
COLLOQU IUM MATHEMAT ICUM
VOL. 142 2016 NO. 1

ON THE FINITENESS OF THE SEMIGROUP OF
CONJUGACY CLASSES OF LEFT IDEALS

FOR ALGEBRAS WITH RADICAL SQUARE ZERO

BY

ARKADIUSZ MĘCEL (Warszawa)

Abstract. Let A be a finite-dimensional algebra over an algebraically closed field
with radical square zero, and such that all simple A-modules have dimension at most two.
We give a characterization of those A that have finitely many conjugacy classes of left
ideals.

1. Introduction. Let A be a finite-dimensional unital algebra over a
field K and let U(A) stand for the group of units of A. Following [18], we
denote by C(A) the semigroup of conjugacy classes of left ideals of A, with
a binary operation induced by multiplication in A: if [L] is the conjugacy
class of a left ideal L of A, then [L1][L2] = [L1L2]. The aim of this paper is
to continue the investigation of the following problem, introduced in [14].

Problem 1.1. Let A be a finite-dimensional algebra over an algebraical-
ly closed field. Assume that J(A)2 = 0 and the lattice I(A) of two-sided
ideals of A is distributive (we then simply say that A is distributive). Find
necessary and sufficient conditions on A for C(A) to be finite.

Our study of C(A) is partly motivated by a general program of searching
for semigroup invariants of associative algebras [13]. The semigroup C(A)
is also related to the subspace semigroup of an associative algebra, studied
in [16, 17], which can be seen as an analogue of the semigroup of closed
subsets in an algebraic monoid. In the context of ring theory, several related
actions of U(A) have been considered on a ring A (see [9], and also [5, 6, 8]),
leading to certain finiteness conditions for A.

Several properties of C(A) were obtained in [18], [14] and [13]. These
results concern two general problems. First, we try to determine which prop-
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erties of A can be deduced from the structure of C(A). Second, we ask for
which algebras A the semigroup C(A) is finite. It is worth mentioning that
every algebra of finite representation type has the latter property (see [14,
Corollary 1.4]).

The class of algebras A over an algebraically closed field K with the
radical J(A) nilpotent of index 2 plays an important role in representation
theory of arbitrary algebras (see [19]). On the other hand, within this class
the semigroup C(A) determines the algebra A up to isomorphism, provided
it is finite (see [13, Theorem 1.2]).

We recall that the lattice I(A) is distributive if and only if I(A) is finite
(see [19, §2.2, Exercise 4; and §2.6, Exercise 3]). So, this is a necessary con-
dition for C(A) to be finite. For a basic algebra A (that is, when A/J(A)
is a direct product of copies of the field K), Problem 1.1 is solved in [18,
Theorem 12].

We note that the finiteness of C(A) is not a Morita invariant. Indeed,
the algebra B from [13, Example 4.7] has C(B) finite, but since it is of
infinite representation type, the semigroup C(M6(B)) is infinite. Therefore,
the challenge is to find a solution of Problem 1.1 for non-basic algebras with
radical square zero. One of the technical tools in our study of such algebras
is the separated quiver

(1.2) Γ s(A) = (Γ s0 (A), Γ
s
1 (A))

in the sense of Gabriel [4], defined as follows.
Assume that K is an algebraically closed field and A is a finite-dimen-

sional K-algebra whose Jacobson radical is nonzero and J(A)2 = 0. Fix a
maximal subset {e1, . . . , en} of a complete set of orthogonal primitive idem-
potents of A such that Aei 6' Aej as left A-modules, for any i 6= j. The sepa-
rated quiver of A is defined to be the directed graph Γ s(A) = (Γ s0 (A), Γ

s
1 (A)),

where:

• the set of vertices of Γ s(A) is

Γ s0 (A) = {1, . . . , n} × {0, 1},

• there exists an arrow (i, ε′) → (j, ε′′) in Γ s1 (A) if ε′ = 0, ε′′ = 1 and
eiJ(A)ej 6= 0. In this case there are precisely dij arrows (i, 0)→ (j, 1),
where dij := dimK eiJ(A)ej .

We recall from [10] and [19, Corollary 2.4c] that if the lattice I(A) is dis-
tributive then dimK eiJ(A)ek ≤ 1 for all i, j ∈ {1, . . . , n}. We consider a few
examples.

Example 1.3. Assume that A =
[
K
0

K2

K

]
is the Kronecker K-algebra.

Then A is a hereditary radical square zero algebra of infinite representa-
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tion type (see [20, Example 1.5]) and its separated quiver is the four-vertex
quiver

(2,0), (1,0) (2,1), (1,1).

One easily verifies that the semigroup C(A) is infinite. Indeed, consider the
family

I =

{
Iα =

[
0 K(1, α)

0 0

] ∣∣∣∣ α ∈ K

}
of nilpotent left ideals in A. Since the unit group of A is

[
K∗

0
K2

K∗
]
, where

K∗ = K \{0}, it is easy to see that no two elements of I belong to the same
conjugacy class of A.

Example 1.4. Let A = M2(B) be the full two-by-two matrix algebra
with coefficients in the radical square zeroK-algebraB=K[t1, t2]/(t

2
1, t1t2, t

2
2).

Then A is a radical square zero algebra of infinite representation type (by [4])
and its separated quiver is the Kronecker quiver

(1,0) (1,1).

The semigroup C(A) is again infinite. Analogously to the previous example,
one may consider the following family of nilpotent left ideals in A:

I =

{
Iα =

[
K(t1 + αt2) 0

K(t1 + αt2) 0

] ∣∣∣∣ α ∈ K

}
.

An easy computation shows that two different members of I cannot be con-
jugate in A.

Example 1.5. Let

A =


K 0 0 0 K

0 K 0 0 K

0 0 K 0 K

0 0 0 K K

0 0 0 0 K

 ⊆M5(K)

be the path algebra of the four-subspace quiver

Then A is a hereditary radical square zero basic algebra of infinite represen-
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tation type (see [1], [20]) and its separated quiver is

(1,0) (2,0) (3,0) (4,0)

(1,1) (2,1) (3,1) (4,1)

An easy computation shows that the semigroup C(A) is finite. This is also
a consequence of Theorem 1.6 below. On the other hand, notice that the
dual of Theorem 1.6 implies that the semigroup of conjugacy classes of right
ideals of A (defined in the symmetric way) is infinite.

Our main result extends the following result, proved in [18, Theorem 12].

Theorem 1.6. Let A be a finite-dimensional basic algebra over an alge-
braically closed field K. Assume that J(A)2 = 0 and the lattice of two-sided
ideals of A is distributive. Then C(A) is finite if and only if the separated
quiver Γ s(A) has no cycles (as an unoriented graph) and dim(eJ(A)) ≤ 3
for every primitive idempotent e of A.

If the algebra is not basic, not only the structure of Γ s(A) but also the
sizes of the simple blocks of A/J(A) will play a key role in the study of the
semigroup C(A). In part, this is a consequence of the following result proved
in [14, Theorem 1.2].

Theorem 1.7. Let A be a finite-dimensional algebra over an algebraically
closed field K. Assume that A/J(A) ∼= Mr1(K)×· · ·×Mrk(K) with ri ≥ 6 for
every i, and J(A)2 = 0. Then the semigroup C(A) is finite if and only if the
algebra A is of finite representation type, that is, the set of the isomorphism
classes of indecomposable left A-modules is finite.

By applying the well known theorem of Gabriel [4] and its generalized
version proved by Pierce [19, Section 11.8], we derive from Theorem 1.7 the
following corollary.

Corollary 1.8. Assume that A is a radical square zero algebra satisfy-
ing the conditions of Theorem 1.7. The following conditions are equivalent:

(a) The semigroup C(A) is finite.
(b) The separated quiver Γ s(A), viewed as an unoriented graph, is a

disjoint union of simply laced Dynkin diagrams An, n ≥ 1, Dn, n ≥ 4,
E6, E7, E8 (see [1]).

(c) The algebra A is of finite representation type.

Theorems 1.6 and 1.7 deal with two extreme situations: the algebras A
such that the simple blocks of A/J(A) are of dimension one, and such that
the simple blocks of A/J(A) are of dimension greater than or equal to 36. In
contrast to these results, we will show that in general it is no longer possible
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to express necessary and sufficient conditions for the finiteness of C(A) only
in the language of the separated quiver Γ s(A).

In this paper we give a classification of algebras A that satisfy the condi-
tions on the radical and the lattice of two-sided ideals given above and such
that the simple blocks of A/J(A) are of dimensions not greater than 4. To
state the explicit result we will need some combinatorial structures related to
the notions of skeletons and their separated graphs, which were introduced
in [14]. The general approach will also be similar. According to [14, Propo-
sition 2.6], it is possible to restate the problem of finiteness of C(A) in the
language of certain actions of linear groups on some sets of matrices. This
leads to some matrix problems, the treatment of which will require certain
new tools.

In Section 2 we briefly recall the notions and results introduced in [14],
and we expand them to an appropriate, more general setting. We also for-
mulate our main result, Theorem 2.8, which provides, for an algebra A of the
above-mentioned class, conditions equivalent to the finiteness of the semi-
group C(A). After stating some preliminary results, we prove that these
conditions are indeed necessary. The main difficulties arise in showing that
these conditions are also sufficient. The combinatorial methods needed to
overcome these obstacles prove to be quite different from the (mostly) geo-
metric arguments used in [14] and in Section 2. Therefore, at the end of Sec-
tion 2, we introduce certain new notions and results concerning the so-called
0-1 contours. In Section 3 we reduce the proof of the remaining implication of
Theorem 2.8 to two matrix problems, formulated in Lemmata 3.9 and 3.10.
Since the proofs of these two results require rather technical and computa-
tional approach, they are given in separate Sections 4 and 5, respectively.
We conclude with some remarks and questions for further study.

2. The main theorem. In this section we recall from [14] the main
notions and results needed to reformulate Problem 1.1 in the language of
actions of linear groups on certain sets of block matrices. We also introduce
notions used in the statement of the main result of the paper, Theorem 2.8.

2.1. Basic notions and preliminary results. In what follows, if not
stated otherwise, we assume that A is a finite-dimensional distributive alge-
bra over an algebraically closed field K such that J(A)2 = 0. First, recall ba-
sic notation concerning skeletons and contours, coming from [14, Section 2].

By a skeleton S we mean a pair (I, f), where I is a finite set of pairs
of positive integers (i, j), called blocks of the skeleton, and f is a function
I → N2, f(i, j) = (si, rj) ∈ N2, where si is called the height of the block
(i, j), and rj is its width. The set of all blocks (i, j) with fixed i is referred
to as the ith row of the skeleton. Columns of S are defined in a similar way.
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We assume that all blocks of every row have equal height and all blocks of
every column have equal width.

For a skeleton S = (I, f) and a field K we consider the K-subspace
MS ⊆M(s1+···+st)×(r1+···+rs)(K) consisting of all block matrices (aij), where
aij is a matrix with si rows and rj columns, and aij = 0 if (i, j) /∈ I. The
elements of MS are called contours of the skeleton S. One can then speak
about blocks of a given contour, and about the height, width and rows and
columns of the contour.

It is convenient to present contours of a skeleton S = (I, f) using only
those blocks aij for which (i, j) ∈ I. A similar convention will be used
for presenting skeletons. It will always be clear from the context whether
a given diagram represents a contour or a skeleton. For example, if I =
{(1, 2), (1, 3), (1, 4), (2, 1), (2, 2)} with f(i, j) = (2, 2) for (i, j) ∈ I, then a
contour of S is presented below:

3

1

0

0

0

1

1

0

0

1

1

0

2

1

0

0

1

0

0

0

An important class of contours comes from the family of algebras con-
sidered in this paper. Assume that

(2.1) A/J(A) 'Mr1(K)× · · · ×Mrk(K)

for some k > 0 and some ri > 0. According to the Wedderburn–Mal’tsev
Theorem, we get a linear space decomposition A = A1 ⊕ · · · ⊕ Ak ⊕ J(A),
where Ai ' Mri(K). Let ei be the unit of Ai and let Jij = eiJ(A)ej for
1 ≤ i, j ≤ k. Define

ai =
∑

j: Jij 6=0

rj .

Consider the set IA = {(i, j) | Jij 6= 0} and the function fA : IA → N2 such
that f(i, j) := (ai, rj). Then (IA, fA) is called the skeleton of the algebra A.
The space of contours of this skeleton is denoted by MA, and its elements
are called contours of the algebra A. If S = SA, then the height of every
block of the ith row of S is equal to the sum of the widths of all blocks of S
lying in the ith row of S. Moreover, it is easy to see that for every skeleton
S satisfying these conditions there exists an algebra A such that S = SA.

Recall (from [14, Definition 2.4]) that if S = (I, f) is an arbitrary skeleton
and f(i, j) = (si, rj) for (i, j) ∈ I, then one can consider the groups H :=
Gls1(K)× · · · ×Glst(K) and G := Glr1(K)× · · · ×Glrs(K) together with the
following action of the group H×Go onMS (here Go is the group opposite
to G):
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(2.2) h · A · g :=


h1a11g1 h1a12g2 . . . h1a1sgs

h2a21g1 h2a22g2 . . . h2a2sgs
...

...
. . .

...

htat1g1 htat2g2 . . . htatsgs


for h = (h1, . . . , ht) ∈ H and g = (g1, . . . , gs) ∈ G (the matrices hl and gm will
be called the lth coordinate of h and the mth coordinate of g, respectively,
for 1 ≤ l ≤ t and 1 ≤ m ≤ s), and A = (aij) ∈ MS . The orbits of the
action (2.2) are called the H-G-orbits onMS .

If S = SA then the nilpotent elements of C(A) are associated to the
H-G-orbits onMA, which leads to the following consequence (see [14, 2.7]):

Theorem 2.3. The semigroup C(A) is finite if and only if the number
of H-G-orbits on the contour spaceMA is finite.

Let S = (I, f) be a skeleton. We say that ΓS = (VS , ES) is the sepa-
rated graph of the skeleton S if VS = ({1, . . . , t} × {0}) ∪ ({1, . . . , s} × {1}),
where t, s denote the number of rows and columns, respectively, of S, while
ES = {{(i, 0), (j, 1)} | (i, j) ∈ I}. One says that the edge e ∈ ES is of
weight f(i, j) if e = {(i, 0), (j, 1)}. The elements v ∈ VS that belong to
the set {1, . . . , t} × {0} are called row vertices and the elements of the set
{1, . . . , s} × {1} are column vertices of the graph ΓS . If A is an algebra
then the separated graph of the skeleton of the algebra A coincides with the
(unoriented) separated quiver Γ s(A) = (Γ s0 (A), Γ

s
1 (A)) of A.

