, L_{p}\right) \leq\left\|f-S_{2^{n}} f\right\|_{p}
$$

A bounded measurable function a is called a p-atom if there exists a dyadic interval I such that

$$
\int_{I} a d \mu=0, \quad\|a\|_{\infty} \leq \mu(I)^{-1 / p}, \quad \operatorname{supp}(a) \subset I
$$

The dyadic Hardy martingale spaces H_{p} for $0<p \leq 1$ have an atomic characterization (see [19] and [23]):

Theorem W. A martingale $F=\left(F_{n}: n \in \mathbb{N}\right)$ is in $H_{p}(0<p \leq 1)$ if and only if there exists a sequence ($a_{k}: k \in \mathbb{N}$) of p-atoms and a sequence ($\mu_{k}: k \in \mathbb{N}$) of real numbers such that, for every $n \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{k=0}^{\infty} \mu_{k} S_{2^{n}} a_{k}=F_{n}, \quad \sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}<\infty . \tag{9}
\end{equation*}
$$

Moreover,

$$
\|F\|_{H_{p}} \backsim \inf \left(\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}\right)^{1 / p}
$$

where the infimum is taken over all decompositions of F of the form (9).
It is easy to check that for every martingale $F=\left(F_{n}: n \in \mathbb{N}\right)$ and every $k \in \mathbb{N}$ the limit

$$
\begin{equation*}
\widehat{F}(k):=\lim _{n \rightarrow \infty} \int_{G} F_{n}(x) w_{k}(x) d \mu(x) \tag{10}
\end{equation*}
$$

exists; it is called the k th Walsh-Fourier coefficient of F.
If $F:=\left(E_{n} f: n \in \mathbb{N}\right)$ is a regular martingale, generated by $f \in L_{1}(G)$, then $\widehat{F}(k)=\widehat{f}(k), k \in \mathbb{N}$.

For the martingale

$$
F=\sum_{n=0}^{\infty}\left(F_{n}-F_{n-1}\right)
$$

the conjugate transforms are defined as

$$
\widetilde{F^{(t)}}=\sum_{n=0}^{\infty} r_{n}(t)\left(F_{n}-F_{n-1}\right),
$$

where $t \in G$ is fixed. Note that $\widetilde{F^{(0)}}=F$. As is well known (see e.g. [22]),

$$
\begin{equation*}
\left\|\widetilde{F^{(t)}}\right\|_{H_{p}}=\|F\|_{H_{p}}, \quad\|F\|_{H_{p}}^{p} \sim \int_{G}\left\|\widetilde{F^{(t)}}\right\|_{p}^{p} d t, \quad \widetilde{S_{n} F^{(t)}}=S_{n} \widetilde{F^{(t)}} . \tag{11}
\end{equation*}
$$

3. Formulation of main results

Theorem 1. (a) Let $0<p<1$ and $F \in H_{p}$. Then there exists an absolute constant c_{p}, depending only on p, such that

$$
\left\|S_{n} F\right\|_{H_{p}} \leq c_{p} 2^{d(n)(1 / p-1)}\|F\|_{H_{p}}
$$

(b) Let $0<p<1,\left\{m_{k}: k \geq 0\right\}$ be any increasing sequence in \mathbb{N}_{+}such that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}} d\left(m_{k}\right)=\infty, \tag{12}
\end{equation*}
$$

and $\Phi: \mathbb{N}_{+} \rightarrow[1, \infty)$ be any nondecreasing function satisfying

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \frac{2^{d\left(m_{k}\right)(1 / p-1)}}{\Phi\left(m_{k}\right)}=\infty \tag{13}
\end{equation*}
$$

Then there exists a martingale $F \in H_{p}$ such that

$$
\sup _{k \in \mathbb{N}}\left\|\frac{S_{m_{k}} F}{\Phi\left(m_{k}\right)}\right\|_{L_{p, \infty}}=\infty
$$

Corollary 1. (a) Let $0<p<1$ and $F \in H_{p}$. Then there exists an absolute constant c_{p}, depending only on p, such that

$$
\left\|S_{n} F\right\|_{H_{p}} \leq c_{p}\left(n \mu\left\{\operatorname{supp} D_{n}\right\}\right)^{1 / p-1}\|F\|_{H_{p}}
$$

(b) Let $0<p<1,\left\{m_{k}: k \geq 0\right\}$ be any increasing sequence in \mathbb{N}_{+}such that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}} m_{k} \mu\left\{\operatorname{supp} D_{m_{k}}\right\}=\infty \tag{14}
\end{equation*}
$$

and $\Phi: \mathbb{N}_{+} \rightarrow[1, \infty)$ be any nondecreasing function satisfying

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \frac{\left(m_{k} \mu\left\{\operatorname{supp} D_{m_{k}}\right\}\right)^{1 / p-1}}{\Phi\left(m_{k}\right)}=\infty \tag{15}
\end{equation*}
$$

Then there exists a martingale $F \in H_{p}$ such that

$$
\sup _{k \in \mathbb{N}}\left\|\frac{S_{m_{k}} F}{\Phi\left(m_{k}\right)}\right\|_{L_{p, \infty}}=\infty
$$

Corollary 2. Let $n \in \mathbb{N}$ and $0<p<1$. Then there exists a martingale $F \in H_{p}$ such that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|S_{2^{n}+1} F\right\|_{L_{p, \infty}}=\infty \tag{16}
\end{equation*}
$$

Corollary 3. Let $n \in \mathbb{N}$ and $0<p \leq 1$ and $F \in H_{p}$. Then

$$
\begin{equation*}
\left\|S_{2^{n}+2^{n-1}} F\right\|_{H_{p}} \leq c_{p}\|F\|_{H_{p}} \tag{17}
\end{equation*}
$$

