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LAZY 2-COCYCLES OVER MONOIDAL HOM-HOPF ALGEBRAS

BY

XIAOFAN ZHAO (Xinxiang) and XIAOHUI ZHANG (Qufu)

Abstract. We introduce the notion of a lazy 2-cocycle over a monoidal Hom-Hopf
algebra and determine all lazy 2-cocycles for a class of monoidal Hom-Hopf algebras. We
also study the extension of lazy 2-cocycles to a Radford Hom-biproduct.

1. Introduction. LetH be a Hopf algebra over a field k. A left 2-cocycle
σ : H ⊗H → k is called lazy if

σ(h1, g1)h2g2 = h1g1σ(h2, g2)

for any h, g ∈ H (see [11]). An important property used in Chen’s study [6]
of Hopf algebras is that all normalized and convolution invertible lazy
2-cocycles form a group denoted by Z2

L(H). Moreover, Schauenburg [23]
defines the lazy 2-coboundary subgroup B2

L(H) of Z2
L(H) and the second

lazy cohomology group H2
L(H) = Z2

L(H)/B2
L(H), generalizing Sweedler’s

second cohomology group of a cocommutative Hopf algebra. In connection
with Brauer groups of Hopf algebras, bi-Galois groups, projective representa-
tions, lazy cocycles have been studied systematically in [3], [5], [11] and [21].

Motivated by certain problems in physics, various classes of nonassocia-
tive algebras such as Hom-Lie algebras, quasi-Hom-Lie algebras, Hom-Lie
superalgebras etc. have been studied (see [2], [1] and [13]). With the same
idea of modifying associativity-like conditions by endomorphisms, the con-
cepts of Hom-algebras, Hom-colgebras, Hom-Hopf algebras etc. were intro-
duced in [17], [18], [19] and [27]. In [4], the authors consider Hom-structures
from the point of view of monoidal categories and introduce monoidal Hom-
algebras, monoidal Hom-coalgebras etc. in a symmetric monoidal category,
which are slightly different from the above Hom-algebras and Hom-coal-
gebras. Clearly, the notion of monoidal Hom-Hopf algebra is a generalization
of the ordinary Hopf algebra. The theory of monoidal Hom-Hopf algebras
was further developed by many scholars [7–10], [14–16].

The main purpose of this paper is to establish a theory of lazy 2-cocycles
in the setting of monoidal Hom-Hopf algebras. The paper is organized as
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follows. In Section 2, we recall basic definitions and facts on monoidal Hom-
Hopf algebras, Hom-modules, Hom-comodules, Hom-Yetter–Drinfeld mod-
ules, and Radford’s Hom-biproducts. In Section 3, we introduce the notions
of left 2-cocycle, right 2-cocycle and lazy 2-cocycle σ : H ⊗ H → k over a
monoidal Hom-Hopf algebra H. Then we compute all lazy 2-cocycles over
a class of monoidal Hom-Hopf algebras including a 3-dimensional monoidal
Hom-Hopf algebra and Sweedler’s 4-dimensional monoidal Hom-Hopf alge-
bra [7]. The main result of that section is Theorem 3.5 asserting that all
normalized and convolution invertible lazy 2-cocycles form a group. Then
we define the second lazy cohomology group H2

L(H). Some properties of left
2-cocycles are also studied.

Sections 4 and 5 are devoted to the extension of lazy 2-cocycles to a Rad-
ford Hom-biproduct. Namely, let (H,α) be a monoidal Hom-Hopf algebra
with a bijective antipode, and (B, β) be a Hopf algebra in the Hom-Yetter–
Drinfeld category H

HHYD (see [15] for details). In Section 4, we present a
new construction (B×] H,β ⊗α) generalizing Radford’s Hom-smash product

and we obtain a lazy 2-cocycle over (B×] H,β ⊗ α) from a lazy 2-cocycle

over (H,α). In Section 5, we define a lazy 2-cocycle in the setting of Hom-
Yetter–Drinfeld categories and study some of its properties similar to ones
of Section 3. Moreover, we show that a lazy 2-cocycle over (B, β) induces a
lazy 2-cocycle over (B×] H,β ⊗ α).

Throughout this paper, k is a fixed field. Unless otherwise stated, all
vector spaces, algebras, coalgebras, maps and unadorned tensor products
are over k. For a coalgebra C, we denote its comultiplication by ∆(c) =
c1 ⊗ c2 for any c ∈ C; for a left C-comodule (M,ρ), we write its coaction
ρ(m) = m(−1) ⊗ m(0) for any m ∈ M, where the summation symbols are
omitted. Throughout this paper we freely use the Hopf algebra terminology
introduced in [12], [20], [22], [25], [26].

2. Preliminaries. Let Mk = (Mk,⊗,k, a, l, r) be the category of
k-modules. Following [4] we form a new monoidal category H̃(Mk) =
(H(Mk),⊗, (k, idk), ã, l̃, r̃). The objects of H(Mk) are pairs (M,µ), where
M ∈ Mk and µ ∈ Autk(M). Any morphism f : (M,µ) → (N, ν) in
H(Mk) is a k-linear map from M to N such that ν ◦ f = f ◦ µ. For any
(M,µ), (N, ν) ∈ H(Mk), the monoidal structure is given by

(M,µ)⊗ (N, ν) = (M ⊗N,µ⊗ ν),

and the unit is (k, idk).
Generally speaking, all Hom-structures are objects in the monoidal cat-

egory H̃(Mk) = (H(Mk),⊗, (k, idk), ã, l̃, r̃), where the associativity con-
straint ã is given by the formula

ãM,N,L = aM,N,L ◦ ((µ⊗ id)⊗ λ−1) = (µ⊗ (id⊗ λ−1)) ◦ aM,N,L,
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and the unit constraints l̃ and r̃ are defined by

l̃M = µ ◦ lM = lM ◦ (id⊗ µ), r̃M = µ ◦ rM = rM ◦ (µ⊗ id),

for any (M,µ), (N, ν), (L, λ) ∈ H(Mk). The category H̃(Mk) is called the
Hom-category associated to the monoidal category Mk.