One can now introduce a useful relation on the set of all skeletons. Let
S1, S2 be skeletons. We say that S1 is contained in S2 if:

(1) ΓS1 = (V1, E1) is a subgraph of ΓS2 = (V2, E2), which means that
there exist embeddings φ : V1 → V2 and ψ : E1 → E2 such that
ψ({(i, 0), (j, 1)}) = {φ(i, 0), φ(j, 1)},

(2) if for e1 ∈ E1, e2 ∈ E2 one has ψ(e1) = e2, and if (s1, t1), (s2, t2) are
the weights of the edges e1 and e2, respectively, then s1 ≤ s2 and
t1 ≤ t2.

If for any e1 ∈ E1 and e2 ∈ E2 the above inequalities are in fact equalities
then we say that S1 is a subskeleton of S2.

Comparing skeletons leads to consequences on the number of orbits of
the action (2.2) on the space of contours.

Lemma 2.4 ([14, Lemma 2.3]). Assume that a skeleton S1 = (I1, f1) is
contained in a skeleton S2 = (I2, f2). Consider the sets of contoursMS1 and
MS2 and the corresponding groups H×G and H′ ×G′, acting on these sets
as in (2.2). If the number of H′-G′-orbits onMS2 is finite then the number
of H-G-orbits onMS1 is also finite.
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In order to state the main result of the paper, Theorem 2.8, we also need
some further notions.

Definition 2.5. Let S = (I, f) be a skeleton.

• We say that S is connected if the separated graph ΓS is connected.
• By a cycle in S we mean a sequence (i1, j1), . . . , (i2p, j2p) ∈ I such

that i1 = i2, j2 = j3, i3 = i4, . . . , i2p−1 = i2p, i2p = j1 and (il, jl) 6=
(il+1, jl+1) for all l (with subscripts taken modulo 2p).
• A block (i, j) ∈ I is called a row [column ] terminal block if it is the only

block in its row [column] in the skeleton S. A block is called terminal
if it is either row or column terminal.
• A block (i, j) ∈ I is thick if it is of size p× q, where q ≥ 2. A skeleton

is thick if all of its blocks are thick.
• A block which is not thick is called flat . A skeleton is flat if all of its

blocks are flat.

Clearly, if S is a skeleton then it is acyclic if and only if the separated
graph ΓS is acyclic. Moreover, in this case, there is a bijection between the
set of connected subgraphs of ΓS and the set of connected subskeletons of S.
This will be used later without further comment. Recall also that a path in
an acyclic graph Γ = (V,E) is a set W = {e1, . . . , en} of distinct edges such
that ei is incident to ej if and only if |i− j| = 1.

Definition 2.6. Let S be a skeleton with the separated graph ΓS =
(VS , ES). Assume that ΓS is connected and acyclic. We say that a vertex
v ∈ VS is knotted if the degree of v (the number of edges incident to v) is
at least 3. If the (unique) path between two knotted vertices of ΓS consists
only of edges corresponding to thick blocks of S then the path is called a
thick knotted path.

Next, we define two families of graphs: Fn,m,q where n,m, q ≥ 0, and Gp
for p ≥ 3; they are of use when discussing graphs that are not disjoint unions
of Dynkin diagrams.

Fm,n,q : where n,m, q ≥ 0,b b b b b b b b b b b
b

b b b b b b bb b b
b
b
b
b
b
b
b
b

m n

q

Gp : where p ≥ 3.
b

b b b b b b b b b b b

p

As in [14], we use the following notation. Assume that Γ := ΓS =
(VS , ES) is the separated graph of a skeleton S, and Γ is Fn,m,q or Gk.
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In particular, Γ has exactly one knotted vertex. If the knotted vertex of Γ
is in the set of row vertices of Γ , then we say that the graph of S is of the
form

−→
Γ . If the knotted vertex of Γ is in the set of column vertices of Γ , then

we say that the graph of S is of the form ↓Γ .

Definition 2.7. Let S = (I, f) be a skeleton.

(1) We say that S is a row n-tuple if I = {(i1, j), . . . , (in, j)}. In other
words, the separated graph of S is of the form

−→
Gn. A column n-tuple

is defined similarly; its separated graph is of the form ↓Gn.
(2) We say that S is a staircase if I = {(i1, j1), (i1, j2), (i2, j2), (i2, j3), . . . }

or I = {(i1, j1), (i2, j1), (i2, j2), (i3, j2), . . .}, where ip 6= iq and jp 6= jq,
for all p 6= q.

(3) We say that S is a double row staircase if its separated graph is of the
form

−−−→
Fn,m,0. Similarly, a double column staircase is a skeleton whose

separated graph is of the form ↓Fn,m,0 for some n,m ≥ 1.
(4) We say that S is a triple row staircase if its separated graph is of the

form
−−−→
Fn,m,q for some n,m, q ≥ 1.

See Lemmata 3.9 and 3.10 for a graphical representation of skeletons of types
(3) and (4).

2.2. The main result and the proof of necessity. We are now ready
to state the main result of this paper.

Theorem 2.8. Assume that A is a radical square zero K-algebra such
that each of the matrix block algebras Mri(K) in the decomposition (2.1)
of the residue algebra A/J(A) is of K-dimension at most four. Let SA be
the skeleton of A, and MA be the contour space of A. The following three
conditions are equivalent:

(a) The semigroup C(A) is finite.
(b) The number of H-G-orbits on the contour spaceMA is finite.
(c) The skeleton SA is acyclic and:

(i) SA does not contain a row 4-tuple,
(ii) SA does not contain a thick column 4-tuple,
(iii) SA does not contain a thick skeleton which is a triple row stair-

case,
(iv) the separated graph of SA does not contain a thick knotted path.

First, we note that (a)⇔(b) is a consequence of Theorem 2.3. Our next aim
is to prove (b)⇒(c). The proof relies on two propositions coming from [14],
asserting that certain specific skeletons cannot be contained in the skeleton
of an algebra A with finitely many H-G-orbits (according to Lemma 2.4).
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Proof of the implication (b)⇒(c) of Theorem 2.8. First note that SA
is acyclic by [14, Lemma 3.4]. To prove the remaining assertions of (c) we
show that for a radical square zero algebra A with finitely many H-G-orbits
onMA, each of the following conditions (i′)–(iv′) follows from the negation
of the respective condition from (i)–(iv):

(i′) SA contains a skeleton of the form (a) of [14, Proposition 3.6], which
consists of four blocks of size 2× 1:

(ii′) SA contains a skeleton of the form (a′) of [14, Proposition 3.6],
which consists of four blocks of size 1× 2:

(iii′) SA contains a skeleton of the form (d) of [14, Proposition 3.6], which
consists of three blocks of size 3× 2 and three blocks of size 1× 2:

(iv′) SA contains one of the families (i)–(iii) of skeletons of [14, Proposi-
tion 3.7], which consist (depending on the choice of the family) of
blocks of sizes 1× 2, 2× 1 and 2× 2 (the number of blocks varies
with r ≥ 1):

. .
.

xr

x1

. .
.

xr

x1

. .
.

xr

x1

Then, according to Lemma 2.4, the set of H-G-orbits onMA is infinite. This
will complete the proof.

Assume, to the contrary, that (i) is not satisfied, so that SA contains a row
4-tuple in one of its rows, say in the jth row. By the definition of skeleton,
this implies that aj ≥ 4. Hence, the jth row of SA contains a skeleton of the
form (a) of [14, Proposition 3.6], so (i′) holds.
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Assume that (ii) is not satisfied, so SA contains a thick column 4-tuple,
say in the lth column. Let x1, x2, x3, x4 be the corresponding blocks, be-
longing to rows with indices i1, i2, i3, i4, respectively. Since the xj are thick
blocks, their sizes are aij×q, respectively, where q ≥ 2. Hence the lth column
of SA contains a skeleton of the form (a′) of [14, Proposition 3.6]. Therefore
(ii′) holds.

Assume that (iii) is not satisfied, so SA contains a thick triple row stair-
case. We may assume that every block of SA is thick. The separated graph
ΓSA contains, as a subgraph, a graph of the form

−−−→
Fn,m,q for somem,m, q ≥ 1.

In particular, ΓSA contains
−−−→
F1,1,1. Since every block of SA is thick, it follows

easily that SA contains a skeleton of the form (d) of [14, Proposition 3.6].
Hence (iii′) holds.

Finally, assume that (iv) is not satisfied, so the separated graph of SA
contains a thick knotted path. Then SA contains one of the skeletons (i)–(iii)
of [14, Proposition 3.7]. Hence (iv′) holds.

Our last, and actually the most difficult goal, is to prove that the con-
ditions listed in (c) of Theorem 2.8 imply that assertion (b) of the theo-
rem holds. In the subsequent sections we will show that the action of the
group H×G, as in (2.2), on the contour spaceMS for skeletons S of certain
types has finitely many orbits. This can be accomplished by showing that the
H-G-orbit of every element of a given contour A ∈MS contains a contour A,
each of whose blocks is a 0-1 matrix , that is, every entry is either 0 or 1. Such
a contour will be called a 0-1 contour . We start with two straightforward
observations.

Remark 2.9. Let S = (I, f) be a skeleton and letM0
S be the subset of

MS consisting of all contours A = (aij) such that aij 6= 0 for all (i, j) ∈ I.
Then the following conditions are equivalent:
• the H-G-orbit of every A ∈MS contains a 0-1 contour,
• the H-G-orbit of every A ∈M0

S contains a 0-1 contour.
Remark 2.10. Let S= (I, f) be a skeleton with subskeletons Si= (Ii, fi),

for 1 ≤ i ≤ q, such that:
• Ii ∩ Ij = ∅ for every 1 ≤ i, j ≤ q,
• I1 ∪ · · · ∪ Iq = I,
• if (a, b) ∈ Ii and (a′, b) ∈ Ij for some a, a′, b, then i = j,
• if (c, d) ∈ Ii and (c, d′) ∈ Ij for some c, d, d′, then i = j.

Assume that H×Go acts onMS according to (2.2), and each Hi ×Go
i acts

onMSi . Then the following conditions are equivalent:
• the H-G-orbit of every A ∈MS contains a 0-1 contour,
• for every 1 ≤ i ≤ q, the Hi-Gi-orbit of every A ∈ MSi contains a
0-1 contour.
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The following result follows easily from the proof of Lemma 2.4.

Lemma 2.11. Assume that a skeleton S1 = (I1, f1) is contained in S2 =
(I2, f2). Consider the contour spacesMS1 andMS2 and the respective groups
H×Go and H′× (G′)o acting on them. If the H′-G′-orbit of every A′ ∈MS2
contains a 0-1 contour, then the H-G-orbit of every A ∈ MS1 contains a
0-1 contour.

We need another notion essential for the proof of the remaining implica-
tion (c)⇒(b) of Theorem 2.8.

Definition 2.12. Let S = (I, f) be a skeleton such that if (i, j) ∈ I,
then the height of the block (i, j) is equal to the sum of the widths of all
blocks from the ith row of S. We then say that the skeleton S has a reduced
form.

Consider the following subset I ′ of I:

I ′ := {(i, j) ∈ I | f(i, j) = (a, b), where a ≥ 2}.
If I ′ = ∅ then we say that the reduced form of S is trivial . If I ′ 6= ∅, then
consider the skeleton (I ′, f ′), where f ′(i, j) := (a−1, b) if f(i, j) = (a, b), for
every (i, j) ∈ I ′ ⊆ I. The skeleton (I ′, f ′) will be denoted by Sr and called
the nontrivial reduced form of S. If I ′ is nonempty then the contour space
MSr is called the space of reduced contours of S.

It is clear that the skeletons of algebras considered in this paper have
reduced forms. In some cases these forms can be trivial.

The following remark will often be used in the proofs based on the notion
of the reduced form of a skeleton.

Remark 2.13. Let S be a skeleton with a reduced form. If the skeleton
S ′ is obtained from S by deleting certain rows, then S ′ also has a reduced
form.

The key observation concerning reduced forms is as follows.

Lemma 2.14. Assume that a skeleton S has a reduced form. If this
is a trivial form then the H-G-orbit of every contour in MS contains a
0-1 contour. If the reduced skeleton Sr of S exists and if the group H′× (G′)o

acts as in (2.2) on the space MSr of reduced contours, then the following
conditions are equivalent:

(i) the H-G-orbit of every A ∈MS contains a 0-1 contour,
(ii) the H′-G′-orbit of every A′ ∈MSr contains a 0-1 contour.

Proof. (i)⇒(ii). Assume that the reduced form of S is trivial. Then every
row of S contains exactly one block, which is of size 1 × 1. It is then clear
that the H-G-orbit of every contour inMS contains a 0-1 contour.
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Hence, assume that S has a nontrivial reduced form Sr. According to
Definition 2.12, the skeleton Sr is contained in S. Hence, (i)⇒(ii) follows
from Lemma 2.11.

(ii)⇒(i). We apply induction on the number r of rows of S. Assume first
that r = 1. Let A ∈MS . Since S has a reduced form Sr, the only row of A
can be treated as a square matrix of size n > 1. It is enough to show that
the Gln(K)-G-orbit of A contains a 0-1 contour. If the rank of A is n, then
the assertion is clear. If the rank is less than n, then there exists h′ ∈ Gln(K)
such that the last row of h′A is zero. Let A′ be the (n−1)×n-matrix formed
by the first n−1 rows of h′A. Then A′ ∈MSr , so that according to (ii) there
exist h′′ ∈ Gln−1(K) and g ∈ G such that h′′A′ · g is a 0-1 matrix. Hence,
h′′′h′A · g with h′′′ =

[
h′′

0
0
1

]
∈ Gln(K) is a 0-1 matrix, as desired.

Assume now that the assertion holds for every skeleton with less than
r rows. Consider a skeleton S with rows S(1), . . . ,S(r). Let A ∈ MS with
rows A(1), . . . ,A(r), where A(i) ∈ Mai×ai(K) for 1 ≤ i ≤ r, according to the
hypothesis that S has a reduced form. Since this form is nontrivial, we may
also assume that ai > 1 for some 1 ≤ i ≤ r. We consider two cases:

• The rank of the matrix A(i) is less than ai for every 1 ≤ i ≤ r.