Theorem 2. (a) Let $n \in \mathbb{N}_{+}$and $F \in H_{1}$. Then there exists an absolute constant c such that

$$
\left\|S_{n} F\right\|_{H_{1}} \leq c V(n)\|F\|_{H_{1}}
$$

(b) Let $\left\{m_{k}: k \geq 0\right\}$ be any increasing sequence in \mathbb{N}_{+}such that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}} V\left(m_{k}\right)=\infty \tag{18}
\end{equation*}
$$

and $\Phi: \mathbb{N}_{+} \rightarrow[1, \infty)$ be any nondecreasing function satisfying

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \frac{V\left(m_{k}\right)}{\Phi\left(m_{k}\right)}=\infty \tag{19}
\end{equation*}
$$

Then there exists a martingale $F \in H_{1}$ such that

$$
\sup _{k \in \mathbb{N}}\left\|\frac{S_{m_{k}} F}{\Phi\left(m_{k}\right)}\right\|_{1}=\infty
$$

Theorem 3. Let $2^{k}<n \leq 2^{k+1}$. Then there exists an absolute constant c_{p}, depending only on p, such that

$$
\left\|S_{n} F-F\right\|_{H_{p}} \leq c_{p} 2^{d(n)(1 / p-1)} \omega_{H_{p}}\left(1 / 2^{k}, F\right) \quad(0<p<1)
$$

and

$$
\begin{equation*}
\left\|S_{n} F-F\right\|_{H_{1}} \leq c_{1} V(n) \omega_{H_{1}}\left(1 / 2^{k}, F\right) \tag{20}
\end{equation*}
$$

Theorem 4. (a) Let $0<p<1, F \in H_{p}$ and $\left\{m_{k}: k \geq 0\right\}$ be a sequence of nonnegative integers such that

$$
\begin{equation*}
\omega_{H_{p}}\left(1 / 2^{\left|m_{k}\right|}, F\right)=o\left(1 / 2^{d\left(m_{k}\right)(1 / p-1)}\right) \quad \text { as } k \rightarrow \infty \tag{21}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|S_{m_{k}} F-F\right\|_{H_{p}} \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{22}
\end{equation*}
$$

(b) Let $\left\{m_{k}: k \geq 0\right\}$ be any increasing sequence in \mathbb{N}_{+}satisfying 12 . Then there exists a martingale $F \in H_{p}$ and a subsequence $\left\{\alpha_{k}: k \geq 0\right\} \subset$ $\left\{m_{k}: k \geq 0\right\}$ for which

$$
\omega_{H_{p}}\left(1 / 2^{\left|\alpha_{k}\right|}, F\right)=O\left(1 / 2^{d\left(\alpha_{k}\right)(1 / p-1)}\right) \quad \text { as } k \rightarrow \infty
$$

and

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\|S_{\alpha_{k}} F-F\right\|_{L_{p, \infty}}>c_{p}>0 \quad \text { as } k \rightarrow \infty \tag{23}
\end{equation*}
$$

where c_{p} is an absolute constant depending only on p.
Corollary 4. (a) Let $0<p<1, F \in H_{p}$ and $\left\{m_{k}: k \geq 0\right\}$ be a sequence of nonnegative integers such that

$$
\begin{equation*}
\omega_{H_{p}}\left(1 / 2^{\left|m_{k}\right|}, F\right)=o\left(1 /\left(m_{k} \mu\left\{\operatorname{supp} D_{m_{k}}\right\}\right)^{1 / p-1}\right) \quad \text { as } k \rightarrow \infty \tag{24}
\end{equation*}
$$

Then (22) is satisfied.
(b) Let $\left\{m_{k}: k \geq 0\right\}$ be any increasing sequence in \mathbb{N}_{+}satisfying (14). Then there exists a martingale $F \in H_{p}$ and a subsequence $\left\{\alpha_{k}: k \geq 0\right\} \subset$ $\left\{m_{k}: k \geq 0\right\}$ for which

$$
\omega_{H_{p}}\left(1 / 2^{\left|\alpha_{k}\right|}, F\right)=O\left(1 /\left(\alpha_{k} \mu\left\{\operatorname{supp} D_{\alpha_{k}}\right)^{1 / p-1}\right\}\right) \quad \text { as } k \rightarrow \infty
$$

and (23) is satisfied.

Theorem 5. (a) Let $F \in H_{1}$ and $\left\{m_{k}: k \geq 0\right\}$ be a sequence of nonnegative integers such that

$$
\begin{equation*}
\omega_{H_{1}}\left(1 / 2^{\left|m_{k}\right|}, F\right)=o\left(1 / V\left(m_{k}\right)\right) \quad \text { as } k \rightarrow \infty \tag{25}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|S_{m_{k}} F-F\right\|_{H_{1}} \rightarrow 0 \quad \text { as } k \rightarrow \infty . \tag{26}
\end{equation*}
$$

(b) Let $\left\{m_{k}: k \geq 0\right\}$ be any increasing sequence in \mathbb{N}_{+}satisfying (18). Then there exists a martingale $F \in H_{1}$ and a subsequence $\left\{\alpha_{k}: k \geq 0\right\} \subset$ $\left\{m_{k}: k \geq 0\right\}$ for which

$$
\omega_{H_{1}}\left(1 / 2^{\left|\alpha_{k}\right|}, F\right)=O\left(1 / V\left(\alpha_{k}\right)\right) \quad \text { as } k \rightarrow \infty
$$

and

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\|S_{\alpha_{k}} F-F\right\|_{1}>c>0 \quad \text { as } k \rightarrow \infty \tag{27}
\end{equation*}
$$

where c is an absolute constant.

