A NEW WAY TO ITERATE BRZEZIŃSKI CROSSED PRODUCTS

BY
LEONARD DĂUŞ (Al Ain) and FLORIN PANAITE (Bucureşti)

Abstract

If $A \otimes_{R, \sigma} V$ and $A \otimes_{P, \nu} W$ are two Brzeziński crossed products and Q : $W \otimes V \rightarrow V \otimes W$ is a linear map satisfying certain properties, we construct a Brzeziński crossed product $A \otimes_{S, \theta}(V \otimes W)$. This construction contains as a particular case the iterated twisted tensor product of algebras.

1. Introduction. The twisted tensor product of the associative unital algebras A and B is a new associative unital algebra structure built on the linear space $A \otimes B$ with the help of a linear map $R: B \otimes A \rightarrow A \otimes B$ called a twisting map. This construction, denoted by $A \otimes_{R} B$, appeared in several contexts and has various applications ([SV], VDVK]). Concrete examples come especially from Hopf algebra theory, like for instance the smash product.

It was proved in [JLPV] that twisted tensor products of algebras may be iterated. Namely, if $A \otimes_{R_{1}} B, B \otimes_{R_{2}} C$ and $A \otimes_{R_{3}} C$ are twisted tensor products and the twisting maps R_{1}, R_{2}, R_{3} satisfy the braid relation $\left(\mathrm{id}_{A} \otimes R_{2}\right) \circ\left(R_{3} \otimes \mathrm{id}_{B}\right) \circ\left(\mathrm{id}_{C} \otimes R_{1}\right)=\left(R_{1} \otimes \mathrm{id}_{C}\right) \circ\left(\mathrm{id}_{B} \otimes R_{3}\right) \circ\left(R_{2} \otimes \mathrm{id}_{A}\right)$, then one can define certain twisted tensor products $A \otimes_{T_{2}}\left(B \otimes_{R_{2}} C\right)$ and $\left(A \otimes_{R_{1}} B\right) \otimes_{T_{1}} C$ that are equal as algebras (and this algebra is called the iterated twisted tensor product).

The Brzeziński crossed product, introduced in [B], is a common generalization of twisted tensor products of algebras and the Hopf crossed product (containing also as a particular case the quasi-Hopf smash product introduced in [BPVO]). If A is an associative unital algebra, V is a linear space endowed with a distinguished element 1_{V}, and $\sigma: V \otimes V \rightarrow A \otimes V$ and $R: V \otimes A \rightarrow A \otimes V$ are linear maps satisfying certain conditions, then the Brzeziński crossed product is a certain associative unital algebra structure on $A \otimes V$, denoted by $A \otimes_{R, \sigma} V$.

In [P] it was proved that Brzeziński crossed products may be iterated, in the following sense. One can define first a "mirror version" of the Brzeziński crossed product, denoted by $W \bar{\otimes}_{P, \nu} D$ (where D is an associative unital

[^0]algebra, W is a linear space and P, ν are certain linear maps). Examples are twisted tensor products of algebras and the quasi-Hopf smash product introduced in [BPV]. Then it was proved that, if $W \bar{\otimes}_{P, \nu} D$ and $D \otimes_{R, \sigma} V$ are two Brzeziński crossed products and $Q: V \otimes W \rightarrow W \otimes D \otimes V$ is a linear map satisfying some conditions, then one can define certain Brzeziński crossed products $\left(W \bar{\otimes}_{P, \nu} D\right) \otimes_{\bar{R}, \bar{\sigma}} V$ and $W \bar{\otimes}_{\bar{P}, \bar{\nu}}\left(D \otimes_{R, \sigma} V\right)$ that are equal as algebras. Iterated twisted tensor products of algebras appear as a particular case of this construction, as also is the so-called quasi-Hopf two-sided smash product $A \# H \# B$ from BPVO.

The aim of this paper is to show that Brzeziński crossed products may be iterated in a different way, which will also contain as a particular case the iterated twisted tensor product of algebras. Namely, we prove that if $A \otimes_{R, \sigma} V$ and $A \otimes_{P, \nu} W$ are two Brzeziński crossed products and $Q: W \otimes V \rightarrow V \otimes W$ is a linear map satisfying certain properties, then we can define two Brzeziński crossed products $A \otimes_{S, \theta}(V \otimes W)$ and $\left(A \otimes_{R, \sigma} V\right) \otimes_{T, \eta} W$ that are equal as algebras.

Our inspiration for looking at this new way of iterating Brzeziński crossed products came from the following result in graded ring theory: If G is a group, R is a G-graded ring, A and B are two finite left G-sets, then there exists a ring isomorphism between the smash products $R \#(A \times B)$ and $(R \# A) \# B$. This result was obtained in DNN, Corollary 3.2], and it is useful in the study of the von Neumann regularity of rings of the type $R \# A$ (cf. [DNN] again). The smash product $R \# A$ of the G-graded ring R by a (finite) left G-set A was introduced in the paper [NRVO] and it is a particular case of a more general construction. If H is a Hopf algebra, R an H-comodule algebra and C an H-module coalgebra, then we may consider the category ${ }_{R}^{C} \mathcal{M}(H)$ of Doi-Koppinen Hopf modules (i.e. left R-modules and left C-comodules which satisfy certain compatibility relations). Then the smash product $R \# A$ used in DNN is a particular smash product and it is the first example in the category ${ }_{R}^{C} \mathcal{M}(H)$ (in the case when H is the groupring $k[G], R$ a G-graded ring and C the grouplike coalgebra $k[A]$ on a G-set A).
2. Preliminaries. We work over a commutative field k. All algebras, linear spaces etc. will be over k; unadorned \otimes means \otimes_{k}. By "algebra" we always mean an associative unital algebra. The multiplication of an algebra A is denoted by μ_{A} or simply μ when there is no danger of confusion, and we usually denote $\mu_{A}\left(a \otimes a^{\prime}\right)=a a^{\prime}$ for all $a, a^{\prime} \in A$. The unit of an algebra A is denoted by 1_{A} or simply 1 when there is no danger of confusion.