If ai = 1 for some i, then A(i) ∈ M1×1(K) is zero. Moreover, the contour
A \ A(i) has skeleton S \ S(i) with r − 1 rows. By Remark 2.13, S \ S(i)
has a reduced form. The assertion then follows by applying the inductive
hypothesis to A \ A(i).

Hence, assume that ai > 1 for every 1 ≤ i ≤ r. Then there exists
h = (h1, . . . , hr) ∈ H such that the last row of hiA(i) is zero. Let A′(i) in
M(ai−1)×ai be obtained from hiA(i) by deleting that row. Then the contour
A′ consisting of the rows A′(i) for 1 ≤ i ≤ r belongs to the space MSr of
reduced contours of S. Hence, by (ii), there exist h′ = (h′1, . . . , h

′
r) ∈ H′ and

g′ ∈ G′ such that h′ · A′ · g′ is a 0-1 contour. We set h′′i =
[h′i
0

0
1

]
∈ Glai(K)

for 1 ≤ i ≤ r, and also h = (h′′1h1, . . . , h
′′
rhr) ∈ H. It is clear that h · A · g is

a 0-1 contour.

• For some 1 ≤ i ≤ r the matrix A(i) is nonsingular.

We may assume that A(1) =: g ∈ Gla1(K) is nonsingular. By the inductive
hypothesis, we may also assume that the rows A(i) for i > 1 are 0-1 matrices.
Indeed, A\A(1) has a skeleton with r−1 rows, and by Remark 2.13 it has a
reduced form. Hence, we set h = (g−1, ida2 , . . . , idar) and we find that h · A
is a 0-1 contour.

3. Auxiliary lemmata and the proof of sufficiency. To complete
the proof of Theorem 2.8, it remains to prove (c)⇒(b). For this purpose, we
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define the class of admissible skeletons, which will be the object of our study
in this section.

Definition 3.1. Assume that S is an acyclic skeleton that has a reduced
form (see Definition 2.12) and every block of S is of width not exceeding 2.
If conditions (i)–(iv) of Theorem 2.8 are satisfied for S then we say that S
is admissible.

An admissible skeleton is clearly a skeleton of an algebra. In order to
complete the proof of Theorem 2.8 it is sufficient to show that if S is an
admissible skeleton then the number of H-G-orbits onMS is finite.

Because of the complex nature of admissible skeletons, our approach will
be based on a sequence of reductions of the above problem to skeletons
of special simpler types. In particular, the so-called thick components, and
their generalization, quasi-thick components, of an admissible skeleton will
be introduced. We will first show that the desired assertion can be reduced
to the case of connected quasi-thick skeletons, and more precisely to proving
Lemma 3.8 below. Next, we will show that the proof of that lemma can be
reduced to results on H-G-orbits for double row staircase skeletons and triple
column staircase skeletons with blocks of width 2, and more precisely to the
proofs of Lemmata 3.9 and 3.10. The proofs of these are quite technical and
require more tools. They will be given in the subsequent sections.

3.1. Single-valued matrices. For the rest of this section we use the
following convention.

Definition 3.2. Let S be a skeleton and let A ∈MS . Let A′ be a sub-
contour of A. Assume that the blocks of A′ are in the rows of A with indices
i1, . . . , ip and in columns of A with indices j1, . . . , jq. Let h= (h1, . . . , ht)∈H
and g = (g1, . . . , gs) ∈ G. The subcontour of h ·A·g obtained from the blocks
of A′ under the action of h, g will be denoted by h · A′ · g. Moreover, we will
say that:

• h acts as identity on A′ if all hil are identity matrices,
• g acts as identity on A′ if all gjl are identity matrices,
• h, g do not change A′ essentially if h acts as identity on A′, and g acts

as identity on all thick blocks of A′.
In the formulation of our two preliminary results on admissible contours,

we need another notion.

Definition 3.3. Amatrix x ∈Mn×m(K) is called single-valued if x= sq,
where s is a scalar matrix and q is a 0-1 matrix.

We will see that single-valued matrices sometimes turn out to be more
convenient than 0-1 matrices, especially when dealing with skeletons with
flat contours.
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The following useful remark is straightforward.

Remark 3.4. Let A be a contour, with a skeleton S, all of whose thick
blocks are 0-1 matrices and all flat blocks are single-valued. If h, g do not
change the contour A essentially, then all thick blocks of h ·A · g are 0-1 ma-
trices and all flat blocks of h · A · g are single-valued.

We are now ready to prove two lemmata on admissible contours.

Lemma 3.5. Let S be an admissible skeleton and let A ∈ MS be a
contour such that every thick block of A is a 0-1 matrix and every flat block
is a single-valued matrix. Then the H-G-orbit of A contains a 0-1 contour.

Lemma 3.6. Let S be a connected flat skeleton that is admissible and let
A ∈MS . Then the H-G-orbit of A contains a 0-1 contour.

Proof of Lemma 3.5. In view of Remark 2.10 we may assume that S is
connected. We will show that for everyA ∈M0

S with all blocks nonzero there
exist h ∈ H and g ∈ G such that h ·A ·g is a 0-1 contour and the coordinates
gi ∈ Glri(K) of g are scalar matrices for all i such that the ith column of A
is thick. Then the assertion of the lemma will follow from Remark 2.9.

We proceed by induction on the number t of rows of S. Let t = 1. Let
a1, . . . , as be the blocks of the unique row of A. If none of these blocks is
flat, the assertion is clear (with all coordinates of h, g equal to the identity
matrices of appropriate sizes). Hence, assume that ai1 , . . . , aiq ∈ Ms1×1(K)
are the flat blocks of A, for some i1, . . . , iq. Then ai1 , . . . , aiq are single-valued
matrices, say ail = αil · qil , where αil ∈ K∗ and qil is a 0-1 matrix. Then we
set h = (ids1) and g = (g1, . . . , gs), where gi ∈ Glri(K) and

gi =

{
α−1il if i = il for some l,
idri otherwise.

Clearly, h · A · g is the desired 0-1 contour. Moreover, g acts as identity on
all thick columns of A, so the second part of the inductive assertion is also
satisfied.

Thus, assume that the inductive assertion holds for contours with less
than t rows. Assume that S has t rows and consider a contour A ∈ M0

S
such that every thick block of A is a 0-1 matrix and every flat block is a
single-valued matrix. Assume that the blocks in the first row of A are in
columns with indices m1, . . . ,mk. These will be denoted by am1 , . . . , amk

.
Let S ′ be the skeleton obtained from S by deleting the first row. Accord-
ing to Definition 3.1 and Remark 2.13, S ′ is admissible. Since S is con-
nected, every connected component of S ′ contains a block lying in one of
the columns indexed m1, . . . ,mk. Let S1, . . . ,Sp be these components and
let mi1 , . . . ,mip be the indices of the corresponding columns. Let A1, . . . ,Ap
be the subcontours of A with skeletons S1, . . . ,Sp, respectively. It is clear
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that a connected component of an admissible skeleton is itself admissible.
So, Ai are admissible for 1 ≤ i ≤ p. Each has less than t rows, whence by the
inductive hypothesis and by Remark 2.10 there exist h′ = (h′1, . . . , h

′
t) ∈ H

and g′ = (g′1, . . . , g
′
s) ∈ G such that the subcontours h′ · Aj · g′ of h′ · A · g′

are 0-1 contours for 1 ≤ j ≤ p. Moreover, we may assume that h′ acts as
identity on the first row of A. By the inductive hypothesis, the coordinates
g′l of g

′ are scalar matrices for all l such that column l of A contains thick
blocks of the contour Aj for some j. We claim that the resulting contour
h′ · A · g′ has the following properties:

(i) all blocks of h′ · A · g′ that are not in the first row are 0-1 matrices,
(ii) all blocks of the first row of h′ · A · g′ are single-valued matrices.

The former is clear. So assume, to the contrary, that (ii) does not hold.
Then some block x′ = h′ · x · g′ in the first row and the mith column of
h′ · A · g′ is not single-valued. We know that h′ acts as identity on the first
row of A, whence x′ = x · g′ = xgmi . Thus, x cannot be a flat block, because
otherwise x is a single-valued matrix, so that also xgmi would be single-
valued. Therefore, x is a thick block. If the column of A containing x also
contains a block of one of the contours Aj , then gmij

is a scalar matrix, by
the inductive hypothesis. Since x is a 0-1 matrix by hypothesis, x′ = xgmij

is single-valued, again a contradiction. So, assume that x is the only block of
A in the mith column containing x. Then we may assume that g′mi

= idrmi

and x′ = x is a 0-1 matrix. This contradicts our supposition and shows that
condition (ii) holds.

So the block h′ ·xmi · g′ in the first row and the mith column of h′ ·A · g′,
for 1 ≤ i ≤ k, is of the form αi · qi, where qi is a 0-1 matrix and αi ∈ K∗. Let
A′i be the maximal connected subcontour of h′ ·A·g′ that contains h′ ·xmi ·g′
and does not contain blocks h′ ·xmj ·g′ of the first row of h′ ·A·g′ for j 6= i. It is
clear that every block of h′ ·A·g′ belongs to one of the contours A′i. Moreover,
if A′i and A′j have blocks in the same column then i = j. Let Ji be the set of
indices of columns containing blocks of A′i. Then J1 ∪ · · · ∪ Jr = {1, . . . , s}.
Let Ii be the set of indices of rows containing blocks of h′ · Ai · g′.

We define h′′ = (h′′1, . . . , h
′′
t ) ∈ H and g′′ = (g′′1 , . . . , g

′′
s ) ∈ G by setting

h′′1 = ids1 , and for j > 1,

h′′j = αi · idsj if j ∈ Ii,
g′′j = α−1i · idrj if j ∈ Ji.

It is easy to see that h′′h′·A·g′g′′ is a 0-1 matrix. This completes the inductive
step and the proof of Lemma 3.5.

Proof of Lemma 3.6. In view of Lemma 3.5, it is enough to show that
the H-G-orbit of the contour A ∈MS contains a contour A′, every block of
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which is a single-valued matrix. We show that there exist h ∈ H and g ∈ G
such that every coordinate of g is an identity matrix (of an appropriate size)
and all blocks of h·A·g are single-valued. For this, it is enough to assume that
S consists of one row that has, according to condition (i) of Definition 3.1,
not more than three blocks.

In view of Lemma 2.14 it is enough to deal with contours inMSr . Assume
that Sr has three blocks. Then they are of size 2×1. So we need to show that
for any a, b, c ∈M2×1(K) there exists g ∈ Gl2(K) such that the matrices ga,
gb and gc are single-valued. This is an easy consequence of the elementary
row operations on the block matrix [a b c]. If S has less than three blocks,
the assertion is clear.

Our next aim is to look deeper into the nature of admissible skeletons
in order to see how to reduce our problem to contours considered in Lem-
mata 3.5 and 3.6.

3.2. Quasi-thick components and the proof of Theorem 2.8. Let
S = (I, f) be a connected and acyclic skeleton. The natural partial order
on the set of subsets of I determines a partial order relation on the set of
subskeletons of S. We say that a subskeleton S ′ is a thick component of S if
it is a maximal connected subskeleton of S consisting of thick blocks.

The main idea is to reduce the proof of the remaining implication of
Theorem 2.8 to thick components of admissible skeletons. To do so, it is
convenient to introduce another auxiliary notion.

Definition 3.7. Let S1, . . . ,Sm be the thick components of an admis-
sible skeleton S, and let S ′1, . . . ,S ′m be the subskeletons of S consisting of
all rows of S containing blocks of S1, . . . ,Sm, respectively. Then the S ′i are
called the quasi-thick components of S. Similarly, one defines quasi-thick
components of contours inMS .

It is clear that quasi-thick components of S are pairwise disjoint. Notice
that a quasi-thick component of an admissible skeleton is also admissible.
To illustrate this notion, we consider the following example.
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The above skeleton has three quasi-thick components. The blocks of each
are marked in a different way: grey, dark grey and dotted, respectively.

We will show that the proof of the implication (c)⇒(b) of Theorem 2.8
can be reduced to the following key result.

Lemma 3.8. Let S be a connected admissible skeleton consisting of ex-
actly one quasi-thick component. Let A ∈ MS . Then the H-G-orbit of A
contains a 0-1 contour.

The proof of this key result is quite long and technical. Therefore, we
first show how the proof of our main result can be derived from Lemma 3.8.

Proof of the implication (c)⇒(b) of Theorem 2.8. It is enough to show
that if S is an admissible skeleton then every H-G-orbit onMS contains a
0-1 contour. We will proceed by induction on the number n of quasi-thick
components of S. If n = 0, then the assertion follows from Lemma 3.6. So,
assume that n = 1 and let A ∈ MS . Then A is a disjoint union A′ ∪ A′′ of
two admissible contours, where A′ is the unique quasi-thick component of A
and A′′ is a flat contour (not necessarily connected). In view of Lemma 3.8,
we may assume that A′ is a 0-1 contour. By Lemma 3.6 and Remark 2.10
there exist h ∈ H and g ∈ G such that h · A′′ · g is a 0-1 contour and h, g do
not change A′ essentially. Hence, according to Remark 3.4, every thick block
of h ·A ·g is a 0-1 block and every flat block of h ·A ·g is single-valued. Thus,
Lemma 3.5 implies that the H-G-orbit of h · A · g contains a 0-1 contour. So,
the assertion follows in this case.

Next, assume that the assertion holds for admissible skeletons with n
quasi-thick components. Let S be an admissible skeleton with n + 1 quasi-
thick components S1, . . . ,Sn+1. Let ΓSt , for 1 ≤ t ≤ n+1, be the connected
subgraph of the separated graph ΓS corresponding to St. We will say that
two quasi-thick components Si, Sj are linked in S if there exists a path Λij in
ΓS such that Λij contains an edge of ΓSi and an edge of ΓSj but it does not
contain any edge of ΓSk for k /∈ {i, j}. By hypothesis, S does not contain any
cycle. Hence, among the n + 1 quasi-thick components of S there exists at
least one that is linked to at most one (different) quasi-thick component of S.
We may assume that S1 is of this type. Let S1 be the maximal connected
subskeleton of S \ (S2 ∪ · · · ∪ Sn) containing S1.