4. Proofs of the results

Proof of Theorem 1. Suppose that

$$
\begin{equation*}
\left\|2^{(1-1 / p) d(n)} S_{n} F\right\|_{p} \leq c_{p}\|F\|_{H_{p}} \tag{28}
\end{equation*}
$$

By combining (11) and 28 we get

$$
\begin{align*}
& \left\|2^{(1-1 / p) d(n)} S_{n} F\right\|_{H_{p}} \leq c_{p} \int_{G}\left\|2^{(1-1 / p) d(n)} \widetilde{S_{n} F^{(t)}}\right\|_{p} d \mu(t) \tag{29}\\
& \quad=c_{p} \int_{G}\left\|2^{(1-1 / p) d(n)} S_{n} \widetilde{F^{(t)}}\right\|_{p} d \mu(t) \leq c_{p} \int_{G}\left\|\widetilde{F^{(t)}}\right\|_{H_{p}} d \mu(t) \leq c_{p}\|F\|_{H_{p}} .
\end{align*}
$$

By using Theorem W and (29), the proof of Theorem 1(a) will be complete if we show that

$$
\begin{equation*}
\int_{G}\left|2^{(1-1 / p) d(n)} S_{n} a\right|^{p} d \mu \leq c_{p}<\infty \tag{30}
\end{equation*}
$$

for every p-atom a with support I and $\mu(I)=2^{-N}$.
We may assume that $I=I_{M}$. It is easy to see that $S_{n} a=0$ when $2^{M} \geq n$. Therefore, we can suppose that $2^{M}<n$. Since $\|a\|_{\infty} \leq 2^{M / p}$ we can write

$$
\begin{align*}
\left|2^{(1-1 / p) d(n)} S_{n} a(x)\right| & \leq 2^{(1-1 / p) d(n)}\|a\|_{\infty} \int_{I_{M}}\left|D_{n}(x+t)\right| d \mu(t) \tag{31}\\
& \leq 2^{M / p} 2^{(1-1 / p) d(n)} \int_{I_{M}}\left|D_{n}(x+t)\right| d \mu(t)
\end{align*}
$$

Let $x \in I_{M}$. Since $V(n) \leq d(n)$, by applying (3) we get

$$
\left|2^{(1-1 / p) d(n)} S_{n} a\right| \leq 2^{M / p} 2^{(1-1 / p) d(n)} V(n) \leq 2^{M / p} d(n) 2^{(1-1 / p) d(n)}
$$

and

$$
\begin{equation*}
\int_{I_{M}}\left|2^{(1-1 / p) d(n)} S_{n} a\right|^{p} d \mu \leq d(n) 2^{(1-1 / p) d(n)}<c_{p}<\infty . \tag{32}
\end{equation*}
$$

Let $t \in I_{M}$ and $x \in I_{s} \backslash I_{s+1}, 0 \leq s \leq M-1<\langle n\rangle$ or $0 \leq s<\langle n\rangle \leq M-1$. Then $x+t \in I_{s} \backslash I_{s+1}$. By using (7) we get $D_{n}(x+t)=0$ and

$$
\left|2^{(1-1 / p) d(n)} S_{n} a(x)\right|=0
$$

Let $x \in I_{s} \backslash I_{s+1}$ and $\langle n\rangle \leq s \leq M-1$. Then $x+t \in I_{s} \backslash I_{s+1}$ for $t \in I_{M}$. By using (7) we can write

$$
\left|D_{n}(x+t)\right| \leq \sum_{j=0}^{s} n_{j} 2^{j} \leq c 2^{s} .
$$

If we apply (31) we get

$$
\begin{equation*}
\left|2^{(1-1 / p) d(n)} S_{n} a(x)\right| \leq 2^{(1-1 / p) d(n)} 2^{M / p} \frac{2^{s}}{2^{M}}=2^{\langle n\rangle(1 / p-1)} 2^{s} \tag{33}
\end{equation*}
$$

By combining (5) and (33) we have

$$
\begin{aligned}
\int_{I_{M}}\left|2^{(1-1 / p) d(n)} S_{n} a(x)\right|^{p} d \mu(x) & =\sum_{s=\langle n\rangle I_{s} \backslash I_{s+1}}^{M-1} \int\left|2^{\langle n\rangle(1 / p-1)} 2^{s}\right|^{p} d \mu(x) \\
& \leq c \sum_{s=\langle n\rangle}^{M-1} \frac{2^{\langle n\rangle(1-p)}}{2^{s(1-p)}} \leq c_{p}<\infty
\end{aligned}
$$

Let us prove Theorem $1(\mathrm{~b})$. Under condition (13), there exists a subsequence $\left\{\alpha_{k}: k \geq 0\right\} \subset\left\{m_{k}: k \geq 0\right\}$ such that

$$
\begin{equation*}
\sum_{\eta=0}^{\infty} \frac{\Phi^{p / 2}\left(\alpha_{\eta}\right)}{2^{d\left(\alpha_{\eta}\right)(1-p) / 2}}<\infty \tag{34}
\end{equation*}
$$

Let

$$
F_{n}=\sum_{\left\{k:\left|\alpha_{k}\right|<n\right\}} \lambda_{k} a_{k}
$$

where

$$
\begin{equation*}
\lambda_{k}=\frac{\Phi^{1 / 2}\left(\alpha_{k}\right)}{2^{d\left(\alpha_{k}\right)(1 / p-1) / 2}}, \quad a_{k}=2^{\left|\alpha_{k}\right|(1 / p-1)}\left(D_{2^{\left|\alpha_{k}\right|+1}}-D_{2^{\left|\alpha_{k}\right|}}\right) \tag{35}
\end{equation*}
$$