We recall from [CSV], VDVK] that, given two algebras A, B and a k-linear map $R: B \otimes A \rightarrow A \otimes B$, with Sweedler-type notation $R(b \otimes a)=$ $a_{R} \otimes b_{R}=a_{r} \otimes b_{r}$ for $a \in A, b \in B$, satisfying the conditions $a_{R} \otimes 1_{R}=a \otimes 1$,
$1_{R} \otimes b_{R}=1 \otimes b,\left(a a^{\prime}\right)_{R} \otimes b_{R}=a_{R} a_{r}^{\prime} \otimes\left(b_{R}\right)_{r}, a_{R} \otimes\left(b b^{\prime}\right)_{R}=\left(a_{R}\right)_{r} \otimes b_{r} b_{R}^{\prime}$ for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$, if we define on $A \otimes B$ a new multiplication by $(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=a a_{R}^{\prime} \otimes b_{R} b^{\prime}$, then this multiplication is associative with unit $1 \otimes 1$. In this case, the map R is called a twisting map between A and B, and the new algebra structure on $A \otimes B$ is denoted by $A \otimes_{R} B$ and called the twisted tensor product of A and B afforded by the map R.

We recall from [B] the construction of Brzezinski's crossed product:
Proposition $2.1\left([\boxed{B})\right.$. Let $\left(A, \mu, 1_{A}\right)$ be an (associative unital) algebra and V a vector space equipped with a distinguished element $1_{V} \in V$. Then the vector space $A \otimes V$ has the structure of an associative algebra with unit $1_{A} \otimes 1_{V}$ and with multiplication such that $\left(a \otimes 1_{V}\right)(b \otimes v)=a b \otimes v$ for all $a, b \in A$ and $v \in V$ if and only if there exist linear maps $\sigma: V \otimes V \rightarrow A \otimes V$ and $R: V \otimes A \rightarrow A \otimes V$ satisfying the following conditions:
(2.1) $R\left(1_{V} \otimes a\right)=a \otimes 1_{V}, \quad R\left(v \otimes 1_{A}\right)=1_{A} \otimes v, \quad \forall a \in A, v \in V$,
(2.2) $\sigma\left(1_{V} \otimes v\right)=\sigma\left(v \otimes 1_{V}\right)=1_{A} \otimes v, \quad \forall v \in V$,
(2.3) $R \circ\left(\mathrm{id}_{V} \otimes \mu\right)=\left(\mu \otimes \mathrm{id}_{V}\right) \circ\left(\mathrm{id}_{A} \otimes R\right) \circ\left(R \otimes \mathrm{id}_{A}\right)$,
(2.4) $\left(\mu \otimes \mathrm{id}_{V}\right) \circ\left(\mathrm{id}_{A} \otimes \sigma\right) \circ\left(R \otimes \mathrm{id}_{V}\right) \circ\left(\mathrm{id}_{V} \otimes \sigma\right)$

$$
=\left(\mu \otimes \mathrm{id}_{V}\right) \circ\left(\mathrm{id}_{A} \otimes \sigma\right) \circ\left(\sigma \otimes \mathrm{id}_{V}\right)
$$

(2.5) $\left(\mu \otimes \mathrm{id}_{V}\right) \circ\left(\mathrm{id}_{A} \otimes \sigma\right) \circ\left(R \otimes \mathrm{id}_{V}\right) \circ\left(\mathrm{id}_{V} \otimes R\right)$

$$
=\left(\mu \otimes \operatorname{id}_{V}\right) \circ\left(\operatorname{id}_{A} \otimes R\right) \circ\left(\sigma \otimes \operatorname{id}_{A}\right)
$$

If this is the case, the multiplication of $A \otimes V$ is given explicitly by

$$
\mu_{A \otimes V}=\left(\mu_{2} \otimes \mathrm{id}_{V}\right) \circ\left(\mathrm{id}_{A} \otimes \mathrm{id}_{A} \otimes \sigma\right) \circ\left(\mathrm{id}_{A} \otimes R \otimes \mathrm{id}_{V}\right)
$$

where $\mu_{2}=\mu \circ\left(\operatorname{id}_{A} \otimes \mu\right)=\mu \circ\left(\mu \otimes \mathrm{id}_{A}\right)$. We denote by $A \otimes_{R, \sigma} V$ this algebra structure and call it the crossed product (or Brzeziński crossed product) afforded by the data (A, V, R, σ).

If $A \otimes_{R, \sigma} V$ is a crossed product, we introduce the following Sweedler-type notation:

$$
\begin{array}{rlrl}
R: V \otimes A \rightarrow A \otimes V, & & R(v \otimes a) & =a_{R} \otimes v_{R} \\
\sigma: V \otimes V \rightarrow A \otimes V, & \sigma\left(v \otimes v^{\prime}\right) & =\sigma_{1}\left(v, v^{\prime}\right) \otimes \sigma_{2}\left(v, v^{\prime}\right)
\end{array}
$$

for all $v, v^{\prime} \in V$ and $a \in A$. With this notation, the multiplication of $A \otimes_{R, \sigma} V$ reads

$$
(a \otimes v)\left(a^{\prime} \otimes v^{\prime}\right)=a a_{R}^{\prime} \sigma_{1}\left(v_{R}, v^{\prime}\right) \otimes \sigma_{2}\left(v_{R}, v^{\prime}\right), \quad \forall a, a^{\prime} \in A, v, v^{\prime} \in V
$$

A twisted tensor product is a particular case of a crossed product (cf. [DLGG]), namely, if $A \otimes_{R} B$ is a twisted tensor product of algebras then $A \otimes_{R} B=A \otimes_{R, \sigma} B$, where $\sigma: B \otimes B \rightarrow A \otimes B$ is given by $\sigma\left(b \otimes b^{\prime}\right)=1_{A} \otimes b b^{\prime}$ for all $b, b^{\prime} \in B$.

REMARK. The conditions (2.3), (2.4) and (2.5) for R, σ may be written in Sweedler-type notation respectively as

$$
\begin{align*}
& \left(a a^{\prime}\right)_{R} \otimes v_{R}=a_{R} a_{r}^{\prime} \otimes\left(v_{R}\right)_{r} \tag{2.6}\\
& \sigma_{1}(y, z)_{R} \sigma_{1}\left(x_{R}, \sigma_{2}(y, z)\right) \otimes \sigma_{2}\left(x_{R}, \sigma_{2}(y, z)\right) \tag{2.7}\\
& \quad=\sigma_{1}(x, y) \sigma_{1}\left(\sigma_{2}(x, y), z\right) \otimes \sigma_{2}\left(\sigma_{2}(x, y), z\right) \\
& \left(a_{R}\right)_{r} \sigma_{1}\left(v_{r}, v_{R}^{\prime}\right) \otimes \sigma_{2}\left(v_{r}, v_{R}^{\prime}\right)=\sigma_{1}\left(v, v^{\prime}\right) a_{R} \otimes \sigma_{2}\left(v, v^{\prime}\right)_{R} \tag{2.8}
\end{align*}
$$

for all $a, a^{\prime} \in A, x, y, z, v, v^{\prime} \in V$, where we also denoted $R(v \otimes a)=a_{r} \otimes v_{r}$ for all $a \in A, v \in V$.