Notice that S1 is an admissible skeleton. Indeed, if a block x belongs
to S1, then the entire row of S containing x is in S \ (S2∪· · ·∪Sn), so in S1.
Thus, S is obtained by deleting some rows from S and, in view of Defini-
tion 3.1 and Remark 2.13, S1 is admissible. Similarly, S \ S1 is admissible.

Let A ∈ MS . Then A is a disjoint union A′ ∪ A′′ of two admissible
skeletons, where A′ ∈ MS1 , while A

′′ ∈ MS\S1 is a contour with exactly
n quasi-thick components. By the inductive hypothesis applied to S \ S1,
we may assume that A′′ is a 0-1 contour. By the first step of the induction,
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there exist h ∈ H and g ∈ G such that h · A′ · g is a 0-1 contour. We claim
that h, g can be chosen so that they do not change A′′ essentially. Indeed,
by hypothesis A′ ∈ MS1 , and S1 has exactly one quasi-thick component
in S, equal to S1, that is linked to at most one quasi-thick component of S.
It follows that at most one column of S can contain a block of S1 and a
block of S \ S1. If such a column exist, say it is the kth column of S, it
must consist of flat blocks. Moreover, the skeletons S1 and S \ S1 have no
rows in common. Therefore, one may choose h, g in such a way that h acts
as identity on all rows of A′′, and g acts as identity on all columns of A′′ but
the kth. Such elements do not change A′′ essentially, as claimed.

It follows that all thick blocks of h·A·g are 0-1 blocks and all flat blocks of
h ·A ·g are single-valued. Therefore, the inductive assertion is a consequence
of Lemma 3.5.

To complete the proof of Theorem 2.8 it is now enough to prove Lem-
ma 3.8. First, we show that the latter proof can be reduced to the following
two results concerning orbits on thick accessible contours of special types.

Lemma 3.9. Let S be a double row staircase skeleton that is a disjoint
union of a row consisting of blocks y3, y2, y1 of dimensions 5 × 2 and two
staircase skeletons S1, S2 with blocks of size 3 × 2, with ends x1, xn and
z1, zm, respectively, for some n,m. The separated graph of this skeleton is of
the form

−−−→
Fn,m,0. For example, S can be

S :

. .
.

. .
.

y3

z1

zm

y2 y1

x1

xn

Assume that the group H×Go acts onMS as in (2.2). Then the H-G-orbit
of every contour A ∈MS contains a 0-1 contour A ∈MS .

Lemma 3.10. Consider the following skeleton consisting of six blocks
ai, bi of size 3× 2, for i = 1, 2, 3.

(�)
a3

a2

a1 b1

b2

b3
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Let S be the triple column staircase skeleton obtained by adjoining to (�)
three staircase skeletons S1,S2,S3, where Si consists of blocks bi,s of size
3 × 2 with 1 ≤ s ≤ si for some si > 0. The separated graph of S is of the
form ↓Fs1,s2,s3. For example, S can be

a3

a2

a1 b1

b2

b3

b1,1

b2,1

b3,1

b1,2

b2,2

b3,2

b1,3

b2,3

b3,3

. . .. . .. . .

Assume that the group H×Go acts onMS as in (2.2). Then the H-G-orbit
of every A ∈MS contains a 0-1 contour A ∈MS .

Proof of Lemma 3.8. The admissible skeleton S is obtained by adjoining
some flat blocks to the rows of its unique thick component S ′. First, we show
that S ′ is a staircase, a double (row or column) staircase or a triple column
staircase.

Indeed, notice that conditions (i), (ii) of Definition 3.1 imply that every
row, and every column, of S ′ contains at most three blocks. Moreover, by
condition (iv) of this definition, the separated graph of S contains no thick
knotted path. Consequently, at most one row or column of the thick con-
nected subskeleton S ′ can contain three blocks. Hence, it is easy to see that
S ′ is a staircase, a double staircase or a triple staircase. Since admissible
skeletons cannot contain any thick triple row staircase, by condition (iii) of
Definition 3.1, it follows that S ′ is of one of the forms stated above.

From the definition of a quasi-thick component and since S is acyclic,
it follows easily that if the blocks in some column of S are flat then this
column contains only one block. As above, condition (iv) of Definition 3.1
implies that at most one row or column of S can contain three blocks. Since
S ′ is a staircase, a double staircase or a triple column staircase, all the above
restrictions easily imply that S is also of one of these types.

Next, we derive from S a new skeleton S. If S = (I, f), where f(i, j) =
(ai, sj) and ai is the sum of the widths (equal to sj for some j) of the blocks
in the ith row of S, then the skeleton S is defined as the pair (I, f ′), where
f ′(i, j) = (a′i, 2) and a

′
i is the sum of the widths (equal to 2) of all blocks in
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the ith row of S. It is clear that S contains S. From the definition of S it
is also clear that S is admissible because S was. If S is a staircase, so is S,
and similarly in the case where S is a double or triple staircase.

Notice that it is enough to deal with the case where S is a double row
staircase or a triple column staircase. Indeed, every admissible staircase skele-
ton with blocks of width 2 is contained in an admissible double row staircase
with blocks of width 2. Similarly, the case where S is a double column stair-
case is reduced to the case where S is a triple column staircase.

As in the previous proofs, we may assume that the contours under study
have all blocks nonzero. If S is a double column staircase then its blocks are
of size:

• 2× 2 for rows of S with exactly one block,
• 4× 2 for rows of S with exactly two blocks,
• 6× 2 for rows of S with exactly three blocks.

By Lemma 2.11 it is then enough to show that the H-G-orbit of every
A ∈MS contains a 0-1 contour, where the appropriate groups H,G act on
MS as in (2.2).

Consider the reduced form S r of S (it is nontrivial because S is a thick
contour). In view of Lemma 2.14 it is enough to show that the H

′-G′-orbit
of every contour (with nonzero blocks) A′ ∈ MSr contains a 0-1 contour,
where H

′
,G
′ are the appropriate groups acting onMSr . According to Defi-

nition 2.12, we see that S r has blocks of size:

• 1× 2 for rows of S r with exactly one block,
• 3× 2 for rows of S r with exactly two blocks,
• 5× 2 for rows of S r with exactly three blocks.

Hence, S r is contained in one of the skeletons described in Lemma 3.9. In
particular, from Lemmata 3.9 and 2.11 it follows that the H

′-G′-orbit of
every A′ ∈MSr contains a 0-1 contour.

Similarly, one deals with the case where S is a triple column staircase.
Indeed, in this case S r is contained in one of the skeletons described in
Lemma 3.10. Hence, the assertion follows from Lemmata 3.10 and 2.11.

We have shown that the proof of Lemma 3.8 reduces to Lemmata 3.9
and 3.10. The proofs of the last two results are quite technical and will be
given in the two subsequent sections.

4. Thick double row staircase and the proof of Lemma 3.9. In
this section we prove Lemma 3.9. Recall that a matrix x is called a quasi
permutation matrix if its entries belong to the set {0, 1} and if each row
and each column of this matrix has at most one nonzero entry. By a quasi
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permutational contour we mean a contour with every block being a quasi
permutation matrix.

The general idea of the proof is the following. We start by introducing
certain auxiliary notions and results concerning orbits of contours with sep-
arated graphs isomorphic to Dynkin diagrams of types An and Dn. Then we
proceed in three steps. First, we consider a staircase subskeleton S1 ∪ {y1}
of S and we show that in the orbit of every contour of this subskeleton there
exists a quasi permutational contour that admits a certain type of “free-
ness” in its terminal block—the one that corresponds to the block y1 of the
subskeleton (Corollary 4.3). It allows us to compensate certain actions of
subgroups of invertible matrices on this terminal block with the action on
the entire contour which, as a result, remains quasi permutational. Next,
two blocks y2 and y3 are adjoined to S1 ∪ {y1}, and a skeleton with the
separated graph of the form Dn is obtained. In the orbit of every contour
of such an extended skeleton we find a 0-1 contour which admits another
type of “freeness”, this time in the block that corresponds to y3 (Corol-
lary 4.9). This type of freeness is weaker than in the case of a skeleton
contour, as it allows us to compensate actions of a smaller class of sub-
groups. Until this point, the sizes of the blocks of the skeletons are irrele-
vant. In the last part we prove that the freeness on the terminal block of
the 0-1 contour of the skeleton S1 ∪ {y1, y2, y3} may be preserved even if
we successively adjoin pairs zi, zi+1 of blocks of size 3 × 2 to this skele-
ton, forming a double row staircase skeleton of arbitrarily many blocks
(Lemma 4.12). The orbit of every contour of a skeleton constructed in this
manner has a 0-1 contour with freeness in an appropriate terminal block.
That allows us to finish the whole proof with an inductive argument, ac-
cording to Lemma 2.11.

We begin with the definition of two types of freeness mentioned above.
The first type will be defined for quasi permutational contours, whereas the
second type refers to a larger class of 0-1 contours. By Bn(K) and Dn(K)
we denote the following subgroups of Gln(K): the group of upper triangular
matrices and the group of diagonal matrices, respectively.

Definition 4.1. Let A be a connected and acyclic quasi permutational
contour (respectively, a connected and acyclic 0-1 contour) and let the block
x ∈ Mm×k(K) of this contour be row terminal (see Definition 2.5). Also,
assume that the column of A that contains x consists of exactly two blocks.

(♠) A :

x
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We say that the contour A has freeness of type
−→
B (respectively of type

−→
D )

in the block x if there exists a permutation σ ∈ Σm such that for every
a ∈ Bm(K) (respectively, for every a ∈ Dm(K)), there exist h ∈ H and g ∈ G
such that h acts as the identity on the row that contains x and if we consider
the contour Aσ−1aσ that is formed from A by replacing x with σ−1aσx, then
the contour h · Aσ−1aσ · g is quasi permutational (respectively, 0-1). In this
case, we also say that the left action of the group σ−1Bm(K)σ (respectively
σ−1Dm(K)σ) on the terminal block of A may be compensated by the action
of H-G.

Dually, we define freeness of type B↓ (respectively, of type D↓) in the
column terminal block x of a connected and acyclic quasi permutational
contour (respectively, 0-1 contour) such that the row that contains x consists
of exactly two blocks.

The following crucial result explores the connection between freeness of
type

−→
B and freeness of type B↓ for quasi permutational contours.

Proposition 4.2. Assume that a connected and acyclic quasi permu-
tational contour A is of the form (♠) from Definition 4.1 and that A has
freeness of type

−→
B in the row terminal block x. Consider an acyclic contour

A′ = A∪{y} which is a disjoint union of A and a single block y ∈Mm×q(K)
that belongs to the same row as x.

A′
:

y x

Then the block y is column terminal in A′ and the row that contains y con-
sists of exactly two blocks. Moreover, if H,G act on A via (2.2) then the
H -Glq(K) ×G-orbit of A′ contains a quasi permutational contour A which
has freeness of type B↓ in the block that corresponds to y.

Before we give a proof, let us note an important application of this result,
which simultaneously serves as a good illustration of the notions of freeness
and compensation in the case of staircase contours. It is also the first step
in the proof of Lemma 3.9.

Corollary 4.3. If A is a staircase with terminal blocks x, y, then the
orbit of A contains quasi permutational contours A1,A2 such that A1 has
freeness of type

−→
B or of type B↓ in the block that corresponds to x, and A2

has freeness of type
−→
B or B↓ in the block that corresponds to y.

Proof. We proceed by induction on the number of blocks in A. First,
assume that A consists of one block x ∈ Mm×k(K). Then H = Glm(K) and
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G = Glk(K). Thus the orbit of A contains A = {e}, where e =
[
ids
0

0
0

]
for

some s. It is easy to see that A has freeness of both types
−→
B and B↓. Indeed,

for every b ∈ Bm(K) we have beg = e for some g ∈ Glk(K). Thus A has
freeness of type

−→
B in e. The argument for freeness of type B↓ is similar. Let

jk ∈ Σk be the antidiagonal permutation. Then the right action of the group
j−1k Bk(K)jk on e can be clearly compensated by the left action of Glm(K).
This concludes the base step of induction.

For the inductive step, consider a contour A that consists of n consecu-
tive blocks x1, . . . , xn for n > 1. We restrict the argument to the case when
x1 is row terminal and xn is column terminal. The remaining three cases
are proved analogously. Let A′ = {x2, . . . , xn} and A′′ = {x1, . . . , xn−1}
arise from A by deleting the blocks x1 and xn, respectively. According
to the inductive hypothesis on the orbits of A′ and A′′, there exist quasi
permutational contours A′ and A′′ with freeness of type B↓ and

−→
B in the

blocks x2 and xn−1, respectively. According to Proposition 4.2 (and its dual
version) we know that in the orbits of A′ ∪ {x1} and A′′ ∪ {xn} there
exist quasi permutational contours with freeness of types

−→
B and B↓ in

the blocks x1 and xn, respectively. These are exactly the A1,A2 that we
seek.

Proof of Proposition 4.2. From the assumption on A it follows that
the row of A′ containing x consists of exactly two blocks: x, y. We also
assume that A′ is connected and acyclic. Hence y is a column terminal
block.

We prove that the H -Glq(K)×G-orbit of A′ contains a quasi permuta-
tional contour. Since we assume that A has

−→
B -freeness in the block x, it fol-

lows that there exists a permutation σ ∈ Σm such that for every a ∈ Bm(K)
there exist h ∈ H and g ∈ G such that the contour h · Aσ−1aσ · g is quasi
permutational, where Aσ−1aσ is formed by replacing the block x of A with
σ−1aσx. Consider the contour A′′ = Aσ ∪ {σy}:

A′′
:

σy σx

Aσ

where Aσ is obtained from A by replacing x with σx, and y ∈ Mm×q(K).
The contour Aσ is quasi permutational, and from the argument above it
follows that the left action of Bm(K) on σx may be compensated by the
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action of H-G. From [18, Lemma 8] it follows that there exist b ∈ Bm(K)
and b′ ∈ Bq(K) such that bσyb′ is a quasi permutation matrix. Let i be the
rank of this matrix. Then there exists σ′ ∈ Σq such the first i columns of
the matrix y′ := bσyb′σ′ are nonzero and the remaining ones (if y′ has more
than i columns) are zero. Moreover, σ′ is such that the nonzero elements of y′

(equal to one) are exactly in entries (1, j1), . . . , (i, ji), where j1 < · · · < ji.
Therefore, if we consider the contour

y′ bσx

then since the left action of Bm(K) on the block σx ofAσ can be compensated
by the action of H-G, there exist h′ ∈ H and g′ ∈ G such that the orbit of
A′′ contains a quasi permutational contour A′′′, formed by a disjoint union
of h′ · Abσ · g′ and the block y′, of the following form:

A′′′
:

h′ · Abσ · g′

y′ bσxg′
1

where g′1 is the coordinate of g that acts on the column of Abσ via (2.2).
Thus, setting A := A′′′ we obtain the first part of the assertion. Note that
since b ∈ Bm(K), the action of Bm(K) on the block bσxg′1 of h′ · Abσ · g′ can
still be compensated by the action of H-G.