By combining Theorem W and 34 we conclude that $F=\left(F_{n}: n \in \mathbb{N}\right) \in H_{p}$. By a simple calculation we get
(36) $\widehat{F}(j)$

$$
= \begin{cases}\Phi^{1 / 2}\left(\alpha_{k}\right) 2^{\left(\left|\alpha_{k}\right|+\left\langle\alpha_{k}\right\rangle\right)(1 / p-1) / 2} & \text { if } j \in\left\{2^{\left|\alpha_{k}\right|}, \ldots, 2^{\left|\alpha_{k}\right|+1}-1\right\}, \\ & k=0,1, \ldots, \\ 0 & \text { if } j \notin \bigcup_{k=0}^{\infty}\left\{2^{\left|\alpha_{k}\right|}, \ldots, 2^{\alpha_{k} \mid+1}-1\right\} .\end{cases}
$$

Since

$$
\begin{equation*}
D_{j+2^{n}}=D_{2^{n}}+w_{2^{n}} D_{j} \quad \text { when } j \leq 2^{n}, \tag{37}
\end{equation*}
$$

by applying (36) we have

$$
\begin{align*}
\frac{S_{\alpha_{k}} F}{\Phi\left(\alpha_{k}\right)}= & \frac{1}{\Phi\left(\alpha_{k}\right)} \sum_{\eta=0}^{k-1} \sum_{v=2^{\left|\alpha_{\eta}\right|}}^{2^{\left|\alpha_{\eta}\right|+1}-1} \widehat{F}(v) w_{v}+\frac{1}{\Phi\left(\alpha_{k}\right)} \sum_{v=2^{\left|\alpha_{k}\right|}}^{\alpha_{k}-1} \widehat{F}(v) w_{v} \tag{38}\\
= & \frac{1}{\Phi\left(\alpha_{k}\right)} \sum_{\eta=0}^{k-1} \sum_{v=2^{\left|\alpha_{\eta}\right|}}^{2^{\left|\alpha_{\eta}\right|+1}-1} \Phi^{1 / 2}\left(\alpha_{\eta}\right) 2^{\left(\left|\alpha_{\eta}\right|+\left\langle\alpha_{\eta}\right\rangle\right)(1 / p-1) / 2} w_{v} \\
& +\frac{1}{\Phi\left(\alpha_{k}\right)} \sum_{v=2^{\left|\alpha_{k}\right|}}^{\alpha_{k}-1} \Phi^{1 / 2}\left(\alpha_{k}\right) 2^{\left(\left|\alpha_{k}\right|+\left\langle\alpha_{k}\right\rangle\right)(1 / p-1) / 2} w_{v} \\
= & \frac{1}{\Phi\left(\alpha_{k}\right)} \sum_{\eta=0}^{k-1} \Phi^{1 / 2}\left(\alpha_{\eta}\right) 2^{\left(\left|\alpha_{\eta}\right|+\left\langle\alpha_{\eta}\right\rangle\right)(1 / p-1) / 2}\left(D_{2^{\left|\alpha_{\eta}\right|+1}}-D_{2^{\left|\alpha_{\eta}\right|+1}}\right) \\
& +\frac{2^{\left(\left|\alpha_{k}\right|+\left\langle\alpha_{k}\right\rangle\right)(1 / p-1) / 2} w_{2^{\left|\alpha_{k}\right|}} D_{\alpha_{k}-2^{\left|\alpha_{k}\right|}}}{\Phi^{1 / 2}\left(\alpha_{k}\right)}=\mathrm{I}+\mathrm{II} .
\end{align*}
$$

By using (34) for I we can write

$$
\begin{align*}
\|\mathrm{I}\|_{L_{p, \infty}}^{p} \leq & \frac{1}{\Phi^{p}\left(\alpha_{k}\right)} \tag{39}\\
& \times \sum_{\eta=0}^{k-1} \frac{\Phi^{p / 2}\left(\alpha_{\eta}\right)}{2^{d\left(\alpha_{\eta}\right)(1-p) / 2}}\left\|2^{\left|\alpha_{\eta}\right|(1 / p-1)}\left(D_{2^{\left|\alpha_{\eta}\right|+1}}-D_{2^{\left|\alpha_{\eta}\right|+1}}\right)\right\|_{L_{p, \infty}}^{p} \\
\leq & \frac{1}{\Phi^{p}\left(\alpha_{k}\right)} \sum_{\eta=0}^{\infty} \frac{\Phi^{p / 2}\left(\alpha_{\eta}\right)}{2^{d\left(\alpha_{\eta}\right)(1-p) / 2}} \leq c<\infty
\end{align*}
$$

Let $x \in I_{\left\langle\alpha_{k}\right\rangle} \backslash I_{\left\langle\alpha_{k}\right\rangle+1}$. Under condition (7) we can show $\left|\alpha_{k}\right| \neq\left\langle\alpha_{k}\right\rangle$. It follows that $\left\langle\alpha_{k}-2^{\left|\alpha_{k}\right|}\right\rangle=\left\langle\alpha_{k}\right\rangle$. By combining (6) and (7) we have

$$
\begin{align*}
\left|D_{\alpha_{k}-2^{\left|\alpha_{k}\right|}}\right| & =\left|\left(D_{2^{\left\langle\alpha_{k}\right\rangle+1}}-D_{2^{\left\langle\alpha_{k}\right\rangle}}\right)+\sum_{j=\left\langle\alpha_{k}\right\rangle+1}^{\left|\alpha_{k}\right|-1}\left(\alpha_{k}\right)_{j}\left(D_{2^{i+1}}-D_{2^{i}}\right)\right| \tag{40}\\
& =\left|-D_{\left.2^{\left\langle\alpha_{k}\right\rangle}\right\rangle}\right|=2^{\left\langle\alpha_{k}\right\rangle}
\end{align*}
$$

and

$$
\begin{equation*}
|\mathrm{II}|=\frac{2^{\left(\left|\alpha_{k}\right|+\left\langle\alpha_{k}\right\rangle\right)(1 / p-1) / 2}}{\Phi^{1 / 2}\left(\alpha_{k}\right)}\left|D_{\alpha_{k}-2^{\left|\alpha_{k}\right|}}(x)\right|=\frac{2^{\left|\alpha_{k}\right|(1 / p-1) / 2} 2^{\left\langle\alpha_{k}\right\rangle(1 / p+1) / 2}}{\Phi^{1 / 2}\left(\alpha_{k}\right)} \tag{41}
\end{equation*}
$$