3. The main result and examples

Theorem 3.1. Let $A \otimes_{R, \sigma} V$ and $A \otimes_{P, \nu} W$ be two crossed products and $Q: W \otimes V \rightarrow V \otimes W$ a linear map, written $Q(w \otimes v)=v_{Q} \otimes w_{Q}$ for all $v \in V$ and $w \in W$. Assume that the following conditions are satisfied:
(i) Q is unital, in the sense that
(3.1) $\quad Q\left(1_{W} \otimes v\right)=v \otimes 1_{W}, \quad Q\left(w \otimes 1_{V}\right)=1_{V} \otimes w, \quad \forall v \in V, w \in W$.
(ii) The braid relation holds for R, P, Q, i.e.
(3.2) $\quad\left(\mathrm{id}_{A} \otimes Q\right) \circ\left(P \otimes \mathrm{id}_{V}\right) \circ\left(\mathrm{id}_{W} \otimes R\right)$

$$
=\left(R \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{V} \otimes P\right) \circ\left(Q \otimes \mathrm{id}_{A}\right)
$$

or equivalently,

$$
\begin{equation*}
\left(a_{R}\right)_{P} \otimes\left(v_{R}\right)_{Q} \otimes\left(w_{P}\right)_{Q}=\left(a_{P}\right)_{R} \otimes\left(v_{Q}\right)_{R} \otimes\left(w_{Q}\right)_{P} \tag{3.3}
\end{equation*}
$$

for all $a \in A, v \in V, w \in W$.
(iii) We have the following hexagonal relation between σ, P, Q :

$$
\begin{align*}
& \begin{array}{r}
\left(\mathrm{id}_{A} \otimes Q\right) \circ\left(P \otimes \mathrm{id}_{V}\right) \circ\left(\mathrm{id}_{W} \otimes \sigma\right) \\
\quad=\left(\sigma \otimes \mathrm{id}_{W}\right) \circ\left(\operatorname{id}_{V} \otimes Q\right) \circ\left(Q \otimes \operatorname{id}_{V}\right) \\
\text { or equivalently, } \\
\quad \sigma_{1}\left(v, v^{\prime}\right)_{P} \otimes \sigma_{2}\left(v, v^{\prime}\right)_{Q} \otimes\left(w_{P}\right)_{Q}=\sigma_{1}\left(v_{Q}, v_{q}^{\prime}\right) \otimes \sigma_{2}\left(v_{Q}, v_{q}^{\prime}\right) \otimes\left(w_{Q}\right)_{q}
\end{array} \tag{3.4}
\end{align*}
$$

for all $v, v^{\prime} \in V$ and $w \in W$, where we also denoted $Q(w \otimes v)=$ $v_{q} \otimes w_{q}$ for all $v \in V, w \in W$.
(iv) We have the following hexagonal relation between ν, R, Q :

$$
\begin{align*}
& \left(R \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{V} \otimes \nu\right) \circ\left(Q \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{W} \otimes Q\right) \tag{3.6}\\
& \\
& =\left(\operatorname{id}_{A} \otimes Q\right) \circ\left(\nu \otimes \mathrm{id}_{V}\right), \tag{3.7}\\
& \text { or equivalently, }
\end{align*}
$$

$\nu_{1}\left(w, w^{\prime}\right) \otimes v_{Q} \otimes \nu_{2}\left(w, w^{\prime}\right)_{Q}=\nu_{1}\left(w_{q}, w_{Q}^{\prime}\right)_{R} \otimes\left(\left(v_{Q}\right)_{q}\right)_{R} \otimes \nu_{2}\left(w_{q}, w_{Q}^{\prime}\right)$
for all $v \in V$ and $w, w^{\prime} \in W$, where we also denoted $Q(w \otimes v)=$ $v_{q} \otimes w_{q}$ for all $v \in V, w \in W$.

Define the linear maps
$S:(V \otimes W) \otimes A \rightarrow A \otimes(V \otimes W), \quad S:=\left(R \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{V} \otimes P\right)$,
$\theta:(V \otimes W) \otimes(V \otimes W) \rightarrow A \otimes(V \otimes W)$,
$\theta:=\left(\mu_{A} \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{A} \otimes R \otimes \mathrm{id}_{W}\right) \circ(\sigma \otimes \nu) \circ\left(\mathrm{id}_{V} \otimes Q \otimes \mathrm{id}_{W}\right)$,
$T: W \otimes(A \otimes V) \rightarrow(A \otimes V) \otimes W, \quad T:=\left(\operatorname{id}_{A} \otimes Q\right) \circ\left(P \otimes \mathrm{id}_{V}\right)$,
$\eta: W \otimes W \rightarrow(A \otimes V) \otimes W$,

$$
\eta\left(w \otimes w^{\prime}\right)=\left(\nu_{1}\left(w, w^{\prime}\right) \otimes 1_{V}\right) \otimes \nu_{2}\left(w, w^{\prime}\right), \quad \forall w, w^{\prime} \in W
$$

Then we have a crossed product $A \otimes_{S, \theta}(V \otimes W)$ (with respect to $1_{V \otimes W}:=$ $\left.1_{V} \otimes 1_{W}\right)$, a crossed product $\left(A \otimes_{R, \sigma} V\right) \otimes_{T, \eta} W$ and an algebra isomorphism $A \otimes_{S, \theta}(V \otimes W) \simeq\left(A \otimes_{R, \sigma} V\right) \otimes_{T, \eta} W$ given by the trivial identification.