Remark 2.1. We recall from [10, Section 5] that there is an exact func-
torial isomorphism

φ : H̃(Mk)→ Mod(k[t, t−1])

between the monoidal category H̃(Mk) defined above and the category
Mod(k[t, t−1]) of all modules over the k-algebra k[t, t−1] of all polynomials
in one indeterminate t, with coefficients in k, localized at the multiplicative
system {1, t, t2, . . . }. Therefore our monoidal category H(Mk) is nothing
else than the module category Mod(k[t, t−1]). Consequently, the monoidal
category H̃(Mk) can be viewed as a full exact subcategory of the category
RepkQ of all k-linear representations of the quiver Q with one vertex and
one loop (see Sections 14.1–14.4 of the monograph [24]).

This interpretation of the category H̃(Mk) in terms of quiver represen-
tations could probably simplify part of our study.

Now we recall from [4], [7] and [15] some definitions on Hom-structures.

Definition 2.2. (i) A unital monoidal Hom-associative algebra is an
object (A,α) in the category H̃(Mk) together with an element 1A ∈ A and
a linear map m : A⊗A→ A, a⊗ b 7→ ab, such that

α(a)(bc) = (ab)α(c), a1A = α(a) = 1Aa,(2.1)

α(ab) = α(a)α(b), α(1A) = 1A,(2.2)

for all a, b, c ∈ A.
(ii) Let (A,α) and (A′, α′) be two monoidal Hom-algebras. A Hom-

algebra map f : (A,α) → (A′, α′) is a linear map such that f ◦ α = α′ ◦ f ,
f(ab) = f(a)f(b) and f(1A) = 1A′ .

Note that the first part of (2.1) can be rewritten as

(2.3) a(bα−1(c)) = (α−1(a)b)c.

In the language of Hopf algebras, m is called the Hom-multiplication, α
is the twisting automorphism, and 1A is the unit.

Definition 2.3. (i) A counital monoidal Hom-coassociative coalgebra is
an object (C, γ) in the category H̃(Mk) together with linear maps ∆ : C →
C ⊗ C, c 7→ c1 ⊗ c2, and ε : C → k such that

γ−1(c1)⊗∆(c2) = ∆(c1)⊗ γ−1(c2), c1ε(c2) = ε(c1)c2 = γ−1(c),(2.4)

∆(γ(c)) = γ(c1)⊗ γ(c2), εγ(c) = ε(c),(2.5)

for all c ∈ C.
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(ii) Let (C, γ) and (C ′, γ′) be two monoidal Hom-coalgebras. A Hom-
coalgebra map f : (C, γ)→ (C ′, γ′) is a linear map such that f ◦ γ = γ′ ◦ f,
∆C′ ◦ f = (f ⊗ f) ◦∆C and εC′ ◦ f = εC .

Note that the first part of (2.4) is equivalent to

(2.6) c1 ⊗ c21 ⊗ γ(c22) = γ(c11)⊗ c12 ⊗ c2.

Definition 2.4. (i) A monoidal Hom-bialgebra H = (H,α,m, 1H ,∆, ε)
is a bialgebra in the category H̃(Mk), which means that (H,α,m, 1H) is a
monoidal Hom-algebra and (H,α,∆, ε) is a monoidal Hom-coalgebra such
that ∆ and ε are Hom-algebra maps, that is, for any h, g ∈ H,

∆(hg) = ∆(h)∆(g), ∆(1H) = 1H ⊗ 1H ,

ε(hg) = ε(h)ε(g), ε(1H) = 1k.

(ii) A monoidal Hom-bialgebra (H,α) is called a monoidal Hom-Hopf
algebra if there exists a linear map (called the antipode) S : H → H in
H̃(Mk) (i.e., S ◦α = α ◦S), which is the convolution inverse of the identity
map (i.e., S(h1)h2 = ε(h)1H = h1S(h2) for any h ∈ H).

As in the case of Hopf algebras, the antipode of a monoidal Hom-Hopf
algebra is a morphism of Hom-anti-algebras and Hom-anti-coalgebras.

Definition 2.5. (i) Let (A,α) be a monoidal Hom-algebra. A left (A,α)-
Hom-module is an object (M,µ) in H̃(Mk) together with a linear map
ϕ : A⊗M →M, a⊗m 7→ am, such that

α(a)(bm) = (ab)µ(m), 1Am = µ(m), µ(am) = α(a)µ(m),

for all a, b ∈ A and m ∈M .

(ii) If (M,µ) and (N, ν) are two left (A,α)-Hom-modules, then a linear
map f : M → N is called a left A-module map if for any a ∈ A and m ∈M
we have f(am) = af(m) and f ◦ µ = ν ◦ f .