By using (39) we see that

$$
\begin{aligned}
\left\|\frac{S_{\alpha_{k}} F}{\Phi\left(\alpha_{k}\right)}\right\|_{L_{p, \infty}}^{p} \geq & \|\mathrm{II}\|_{L_{p, \infty}}^{p}-\|\mathrm{I}\|_{L_{p, \infty}}^{p} \\
\geq & \frac{2^{\left(\left|\alpha_{k}\right|\right)(1 / p-1) / 2} 2^{\left\langle\alpha_{k}\right\rangle(1 / p+1) / 2}}{\Phi^{1 / 2}\left(\alpha_{k}\right)} \\
& \times \mu\left\{x \in G:|\mathrm{II}| \geq \frac{2^{\left(\left|\alpha_{k}\right|\right)(1 / p-1) / 2} 2^{\left\langle\alpha_{k}\right\rangle(1 / p+1) / 2}}{\Phi^{1 / 2}\left(\alpha_{k}\right)}\right\}^{1 / p} \\
\geq & \frac{2^{\left(\left|\alpha_{k}\right|\right)(1 / p-1) / 2} 2^{\left\langle\alpha_{k}\right\rangle(1 / p+1) / 2}}{\Phi^{1 / 2}\left(\alpha_{k}\right)}\left(\mu\left\{I_{\left\langle\alpha_{k}\right\rangle} \backslash I_{\left\langle\alpha_{k}\right\rangle+1}\right\}\right)^{1 / p} \\
\geq & c \frac{2^{d\left(\alpha_{k}\right)(1 / p-1) / 2}}{\Phi^{1 / 2}\left(\alpha_{k}\right)} \rightarrow \infty \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

Theorem 1 is proved.
Proof of Corollaries 1-3. By combining (6) and (7) we obtain

$$
I_{\langle n\rangle} \backslash I_{\langle n\rangle+1} \subset \operatorname{supp} D_{n} \subset I_{\langle n\rangle}, \quad 2^{-\langle n\rangle-1} \leq \mu\left\{\operatorname{supp} D_{n}\right\} \leq 2^{-\langle n\rangle}
$$

It follows that

$$
\frac{2^{d(n)(1 / p-1)}}{4} \leq\left(n \mu\left\{\operatorname{supp} D_{n}\right\}\right)^{1 / p-1} \leq 2^{d(n)(1 / p-1)}
$$

Corollary 1 is proved.
To prove Corollary 2 we only have to calculate that

$$
\begin{equation*}
\left|2^{n}+1\right|=n, \quad\left\langle 2^{n}+1\right\rangle=0, \quad d\left(2^{n}+1\right)=n \tag{42}
\end{equation*}
$$

By using Theorem 1(b) we see that there exists a martingale $F=\left(F_{n}: n \in \mathbb{N}\right)$ $\in H_{p}(0<p<1)$ such that 16 is satisfied.

Let us prove Corollary 3. Analogously to we can write

$$
\left|2^{n}+2^{n-1}\right|=n, \quad\left\langle 2^{n}+2^{n-1}\right\rangle=n-1, \quad d\left(2^{n}+2^{n-1}\right)=1
$$

By using Theorem 1(a) we immediately get for all $0<p \leq 1$.
Corollaries 1-3 are proved.
Proof of Theorem 2. By using (3) we have

$$
\begin{equation*}
\left\|\frac{S_{n} F}{V(n)}\right\|_{1} \leq\|F\|_{1} \leq\|F\|_{H_{1}} \tag{43}
\end{equation*}
$$

By combining (11) and (43), after similar steps to 29 we see that

$$
\begin{equation*}
\left\|\frac{S_{n} F}{V(n)}\right\|_{H_{1}} \sim \int_{G}\left\|\frac{\widetilde{S_{n} F^{(t)}}}{V(n)}\right\|_{1} d \mu(t) \leq\|F\|_{H_{1}} \tag{44}
\end{equation*}
$$

Now, we prove part (b). Let $\left\{m_{k}: k \geq 0\right\}$ and $\Phi: \mathbb{N}_{+} \rightarrow[1, \infty)$ be as in the hypothesis. By 19 there exists an increasing subsequence $\left\{\alpha_{k}: k \geq 0\right\} \subset\left\{m_{k}: k \geq 0\right\}$ of \mathbb{N}_{+}such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\Phi^{1 / 2}\left(\alpha_{k}\right)}{V^{1 / 2}\left(\alpha_{k}\right)} \leq \beta<\infty \tag{45}
\end{equation*}
$$

Let

$$
F_{n}:=\sum_{\left\{k:\left|\alpha_{k}\right|<n\right\}} \lambda_{k} a_{k}
$$

where

$$
\begin{equation*}
\lambda_{k}=\frac{\Phi^{1 / 2}\left(\alpha_{k}\right)}{V^{1 / 2}\left(\alpha_{k}\right)}, \quad a_{k}=D_{2^{\left|\alpha_{k}\right|+1}}-D_{2^{\left|\alpha_{k}\right|}} \tag{46}
\end{equation*}
$$

Analogously to Theorem 1, if we apply Theorem W and 45 we conclude that $F=\left(F_{n}: n \in \mathbb{N}\right) \in H_{1}$.