Proof. We first show that $A \otimes_{S, \theta}(V \otimes W)$ is a crossed product, i.e. we prove (2.1)-(2.5) with R replaced by S, σ replaced by θ etc. The relations (2.1) and (2.2) follow immediately by (3.1) and the relations (2.1) and (2.2) for R, σ and P, ν. Note that the maps S and θ are defined explicitly by

$$
\begin{aligned}
S(v \otimes w \otimes a) & =\left(a_{P}\right)_{R} \otimes v_{R} \otimes w_{P} \\
\theta\left(v \otimes w \otimes v^{\prime} \otimes w^{\prime}\right) & =\sigma_{1}\left(v, v_{Q}^{\prime}\right) \nu_{1}\left(w_{Q}, w^{\prime}\right)_{R} \otimes \sigma_{2}\left(v, v_{Q}^{\prime}\right)_{R} \otimes \nu_{2}\left(w_{Q}, w^{\prime}\right)
\end{aligned}
$$

for all $v, v^{\prime} \in V, w, w^{\prime} \in W$ and $a \in A$. For all $a \in A, v \in V$ and $w \in W$, we will denote $R(v \otimes a)=a_{R} \otimes v_{R}=a_{r} \otimes v_{r}=a_{\mathcal{R}} \otimes v_{\mathcal{R}}=a_{\bar{R}} \otimes v_{\bar{R}}$, $Q(w \otimes v)=v_{Q} \otimes w_{Q}=v_{q} \otimes w_{q}=v_{\bar{Q}} \otimes w_{\bar{Q}}$ and $P(w \otimes a)=a_{P} \otimes w_{P}=a_{p} \otimes w_{p}$.

Proof of (2.3).
$S \circ\left(\mathrm{id}_{V} \otimes \mathrm{id}_{W} \otimes \mu_{A}\right)\left(v \otimes w \otimes a \otimes a^{\prime}\right)$

$$
=S\left(v \otimes w \otimes a a^{\prime}\right)=\left(\left(a a^{\prime}\right)_{P}\right)_{R} \otimes v_{R} \otimes w_{P} \stackrel{\boxed{(2.6)}}{-}\left(a_{P} a_{p}^{\prime}\right)_{R} \otimes v_{R} \otimes\left(w_{P}\right)_{p}
$$

$$
\stackrel{(2.6}{-}\left(a_{P}\right)_{R}\left(a_{p}^{\prime}\right)_{r} \otimes\left(v_{R}\right)_{r} \otimes\left(w_{P}\right)_{p}
$$

$$
=\left(\mu_{A} \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right)\left(\left(a_{P}\right)_{R} \otimes\left(a_{p}^{\prime}\right)_{r} \otimes\left(v_{R}\right)_{r} \otimes\left(w_{P}\right)_{p}\right)
$$

$$
=\left(\mu_{A} \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{A} \otimes S\right)\left(\left(a_{P}\right)_{R} \otimes v_{R} \otimes w_{P} \otimes a^{\prime}\right)
$$

$$
=\left(\mu_{A} \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{A} \otimes S\right) \circ\left(S \otimes \mathrm{id}_{A}\right)\left(v \otimes w \otimes a \otimes a^{\prime}\right), \quad \text { q.e.d. }
$$

Proof of 2.4 .
$\left(\mu_{A} \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{A} \otimes \theta\right) \circ\left(S \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right)$ $\circ\left(\mathrm{id}_{V} \otimes \mathrm{id}_{W} \otimes \theta\right)\left(v \otimes w \otimes v^{\prime} \otimes w^{\prime} \otimes v^{\prime \prime} \otimes w^{\prime \prime}\right)$

$$
\begin{aligned}
= & \left(\mu_{A} \otimes \operatorname{id}_{V} \otimes \operatorname{id}_{W}\right) \circ\left(\operatorname{id}_{A} \otimes \theta\right) \circ\left(S \otimes \operatorname{id}_{V} \otimes \operatorname{id}_{W}\right) \\
& \left(v \otimes w \otimes \sigma_{1}\left(v^{\prime}, v_{Q}^{\prime \prime}\right) \nu_{1}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)_{R} \otimes \sigma_{2}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{R} \otimes \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right) \\
= & \left(\mu_{A} \otimes \operatorname{id}_{V} \otimes \operatorname{id}_{W}\right) \circ\left(\operatorname{id}_{A} \otimes \theta\right) \\
& \left(\left(\left[\sigma_{1}\left(v^{\prime}, v_{Q}^{\prime \prime}\right) \nu_{1}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)_{R}\right]_{P}\right)_{r} \otimes v_{r} \otimes w_{P} \otimes \sigma_{2}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{R} \otimes \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right) \\
= & \left(\left[\sigma_{1}\left(v^{\prime}, v_{Q}^{\prime \prime}\right) \nu_{1}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)_{R}\right]_{P}\right)_{r} \sigma_{1}\left(v_{r},\left(\sigma_{2}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{R}\right)_{q}\right) \\
& \nu_{1}\left(\left(w_{P}\right)_{q}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)_{\mathcal{R}} \otimes \sigma_{2}\left(v_{r},\left(\sigma_{2}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{R}\right)_{q}\right)_{\mathcal{R}} \\
& \otimes \nu_{2}\left(\left(w_{P}\right)_{q}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)
\end{aligned}
$$