To complete the proof of the proposition it remains to prove that the
contour A has freeness of type B↓ in the block y′. According to the pre-
vious part of the proof the m × q quasi permutation matrix y′ is of the
form

(∗) y′ =





























...

1
...

1
... 0. . .
0

1
...





























.

j1←

j2←

ji←
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Consider the set B′ ⊆ Glq(K) of matrices of the form
[
Bi(K)
∗

0
Bq−i(K)

]
.

We will show that if B := Bm(K), then

(4.4) y′B′ ⊆ By′.

Let us first see that (4.4) implies the B↓-freeness of A in y′.
Let ε ∈ Σq be of the form

[
0

idq−i

idi
0

]
. Observe that B′ = εBq(K)ε−1.

Let A′′′′ := h′ · Abσ · g′. We will find a permutation τ ∈ Σq such that
for every a ∈ Bq(K) the H -Glq(K) × G-orbit of the contour of the form
A′′′′ ∪ {y′τ−1aτ}, obtained from A by replacing y′ with y′τ−1aτ , contains a
quasi permutational contour. Set τ := ε−1. For each a ∈ Bq(K), let b′ ∈ B′
be defined by b′ = εaε−1. From (4.4) it follows that ry′ = y′b′ for some r ∈ B.
To establish the B↓-freeness of A in y′ it is therefore enough to prove that
for every r ∈ B the H -Glq(K) × G-orbit of A′′′′ ∪ {ry′} contains a quasi
permutational contour.

A′′′′

ry′ bσxg′
1

Let r−1 ∈ B act on the row of A′′′′ ∪ {ry′} containing ry′ by left multiplica-
tion. LetA′′′′r−1 be the image ofA′′′′ under this action. The block ry′ is mapped
to the quasi permutation matrix y′. Also, recall that the action of Bm(K) on
the block bσxg′1 of A′′′′ may be compensated by the action of H-G. Hence
there exist h′′ ∈ H (not changing the row of A′′′′r−1 containing r−1bσxg′1) and
g′′ ∈ G such that the contour h′′ · A′′′′r−1 · g′′ ∪ {y′} is quasi permutational.
Moreover, this contour belongs to the orbit of A′′′′ ∪ {ry′}. We have thus
proved that the contour A has B↓-freeness in the block y′.

Hence, it remains to prove (4.4). Take b′ ∈ B′ of the form (βc,d), where
1 ≤ c, d ≤ q and βc,d ∈ K. Then the matrix y′b′ is of the form

y′b′ =



































...
...

...
. . .

...

βj1,1 βj1,2 ∗ · · · ∗

...
...

...
. . .

...

0 βj2,2 ∗ · · · ∗ 0...
...

...
. . .

...

0 0 0 · · · βji,i

...
...

...
. . .

...



































.
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For 1 ≤ l ≤ i, the nonzero jlth row of y′b′ is exactly the same as the lth
row of b′. Moreover, the rows with indices j1, . . . , ji are the only nonzero rows
of y′b′. Hence, to prove (4.4) it is enough to find a ∈ B such that ay′ = y′b′.
Let a = (αc,d) ∈ Mm×m(K) have the jlth column equal to the lth column
of y′b′, for 1 ≤ l ≤ i. This matrix is well defined since the jl are exactly the
indices of the rows in y′ ∈ Mm×q, and thus jl ≤ m for all l. The remaining
columns of a (with indices s 6= jl) are of the form eTs , where es is the sth
vector of the standard basis of Km. As a result, a is of the form

a =





































1 · · · 0 · · · 0 · · · 0 · · ·
...

. . .
...

. . .
...

. . .
...

. . .

0 · · · βj1,1 · · · βj1,2 · · · ∗ · · ·
...

. . .
...

. . .
...

. . .
...

. . .

0 · · · 0 · · · βj2,2 · · · ∗ · · ·
...

. . .
...

. . .
...

. . .
...

. . .

0 · · · 0 · · · 0 · · · βji,i · · ·
...

. . .
...

. . .
...

. . .
...

. . .





































.

Observe that αc,d = 0 if c > d. Moreover, the diagonal entries of a
are either 1 or βjl,l, where 1 ≤ l ≤ i. The elements βjl,l are therefore on
the diagonal of b′. Hence a ∈ B. It is easy to check that ay′ = y′b′. This
concludes the proof of (4.4), and the proposition follows.

We proceed to the second step needed in the proof of Lemma 3.9. We
will consider the orbits of contours of skeletons with separated graphs equal
to
−→
Dn. Our goal is to show that such an orbit contains a 0-1 contour with

freeness of type D↓. The following technical result will be useful.

Proposition 4.5. Let x ∈ Mm×k(K) and y ∈ Mm×q(K). Then the
Bm(K) -Glk(K)×Glq(K)-orbit of the contour x y contains a 0-1 contour
x y with the following properties:

(1) x is a quasi permutation matrix and y is a 0-1 matrix. Every column
of y contains at most two entries equal to 1. Moreover, if a column
of y contains two ones that belong to rows of indices i1 6= i2, then
either the i1th or the i2th row of x is zero.

(2) For all d ∈ Dk(K) there exist e ∈ Dm(K) and f ∈ Dq(K) such that
exd = x and eyf = y.

Proof. We will prove that the Bm(K) -Glk(K) × Glq(K)-orbit of x y

contains a 0-1 contour x y such that condition (1) is satisfied. We proceed
by induction on m.
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The assertion is clear for m = 1. Let m = 2. If the ranks r(x), r(y) of the
matrices x, y are 2, then there is nothing to prove. Assume that r(x) = 2 and
r(y) ≤ 1. Then the following contour belongs to the B2(K) -Glk(K)×Glq(K)-
orbit of x y :

(4.6)
1 0 · · · 0 α 0 · · ·
0 1 · · · 0 β 0 · · ·

where α, β ∈ K. If either α or β is 0, then the proof is easy. Otherwise, we
can act on (4.6) with the following matrices via (2.2):

b =

[
1 −αβ−1

0 β−1

]
∈ B2(K), g =

[
b−1 0

0 idk−2

]
∈Glk(K), idq ∈Glq(K),

and obtain x y that satisfies (1). The argument is similar when r(y) = 2

and r(x) ≤ 1. Finally, if both x, y are of rank ≤ 1, then in the orbit of x y
one can find a contour

(4.7)
α1 0 · · · α2 0 · · ·
β1 0 · · · β2 0 · · ·

for some α1, α2, β1, β2 ∈ K. It is easy to see that the orbit of (4.7) contains
a 0-1 contour that satisfies (1). This concludes the first step of induction.

Assume now that m > 2. There exist b ∈ Bm(K) and g ∈ Glk(K) such
that the matrix x′ := bxg is of the form (∗) in the proof of Proposition 4.2.
Consider g′ ∈ Glq(K) such that y′ = byg′ is in reduced column echelon form.
Let i, j ≤ m be the indices of the last nonzero rows in x′ and y′, respectively.
If i, j < m, then the assertion can be reduced to one of the previous inductive
steps. We can therefore assume that either i or j is equal to m. Consider the
following cases.

Case 1: m = j > i. After a permutation of columns of x′, the contour
x′ y′ takes the form x′ =

[
x′′

0

]
, y′ =

[
0
y′′

r
0

]
, where x′′, y′′ have i rows, and

r is of the form

(∗∗) r =



































∗ ∗ ∗ · · · ∗
...

...
...

. . .
...

1 0 0 · · · 0

0 ∗ ∗ · · · ∗
...

...
...

. . .
...

0 1 0 · · · 0

0 ∗ · · · ∗
. . .

0 1



































.
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Thus there exists a matrix b =
[
idi
0

0
b′

]
∈ Bm(K) such that b′r is a quasi

permutation matrix. Moreover, we have bx′ = x′. Therefore the assertion
follows from the inductive hypothesis applied to the contour bx′′ by′′ .

Case 2: m = i > j. Then, after a permutation of columns of x′, the
contour x′ y′ takes the form x′ =

[
x′′

0
0
p

]
, y′ =

[
y′′

0

]
, where x′′, y′′ are

matrices of j rows, and p is a quasi permutation matrix. Therefore, the
assertion follows from the inductive hypothesis applied to x′′, y′′.

Case 3: i = j = m. Observe that x′ is a quasi permutation matrix and
y′ is of the form (∗∗). Consider the last column of y′. If it has no nonzero
entry off the mth row, then the assertion follows easily from the induction
hypothesis, since after a permutation of columns in x′, the contour x′ y′

takes the form

(4.8)

0 0

x′′
... y′′

...

0 0

0 · · · 0 1 0 · · · 0 1

.

We can therefore assume that there is a nonzero entry in the last column
of y′ off the mth row. Let n < m be the largest index of a row with such
a nonzero entry. Assume that x′, y′ are chosen such that n is smallest pos-
sible, that is, if x1 y1 belongs to the Bm(K) -Glk(K) × Glq(K)-orbit of

x y , if x1 is a quasi permutation matrix and if y1 is of the form (∗∗),
then if the last column of y1 has a nonzero entry in row n′ 6= m, then
n′ ≥ n.

Now we consider two cases. First, assume that the nth and mth rows of
x′ and y′ are of the following form, perhaps after a permutation of columns
in x′:

1 0 0 · · · 0 0 · · · α

0 1 0 · · · 0 0 · · · 1

for some α 6= 0. Then there exist b ∈ Bm(K) and g ∈ Glk(K) such that
the nth row of by′ is zero, and the remaining rows are the same as the
corresponding rows of y′. Moreover, we have bx′g = x′. Yet the pair x′ by′

belongs to the Bm(K) -Glk(K) × Glq(K)-orbit of x y , and by′ is of the
form (∗∗). Thus, from the choice of n, the first case may be reduced to (4.8),
which has already been discussed before.
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Now assume that the nth and the mth rows of x′, y′ are of the following
form, perhaps after a permutation of columns in x′:

0 0 0 · · · 0 0 · · · α

0 1 0 · · · 0 0 · · · 1

for some α 6= 0. Then, using elements of Bm(K), we can make zero all
entries that lie above α in the last column of y′. Thus in the orbit of x′ y′

a contour of the following form can be found:

0 0

x′′
... y′′

...

0 0

0 · · · 0 0 0 · · · 0 1

0 · · · 0 1 0 · · · 0 1

.

The assertion in this case follows easily from the inductive hypothesis. Case 3
and item (1) of the proposition follow.

We will now prove (2). Consider any d = (δ1, . . . , δk) ∈ Dk(K). Let
j1, . . . , jt be the indices of the nonzero rows in x. According to (1), every
nonzero row of xd has exactly one nonzero entry, which is equal to one of δi.
Let δ′jl be this nonzero entry in the jlth row of xd. Set e = (η1, . . . , ηm) ∈
Dm(K), where

ηs =

{
(δ′s)

−1 if s ∈ {j1, . . . , jt},
1 otherwise.

Then exd = x. Assume now that for some l ∈ {j1, . . . , jt} there exists l′ 6= l
such that in some column of y, rows l and l′ have entries equal to 1. Then
from (1) it follows that the l′th row of x is zero.

...
. . .

...
. . .

...
...

0 · · · 1 · · · 0 · · · 1 · · ·
...

. . .
...

. . .
...

...

0 · · · 0 · · · 0 · · · 1 · · ·
...

. . .
...

. . .
...

...

l←

l′←

Let (j1, j
′
1), . . . , (js, j

′
s) be all pairs of indices with the property of (l, l′)

as above. Consider the matrix f = (γ1, . . . , γm) ∈ Dm(K), where

γs =

{
(δ′jl)

−1 if s = j′l for some l,
1 otherwise.
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Then fexd = x. From (1) it follows that every column of fey has at most
two nonzero entries. According to the definition of e, f , these nonzero entries
must be equal. Hence, one can easily find d′ ∈ Dq(K) such that feyd′ = y.
The assertion follows.

Now we are ready to formulate the result on staircase skeletons with two
blocks adjoined, which was mentioned earlier. Here we apply the notation of
Lemma 3.9.

Corollary 4.9. Consider a skeleton S ′ = S1 ∪ {y1, y2, y3} which is a
disjoint union of a staircase S1 ∪ {y1} with row terminal block y1 and two
blocks y3, y2, of the form

S ′ :

. .
.

y3 y2 y1

S1 ∪ {y1}

In the orbit of any A′ ∈MS′ there exists a 0-1 contour with freeness of type
D↓ in the block y3.