Definition 2.6. (i) Let (C, γ) be a monoidal Hom-coalgebra. A left
(C, γ)-Hom-comodule is an object (M,µ) in H̃(Mk) together with a linear
map ρM : M → C ⊗M, m 7→ m(−1) ⊗m(0), such that

∆(m(−1))⊗µ−1(m(0)) = γ−1(m(−1))⊗ρM (m(0)), ε(m(−1))m(0) = µ−1(m),

ρM (µ(m)) = γ(m(−1))⊗µ(m(0)),

for all m ∈M.

(ii) If (M,µ) and (N, ν) are two left (C, γ)-Hom-comodules, then a linear
map g : M → N is called a left C-comodule map if g ◦ µ = ν ◦ g and
ρN (g(m)) = (id⊗ g)ρM (m) for any m ∈M.
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Definition 2.7. Let (H,α) be a monoidal Hom-bialgebra and (B, β) be
a monoidal Hom-algebra.

(i) (B, β) is called a left (H,α)-Hom-module algebra if (B, β) is a left
(H,α)-Hom-module with the action · and satisfies

h · (ab) = (h1 · a)(h2 · b), h · 1B = ε(h)1B,

for any a, b ∈ B and h ∈ H.
(ii) (B, β) is called a left (H,α)-Hom-comodule algebra if (B, β) is a left

(H,α)-Hom-comodule with the coaction ρ and satisfies

ρ(ab) = a(−1)b(−1) ⊗ a(0)b(0), ρ(1B) = 1H ⊗ 1B,

for any a, b ∈ B.

Definition 2.8. Let (H,α) be a monoidal Hom-bialgebra and (C, γ) be
a monoidal Hom-coalgebra.

(i) (C, γ) is called a left (H,α)-Hom-module coalgebra if (C, γ) is a left
(H,α)-Hom-module with the action · and satisfies

∆(h · c) = h1 · c1 ⊗ h2 · c2, εC(h · c) = εH(h)εC(c),

for any c ∈ C and h ∈ H;
(ii) (C, γ) is called a left (H,α)-Hom-comodule coalgebra if (C, γ) is a

left (H,α)-Hom-comodule with the coaction ρ and satisfies

c(−1) ⊗∆(c(0)) = c1(−1)c2(−1) ⊗ c1(0) ⊗ c2(0), c(−1)ε(c(0)) = ε(c)1H ,

for any c ∈ C and h ∈ H.

Definition 2.9. Let (H,α) be a monoidal Hom-bialgebra and (B, β) be
a left (H,α)-Hom-module algebra. The Hom-smash product (B ]H, β ]α) of
(B, β) and (H,α) is defined as follows, for all a, b ∈ B, h, g ∈ H:

(i) B ] H = B ⊗H, when we view them as k-vector spaces,
(ii) Hom-multiplication is given by

(a ] h)(b ] g) = a(h1 · β−1(b)) ] α(h2)g.

Note that (B ] H, β ] α) is a monoidal Hom-algebra with unit 1B ] 1H .

Definition 2.10. Let (H,α) be a monoidal Hom-bialgebra and (B, β)
be a left (H,α)-Hom-comodule coalgebra. Their Hom-smash coproduct
(B ×H,β × α) is defined as follows, for all b ∈ B, h ∈ H:

(i) B ×H = B ⊗H, when we view them as k-vector spaces,
(ii) Hom-comultiplication is given by

∆(b× h) = (b1 × b2(−1)α
−1(h1))⊗ (β(b2(0))× h2).

Note that (B × H,β × α) is a monoidal Hom-coalgebra with counit
εB × εH .
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Let (H,α) be a monoidal Hom-bialgebra and (B, β) be a left (H,α)-
Hom-module algebra and a left (H,α)-Hom-comodule coalgebra. Denote the
Hom-smash product (B]H, β ]α) and the Hom-coproduct (B×H,β×α) by
(B×] H,β ⊗ α). In [15], the authors proved that (B×] H,β ⊗ α) is a monoidal
Hom-bialgebra if and only if the following conditions hold:

(i) εB is an algebra map and ∆B(1B) = 1B ⊗ 1B,
(ii) (B, β) is a left (H,α)-Hom-module coalgebra,

(iii) (B, β) is a left (H,α)-Hom-comodule algebra,
(iv) ∆B(ab) = a1(a2(−1) · β−1(b1))⊗ β(a2(0))b2,

(v) (h1 · β−1(b))(−1)h2 ⊗ β((h1 · β−1(b))(0)) = h1b(−1) ⊗ h2 · b(0), for all
a, b ∈ B and h ∈ H.

Note that if (B×] H,β ⊗ α) is a monoidal Hom-bialgebra as above, it

is called a Radford Hom-biproduct. In this case, the pair ((H,α), (B, β))
is called an admissible pair. Moreover, if (H,α) is a monoidal Hom-Hopf
algebra with antipode SH and SB : B → B in H̃(Mk) (i.e., SB ◦β = β ◦SB)
is a convolution inverse of idB, then (B×] H,β ⊗α) is a monoidal Hom-Hopf
algebra with antipode S given by

S(b× h) =
(
1B × SH(α−1(b(−1))α

−2(h))
)
(SB(b(0))× 1H)

for all b ∈ B and h ∈ H.