$\stackrel{2.6)}{=}\left(\sigma_{1}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{P}\left(\nu_{1}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)_{R}\right)_{p}\right)_{r} \sigma_{1}\left(v_{r},\left(\sigma_{2}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{R}\right)_{q}\right)$
$\nu_{1}\left(\left(\left(w_{P}\right)_{p}\right)_{q}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)_{\mathcal{R}} \otimes \sigma_{2}\left(v_{r},\left(\sigma_{2}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{R}\right)_{q}\right)_{\mathcal{R}}$
$\otimes \nu_{2}\left(\left(\left(w_{P}\right)_{p}\right)_{q}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)$
$\stackrel{2.6}{=}\left(\sigma_{1}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{P}\right)_{\bar{R}}\left(\left(\nu_{1}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)_{R}\right)_{p}\right)_{r} \sigma_{1}\left(\left(v_{\bar{R}}\right)_{r},\left(\sigma_{2}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{R}\right)_{q}\right)$
$\nu_{1}\left(\left(\left(w_{P}\right)_{p}\right)_{q}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)_{\mathcal{R}} \otimes \sigma_{2}\left(\left(v_{\bar{R}}\right)_{r},\left(\sigma_{2}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{R}\right)_{q}\right)_{\mathcal{R}}$
$\otimes \nu_{2}\left(\left(\left(w_{P}\right)_{p}\right)_{q}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)$
(3.3) $\left(\sigma_{1}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{P}\right)_{\bar{R}}\left(\left(\nu_{1}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)_{p}\right)_{R}\right)_{r} \sigma_{1}\left(\left(v_{\bar{R}}\right)_{r},\left(\sigma_{2}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{q}\right)_{R}\right)$
$\nu_{1}\left(\left(\left(w_{P}\right)_{q}\right)_{p}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)_{\mathcal{R}} \otimes \sigma_{2}\left(\left(v_{\bar{R}}\right)_{r},\left(\sigma_{2}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{q}\right)_{R}\right)_{\mathcal{R}}$
$\otimes \nu_{2}\left(\left(\left(w_{P}\right)_{q}\right)_{p}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)$
2.8
$\left(\sigma_{1}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{P}\right)_{\bar{R}} \sigma_{1}\left(v_{\bar{R}}, \sigma_{2}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{q}\right)\left(\nu_{1}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)_{p}\right)_{R}$
$\nu_{1}\left(\left(\left(w_{P}\right)_{q}\right)_{p}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)_{\mathcal{R}} \otimes\left(\sigma_{2}\left(v_{\bar{R}}, \sigma_{2}\left(v^{\prime}, v_{Q}^{\prime \prime}\right)_{q}\right)_{R}\right)_{\mathcal{R}}$
$\otimes \nu_{2}\left(\left(\left(w_{P}\right)_{q}\right)_{p}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)$
$\stackrel{3.5}{-} \sigma_{1}\left(v_{\bar{Q}}^{\prime},\left(v_{Q}^{\prime \prime}\right)_{q}\right)_{\bar{R}} \sigma_{1}\left(v_{\bar{R}}, \sigma_{2}\left(v_{\bar{Q}}^{\prime},\left(v_{Q}^{\prime \prime}\right)_{q}\right)\right)\left(\nu_{1}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)_{p}\right)_{R}$
$\nu_{1}\left(\left(\left(w_{\bar{Q}}\right)_{q}\right)_{p}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)_{\mathcal{R}} \otimes\left(\sigma_{2}\left(v_{\bar{R}}, \sigma_{2}\left(v_{\bar{Q}}^{\prime},\left(v_{Q}^{\prime \prime}\right)_{q}\right)\right)_{R}\right)_{\mathcal{R}}$
$\otimes \nu_{2}\left(\left(\left(w_{\bar{Q}}\right)_{q}\right)_{p}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)$
$\stackrel{2.7)}{=} \sigma_{1}\left(v, v_{\bar{Q}}^{\prime}\right) \sigma_{1}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right),\left(v_{Q}^{\prime \prime}\right)_{q}\right)\left(\nu_{1}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)_{p}\right)_{R} \nu_{1}\left(\left(\left(w_{\bar{Q}}\right)_{q}\right)_{p}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)_{\mathcal{R}}$ $\otimes\left(\sigma_{2}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right),\left(v_{Q}^{\prime \prime}\right)_{q}\right)_{R}\right)_{\mathcal{R}} \otimes \nu_{2}\left(\left(\left(w_{\bar{Q}}\right)_{q}\right)_{p}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)$
$\stackrel{2.6)}{=} \sigma_{1}\left(v, v_{\bar{Q}}^{\prime}\right) \sigma_{1}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right),\left(v_{Q}^{\prime \prime}\right)_{q}\right)\left[\nu_{1}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)_{p} \nu_{1}\left(\left(\left(w_{\bar{Q}}\right)_{q}\right)_{p}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)\right]_{R}$ $\otimes \sigma_{2}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right),\left(v_{Q}^{\prime \prime}\right)_{q}\right)_{R} \otimes \nu_{2}\left(\left(\left(w_{\bar{Q}}\right)_{q}\right)_{p}, \nu_{2}\left(w_{Q}^{\prime}, w^{\prime \prime}\right)\right)$
$\stackrel{\text { 2.7) }}{=} \sigma_{1}\left(v, v_{\bar{Q}}^{\prime}\right) \sigma_{1}\left(\sigma_{2}\left(v, v \bar{Q}_{\bar{Q}}^{\prime}\right),\left(v_{Q}^{\prime \prime}\right)_{q}\right)\left[\nu_{1}\left(\left(w_{\bar{Q}}\right)_{q}, w_{Q}^{\prime}\right) \nu_{1}\left(\nu_{2}\left(\left(w_{\bar{Q}}\right)_{q}, w_{Q}^{\prime}\right), w^{\prime \prime}\right)\right]_{R}$ $\otimes \sigma_{2}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right),\left(v_{Q}^{\prime \prime}\right)_{q}\right)_{R} \otimes \nu_{2}\left(\nu_{2}\left(\left(w_{\bar{Q}}\right)_{q}, w_{Q}^{\prime}\right), w^{\prime \prime}\right)$

$$
\begin{aligned}
& \stackrel{(2.8)}{=} \sigma_{1}\left(v, v_{\bar{Q}}^{\prime}\right)\left\{\left[\nu_{1}\left(\left(w_{\bar{Q}}\right)_{q}, w_{Q}^{\prime}\right) \nu_{1}\left(\nu_{2}\left(\left(w_{\bar{Q}}\right)_{q}, w_{Q}^{\prime}\right), w^{\prime \prime}\right)\right]_{R}\right\}_{r} \\
& \quad \sigma_{1}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right)_{r},\left(\left(v_{Q}^{\prime \prime}\right)_{q}\right)_{R}\right) \otimes \sigma_{2}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right)_{r},\left(\left(v_{Q}^{\prime \prime}\right)_{q}\right)_{R}\right) \\
& \quad \otimes \nu_{2}\left(\nu_{2}\left(\left(w_{\bar{Q}}\right)_{q}, w_{Q}^{\prime}\right), w^{\prime \prime}\right)
\end{aligned}
$$