Proof. Assume that a2 ∈Mm×q(K) and a3 ∈Mm×k(K) are the blocks of
A′ that correspond to the blocks y2, y3 of S ′. Also, let a1 be the block that
corresponds to y1. Let C ∈ MS1∪{y1} be the corresponding subcontour of A′.
According to Proposition 4.2 we may assume that C is quasi permutational
and has freeness of type

−→
B in a1. In other words, there exists σ ∈ Σm such

that the left action of σ−1Bm(K)σ on the block a1 of C can be compen-
sated by the action of H-G, where H,G act on the contours of S1 ∪ {y1}
via (2.2). Also, from Proposition 4.5 applied to the contour σa3 σa2 we
know that in its Bm(K) -Glk(K) × Glq(K)-orbit we can find a 0-1 contour
σa3 σa2 satisfying condition (2) of Proposition 4.5. Let σa3 = bσa3g and
σa2 = bσa2h for some b ∈ Bm(K), g ∈ Glk(K), h ∈ Glq(K). If we multi-
ply the row of A′ that contains a1 by σ−1bσ, then we obtain the contour
{σ−1σa3g−1, σ−1σa2h−1} ∪ Cσ−1bσ, where Cσ−1bσ is obtained from C by re-
placing a1 with σ−1bσa1. Using the

−→
B -freeness of C we know that the orbit

of A′ contains a 0-1 contour {σ−1σa3, σ−1σa2}∪h · Cσ−1bσ ·g for some h ∈ H
and g ∈ G, where h acts as identity on the row that consists of three blocks.
All we have to show is that the contour we have obtained has freeness of
type D↓ in the block y3 of S ′ (that is, in the block σ−1σa3).
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Let C = h · Cσ−1bσ · g. According to the definition of
−→
B -freeness, this

contour is quasi permutational. One can easily see that σ−1σa3 σ−1σa2

satisfies the conditions of part (2) of Proposition 4.5. Hence, for any d in
Dk(K) there exist e ∈ Dm(K) and f ∈ Dq(K) such that eσ−1σa3d = σ−1σa3
and eσ−1σa2f = σ−1σa2. Moreover, e = σ−1e′σ for some e′ ∈ Dm(K).
Observe, however, that left multiplication of the block of C that is in place
of a1 by any member of σ−1Bm(K)σ can be compensated by the action of
H-G. As a result, if Ce is the quasi permutational contour obtained from C by
replacing the block x (corresponding to the block y1 of S ′) with ex, then the
orbit of the contour {eσ−1σa3d, eσ−1σa2f}∪Ce still contains a 0-1 contour.
Hence, the contour {σ−1σa3, σ−1σa2} ∪ h · Cσ−1bσ · g has D↓-freeness in the
block y3 of S ′. The result follows.

The statement of Corollary 4.9 does not rely upon any assumptions on
the sizes of blocks of the skeletons considered. To explain this, observe that
the separated graph of S ′ is the Dynkin diagram Dn. Therefore, according
to [18, Theorem 6] and [14, Corollary 2.7], the number of H-G-orbits in the
contour space of S ′ must be finite. As a result, it is not surprising that any
of these finitely many orbits contains a 0-1 contour. The key role in our con-
siderations is played by D↓-freeness that can be found in the terminal block
of certain 0-1 representatives of every orbit ofMS′ . This freeness allows us
to inductively adjoin consecutive blocks to S ′ and obtain two row staircase
skeletons that are described in Lemma 3.9 and for which the assertion of the
lemma holds. In this part of our proof, the sizes of blocks must also be taken
into account.

Definition 4.10. Let x ∈Mn×m(K) be a 0-1 matrix. We will say that x
is a row quasi permutation matrix if every row of x has at most one nonzero
entry, and also if there exists an index l such that every column of x, except
the lth, has at most one nonzero entry. Moreover, the lth column of x contains
at most two nonzero entries. A column quasi permutation matrix is defined
dually.

The following remark is an immediate consequence of Definition 4.10.

Remark 4.11. Assume that x ∈ Mn×k(K) is a column quasi permuta-
tion (respectively, row quasi permutation) matrix. Then for every e ∈ Dn(K)
there exists f ∈ Dk(K) such that exf = x (respectively, for every f ∈ Dk(K)
there exists e ∈ Dn(K) such that exf = x).

Lemma 4.12. Consider a contour x y , where x, y ∈M3×2(K). There

exist h ∈ Gl3(K), g ∈ Gl2(K), d ∈ D2(K) such that the contour x y is 0-1,
where x := hxg and y := hyd. Moreover, h, g, d can be chosen in such a way
that x is a row quasi permutation matrix and y is a column quasi permutation
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matrix. Consequently, for every e ∈ D2(K) there exist he ∈ D3(K) and
de ∈ D2(K) such that the matrices xd := hexe and yd := heyde are 0-1.

Proof. By acting on x y on the left with elements of Gl3(K), this

contour may be reduced to the form x′ y′ , where y′ is one of the following
matrices:

(4.13)

1 θ

0 0

0 0

 ,
0 1

0 0

0 0

 ,
1 0

0 1

0 0

 ,
for θ ∈ K. Next, one can act on x′ with elementary column operations and
also with elementary row operations that do not change any of the matrices y′
in (4.13). We can therefore assume that x′ has one of the following forms:

(4.14)

1 0

0 1

0 0

 ,
0 0

1 0

0 1

 ,
1 0

α 0

0 1

 ,
1 0

α 0

0 0

 ,
0 0

1 0

0 0

 ,
0 0

0 0

1 0

 ,
for α ∈ K. In each case, one can easily find a 0-1 contour x y that belongs
to the Gl3(K) -Gl2(K)×D2(K)-orbit of x′ y′ and such that x, y are row
and column quasi permutation matrices, respectively. Therefore, the result
follows from Remark 4.11.

We have finished the preparations for the proof of Lemma 3.9.

Proof of Lemma 3.9. Let A ∈MS . Let A1,A2 be subcontours of A with
skeletons S1,S2, respectively, and let a1, a2, a3 be the blocks of A correspond-
ing to the blocks y1, y2, y3 of S, respectively. According to Corollary 4.9 we
can assume that the contour A1 ∪{a3, a2, a1} is 0-1 and has freeness of type
D↓ in a3. Now we proceed by induction on the number of blocks of A2. We
may assume that this number is even. Indeed, if the assertion holds when A2

has 2n blocks, then by Lemma 2.11 it holds for the contour with 2n−1 blocks
for n > 0. The induction step now follows directly from Lemma 4.12.

5. Thick triple column staircase and the proof of Lemma 3.10.
In this section we prove Lemma 3.10. We begin with some preliminary facts
concerning properties of Gl3(K)3-Gl2(K)4-orbits of contours of the form (�).
First, we show that these orbits contain 0-1 contours and, as before, we
show that the choice of elements of Gl3(K)3,Gl2(K)4 to obtain such a form
allows some type of “freeness” (Lemma 5.4). Based on this result and some
additional technical properties of staircase skeletons (Proposition 5.8), we
conclude with the proof of Lemma 3.10.
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Remark 5.1. Let C be a contour of the form (�) with nonzero blocks
ai, bi for i = 1, 2, 3. Then in the Gl3(K)3-Gl2(K)4-orbit of C there exists a
contour C with blocks ai, bi which has the following two properties, up to
the order of rows:

(1) the column of blocks a1, a2, a3 of C has one of the following forms:

1 0

0 0
0 0

1 0

0 0
0 0

1 0

0 0
0 0

(i)

1 0

0 0
0 0

1 0

0 0
0 0

0 1

0 0
0 0

(ii)

1 1

0 0
0 0

1 0

0 0
0 0

0 1

0 0
0 0

(iii)

1 0

0 1
0 0

1 0

0 0
0 0

1 0

0 0
0 0

(iv)

1 0

0 1
0 0

1 0

0 0
0 0

0 1

0 0
0 0

(v)

1 0

0 1
0 0

1 0

0 1
0 0

1 0

0 0
0 0

(vi)

1 0

0 1
0 0

1 0

0 1
0 0

1 0

0 1
0 0

(vii)

(2) every row of C has one of the following forms:

1 0

0 0
0 0

1 0

0 0
0 0

(a)

0 1

0 0
0 0

1 0

0 0
0 0

(b)

1 1

0 0
0 0

1 0

0 0
0 0

(c)

1 0

0 0
0 0

0 0

1 0
0 0

(d)

0 1

0 0
0 0

0 0

1 0
0 0

(e)

1 1

0 0
0 0

0 0

1 0
0 0

(f)

1 0

0 0
0 0

1 0

0 1
0 0

(g)

0 1

0 0
0 0

1 0

0 1
0 0

(h)

1 1

0 0
0 0

1 0

0 1
0 0

(i)

1 0

0 0
0 0

0 0

1 0
0 1

(j)

0 1

0 0
0 0

0 0

1 0
0 1

(k)

1 1

0 0
0 0

0 0

1 0
0 1

(l)

1 0

0 1
0 0

1 0

0 0
0 0

(m)

1 0

0 1
0 0

0 0

1 0
0 0

(n)

1 0

0 1
0 0

1 0

0 1
0 0

(o)

1 0

0 1
0 0

1 0

θ 0
0 0

(p)

for θ 6= 0

1 0

0 1
0 0

1 0

0 0
0 1

(q)

1 0

0 1
0 0

0 0

1 0
0 1

(r)

1 0

0 1
0 0

0 0

0 0
1 0

(s)

1 0

0 1
0 0

1 0

θ 0
0 1

(t)

for θ 6= 0

Proof. Consider the block matrix A consisting of the blocks a1, a2, a3 of
the first column of C. It is easy to see that A can be transformed to one



SEMIGROUP OF CONJUGACY CLASSES 35

of the forms (i)–(vii) by using only elementary column operations and such
elementary row operations that act within the blocks ai for i = 1, 2, 3. This is
a standard matrix problem, similar to some well known problems considered
in [20, Section 2.1]. As these elementary operations correspond to certain
actions of Gl3(K)3 and Gl2(K)4 on the entire C, it can be assumed that the
column A of C is already in one of the forms (i)–(vii).

Now, we will show that in the Gl3(K)3-Gl2(K)4-orbit of C there exists a
contour C such that its first column is equal to A and each row is of one of
the forms (a)–(t). For this, consider two pairs (a, b) and (a, b′) of nonzero
matrices. We say that (a, b) is row similar to (a, b′) if the block matrix
[a b] can be transformed into [a b′] by elementary row operations that do not
change the block a and by elementary operations on the columns that belong
to b. It is clear that the assertion will follow if we show that every pair (a, b)
that forms a row in C is row similar to one of the pairs (a)–(t).

First, observe that any pair (a, b) is row similar to (a, b′), where b′ is a
column echelon form of b. We will consider four cases.

Case 1: r(a) = r(b′) = 1. Then b′ has one of the forms

(5.2)

1 0

α 0

β 0

 ,
0 0

1 0

γ 0

 ,
0 0

0 0

1 0

 ,
where α, β, γ ∈ K. Since the second row and the third row of a are zero,
because the column A of C is in one of the forms (i)–(vii), the following
elementary operations do not change a: interchanging the second and third
rows and subtracting either the second or the third row from any other row.
Thus if b′ is of the first form in (5.2) then (a, b′) is row similar either to one of
the pairs (a)–(c) if α = β = 0, or to one of the pairs (d)–(f) if α 6= 0 or β 6= 0.
In the other cases of (5.2) the pair (a, b′) is row similar to (d), (e) or (f).

Case 2: r(a) = 2, r(b′) = 1. Then b′ is again of one of the forms in (5.2).
In this case the block a does not change under the elementary operations of
subtraction of the third row from either the first or the second row. Thus if
either β or γ is nonzero, then (a, b′) is row similar to (s). Now, let β = γ = 0.
If b′ is of the first form in (5.2), then (a, b′) is row similar either to (m), if
α = 0, or to one of the pairs (p), if α 6= 0. In the other cases of (5.2), (a, b′)
is row similar to either (n) or (s).

Case 3: r(a) = 1, r(b′) = 2. Now, b′ has one of the forms

(5.3)

1 0

0 1

α β

 ,
1 0

γ 0

0 1

 ,
0 0

1 0

0 1

 ,
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where α, β, γ ∈ K. Hence, as in Case 1, if b′ is of the first form in (5.3) then
(a, b′) is row similar either to one of the pairs (g)–(i), for α = 0, or to one of
(j)–(l), for α 6= 0. If b′ is of the second form in (5.3), then (a, b′) is row similar
either to one of the pairs (g)–(i), for γ = 0, or to one of (j)–(l), for γ 6= 0. In
the last case of (5.3), (a, b′) is row similar to one of the pairs (j)–(l).

Case 4: r(a) = r(b′) = 2. Then b′ is again in one of the forms listed
in (5.3). As in Case 2, the matrix a does not change under the elementary
operations of subtraction of the third row from either the first or the second
row. Thus if b′ is of the first form in (5.3), then (a, b′) is row similar either
to one of the pairs (t), for α, β nonzero, or to one of the pairs (r), (q), (o),
if either α or β is 0. In the other cases of (5.3), (a, b′) is row similar to (q),
(r) or (t).

Next, we present the following key result, to which the proof of Lem-
ma 3.10 will be later reduced.

Lemma 5.4. Let K be a contour of the form (�) with rows of blocks ai, bi,
and let (αi, βi) 6= (0, 0) be pairs of elements of the field K for i = 1, 2, 3.
If H = Gl3(K)3 and G = Gl2(K)4 act on K via (2.2), then there exist
h = (h1, h2, h3) ∈ H, g = (t, g1, g2, g3) ∈ G and γ1, γ2, γ3 ∈ K∗ such that:

• h · K · g is a 0-1 contour,
• the matrices γi · [αi βi] · gi are 0-1 for i = 1, 2, 3.

The proof will be preceded with the following observation.

Remark 5.5. Let (a, b) be one of the pairs of matrices of size 3×2 listed
in (a)–(t) of Remark 5.1 and let x be a nonzero matrix of size 1 × 2. Then
as long as (a, b) is not of the form (o), there exist f ∈ Gl3(K), g ∈ Gl2(K)
and γ ∈ K∗ such that

(5.6) fa = a, fbg = b, γxg = x′,

where x′ is a 0-1 matrix.

Proof. Let x = [α1 α2]. If either α1 or α2 is zero, then the assertion is
clear. Assume that α1, α2 6= 0. First, consider the case where the second
column of b is zero. Then, to get (5.6) it is enough to set f = id3, g =[
1
0

0
α1α

−1
2

]
and γ = α−11 . Therefore, the assertion follows when (a, b) is one

of the pairs (a)–(f), (m)–(p) or (s). On the other hand, in each of the cases
(g)–(l) and (q), (r), (t), we can find a nonzero row of b, say the lth, such
that the lth row of a is zero. Moreover, the lth row of b is [0 1] in all these
cases. As a result, it is enough to define f ∈ Gl3(K) as the matrix of the
elementary operation of multiplication of the lth row by α−11 α2, to define
g ∈ Gl2(K) as the matrix

[
1
0

0
α1α

−1
2

]
, and γ = α−11 . The result follows.
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Proof of Lemma 5.4. The assertion is clearly equivalent to the following
statement. Assume that three blocks of size 1× 2 are adjoined to the contour
K in order to form a new contour K:

K :

a3

a2

a1 b1

b2

b3

α1 β1

α2 β2

α3 β3

Let H = Gl3(K)3 × (K∗)3 and G = Gl2(K)4. Then in the H-G-orbit of K
there exists a 0-1 contour.