Definition 2.11. Let (H,α) be a monoidal Hom-Hopf algebra. A left-
left (H,α)-Hom-Yetter–Drinfeld module is an object (M,β) in H̃(Mk) such
that (M,β) is a left (H,α)-Hom-module (with notation h⊗m 7→ h ·m) and
a left (H,α)-Hom-comodule (with notation m 7→ m(−1) ⊗ m(0)) satisfying
the following compatibility condition:

h1m(−1) ⊗ h2 ·m(0) = (h1 · β−1(m))(−1)h2 ⊗ β((h1 · β−1(m))(0)),

which is equivalent to the equation

ρ(h ·m) = (h11α
−1(m(−1)))S(h2)⊗ (α(h12) ·m(0)),

for all h ∈ H, and m ∈M .

Let H
HHYD be the category of all left-left (H,α)-Hom-Yetter–Drinfeld

modules and left H-linear left H-colinear maps. If the antipode of (H,α) is
bijective, then the category (HHHYD,⊗, (k, id), a, l, r, c) is a braided monoidal
category, where for any (M,µ), (N, ν) ∈ H(Mk), the monoidal structure is
given by (M,µ) ⊗ (N, ν) = (M ⊗ N,µ ⊗ ν), ((M ⊗ N,µ ⊗ ν) ∈ H

HHYD in
the usual way), the unit is (k, id), ((k, id) ∈ H

HHYD in the usual way), the
associativity and unit constraints are given by

aU,V,W : (U ⊗V )⊗W → U ⊗ (V ⊗W ), (u⊗ v)⊗w 7→ β(u)⊗ (v⊗ τ−1(w)),

lV : k⊗ V → V, k ⊗ v 7→ kγ(v),

rV : V ⊗ k→ V, v ⊗ k 7→ kγ(v),
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and the braiding is given by

cU,V : U ⊗ V → V ⊗ U, u⊗ v 7→ u(−1) · γ−1(v)⊗ β(u(0)),

for any (U, β), (V, γ), (W, τ) ∈ H
HHYD and u ∈ U , v ∈ V , w ∈W , k ∈ k.

Recall from [15, Proposition 4.7] that if (H,α) is a monoidal Hom-Hopf
algebra and (B, β) is a Hopf algebra in H

HHYD, then (B×] H,β ⊗ α) is a
monoidal Hom-Hopf algebra.

3. Lazy 2-cocycles over monoidal Hom-Hopf algebras. In this
section, we always let (H,α) denote a monoidal Hom-Hopf algebra and σ :
H ⊗H → k be a k-linear α-invariant map, i.e., σ ◦ (α⊗ α) = σ.

Definition 3.1. Let σ : H ⊗H → k be a k-linear α-invariant map.

(i) σ is called a left 2-cocycle if σ(h1, g1)σ(h2g2, l)=σ(g1, l1)σ(h, g2l2);
(ii) σ is called a right 2-cocycle if σ(h1g1, l)σ(h2, g2)=σ(h, g1l1)σ(g2, l2);
(iii) σ is called lazy if σ(h1, g1)h2g2 = h1g1σ(h2, g2);
(iv) σ is called normalized if σ(h, 1) = σ(1, h) = ε(h),

for any h, g, l ∈ H.

Remark 3.2. (i) If σ : H ⊗ H → k is a convolution invertible left
2-cocycle, then σ−1 is a right 2-cocycle;

(ii) If σ : H ⊗ H → k is a lazy left 2-cocycle, then it is also a right
2-cocycle and in this case, we call σ a lazy 2-cocycle.

Example 3.3. Let (H = k{1, g, g2}, α) be a 3-dimensional monoidal
Hom-Hopf algebra, where the Hom-multiplication is given by

H 1 g g2

1 1 g2 g

g g2 g 1

g2 g 1 g2

the Hom-comultiplication is given by

∆(1) = 1⊗ 1, ∆(g) = g2 ⊗ g2, ∆(g2) = g ⊗ g,

the counit is given by

ε(1) = ε(g) = ε(g2) = 1,

the antipode is given by

S(1) = 1, S(g) = g2, S(g2) = g,

and α ∈ Autk(H) is given by

α(1) = 1, α(g) = g2, α(g2) = g.
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It is easy to see that any k-linear α-invariant map σ : H ⊗H → k is of the
form

σ 1 g g2

1 k1 k2 k2

g k3 k4 k5

g2 k3 k5 k4

for some ki ∈ k, i = 1, 2, 3, 4, 5.

Since (H,α) is cocommutative, any left 2-cocycle is lazy. A computation
shows that any lazy 2-cocycle σ must be equal to kσi for some k ∈ k and
i ∈ {1, 2, 3, 4, 5, 6}, where

σ1 1 g g2

1 1 1 1

g 1 1 1

g2 1 1 1

σ2 1 g g2

1 1 1 1

g 1 0 0

g2 1 0 0

σ3 1 g g2

1 1 1 1

g 0 0 0

g2 0 0 0

σ4 1 g g2

1 1 0 0

g 1 0 0

g2 1 0 0

σ5 1 g g2

1 1 0 0

g 0 0 0

g2 0 0 0

σ6 1 g g2

1 0 0 0

g 0 0 1

g2 0 1 0

Example 3.4. Recall from [7, Example 3.5] that (H4 = k{1, g, x, y}, α)
is a 4-dimensional monoidal Hom-Hopf algebra (usually called Sweedler’s
4-dimensional monoidal Hom-Hopf algebra), where the Hom-multiplication
is given by

H4 1 g x y

1 1 g cx cy

g g 1 cy cx

x cx −cy 0 0

y cy −cx 0 0

the Hom-comultiplication is given by

∆(1) = 1⊗ 1, ∆(g) = g ⊗ g,

∆(x) =
1

c
(x⊗ 1 + g ⊗ x), ∆(y) =

1

c
(y ⊗ g + 1⊗ y),

the counit is given by

ε(1) = ε(g) = 1, ε(x) = ε(y) = 0,

the antipode is given by

S(1) = 1, S(g) = g, S(x) = −y, S(y) = x,
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and α ∈ Autk(H4) is given by