2.6
$\sigma_{1}\left(v, v_{\bar{Q}}^{\prime}\right)\left[\nu_{1}\left(\left(w_{\bar{Q}}\right)_{q}, w_{Q}^{\prime}\right)_{R} \nu_{1}\left(\nu_{2}\left(\left(w_{\bar{Q}}\right)_{q}, w_{Q}^{\prime}\right), w^{\prime \prime}\right)_{\mathcal{R}}\right]_{r}$ $\sigma_{1}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right)_{r},\left(\left(\left(v_{Q}^{\prime \prime}\right)_{q}\right)_{R}\right)_{\mathcal{R}}\right) \otimes \sigma_{2}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right)_{r},\left(\left(\left(v_{Q}^{\prime \prime}\right)_{q}\right)_{R}\right)_{\mathcal{R}}\right)$ $\otimes \nu_{2}\left(\nu_{2}\left(\left(w_{\bar{Q}}\right)_{q}, w_{Q}^{\prime}\right), w^{\prime \prime}\right)$
$\stackrel{\text { 3.7. }}{=} \sigma_{1}\left(v, v_{\bar{Q}}^{\prime}\right)\left[\nu_{1}\left(w_{\bar{Q}}, w^{\prime}\right) \nu_{1}\left(\nu_{2}\left(w_{\bar{Q}}, w^{\prime}\right)_{Q}, w^{\prime \prime}\right)_{\mathcal{R}}\right]_{r} \sigma_{1}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right)_{r},\left(v_{Q}^{\prime \prime}\right)_{\mathcal{R}}\right)$ $\otimes \sigma_{2}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right)_{r},\left(v_{Q}^{\prime \prime}\right)_{\mathcal{R}}\right) \otimes \nu_{2}\left(\nu_{2}\left(w_{\bar{Q}}, w^{\prime}\right)_{Q}, w^{\prime \prime}\right)$
2.6 $\sigma_{1}\left(v, v_{\bar{Q}}^{\prime}\right) \nu_{1}\left(w_{\bar{Q}}, w^{\prime}\right)_{R}\left(\nu_{1}\left(\nu_{2}\left(w_{\bar{Q}}, w^{\prime}\right)_{Q}, w^{\prime \prime}\right)_{\mathcal{R}}\right)_{r} \sigma_{1}\left(\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right)_{R}\right)_{r},\left(v_{Q}^{\prime \prime}\right)_{\mathcal{R}}\right)$ $\otimes \sigma_{2}\left(\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right)_{R}\right)_{r},\left(v_{Q}^{\prime \prime}\right)_{\mathcal{R}}\right) \otimes \nu_{2}\left(\nu_{2}\left(w_{\bar{Q}}, w^{\prime}\right)_{Q}, w^{\prime \prime}\right)$
$\stackrel{\text { 2.8. }}{=} \sigma_{1}\left(v, v_{\bar{Q}}^{\prime}\right) \nu_{1}\left(w_{\bar{Q}}, w^{\prime}\right)_{R} \sigma_{1}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right)_{R}, v_{Q}^{\prime \prime}\right) \nu_{1}\left(\nu_{2}\left(w_{\bar{Q}}, w^{\prime}\right)_{Q}, w^{\prime \prime}\right)_{r}$
$\otimes \sigma_{2}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right)_{R}, v_{Q}^{\prime \prime}\right)_{r} \otimes \nu_{2}\left(\nu_{2}\left(w_{\bar{Q}}, w^{\prime}\right)_{Q}, w^{\prime \prime}\right)$
$=\left(\mu_{A} \otimes \operatorname{id}_{V} \otimes \operatorname{id}_{W}\right)\left(\sigma_{1}\left(v, v \frac{\prime}{Q}\right) \nu_{1}\left(w_{\bar{Q}}, w^{\prime}\right)_{R} \otimes \sigma_{1}\left(\sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right)_{R}, v_{Q}^{\prime \prime}\right)\right.$
$\nu_{1}\left(\nu_{2}\left(w_{\bar{Q}}, w^{\prime}\right)_{Q}, w^{\prime \prime}\right)_{r} \otimes \sigma_{2}\left(\sigma_{2}\left(v, v \frac{\prime}{Q}\right)_{R}, v_{Q}^{\prime \prime}\right)_{r}$
$\left.\otimes \nu_{2}\left(\nu_{2}\left(w_{\bar{Q}}, w^{\prime}\right)_{Q}, w^{\prime \prime}\right)\right)$
$=\left(\mu_{A} \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{A} \otimes \theta\right)\left(\sigma_{1}\left(v, v_{\bar{Q}}^{\prime}\right) \nu_{1}\left(w_{\bar{Q}}, w^{\prime}\right)_{R}\right.$
$\left.\otimes \sigma_{2}\left(v, v_{\bar{Q}}^{\prime}\right)_{R} \otimes \nu_{2}\left(w_{\bar{Q}}, w^{\prime}\right) \otimes v^{\prime \prime} \otimes w^{\prime \prime}\right)$
$=\left(\mu_{A} \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{A} \otimes \theta\right) \circ\left(\theta \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right)(v \otimes w$ $\left.\otimes v^{\prime} \otimes w^{\prime} \otimes v^{\prime \prime} \otimes w^{\prime \prime}\right), \quad$ q.e.d.

Proof of (2.5).
$\left(\mu_{A} \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{A} \otimes \theta\right) \circ\left(S \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{V} \otimes \mathrm{id}_{W} \otimes S\right)\left(v \otimes w \otimes v^{\prime} \otimes w^{\prime} \otimes a\right)$

$$
=\left(\mu_{A} \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{A} \otimes \theta\right) \circ\left(S \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right)
$$