We proceed to the proof. We will denote the coordinates of the elements
h ∈ H and g ∈ G that act on K according to (2.2) by

(5.7) h = (f1, f2, f3, γ1, γ2, γ3), g = (t, g1, g2, g3),

where fi ∈ Gl3(K), t, gi ∈ Gl2(K) and γi ∈ K∗, for i = 1, 2, 3.

According to Remark 5.1, we may assume that every row (ai, bi) of K
is in one of the forms (a)–(t). First, consider the case when no pair (ai, bi)
is of the form (o) for i = 1, 2, 3. Then to each triple ai, bi, [αi βi] we can
apply Remark 5.5 to obtain matrices fi ∈ Gl3(K), gi ∈ Gl2(K) and elements
γi ∈ K∗ such that (5.6) is satisfied. Hence, if we set t = id2 and then act with
elements h, g of the form (5.7) on K via (2.2), we will obtain a 0-1 contour
that belongs to the H-G-orbit of K.

Next, we consider the following cases:

Case 1: Exactly one of the rows (ai, bi) of K is of the form (o). We
may assume that it is (a1, b1). Consider the following contour K′ with blocks
a2, b2, a3, b3 of size 3×2 and also with blocks [αi βi] of size 1×2 for i = 1, 2, 3:

K
′

:

a2 b2

a3 b3

α1 β1

α2 β2

α3 β3
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Now we show that if H′ = Gl3(K)2 × (K∗)3 and G′ = Gl2(K)3, then in
the H′-G′-orbit of K′ there exists a 0-1 contour. Observe that by changing
the order of rows and columns of K′, and after a transposition, we obtain a
contour K′′ with blocks of sizes 2× 3 and 2× 1 of the form

K
′′

:

bT
3

aT
3

α1

β1

aT
2

bT
2

α2

β2

α3

β3

Set H′′ = Gl2(K)3 and G′′ = K∗×Gl3(K)×K∗×Gl3(K)×K∗. It is clear that
the existence of a 0-1 contour in the H′-G′-orbit of K′ is equivalent to the
existence of a 0-1 contour in the H′′-G′′-orbit of K′′. The latter is, however,
an easy consequence of Corollary 4.3. Indeed, using this corollary we can as-
sume that all blocks of K′′, except [α1 β1]

T , are quasi permutational matrices.
Then it is clear that the contour of this form has a 0-1 contour in its orbit. It
is obtained by the action of certain elements of H′′,G′′ via (2.2) with all coor-
dinates diagonal. Thus, in the H′′-G′′-orbit of K′′ we can find a 0-1 contour,
and as argued above, it follows that we can also find a 0-1 contour in the
H′-G′-orbit of K′.

Now, let f2, f3 ∈ Gl3(K), γ1, γ2, γ3 ∈ K∗, t, g2, g3 ∈ Gl2(K) be such that
h′ ·K′·g′ is a 0-1 contour for h′= (f2, f3, γ1, γ2, γ3)∈H′ and g′= (t, g2, g3)∈G′.
Also, consider

g1 = t ∈ Gl2(K), f1 =

[
g−11 0

0 1

]
∈ Gl3(K).

Then, if we define h = (f1, f2, f3, γ1, γ2, γ3) ∈ H and g = (t, g1, g2, g3) ∈ G,
we can easily see that h · K · g is a 0-1 contour, since its first row is of the
form (o). The result follows in this case.

Case 2. Exactly two rows (ai, bi) of K are in the form (o). We may
assume that these are (a1, b1), (a2, b2). Consider the contour

K
′′′

:

a3 b3

α1 β1

α2 β2

α3 β3

It is contained in the contour K′, thus from Lemma 2.11 and Case 1 it
follows that if H′′′ = Gl3(K) × (K∗)3 and G′′′ = Gl2(K)2, then there exist
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h′′′ = (f3, γ1, γ2, γ3) ∈ H′′′ and g′′′ = (t, g3) ∈ G′′′ such that h′′′ · K′′′ · g′′′ is a
0-1 contour.

Therefore, it is enough to set g1 = g2 = t and f1 = f2 =
[
t−1

0
0
1

]
. Then,

if h = (f1, f2, f3, γ1, γ2, γ3) and g = (t, g1, g2, g3), we can easily see that the
contour h · K · g is 0-1.

Case 3: All three rows (ai, bi) of K are of the form (o). This case is
treated similarly to the previous cases, by noticing that the assertion can be
reduced to the problem of finding a 0-1 contour in the (K∗)3-Gl2(K) orbit of
the contour

α1 β1

α2 β2

α3 β3

This concludes the proof.

The final step needed in completing the proof of Lemma 3.10 is to show
that it can be reduced to the assertion of Lemma 5.4. This requires proving
a certain technical result on staircase contours.

Proposition 5.8. Consider the following staircase contour A, formed
from the consecutive blocks c1, d1, . . . , cn, dn of size 3× 2:

c1 d1

c2 d2

. . .

cn dn

where c1, dn are column terminal blocks. There exist h = (h1, . . . , hn) ∈ H =
Gl3(K)n and g = (id2, g1, . . . , gn) ∈ G = Gl2(K)n+1 such that:

(i) the matrix h1c1 is equal to the product qe of a column quasi permu-
tation matrix q and e ∈ D2(K),

(ii) hidigi are row quasi permutation matrices for 1 ≤ i ≤ n,
(iii) hicigi−1 are column quasi permutation matrices for 1 < i ≤ n.

Moreover:

(a) if e ∈ D2(K) is a scalar matrix, then there exist h′ ∈ H and g′ ∈ G
such that h′h ·A ·gg′ is a 0-1 contour and g′ acts as identity on h1c1,

(b) there exists a pair (α′, β′) 6= (0, 0) of elements of K such that for ev-
ery γ ∈ K∗ and g ∈ Gl2(K) for which γ[α′ β′]g is a 0-1 matrix, there
exist h′′(γ, g) ∈ H and g′′(γ, g) ∈ G (that depend on γ, g) and such
that h′′(γ, g)h · A · gg′′(γ, g) is a 0-1 contour and the first coordinate
of gg′′(γ, g) that acts on h1c1 is equal to g.
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Proof. We prove assertions (i)–(iii) by induction on n.
For n = 1, the statement follows from Lemma 4.12.
Assume now that for some n ≥ 2 the assertions hold for all m < n and

that the contour A has 2n blocks. From the inductive hypothesis it follows
that there exist h′1, . . . , h′n−1 ∈ Gl3(K) and g′1, . . . , g′n−1 ∈ Gl2(K) such that
(i)–(iii) hold for the blocks h′1c1, h′1d1g′1, . . . , h′n−1cn−1g′n−2, h′n−1dn−1g′n−1.
Consider the matrices cng′n−1, dn. Again, Lemma 4.12 allows us to find
h ∈ Gl3(K), g ∈ Gl2(K), en ∈ D2(K) such that qn := hcng

′
n−1e

−1
n is a col-

umn quasi permutation matrix and hdng is a row quasi permutation matrix.
Therefore, for hn = (h′1, . . . , h

′
n−1, h) ∈ H and gn = (id, g′1, . . . , g

′
n−1, g) ∈ G,

we have:

(i′) in place of the blocks c1, cn of A, the contour hn · A · gn has blocks
that are products of a column quasi permutation matrix and a
matrix that belongs to D2(K),

(ii′) in place of the blocks di, the contour hn · A · gn has row quasi
permutation matrices, for 1 ≤ i ≤ n,

(iii′) in place of the blocks ci, the contour hn · A · gn has column quasi
permutation matrices, for 1 < i < n.

By using Remark 4.11, we can find en−1 ∈ D3(K) and fn ∈ D2(K) that
satisfy the following conditions:

fn = e−1n , (hcng
′
n−1)fn = qn, en−1(h

′
n−1dn−1g

′
n−1)fn = h′n−1dn−1g

′
n−1,

and such that en−1(h′n−1cn−1g′n−2) is a product of en−1 ∈ D3(K) and a
column quasi permutation matrix h′n−1cn−1g′n−2. We proceed in this manner,
applying Remark 4.11 n−1 times; in the ith step bringing the set of the last i
columns (for i = 2, . . . , n) to 0-1 forms (by acting with the invertible diagonal
matrices en+1−i, fn+2−i). Then we obtain a contour such that in place of c1
we have e1h′1c1, and the remaining blocks are either row or column quasi
permutation matrices, precisely as required in (ii) and (iii). Finally, due to
Remark 4.11, e1h′1c = h′1ce

′ for some e′ ∈ D2(K). Thus (i) is satisfied and
the inductive step follows. This concludes the proof of the first part of the
proposition.

Next, we prove (a). Consider a contour h · A · g that satisfies (i)–(iii)
and assume that e ∈ D2(K) is a scalar matrix. Consider scalar matrices
a1, . . . , an ∈ D3(K) and b1, . . . , bn ∈ D2(K) such that:

• a1(h1c1) = a1qe = q,
• ai(hicigi−1)bi−1 = hicigi−1 for i = 2, . . . , n,
• ai(hidigi)bi = hidigi for i = 1, . . . , n.

If we set h′ = (a1, . . . , an) and g′ = (id2, b1, . . . , bn), then it is clear that the
contour h′h · A · gg′ is 0-1. Thus (a) holds.
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Finally, we prove (b). Once again, consider a contour h ·A·g that satisfies
(i)–(iii). According to (i), the block that belongs to the first row and the
first column of this contour is of the form qe, where q is a column quasi
permutation matrix of size 3×2 and e ∈ D2(K) is

[
α
0

0
β

]
for some α, β ∈ K∗.

We will consider some special cases, corresponding to the possible forms
of q. To reduce the number of cases we will begin by showing that if we can
prove (b) when the first block of h · A · g is of the form qe, then we can
also prove (b) when the first block is of the form (σqε)e for any permutation
matrices σ ∈ Σ3 and ε ∈ Σ2.

So assume that we have a contour h · A · g that satisfies (i)–(iii) with the
first block being a quasi permutation matrix (σqε)e. Consider a new contour
K = hσh · A · ggε, where

hσ = (σ−1, id3, . . . , id3) and gε = (e−1ε−1e, id2, . . . , id2).

Clearly, it also satisfies (i)–(iii). Moreover, its first block is of the form qe.
Thus, by our assumption there exists (α′, β′) 6= (0, 0) such that for any
γ ∈ K∗ and g ∈ Gl2(K) such that γ[α′ β′]g is a 0-1 matrix, there exist
h′′(γ, g) ∈ H and g′′(γ, g) ∈ G such that the first coordinate of g′′(γ, g)
is g and the contour h′′(γ, g) · K · g′′(γ, g) is 0-1. Consider another pair
α′′, β′′ ∈ K such that [α′′ β′′] = [α′ β′] · e−1εe. Then for any γ ∈ K∗ and
g ∈ Gl2(K) such that γ[α′′ β′′]g is a 0-1 matrix, the matrix γ[α′ β′](e−1εeg)
is 0-1 as well. Again, by our assumption there exist h′′(γ, e−1εeg) ∈ H and
g′′(γ, e−1εeg) ∈ G such that h′′(γ, e−1εeg) ·K · g′′(γ, e−1εeg) is a 0-1 contour.
The first coordinate of g′′(γ, e−1εeg) equals (e−1εe)g. From the definition of
K it follows that the contour

h′′(γ, e−1εeg)(hσh · A · ggε)g′′(γ, e−1εeg)
= h′′(γ, e−1εeg)hσ(h · A · g)gεg′′(γ, e−1εeg)

is 0-1 and the first coordinate of gεg′′(γ, e−1εeg) is (e−1ε−1e)(e−1εeg) = g.
We have thus proved (b) for the contour h ·A ·g with the first block equal to
(σqε)e. It follows that when proving (b) we may, without loss of generality,
ignore the order of rows and columns of the matrix q.

First we consider the case when q is of rank 1. As argued above, it is
enough to assume that qe has one of the forms

(5.9)

α β

0 0

0 0

 ,
α 0

0 0

0 0

 .
Let g ∈ Gl2(K) and γ ∈ K∗ be such that the matrix γ[α β]g is 0-1. We
consider two cases listed in (5.9).



42 A. MĘCEL

In the first case, set α′ := α and β′ := β. Also, let (g, id2, . . . , id2) ∈ G.
Consider the contour h · A · g, where g = g(g, id2, . . . , id2). It clearly satisfies
(i)–(iii). Moreover, the block qeg of this contour is of the form q′e′, where q′ is
a column quasi permutation matrix and e′ ∈ D2(K). It follows from (a) that
there exist h′ ∈ H′ and g′ ∈ G′ such that h′h·A·gg′ is a 0-1 contour. Thus, the
assertion follows for h′′(γ, g) := h′ and g′′(γ, g) := (g, id2, . . . , id2)g

′. In the
second case of (5.9), the argument is almost the same. Now we set α′ := α
and β′ := 0. Thus, (b) follows when q is of rank 1.

The case when q is of rank 2 is more technical. Again, if we ignore the
order of rows and columns, it suffices to consider the case when qe is of the
form α 0

0 β

0 0

 .
First, observe that if h ·A·g consists of exacly one block qe then the assertion
is clear. Indeed, let α′ = β′ = 1. Then for any g ∈ Gl2(K) and γ ∈ K∗ such
that γ[1 1]g is a 0-1 matrix, we set h′′(γ, g) := (h), where h =

[
g−1e−1

0
0
1

]
∈

Gl3(K) and g′′(γ, g) := (g). As a result, h′′(γ, g)h · A · gg′′(γ, g) = q, which
is 0-1, and the result follows. Therefore, we now assume that h ·A ·g consists
of at least two blocks.

Consider the row quasi permutation matrix h1d1g1 that belongs to the
same row of h · A · g as the block qe. We can assume (perhaps after a per-
mutation of the columns in 0-1 matrices that belong to the second column
of h ·A · g; see the previous argument on permuting rows and columns of qe)
that this matrix is one of

(5.10)

∗ 0

∗ 0

∗ ∗

 ,
1 0

0 1

0 0

 ,
1 0

0 1

0 1

 ,
1 0

0 1

1 0

 .
It is clear that the elementary operation of subtraction of the third row from
either the second or the first row, performed at the same time on both qe
and h1d1g1 (when h1d1g1 has one of the last two forms in (5.10)), reduces
h1d1g1, up to the order of columns, to one of the first two matrices in (5.10).
Therefore, it is enough to prove (b) for these.