By a simple calculation we get

$$
\widehat{F}(j)= \begin{cases}\frac{\Phi^{1 / 2}\left(\alpha_{k}\right)}{V^{1 / 2}\left(\alpha_{k}\right)} & \text { if } j \in\left\{2^{\left|\alpha_{k}\right|}, \ldots, 2^{\left|\alpha_{k}\right|+1}-1\right\}, k=0,1, \ldots \tag{47}\\ 0 & \text { if } j \notin \bigcup_{k=0}^{\infty}\left\{2^{\left|\alpha_{k}\right|}, \ldots, 2^{\left|\alpha_{k}\right|+1}-1\right\}\end{cases}
$$

From (37) and 47) analogously to (38) we obtain

$$
S_{\alpha_{k}} F=\sum_{\eta=0}^{k-1} \frac{\Phi^{1 / 2}\left(\alpha_{\eta}\right)}{V^{1 / 2}\left(\alpha_{\eta}\right)}\left(D_{2^{\left|\alpha_{\eta}\right|+1}}-D_{2^{\left|\alpha_{\eta}\right|}}\right)+\frac{\Phi^{1 / 2}\left(\alpha_{k}\right)}{V^{1 / 2}\left(\alpha_{k}\right)} w_{2^{\left|\alpha_{k}\right|}} D_{\alpha_{k}-2^{\left|\alpha_{k}\right|}}
$$

By combining (3) and (45) we have

$$
\begin{aligned}
\left\|\frac{S_{\alpha_{k}} F}{\Phi\left(\alpha_{k}\right)}\right\|_{1} & \geq \frac{\Phi^{1 / 2}\left(\alpha_{k}\right)}{\Phi\left(\alpha_{k}\right) V^{1 / 2}\left(\alpha_{k}\right)} \| D_{\alpha_{k}-2^{\mid \alpha} k} \\
& \geq \frac{V\left(\alpha_{k}-2^{\left|\alpha_{k}\right|}\right) \Phi^{1 / 2}\left(\alpha_{k}\right)}{8 \Phi\left(\alpha_{k}\right) V^{1 / 2}\left(\alpha_{k}\right)}-\frac{1}{\Phi\left(\alpha_{k}\right)} \sum_{\eta=0}^{k-1} \frac{\Phi^{1 / 2}\left(\alpha_{\eta}\right)}{V^{1 / 2}\left(\alpha_{\eta}\right)} \sum_{\eta=0}^{\infty} \frac{\Phi^{1 / 2}\left(\alpha_{\eta}\right)}{V^{1 / 2}\left(\alpha_{\eta}\right)} \\
& \geq \frac{c V^{1 / 2}\left(\alpha_{k}\right)}{\Phi^{1 / 2}\left(\alpha_{k}\right)} \rightarrow \infty \quad \text { as } k \rightarrow \infty .
\end{aligned}
$$

Theorem 2 is proved.

Proof of Theorem 3. Let $0<p<1$ and $2^{k}<n \leq 2^{k+1}$. By using Theorem 1(a) we see that

$$
\begin{align*}
\left\|S_{n} F-F\right\|_{H_{p}} & \leq c_{p}\left\|S_{n} F-S_{2^{k}} F\right\|_{H_{p}}+c_{p}\left\|S_{2^{k}} F-F\right\|_{H_{p}} \tag{48}\\
& =c_{p}\left\|S_{n}\left(S_{2^{k}} F-F\right)\right\|_{H_{p}}+c_{p}\left\|S_{2^{k}} F-F\right\|_{H_{p}} \\
& \leq c_{p}\left(1+2^{d(n)(1 / p-1)}\right) \omega_{H_{p}}\left(1 / 2^{k}, F\right) \\
& \leq c_{p} 2^{d(n)(1 / p-1)} \omega_{H_{p}}\left(1 / 2^{k}, F\right) .
\end{align*}
$$

The proof of estimate 20 is analogous to that of (48).
Theorem 3 is proved.
Proof of Theorem 4. Let $0<p<1, F \in H_{p}$ and $\left\{m_{k}: k \geq 0\right\}$ satisfy (21). By using Theorem 3 we see that 22 holds.

Let us prove part (b). Under condition 12 , there exists a subsequence $\left\{\alpha_{k}: k \geq 0\right\} \subset\left\{m_{k}: k \geq 0\right\}$ such that

$$
\begin{equation*}
2^{d\left(\alpha_{k}\right)} \uparrow \infty \quad \text { as } k \rightarrow \infty, \quad 2^{2(1 / p-1) d\left(\alpha_{k}\right)} \leq 2^{(1 / p-1) d\left(\alpha_{k+1}\right)} \tag{49}
\end{equation*}
$$

We set

$$
F_{n}=\sum_{\left\{i:\left|\alpha_{i}\right|<n\right\}} \frac{a_{i}}{2^{(1 / p-1) d\left(\alpha_{i}\right)}},
$$

where a_{i} is defined by 35 . Since a_{i} is a p-atom, if we apply Theorem W and (49) we conclude that $F \in H_{p}$. On the other hand,

$$
\begin{align*}
F-S_{2^{n}} F & =\left(F^{(1)}-S_{2^{n}} F^{(1)}, \ldots, F^{(n)}-S_{2^{n}} F^{(n)}, \ldots, F^{(n+k)}-S_{2^{n}} F^{(n+k)}\right) \tag{50}\\
& =\left(0, \ldots, 0, F^{(n+1)}-F^{(n)}, \ldots, F^{(n+k)}-F^{(n)}, \ldots\right) \\
& =\left(0, \ldots, 0, \sum_{i=n}^{n+k} \frac{a_{i}}{2^{(1 / p-1) d\left(\alpha_{i}\right)}}, \ldots\right), \quad k \in \mathbb{N}_{+}
\end{align*}
$$

is a martingale. By combining (49) and Theorem W we get

$$
\begin{equation*}
\omega_{H_{p}}\left(\frac{1}{2^{\left|\alpha_{k}\right|}}, F\right) \leq \sum_{i=k}^{\infty} \frac{1}{2^{(1 / p-1) d\left(\alpha_{i}\right)}}=O\left(\frac{1}{2^{(1 / p-1) d\left(\alpha_{k}\right)}}\right) \quad \text { as } n \rightarrow \infty \tag{51}
\end{equation*}
$$