α(1) = 1, α(g) = g, α(x) = cx, α(y) = cy,

for any 0 6= c ∈ k.
We will find all lazy 2-cocycles of (H4, α). When c = 1, (H4, α) is just

the ordinary Sweedler’s 4-dimensional Hopf algebra and any lazy 2-cocycle
of (H4, α) is of the form

σ 1 g x y

1 1 1 0 0

g 1 1 0 0

x 0 0 t/2 −t/2
y 0 0 t/2 −t/2

for some t ∈ k (see [3, Example 2.1]).
When c = −1, any lazy 2-cocycle of (H4, α) is of the form

σ 1 g x y

1 0 0 0 0

g 0 0 0 0

x 0 0 k1 k2

y 0 0 k3 k4

or

σ 1 g x y

1 k k 0 0

g k k 0 0

x 0 0 t −t
y 0 0 t −t

for any k1, k2, k3, k4, k, t ∈ k, and k 6= 0.
When c2 6= 1, any lazy 2-cocycle of (H4, α) is of the form

σ 1 g x y

1 k k 0 0

g k k 0 0

x 0 0 0 0

y 0 0 0 0

for any k ∈ k.
Notation. (i) The set of normalized and convolution invertible k-linear

α-invariant maps σ : H ⊗ H → k is denoted by Reg2(H,α); it is a group
under convolution product.

(ii) The set of lazy elements of Reg2(H,α), denoted by Reg2
L(H,α), is a

subgroup of Reg2(H,α).
(iii) We denote by Z2(H,α) the set of left 2-cocycles on (H,α) and

by Z2
L(H,α) the set Z2(H,α) ∩ Reg2

L(H,α) of normalized and convolution
invertible lazy 2-cocycles.

It is well known that Z2(H,α) is in general not closed under convolu-
tion. Next we show that one of the main features of lazy 2-cocycles is that
Z2
L(H,α) is closed under the convolution product.
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Theorem 3.5. The subset Z2
L(H,α) of Z2(H,α) is a group under the

convolution product.

Proof. One easily shows that σ ∈ Z2
L(H,α) implies σ−1 ∈ Z2

L(H,α). It
remains to show that σ ∗ τ ∈ Z2

L(H,α) for any σ, τ ∈ Z2
L(H,α), i.e.,

(σ ∗ τ)(h1, g1)(σ ∗ τ)(h2g2, l) = (σ ∗ τ)(g1, l1)(σ ∗ τ)(h, g2l2)

for any h, g, l ∈ H. Indeed, we have

(σ ∗ τ)(h1, g1)(σ ∗ τ)(h2g2, l) = σ(h11, g11)τ(h12, g12)σ(h21g21, l1)τ(h22g22, l2)

= σ(h1, g1)σ(α(h212)α(g212), l1)τ(α(h211), α(g211))τ(h22g22, l2)

= σ(h1, g1)σ(α(h211)α(g211), l1)τ(h212, g212)τ(h22g22, l2)

= σ(h1, g1)σ(h21g21, l1)τ(h221, g221)τ(h222g222, α
−1(l2))

= σ(h1, g1)σ(h21g21, l1)τ(g221, α
−1(l21))τ(h22, g222α

−1(l22))

= σ(h11, g11)σ(h12g12, l1)τ(g21, l21)τ(h2, g22l22)

= σ(g11, l11)σ(h1, g12l12)τ(g21, l21)τ(h2, g22l22)

= σ(g1, l1)σ(h1, α(g211)α(l211))τ(g212, l212)τ(h2, g22l22)

= σ(g1, l1)τ(g211, l211)σ(h1, α(g212)α(l212))τ(h2, g22l22)

= σ(g1, l1)τ(g21, l21)σ(h1, α(g221)α(l221))τ(h2, α(g222)α(l222))

= σ(g1, l1)τ(g21, l21)(σ ∗ τ)(h, α(g22)α(l22))

= σ(g11, l11)τ(g12, l12)(σ ∗ τ)(h, g2l2) = (σ ∗ τ)(g1, l1)(σ ∗ τ)(h, g2l2).

Example 3.6. If (H,α) is a monoidal Hom-Hopf algebra of Example 3.3,
then one easily shows that Z2

L(H,α) = {σ1} in the notation of Example 3.3.

Example 3.7. Let (H4, α) be a monoidal Hom-Hopf algebra of Example
3.4. Then Example 3.5 yields:

(i) for c = 1, the elements in the group Z2
L(H4, α) are of the form

σ 1 g x y

1 1 1 0 0

g 1 1 0 0

x 0 0 λ/2 −λ/2
y 0 0 λ/2 −λ/2

with λ ∈ k;

(ii) for c = −1, the elements in the group Z2
L(H4, α) are of the form

σ 1 g x y

1 1 1 0 0

g 1 1 0 0

x 0 0 µ −µ
y 0 0 µ −µ

with µ ∈ k;
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(iii) for c2 6= 1, the group Z2
L(H4, α) has a unique element σ of the form

σ 1 g x y

1 1 1 0 0

g 1 1 0 0

x 0 0 0 0

y 0 0 0 0

Next we define the second lazy cohomology group of (H,α).