$\left(v \otimes w \otimes\left(a_{P}\right)_{R} \otimes v_{R}^{\prime} \otimes w_{P}^{\prime}\right)$
$=\left(\mu_{A} \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{A} \otimes \theta\right)\left(\left(\left(\left(a_{P}\right)_{R}\right)_{p}\right)_{r} \otimes v_{r} \otimes w_{p} \otimes v_{R}^{\prime} \otimes w_{P}^{\prime}\right)$
$=\left(\left(\left(a_{P}\right)_{R}\right)_{p}\right)_{r} \sigma_{1}\left(v_{r},\left(v_{R}^{\prime}\right)_{Q}\right) \nu_{1}\left(\left(w_{p}\right)_{Q}, w_{P}^{\prime}\right)_{\mathcal{R}}$
$\otimes \sigma_{2}\left(v_{r},\left(v_{R}^{\prime}\right)_{Q}\right)_{\mathcal{R}} \otimes \nu_{2}\left(\left(w_{p}\right)_{Q}, w_{P}^{\prime}\right)$
3.3
$\left(\left(\left(a_{P}\right)_{p}\right)_{R}\right)_{r} \sigma_{1}\left(v_{r},\left(v_{Q}^{\prime}\right)_{R}\right) \nu_{1}\left(\left(w_{Q}\right)_{p}, w_{P}^{\prime}\right)_{\mathcal{R}}$ $\otimes \sigma_{2}\left(v_{r},\left(v_{Q}^{\prime}\right)_{R}\right)_{\mathcal{R}} \otimes \nu_{2}\left(\left(w_{Q}\right)_{p}, w_{P}^{\prime}\right)$
2.8 $\sigma_{1}\left(v, v_{Q}^{\prime}\right)\left(\left(a_{P}\right)_{p}\right)_{R} \nu_{1}\left(\left(w_{Q}\right)_{p}, w_{P}^{\prime}\right)_{\mathcal{R}} \otimes\left(\sigma_{2}\left(v, v_{Q}^{\prime}\right)_{R}\right)_{\mathcal{R}} \otimes \nu_{2}\left(\left(w_{Q}\right)_{p}, w_{P}^{\prime}\right)$
2.6
$\sigma_{1}\left(v, v_{Q}^{\prime}\right)\left[\left(a_{P}\right)_{p} \nu_{1}\left(\left(w_{Q}\right)_{p}, w_{P}^{\prime}\right)\right]_{R} \otimes \sigma_{2}\left(v, v_{Q}^{\prime}\right)_{R} \otimes \nu_{2}\left(\left(w_{Q}\right)_{p}, w_{P}^{\prime}\right)$
2.8)
$\sigma_{1}\left(v, v_{Q}^{\prime}\right)\left[\nu_{1}\left(w_{Q}, w^{\prime}\right) a_{P}\right]_{R} \otimes \sigma_{2}\left(v, v_{Q}^{\prime}\right)_{R} \otimes \nu_{2}\left(w_{Q}, w^{\prime}\right)_{P}$
2.6
$\sigma_{1}\left(v, v_{Q}^{\prime}\right) \nu_{1}\left(w_{Q}, w^{\prime}\right)_{R}\left(a_{P}\right)_{r} \otimes\left(\sigma_{2}\left(v, v_{Q}^{\prime}\right)_{R}\right)_{r} \otimes \nu_{2}\left(w_{Q}, w^{\prime}\right)_{P}$
$=\left(\mu_{A} \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right) \circ\left(\mathrm{id}_{A} \otimes S\right)\left(\sigma_{1}\left(v, v_{Q}^{\prime}\right) \nu_{1}\left(w_{Q}, w^{\prime}\right)_{R}\right.$
$\left.\otimes \sigma_{2}\left(v, v_{Q}^{\prime}\right)_{R} \otimes \nu_{2}\left(w_{Q}, w^{\prime}\right) \otimes a\right)$
$=\left(\mu_{A} \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{W}\right) \circ\left(\operatorname{id}_{A} \otimes S\right) \circ\left(\theta \otimes \operatorname{id}_{A}\right)\left(v \otimes w \otimes v^{\prime} \otimes w^{\prime} \otimes a\right), \quad$ q.e.d.
So $A \otimes_{S, \theta}(V \otimes W)$ is indeed a crossed product. With a similar computation one can prove that $\left(A \otimes_{R, \sigma} V\right) \otimes_{T, \eta} W$ is a crossed product; the only thing left to prove is that the multiplications of $A \otimes_{S, \theta}(V \otimes W)$ and $\left(A \otimes_{R, \sigma} V\right) \otimes_{T, \eta} W$ coincide. A straightforward computation shows that the multiplication of $A \otimes_{S, \theta}(V \otimes W)$ is given by the formula

$$
\begin{aligned}
(a \otimes v \otimes w)\left(a^{\prime} \otimes v^{\prime} \otimes w^{\prime}\right)= & a\left(a_{P}^{\prime}\right)_{\mathcal{R}} \sigma_{1}\left(v_{\mathcal{R}}, v_{Q}^{\prime}\right) \nu_{1}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right)_{r} \\
& \otimes \sigma_{2}\left(v_{\mathcal{R}}, v_{Q}^{\prime}\right)_{r} \otimes \nu_{2}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right)
\end{aligned}
$$

We now compute the multiplication of $\left(A \otimes_{R, \sigma} V\right) \otimes_{T, \eta} W$:
$(a \otimes v \otimes w)\left(a^{\prime} \otimes v^{\prime} \otimes w^{\prime}\right)$

$$
\begin{aligned}
= & (a \otimes v)\left(a^{\prime} \otimes v^{\prime}\right)_{T} \eta_{1}\left(w_{T}, w^{\prime}\right) \otimes \eta_{2}\left(w_{T}, w^{\prime}\right) \\
= & (a \otimes v)\left(a_{P}^{\prime} \otimes v_{Q}^{\prime}\right) \eta_{1}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right) \otimes \eta_{2}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right) \\
= & (a \otimes v)\left(a_{P}^{\prime} \otimes v_{Q}^{\prime}\right)\left(\nu_{1}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right) \otimes 1_{V}\right) \otimes \nu_{2}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right) \\
= & (a \otimes v)\left(a_{P}^{\prime} \nu_{1}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right)_{R} \otimes\left(v_{Q}^{\prime}\right)_{R}\right) \otimes \nu_{2}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right) \\
= & a\left[a_{P}^{\prime} \nu_{1}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right)_{R}\right]_{r} \sigma_{1}\left(v_{r},\left(v_{Q}^{\prime}\right)_{R}\right) \otimes \sigma_{2}\left(v_{r},\left(v_{Q}^{\prime}\right)_{R}\right) \otimes \nu_{2}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right) \\
\stackrel{(2.6)}{=} & a\left(a_{P}^{\prime}\right)_{\mathcal{R}}\left(\nu_{1}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right)_{R}\right)_{r} \sigma_{1}\left(\left(v_{\mathcal{R}}\right)_{r},\left(v_{Q}^{\prime}\right)_{R}\right) \\
& \otimes \sigma_{2}\left(\left(v_{\mathcal{R}}\right)_{r},\left(v_{Q}^{\prime}\right)_{R}\right) \otimes \nu_{2}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right)
\end{aligned}
$$