It is easy to show that

$$
\widehat{F}(j)= \begin{cases}2^{(1 / p-1)\left\langle\alpha_{k}\right\rangle} & \text { if } j \in\left\{2^{\left|\alpha_{k}\right|}, \ldots, 2^{\left|\alpha_{k}\right|+1}-1\right\}, k=0,1, \ldots, \tag{52}\\ 0 & \text { if } j \notin \bigcup_{k=0}^{\infty}\left\{2^{\left|\alpha_{k}\right|}, \ldots, 2^{\left|\alpha_{k}\right|+1}-1\right\}\end{cases}
$$

Analogously to 40 we can write

$$
\left|D_{\alpha_{k}}\right| \geq 2^{\left\langle\alpha_{k}\right\rangle} \quad \text { for } I_{\left\langle\alpha_{k}\right\rangle} \backslash I_{\left\langle\alpha_{k}\right\rangle+1}
$$

Since

$$
\begin{aligned}
\left\|D_{\alpha_{k}}\right\|_{L_{p, \infty}} & \geq 2^{\left\langle\alpha_{k}\right\rangle} \mu\left\{x \in I_{\left\langle\alpha_{k}\right\rangle} \backslash I_{\left\langle\alpha_{k}\right\rangle+1}:\left|D_{\alpha_{k}}\right| \geq 2^{\left\langle\alpha_{k}\right\rangle}\right\}^{1 / p} \\
& \geq 2^{\left\langle\alpha_{k}\right\rangle}\left(\mu\left\{I_{\left\langle\alpha_{k}\right\rangle} \backslash I_{\left\langle\alpha_{k}\right\rangle+1}\right\}\right)^{1 / p} \geq 2^{\left\langle\alpha_{k}\right\rangle(1-1 / p)}
\end{aligned}
$$

by using (52) we have

$$
\begin{aligned}
\left\|S_{\alpha_{k}} F-F\right\|_{L_{p, \infty}} \geq & \left\|2^{(1 / p-1)\left\langle\alpha_{k}\right\rangle}\left(D_{2^{\left|\alpha_{k}\right|+1}}-D_{\alpha_{k}}\right)\right\|_{L_{p, \infty}} \\
& \quad-\left\|\sum_{i=k+1}^{\infty} 2^{(1 / p-1)\left\langle\alpha_{i}\right\rangle}\left(D_{2^{\left|\alpha_{i}\right|+1}}-D_{2^{\left|\alpha_{i}\right|}}\right)\right\|_{L_{p, \infty}} \\
= & 2^{(1 / p-1)\left\langle\alpha_{k}\right\rangle}\left\|D_{\alpha_{k}}\right\|_{L_{p, \infty}}-2^{(1 / p-1)\left\langle\alpha_{k}\right\rangle}\left\|D_{2^{\left|\alpha_{k}\right|+1}}\right\|_{L_{p, \infty}} \\
& -\sum_{i \geq k+1} \frac{\| 2^{(1 / p-1)\left|\alpha_{i}\right|}\left(D_{2^{\left|\alpha_{i}\right|+1}}-D_{\left.2^{\left|\alpha_{i}\right|}\right)} \|_{L_{p, \infty}}\right.}{2^{(1 / p-1) d\left(\alpha_{i}\right)}} \\
\geq & c-\frac{1}{2^{(1 / p-1) d\left(\alpha_{k}\right)}}-\sum_{i \geq k+1} \frac{1}{2^{(1 / p-1) d\left(\alpha_{i}\right)}} \\
\geq & c-\frac{2}{2^{(1 / p-1) d\left(\alpha_{k}\right)}} .
\end{aligned}
$$

Theorem 4 is proved.
Proof of Theorem 5. Let $F \in H_{1}$ and $\left\{m_{k}: k \geq 0\right\}$ satisfy (25). By using Theorem 3 we see that (26) holds.

Let us prove part (b). Under the conditions of this part, there exists a subsequence $\left\{\alpha_{k}: k \geq 0\right\} \subset\left\{m_{k}: k \geq 0\right\}$ such that

$$
\begin{equation*}
V\left(\alpha_{k}\right) \uparrow \infty \quad \text { as } k \rightarrow \infty, \quad V^{2}\left(\alpha_{k}\right) \leq V\left(\alpha_{k+1}\right) \tag{53}
\end{equation*}
$$

We set

$$
F_{n}=\sum_{\left\{i:\left|\alpha_{i}\right|<n\right\}} \frac{a_{i}}{V\left(\alpha_{i}\right)}
$$

where a_{i} is defined by 46). Since a_{i} is a 1 -atom, if we apply Theorem W and (53) we conclude that $F=\left(F_{n}: n \in \mathbb{N}\right) \in H_{1}$.