First, assume that h1d1g1 is the first type in (5.10). Let θ1, θ2 ∈ K be
such that α

−1 0 0

0 β−1 0

0 0 1

 · h1d1g1 =
θ1 0

θ2 0

∗ ∗

 .
If (θ1, θ2) = (0, 0), then the result follows easily: namely, we set α′ = β′ = 1
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and consider any γ ∈ K∗ and g ∈ Gl2(K) such that γ[1 1]g is a 0-1 matrix.
Then the conditions of (b) are satisfied by h′′(γ, g) := (h, id3, . . . , id3) ∈ H
and g′′(γ, g) := (g, id2, . . . , id2) ∈ G where

h =

[
g−1 0

0 1

]
·

α
−1 0 0

0 β−1 0

0 0 1

 .
The contour h′′(γ, g)h · A · gg′′(γ, g) is clearly 0-1, and (b) follows.

Now assume that (θ1, θ2) 6= (0, 0) and let α′ = −θ2 and β′ = θ1. Let
g =

[
τ1
τ3

τ2
τ4

]
∈ Gl2(K) and γ ∈ K∗ be such that γ[−θ2 θ1]g is a 0-1 matrix of

the form [ρ1 ρ2]. Then {
ρ1 = γ(−τ1θ2 + τ3θ1),

ρ2 = γ(−τ2θ2 + τ4θ1).

Also, set g′ = det(g) · g−1 =

[
τ4 −τ2
−τ3 τ1

]
. Then

(5.11) γg′ ·

[
θ1

θ2

]
=

[
ρ2

−ρ1

]
.

Consider the elements h ∈ H and g ∈ G of the form h = (h, id3, . . . , id3) and
g = (g, id2, . . . , id2) such that

h =

[
γg′ 0

0 1

]
·

α
−1 0 0

0 β−1 0

0 0 1

 .
Then, if we act with h, g on h · A · g via (2.2), only the first row of h · A · g is
modified: namely, from (5.11) it follows that in place of blocks qe and h1d1g1
there are γ · det(g) 0

0 γ · det(g)
0 0

 ,
 ρ2 0

−ρ1 0

ρ3 ρ4

 ,
respectively, where ρ1, ρ2, ρ3, ρ4 ∈ {0, 1}. If ρ1 = 0, then the result follows.
Therefore, we will consider two cases when ρ1 = 1.

Let ρ1 = 1 and ρ2 = 0. Then the contour hh · A · gg satisfies conditions
(i)–(iii), and in place of the block qe of h · A · g there is a matrix qe′, where
q is a column quasi permutation matrix and e′ ∈ D2(K). Thus, according
to (a), there exist h′ ∈ H′ and g′ ∈ G such that h′hh ·A·ggg′ is a 0-1 contour.
Notice that the first coordinate of gg′ is g. Thus, if we set h′′(γ, g) := h′h
and g′(γ, g) := gg′, the statement of (b) follows.



44 A. MĘCEL

If ρ1 = ρ2 = 1, then we multiply the matrices in the first row of hh ·A·gg
on the left by

h′ =

1 0 0

1 1 0

0 0 1

 .
As a result, we obtain matrices of the formγ · det(g) 0

γ · det(g) γ · det(g)
0 0

 ,
 1 0

0 0

ρ3 ρ4

 ,
where ρ3, ρ4 ∈ {0, 1}. The first is a product of a 0-1 matrix and a scalar
matrix that belongs to D2(K). Thus, consider the contour h′h · A · gg, where
h
′
= (h′, id3, . . . , id3)h. The first block of this contour is again a product

of a 0-1 matrix and a scalar (invertible) matrix. The remaining blocks are
0-1. We proceed as in the proof of (a) (where it is enough to assume that q
is a 0-1 matrix, but not necessarily a quasi permutation matrix). We prove
that there exist h′ ∈ H and g′ ∈ G such that the first coordinate of g′ is an
identity matrix, and the contour h′h′h · A · ggg′ is 0-1. Therefore, we define
h′′(γ, g) := h′h

′ and g′′(γ, g) := gg′, and (b) follows.
We have finished the proof for (θ1, θ2) 6= (0, 0). Therefore, (b) follows

when h1d1g1 is in the first form of (5.10).
It remains to prove (b) when h1d1g1 is in the second form of (5.10).

First, this is easy if h · A · g consists of exactly two blocks: we then set
α′ = β′ = 1, and for any g ∈ Gl2(K) and γ ∈ K∗ such that γ[1 1]g is a
0-1 matrix, we define h′′(γ, g) := (h) ∈ H, g′′(γ, g) := (g, eg) ∈ G, where
h =

[
g−1e−1

0
0
1

]
∈ Gl3(K). As a result, h′′(γ, g)h · A · gg′′(γ, g) consists of two

0-1 blocks of the form q and h1d1g1, and the assertion follows.
We can therefore assume that h · A · g has more than two blocks. In

this case it is easy to see that the statement of (b) is equivalent for two
contours: h · A · g and the staircase contour that consists of the blocks
(h2c2g1)e, h2d2g2, h3c3g2, h3d3g3, . . . and is obtained from h · A · g by delet-
ing the first row of matrices, qe and h1d1g1, and by multiplying the column
that contains the quasi permutation block h2c2g1 by e ∈ D2(K). Thus, if we
prove (b) by induction on the number of blocks in h · A · g, we can see that
the case under consideration can be reduced to one of the following cases
considered before: where h · A · g consists of one or two blocks, or where the
first row of the contour is of the form considered before.

Consequently, (b) follows also in the case where h1d1g1 is of the second
form in (5.10). We have thus proved (b) for q of rank 2. This concludes the
entire proof of (b), and the result follows.
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Proof of Lemma 3.10. According to Lemma 2.11, we may assume that si
is an even integer 2ti for i = 1, 2, 3. Let A ∈MS . We may also assume (due
to Remark 2.9) that all blocks of A are nonzero. Let A1,A2,A3 stand for the
subcontours of A that consist of the blocks bi,j for i = 1, 2, 3 respectively and
for j ≤ si. Observe that if blocks x, y of A belong to the same row or column
and if x ∈ Ai and y ∈ Aj , for some i, j ∈ {1, 2, 3}, then i = j. Therefore, if the
group acting on Ai via (2.2) is denoted by Hi×Gi ' Gl3(K)ti ×Gl2(K)ti+1,
for i = 1, 2, 3, then

(5.12) H ' Gl3(K)3 × H1 × H2 × H3, G ' Gl2(K)×G1 ×G2 ×G3

(we may assume that the first coordinates of elements of Gi act on the
column that contains the block bi of A, for i = 1, 2, 3).

By Proposition 5.8, applied separately to each of the contours Ai, we
may assume that:

• bi,1 is a product of a column quasi permutation matrix and a matrix
that belongs to D2(K), for i = 1, 2, 3,
• bi,2j are row quasi permutation matrices for 1 ≤ j ≤ ti and i = 1, 2, 3,
• bi,2j−1 are column quasi permutation matrices for 1 ≤ j ≤ ti and
i = 1, 2, 3.

Thus, as in the proof of (b) in Proposition 5.8, to each contour Ai we may
assign a pair of scalars (αi, βi) 6= (0, 0) such that for any γ′i ∈ K∗ and
g′i ∈ Gl2(K) for which γ′i[αi βi]g

′
i is a 0-1 matrix, there exist h(γ′i, g

′
i) ∈ Hi

and g(γ′i, g
′
i) ∈ Gi such that h(γ′i, g

′
i) · Ai · g(γ′i, g′i) is a 0-1 contour and the

first coordinate of g(γ′i, g
′
i) is g

′
i. Now we apply Lemma 5.4 to find f1, f2, f3 ∈

Gl3(K), γ1, γ2, γ3 ∈ K∗, and t, w1, w2, w3 ∈ Gl2(K) such that the matrices
fiait, fibiwi and γi[αi βi]wi are all 0-1 for i = 1, 2, 3. As said before, there
exist h(γi, wi) ∈ Hi and g(γi, wi) ∈ Gi such that h(γi, wi) · Ai · g(γi, wi) is
a 0-1 contour and the first coordinate of g(γi, wi) is wi. As a result, we can
define h ∈ H and g ∈ G such that h · A · g is a 0-1 contour. These elements
are of the following form:

• g1 := t and hi := fi for i = 1, 2, 3,
• the coordinates g that act on the columns of A containing b1, b2, b3 are
w1, w2, w3, respectively,
• if φi : H → Hi and ψi : G → Gi are the natural projections, in

accordance with (5.12), then φi(h) = h(γi, wi) and ψi(g) = g(γi, wi)
for i = 1, 2, 3.

With this definition, in the contour h · A · g, 0-1 matrices appear in place
of blocks ai, bi, according to Lemma 5.4. Moreover, from the same lemma it
follows that the coordinates wi of g that act on bi,1 are such that the matrices
γi[αi βi]wi are 0-1. From (b) in Proposition 5.8 it follows that h(γi, wi) · Ai ·
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g(γi, wi) is a 0-1 contour for i = 1, 2, 3. Therefore, all blocks of h · A · g are
0-1, as claimed.

6. Concluding remarks and open problems. We conclude with a
few remarks and questions. First of all, it should be noted that although
Problem 1.1 is not fully solved in this paper, Theorem 2.8 along with [14,
Theorem 1.2] provide potential methods and intuition for tackling the diffi-
culties of the general case. It follows from Lemma 2.11 that these two results
impose necessary conditions on skeletons of arbitrary algebras A with C(A)
finite. One can hope that, by further computational effort, Problem 1.1 can
be solved in general.

A possible next step might be to try to understand the finiteness prob-
lem for the semigroup C(A) for algebras A with the Jacobson radical of
nilpotency index greater than 2. Clearly, the results obtained so far in the
context of Problem 1.1 provide some necessary conditions for the finiteness of
C(A/J(A)2). For certain classes of algebras, partial results can be obtained:
see Corollary 6.3 below for Frobenius algebras with J(A)3 = 0. It also seems
of interest to take up the finiteness problem in the class of all basic algebras.

One of the referees of my Ph.D. thesis [12] has pointed out that, in the
representation theory of algebras, the study of modules over any radical
square zero algebra A reduces to the study of the radical square zero upper
block triangular algebra

(6.1) ΛA :=

[
A J

0 A

]
, where A = A/J(A) and J = J(A).

The algebra ΛA is hereditary, i.e. all left ideals of ΛA are projective. We recall
from [4] that there exists a K-linear functor F : A-mod→ ΛA-mod defining
a bijection between the isoclasses of indecomposable left A-modules and the
isoclasses of indecomposable left ΛA-modules that are not simple projective
(see also [21] for more details). In particular, ΛA is of finite representation
type if and only if A is of finite representation type. It is clear that the
Jacobson radical of ΛA is equal to

[
0
0
J
0

]
, and therefore Theorem 1.1 in [13]

easily implies that the finiteness of C(ΛA) is equivalent to the finiteness
of C(A). We have the following useful consequence of Corollary 1.8.

Corollary 6.2. Assume that A is a radical square zero K-algebra satis-
fying the conditions of Theorem 1.7. The following conditions are equivalent:

(a) The semigroup C(A) is finite.
(b) The semigroup C(ΛA) is finite.
(c) The separated quiver Γ s(A) of A, viewed as an unoriented graph, is

a disjoint union of simply laced Dynkin diagrams An, n ≥ 1, Dn,
n ≥ 4, E6, E7, E8.
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Now we are able to extend Corollary 6.2 from radical square zero K-alge-
bras to Frobenius (or self-injective) radical cube zero ones, as follows.

Corollary 6.3. Assume that A is a Frobenius K-algebra such that
J(A)3 = 0 and the quotient algebra A/J(A) satisfies the conditions of The-
orem 1.7. The socle socAA of A is a two-sided ideal, the quotient K-algebra
B := A/socAA is a radical square zero algebra, and the following conditions
are equivalent:

(a) The semigroup C(A) is finite.
(b) The algebra A is of finite representation type.
(c) The semigroup C(B) is finite.
(d) The algebra B is of finite representation type.
(e) The separated quiver Γ s(B) of B, viewed as an unoriented graph, is

a disjoint union of simply laced Dynkin diagrams An, n ≥ 1, Dn,
n ≥ 4, E6, E7, E8.

We only sketch the proof. Since A is Frobenius, it is self-injective and
every injective left A-module is projective. The left ideal U := socAA is a
two-sided ideal, because socAA = socAA (see [22, Theorem 6.13]). Since
J(A)3 = 0, we have J(A)2 ⊆ U, and therefore J(B)2 = 0.

First we prove the equivalence (b)⇔(d), by applying the argument used
in [3, pp. 788–789]. Since (b)⇒(d) is obvious, we need to prove (b)⇐(d). We
do this by showing that every indecomposable left A-moduleM is projective
(then a direct summand Ae of AAm where e is a primitive idempotent) or
is annihilated by U, i.e. M is a module over the quotient algebra B := A/U.
Assume that M is an indecomposable left A-module such that UM 6= 0, and
let S be a simple submodule of UM . Then the injective envelope P := E(S) is
indecomposable projective. By the injectivity of P , there is f ∈ HomA(M,P )
such that the restriction of f to S is the embedding S ↪→ P . We recall from
[1, Section I.1.5] that P has a unique maximal submodule J(A)P . Note that
Im f is not contained in J(A)P , because the inclusions S ⊆ P , S ⊆ UM and
Im f ⊆ J(A)M imply 0 6= f(S) ⊆ f(UM) ⊆ UJ(A)P = 0, a contradiction. It
follows that Im f + J(A)P = P , and the Nakayama lemma yields Im f = P .
By the projectivity of P , the homomorphism f is bijective, because M is
indecomposable. Consequently, M is projective. This finishes the proof of
(b)⇔(d).

The implication (a)⇒(c) follows from the fact that the canonical al-
gebra surjection A → B induces a semigroup surjection C(A) → C(B).
Since (b)⇒(a) is well known (see [18, Corollary 4]) and the equivalences
(c)⇔(d)⇔(e) are a consequence of Corollary 6.2 with A and B interchanged,
the proof is complete.
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