Definition 3.8. Let γ : H → k be a k-linear α-invariant map, i.e.,
γ ◦ α = γ.

(i) We say that γ is normalized if γ(1H) = 1k.
(ii) We say that γ is lazy if γ(h1)h2 = h1γ(h2) for any h ∈ H.

Theorem 3.9. (i) The set of normalized and convolution invertible
k-linear α-invariant maps γ : H → k, denoted by Reg1(H,α), is obviously
a group under the convolution product.

(ii) The set of lazy elements of Reg1(H,α), denoted by Reg1
L(H,α), is a

central subgroup of Reg1(H,α).

Lemma 3.10. For any γ ∈ Reg1(H,α), the map D1(γ) : H ⊗ H → k
defined by

D1(γ)(h, g) = γ(h1)γ(g1)γ−1(h2g2)

for any h, g ∈ H is a normalized and convolution invertible left 2-cocycle.
Moreover, if γ is lazy, then so is D1(γ).

Proof. Clearly, D1(γ) is k-linear, α-invariant and normalized. We check
that D1(γ) is a left 2-cocycle. Indeed, for any h, g, l ∈ H, we have

D1(γ)(h1, g1)D1(γ)(h2g2, l)

= γ(h11)γ(g11)γ−1(h12g12)γ(h21g21)γ(l1)γ−1((h22g22)l2)

= γ(h1)γ(g1)γ−1(h211g211)γ(h212g212)γ(l1)γ−1((h22g22)l2)

= γ(g1)γ(l1)γ(h1)γ−1(h2α
−1(g2l2))

= γ(g1)γ(l1)γ(h1)γ−1(g211l211)γ(g212l212)γ−1(h2α(g22l22))

= γ(g11)γ(l11)γ−1(g12l12)γ(h1)γ(g21l21)γ−1(h2(g22l22))

= D1(γ)(g1, l1)D1(γ)(h, g2l2).

Hence D1(γ) is a left 2-cocycle. Next we prove that D1(γ) is convolution
invertible. Define a map T 1(γ) : H ⊗H → k as

T 1(γ)(h, g) = γ(h1g1)γ−1(h2)γ−1(g2)
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for any h, g ∈ H. We show that D1(γ) ∗ T 1(γ) = T 1(γ) ∗ D1(γ) = εH⊗H .
Indeed, we have

(D1(γ) ∗ T 1(γ))(h, g)

= γ(h11)γ(g11)γ−1(h12g12)γ(h21g21)γ−1(h22)γ−1(g22)

= γ(h1)γ(g1)γ−1(h21g21)γ(h221g221)γ−1(h222)γ−1(g222)

= γ(h1)γ(g1)γ−1(h211g211)γ(h212g212)γ−1(h22)γ−1(g22)

= ε(h)ε(g).

Similarly, we get T 1(γ) ∗D1(γ) = εH⊗H . If γ is lazy, it is easy to see that
D1(γ) is lazy.

Proposition 3.11. The map D1(α) defined in Lemma 3.10 induces a
group morphism Reg1

L(H,α)→ Z2
L(H,α); its image, denoted by B2

L(H,α),
is contained in the center of Z2

L(H,α).

Proof. By Lemma 3.10, we have D1(γ) ∈ Z2
L(H,α) for any γ ∈

Reg1
L(H,α). Next we check that D1(γ ∗ γ′) = D1(γ) ∗ D1(γ′) for any

γ, γ′ ∈ Reg1
L(H,α), and D1(ε) = εH⊗H . Indeed, for any h, g ∈ H, we have

D1(γ ∗ γ′)(h, g) = γ(h11)γ′(h12)γ(g11)γ′(g12)γ′−1(h21g21)γ−1(h22g22)

= γ(h1)γ(g1)γ−1(h22g22)γ′(h211)γ′(g211)γ′−1(h212g212)

= γ(h1)γ(g1)γ−1(h22g22)D1(γ′)(h21, g21)

= γ(h1)γ(g1)γ−1(h21g21)D1(γ′)(h22, g22)

= γ(h11)γ(g11)γ−1(h12g12)D1(γ′)(h2, g2)

= (D1(γ) ∗D1(γ′))(h, g),

and D1(ε)(h, g) = ε(h1)ε(g1)ε(h2g2) = ε(h)ε(g).

Finally, we show that B2
L(H,α) is contained in the center of Z2

L(H,α),
i.e., σ∗D1(γ) = D1(γ)∗σ for any γ ∈ Reg1

L(H,α) and σ ∈ Z2
L(H,α). Indeed,

for any h, g ∈ H, we have

(σ ∗D1(γ))(h, g) = σ(h1, g1)γ(h21)γ(g21)γ−1(h22g22)

= σ(h1, g1)γ(h22)γ(g22)γ−1(h21g21)

= σ(h11, g11)γ(h2)γ(g2)γ−1(h12g12)

= σ(h12, g12)γ(h2)γ(g2)γ−1(h11g11)

= σ(h21, g21)γ(h22)γ(g22)γ−1(h1g1)

= σ(h22, g22)γ(h21)γ(g21)γ−1(h1g1)

= σ(h2, g2)γ(h12)γ(g12)γ−1(h11g11)

= γ(h11)γ(g11)γ−1(h12g12)σ(h2, g2) = (D1(γ) ∗ σ)(h, g).



LAZY 2-COCYCLES 73

Definition 3.12. Let (H,α) be a monoidal Hom-Hopf algebra.

(i) The elements of B2
L(H,α) are called lazy 2-coboundaries.