Analogously to (50), by (53) and Theorem W we can show that

$$
F-S_{2^{n}} F=\left(0, \ldots, 0, \sum_{i=n}^{n+k} \frac{a_{i}}{V\left(\alpha_{i}\right)}, \ldots\right), \quad k \in \mathbb{N}_{+},
$$

is a martingale and

$$
\left\|F-S_{2^{n}} F\right\|_{H_{1}} \leq \sum_{i=n+1}^{\infty} \frac{1}{V\left(\alpha_{i}\right)}=O\left(\frac{1}{V\left(\alpha_{n}\right)}\right) \quad \text { as } n \rightarrow \infty
$$

It is easy to show that

$$
\widehat{F}(j)= \begin{cases}1 / V\left(\alpha_{k}\right) & \text { if } j \in\left\{2^{\left|\alpha_{k}\right|}, \ldots, 2^{\left|\alpha_{k}\right|+1}-1\right\}, k=0,1, \ldots \\ 0 & \text { if } j \notin \bigcup_{k=0}^{\infty}\left\{2^{\left|\alpha_{k}\right|}, \ldots, 2^{\left|\alpha_{k}\right|+1}-1\right\}\end{cases}
$$

which implies

$$
\begin{aligned}
\left\|F-S_{\alpha_{k}} F\right\|_{1} & \geq\left\|\frac{D_{2^{\left|\alpha_{k}\right|+1}}-D_{\alpha_{k}}}{V\left(\alpha_{k}\right)}+\sum_{i=k+1}^{\infty} \frac{D_{2^{\left|\alpha_{i}\right|+1}}-D_{2^{\left|\alpha_{i}\right|}}}{V\left(\alpha_{i}\right)}\right\|_{1} \\
& \geq \frac{\left\|D_{\alpha_{k}}\right\|_{1}}{V\left(\alpha_{k}\right)}-\frac{\left\|D_{2^{\left|\alpha_{k}\right|+1}}\right\|_{1}}{V\left(\alpha_{k}\right)}-\left\|\sum_{i=k+1}^{\infty} \frac{D_{2^{\left|\alpha_{i}\right|+1}}-D_{2^{\left|\alpha_{i}\right|}}}{V\left(\alpha_{i}\right)}\right\|_{1} \\
& \geq \frac{1}{8}-\frac{1}{V\left(\alpha_{k}\right)}-\sum_{i=k+1}^{\infty} \frac{1}{V\left(\alpha_{i}\right)} \geq \frac{1}{8}-\frac{2}{V\left(\alpha_{k}\right)} .
\end{aligned}
$$

Theorem 5 is proved.
Acknowledgements. The author would like to thank the referee for helpful suggestions.

The research was supported by Shota Rustaveli National Science Foundation grants no. 13/06 and DO/24/5-100/14.

REFERENCES

[1] M. Avdispahić and N. Memić, On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups, Acta Math. Hungar. 129 (2010), 381-392.
[2] N. K. Bary, Trigonometric Series, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1961 (in Russian).
[3] I. Blahota, Approximation by Vilenkin-Fourier sums in $L^{p}\left(G_{m}\right)$, Acta Acad. Paedagog. Nyházi. Mät.-Inform. Közl. 13 (1992), 35-39.
[4] N. I. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414.
[5] S. Fridli, Approximation by Vilenkin-Fourier sums, Acta Math. Hungar. 47 (1986), 33-44.
[6] G. Gát, Best approximation by Vilenkin-like systems, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 17 (2001), 161-169.
[7] G. Gát, U. Goginava and G. Tkebuchava, Convergence in measure of logarithmic means of quadratical partial sums of double Walsh-Fourier series, J. Math. Anal. Appl. 323 (2006), 535-549.
[8] U. Goginava, On the uniform convergence of Walsh-Fourier series, Acta Math. Hungar. 93 (2001), 59-70.
[9] U. Goginava, On the approximation properties of partial sums of Walsh-Fourier series, Acta Sci. Math. (Szeged) 72 (2006), 569-579.
[10] U. Goginava, On the approximation properties of Cesàro means of negative order of Walsh-Fourier series, J. Approx. Theory 115 (2002), 9-20.
[11] U. Goginava and G. Tkebuchava, Convergence of subsequences of partial sums and logarithmic means of Walsh-Fourier series, Acta Sci. Math. (Szeged) 72 (2006), 159-177.
[12] B. I. Golubov, A. V. Efimov and V. A. Skvortsov, Walsh Series and Transforms, Nauka, Moscow, 1987 (in Russian); English transl.: Math. Appl. (Soviet Ser.) 64, Kluwer, Dordrecht, 1991.
[13] N. V. Guličev, Approximation to continuous functions by Walsh-Fourier sums, Anal. Math. 6 (1980), 269-280.
[14] S. F. Lukomskii, Lebesgue constants for characters of the compact zero-dimensional Abelian group, East J. Approx. 15 (2009), 219-231.
[15] K. Nagy, Approximation by Cesàro means of negative order of Walsh-KaczmarzFourier series, East J. Approx. 16 (2010), 297-311.
[16] C. W. Onneweer, On L-convergence of Walsh-Fourier series, Int. J. Math. Math. Sci. 1 (1978), 47-56.
[17] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279.
[18] F. Schipp, W. Wade, P. Simon and J. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Akadémiai Kiadó, Budapest, and Adam Hilger, Bristol, 1990.
[19] P. Simon, A note on the of the Sunouchi operator with respect to Vilenkin systems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 43 (2001), 101-116.
[20] G. Tephnadze, On the partial sums of Vilenkin-Fourier series, J. Contemp. Math. Anal. 49 (2014), 23-32.
[21] C. Watari, Best approximation by Walsh polynomials, Tôhoku Math. J. 15 (1963), 1-5.
[22] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
[23] F. Weisz, Hardy spaces and Cesàro means of two-dimensional Fourier series, in: Bolyai Soc. Math. Stud. 5, János Bolyai Math. Soc., Budapest, 1996, 353-367.
[24] A. Zygmund, Trigonometric Series, Vol. 1, 2nd ed., Cambridge Univ. Press, Cambridge, 1959.

George Tephnadze

Department of Mathematics
Faculty of Exact and Natural Sciences
Tbilisi State University
Chavchavadze St. 1
Tbilisi 0128, Georgia
and
Department of Engineering Sciences and Mathematics
Luleå University of Technology
SE-971 87 Luleå, Sweden
E-mail: giorgitephnadze@gmail.com

[^0]: 2010 Mathematics Subject Classification: Primary 42C10.
 Key words and phrases: Walsh system, partial sums, martingale Hardy space.