$$
\stackrel{(2.8)}{-} a\left(a_{P}^{\prime}\right)_{\mathcal{R}} \sigma_{1}\left(v_{\mathcal{R}}, v_{Q}^{\prime}\right) \nu_{1}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right)_{r} \otimes \sigma_{2}\left(v_{\mathcal{R}}, v_{Q}^{\prime}\right)_{r} \otimes \nu_{2}\left(\left(w_{P}\right)_{Q}, w^{\prime}\right)
$$

and we can see that the two multiplications coincide.
ExAmple 3.2. We recall from [JLPV] what was called there an iterated twisted tensor product of algebras. Let A, B, C be associative unital algebras, $R_{1}: B \otimes A \rightarrow A \otimes B, R_{2}: C \otimes B \rightarrow B \otimes C, R_{3}: C \otimes A \rightarrow A \otimes C$ twisting maps satisfying the braid equation
$\left(\mathrm{id}_{A} \otimes R_{2}\right) \circ\left(R_{3} \otimes \mathrm{id}_{B}\right) \circ\left(\mathrm{id}_{C} \otimes R_{1}\right)=\left(R_{1} \otimes \mathrm{id}_{C}\right) \circ\left(\mathrm{id}_{B} \otimes R_{3}\right) \circ\left(R_{2} \otimes \mathrm{id}_{A}\right)$.
Then we have an algebra structure on $A \otimes B \otimes C$ (called the iterated twisted
tensor product) with unit $1_{A} \otimes 1_{B} \otimes 1_{C}$ and multiplication

$$
(a \otimes b \otimes c)\left(a^{\prime} \otimes b^{\prime} \otimes c^{\prime}\right)=a\left(a_{R_{3}}^{\prime}\right)_{R_{1}} \otimes b_{R_{1}} b_{R_{2}}^{\prime} \otimes\left(c_{R_{3}}\right)_{R_{2}} c^{\prime} .
$$

We define $V=B, W=C, R=R_{1}, P=R_{3}, Q=R_{2}$ and the linear maps

$$
\begin{array}{lll}
\sigma: V \otimes V \rightarrow A \otimes V, & \sigma\left(b \otimes b^{\prime}\right)=1_{A} \otimes b b^{\prime}, & \forall b, b^{\prime} \in V \\
\nu: W \otimes W \rightarrow A \otimes W, & \nu\left(c \otimes c^{\prime}\right)=1_{A} \otimes c c^{\prime}, & \forall c, c^{\prime} \in W
\end{array}
$$

Then, for the crossed products $A \otimes_{R, \sigma} V=A \otimes_{R_{1}} B, A \otimes_{P, \nu} W=A \otimes_{R_{3}} C$ and the map Q, one can check that the hypotheses of Theorem 3.1 are satisfied and the crossed products $A \otimes_{S, \theta}(V \otimes W) \equiv\left(A \otimes_{R, \sigma} V\right) \otimes_{T, \eta} W$ (notation as in that theorem) coincide with the iterated twisted tensor product.

Example 3.3. Let $A \otimes_{R, \sigma} V$ be a crossed product and W an (associative unital) algebra. Define the linear maps

$$
\begin{array}{rlrl}
P: W \otimes A \rightarrow A \otimes W, & P(w \otimes a) & =a \otimes w, & \\
\nu: W \in A, w \in W, \\
\nu: W & \rightarrow A \otimes W, & \nu\left(w \otimes w^{\prime}\right)=1_{A} \otimes w w^{\prime}, & \forall w, w^{\prime} \in W,
\end{array}
$$

so we have the crossed product $A \otimes_{P, \nu} W$ which is just the ordinary tensor product of algebras $A \otimes W$. Define the linear map $Q: W \otimes V \rightarrow V \otimes W$, $Q(w \otimes v)=v \otimes w$ for all $v \in V, w \in W$. Then one can easily check that the hypotheses of Theorem 3.1 are satisfied.

Acknowledgements. The work of the first author (L. D.) was supported by the National Research Foundation-United Arab Emirates and by the United Arab Emirates University (NRF-UAEU) under grant no. 31S076/2013. The work of the second author (F. P.) was supported by a grant of the Romanian National Authority for Scientific Research, CNCSUEFISCDI, project no. PN-II-ID-PCE-2011-3-0635, contract no. 253/ 5.10.2011.

REFERENCES

[B] T. Brzeziński, Crossed products by a coalgebra, Comm. Algebra 25 (1997), 35513575.
[BPV] D. Bulacu, F. Panaite and F. Van Oystaeyen, Quasi-Hopf algebra actions and smash products, Comm. Algebra 28 (2000), 631-651.
[BPVO] D. Bulacu, F. Panaite and F. Van Oystaeyen, Generalized diagonal crossed products and smash products for quasi-Hopf algebras. Applications, Comm. Math. Phys. 266 (2006), 355-399.
[CSV] A. Cap, H. Schichl and J. Vanžura, On twisted tensor products of algebras, Comm. Algebra 23 (1995), 4701-4735.
[DNN] L. Dăuş, C. Năstăsescu and M. Năstăsescu, Von Neumann regularity of smash products associated with G-set gradings, J. Algebra 331 (2011), 46-57.
[DLGG] C. Di Luigi, J. A. Guccione and J. J. Guccione, Brzeziński's crossed products and braided Hopf crossed products, Comm. Algebra 32 (2004), 3563-3580.
[JLPV] P. Jara Martínez, J. López Peña, F. Panaite and F. Van Oystaeyen, On iterated twisted tensor products of algebras, Int. J. Math. 19 (2008), 1053-1101.
[NRVO] C. Năstăsescu, Ş. Raianu and F. Van Oystaeyen, Modules graded by G-sets, Math. Z. 203 (1990), 605-627.
[P] F. Panaite, Iterated crossed products, J. Algebra Appl. 13 (2014), no. 7, 1450036, 14 pp .
[VDVK] A. Van Daele and S. Van Keer, The Yang-Baxter and pentagon equation, Compos. Math. 91 (1994), 201-221.

Leonard Dăus
Department of Mathematical Sciences
UAE University
PO Box 15551
Al Ain, United Arab Emirates
E-mail: leonard.daus@uaeu.ac.ae

Florin Panaite
Institute of Mathematics
Romanian Academy
PO Box 1-764
RO-014700 Bucureşti, Romania
E-mail: Florin.Panaite@imar.ro

[^0]: 2010 Mathematics Subject Classification: Primary 16S99.
 Key words and phrases: Brzeziński crossed product, twisted tensor product.