(ii) The quotient group

H2
L(H,α) := Z2

L(H,α)/B2
L(H,α)

is called the second lazy cohomology group of (H,α).

Finally, we list some properties of left (right) 2-cocycles.

Proposition 3.13. If we define a Hom-multiplication ·σ on (H,α) by
h ·σ g = σ(h1, g1)α(h2g2) for any h, g ∈ H, then (σH,α) = (H, ·σ, 1H , α)
is a monoidal Hom-associative algebra if and only if σ is a normalized left
2-cocycle.

Proof. For any h ∈ H, it is easy to see that h ·σ 1H = α(h) if and only if
σ(h, 1H) = ε(h) and 1H ·σ h = α(h) if and only if σ(1H , h) = ε(h). For any
h, g, l ∈ H, we have

α(h) ·σ (g ·σ l) = σ(g1, l1)σ(α(h1), α(g21)α(l21))α2(h2)(α2(g22)α2(l22))

= σ(g11, l11)σ(h1, g12l12)α2(h2)(α(g2)α(l2)),

and

(h ·σ g) ·σ α(l) = σ(h1, g1)σ(α(h21)α(g21), α(l1))(α2(h22)α2(g22))α2(l2)

= σ(h11, g11)σ(h12g12, l1)α2(h2)(α(g2)α(l2)).

Hence, if ·σ is Hom-associative, we get

σ(g11, l11)σ(h1, g12l12)α2(h2)(α(g2)α(l2))

= σ(h11, g11)σ(h12g12, l1)α2(h2)(α(g2)α(l2)).

Applying ε to both sides, we obtain

σ(g1, l1)σ(h, g2l2) = σ(h1, g1)σ(h2g2, l),

which means σ is a left 2-cocycle.
Conversely, if σ is a left 2-cocycle, it is straightforward to deduce that

α(h) ·σ (g ·σ l) = (h ·σ g) ·σ α(l), i.e., ·σ is Hom-associative.

Proposition 3.14. Let σ : H ⊗H → k be a normalized left 2-cocycle.
Then (σH,α) is a right (H,α)-Hom-comodule algebra via ∆H .

Proof. From the above proposition, we know that (σH,α) is a monoidal
Hom-associative algebra. Clearly, it is a right (H,α)-Hom-comodule via ∆H .
We just need to show that ∆H(h ·σ g) = h1 ·σ g1 ⊗ h2g2. Indeed,

∆H(h ·σ g) = σ(h1, g1)α(h21)α(g21)⊗ α(h22)α(g22)

= σ(h11, g11)α(h12)α(g12)⊗ h2g2 = h1 ·σ g1 ⊗ h2g2.

By applying the arguments in the proofs of Propositions 3.13 and 3.14,
we get the following three propositions.
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Proposition 3.15. If we define a Hom-multiplication ·σ on (H,α) by
h ·σ g = α(h1g1)σ(h2, g2) for any h, g ∈ H, then (Hσ, α) = (H, ·σ, 1H , α) is
a monoidal Hom-associative algebra if and only if σ is a normalized right
2-cocycle.

Proposition 3.16. Let σ be a normalized right 2-cocycle. Then (Hσ, α)
is a left (H,α)-Hom-comodule algebra via ∆H .

Proposition 3.17. Let σ be a normalized lazy 2-cocycle. Then (σH,α)
= (Hσ, α), and we denote it by H(σ). It is an (H,α)-Hom-bicomodule al-
gebra via ∆H .

4. Extending (lazy) 2-cocycles to a Radford biproduct, I. We
begin this section with the following construction.

Proposition 4.1. Let (H,α) be a monoidal Hom-bialgebra, (B, β) a left
(H,α)-Hom-module algebra and (A, γ) a left (H,α)-Hom-comodule algebra.
Then on the space B ⊗ A we have a Hom-associative algebra structure, de-
noted by (B nA, β ⊗ γ), with unit 1B n 1A and Hom-multiplication

(bn a)(b′ n a′) = b(a(−1) · β−1(b′)) n γ(a(0))a
′

for any b, b′ ∈ B and a, a′ ∈ A.

Proof. We can easily see that 1Bn1A is the unit. Next we just show the
Hom-associativity of the Hom-multiplication, i.e.,

(β ⊗ γ)(bn a)((b′ n a′)(b′
′
n a′

′
)) = ((bn a)(b′ n a′))(β ⊗ γ)(b′

′
n a′

′
)

for any b, b′, b′
′ ∈ B and a, a′, a′

′ ∈ A. In fact, we have

(β ⊗ γ)(bn a)((b′ n a′)(b′
′
n a′

′
))

= β(b)
(
γ(a)(−1) · β−1(b′(a′(−1) · β

−1(b′
′
)))

)
n γ(γ(a)(0))(γ(a′(0))a

′′)

= β(b)
(
(α(a(−1)1) · β−1(b′))(α(a(−1)2) · β−1(a′(−1) · β

−1(b′
′
)))

)
n γ2(a(0))(γ(a′(0))a

′′)

= (b(a(−1) · β−1(b′)))β
(
α(a(0)(−1)) · (α−1(a′(−1)) · β

−2(b′
′
))
)

n (γ2(a(0)(0))γ(a′(0)))γ(a′
′
)

= (b(a(−1) · β−1(b′)))(α(a(0)(−1))a
′
(−1) · b

′′) n (γ2(a(0)(0))γ(a′(0)))γ(a′
′
)

= (b(a(−1) · β−1(b′)))(γ(a(0))(−1)a
′
(−1) · b

′′) n γ(γ(a(0))(0)a
′
(0))γ(a′

′
)

=
(
b(a(−1) · β−1(b′)) n γ(a(0))a

′)(β(b′
′
) n γ(a′

′
))

= ((bn a)(b′ n a′))(β ⊗ γ)(b′
′
n a′

′
).



LAZY 2-COCYCLES 75

Proposition 4.2. If ((H,α), (B, β)) is an admissible pair and (A, γ)
is a left (H,α)-Hom-comodule algebra, then (B n A, β ⊗ γ) becomes a left
(B×] H,β ⊗ α)-Hom-comodule algebra with coaction

λ : B nA→ (B×] H)⊗ (B nA),

λ(bn a) = (b1 × b2(−1)α
−1(a(−1)))⊗ (β(b2(0)) n a(0)),

for any b ∈ B and a ∈ A.

Proof. We first prove that ((B n A, β ⊗ γ), λ) is a left (B×] H,β ⊗ α)-
Hom-comodule. For this, we have the following computations:

(ε⊗ id)λ(bn a) = ε(b1 × b2(−1)α
−1(a(−1)))(β(b2(0)) n a(0))

= (β−1 ⊗ γ−1)(bn a),

λ(β ⊗ γ)(bn a) = (β(b1)× β(b)2(−1)α
−1(γ(a)(−1)))⊗ (β(β(b)2(0)) n γ(a)(0))

= (β(b1)× α(b2(−1))a(−1))⊗ (β2(b2(0))n γ(a(0)))

= (β ⊗ α⊗ β ⊗ γ)λ(bn a),

and

((β ⊗ α)−1 ⊗ λ)λ(bn a)

=
(
β−1(b1)×α−1(b2(−1))α

−2(a(−1))
)

⊗
(
(β(b2(0)1)×β(b2(0)2)(−1)α

−1(a(0)(−1)))⊗(β(β(b2(0)2)(0))na(0)(0))
)

=
(
β−1(b1)×(α−1(b21(−1))α

−1(b22(−1)))α
−1(a(−1)1)

)
⊗
(
(β(b21(0))×α(b22(0)(−1))α

−1(a(−1)2))⊗(β2(b22(0)(0))nγ−1(a(0)))
)

=
(
b11×(α−1(b12(−1))β

−1(b2)(−1)1)α−1(a(−1)1)
)

⊗
((
β(b12(0))×α(β−1(b2)(−1)2)α−1(a(−1)2)

)
⊗(β(β−1(b2)(0))nγ−1(a(0)))

)
=

(
b11×b12(−1)(α

−1(b2(−1)1)α−2(a(−1)1))
)
⊗
(
(β(b12(0))×b2(−1)2α

−1(a(−1)2))

⊗(b2(0)nγ−1(a(0)))
)

= (∆B×] H
⊗(β⊗γ)−1)λ(bna),

for any b ∈ B and a ∈ A. We proceed to show that λ is a Hom-algebra map.
Clearly, λ(1Bn1A) = (1B×1H)⊗ (1Bn1A). For any b, b′ ∈ B and a, a′ ∈ A,
we have

λ((bn a)(b′ n a′))

=
(
(b(a(−1) · β−1(b′)))1 × (b(a(−1) · β−1(b′)))2(−1)α

−1((γ(a(0))a
′)(−1))

)
⊗
(
β((b(a(−1) · β−1(b′)))2(0)) n (γ(a(0))a

′)(0)

)
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=
(
b1(b2(−1) · β−1(a(−1)1 · β−1(b′1)))

× (β(b2(0))(a(−1)2 · β−1(b′2)))(−1)α
−1(α(a(0)(−1))a

′
(−1))

)
⊗
(
β((β(b2(0))(a(−1)2 · β−1(b′2)))(0)) n γ(a(0)(0))a

′
(0)

)
=

(
b1(α−1(b2(−1))α

−1(a(−1)1) · β−1(b′1))

× α2(b2(0)(−1))(α
−1((a(−1)2 · β−1(b′2))(−1)a(0)(−1))α

−1(a′(−1)))
)

⊗
(
β2(b2(0)(0))β((a(−1)2 · β−1(b′2))(0)) n γ(a(0)(0))a

′
(0)

)
=

(
b1(α−1(b2(−1))α

−1(a(−1)1) · β−1(b′1))

× α2(b2(0)(−1))(α
−1((α(a(−1)21) · β−1(b′2))(−1)α(a(−1)22))α−1(a′(−1)))

)
⊗
(
β2(b2(0)(0))β((α(a(−1)21) · β−1(b′2))(0)) n a(0)a

′
(0)

)
=

(
b1(α−1(b2(−1))α

−1(a(−1)1) · β−1(b′1))

× α2(b2(0)(−1))(α
−1(α(a(−1)21)b′2(−1))α

−1(a′(−1)))
)

⊗ (β2(b2(0)(0))(α(a(−1)22) · b′2(0)) n a(0)a
′
(0))

=
(
b1(b2(−1)1a(−1)11 · β−1(b′1))

× α2(b2(−1)2)(α−1(α(a(−1)12)b′2(−1))α
−1(a′(−1)))

)
⊗ (β(b2(0))(a(−1)2 · b′2(0)) n a(0)a

′
(0))

=
(
b1(b2(−1)1a(−1)11 · β−1(b′1))× α(b2(−1)2a(−1)12)(b′2(−1)α

−1(a′(−1)))
)

⊗ (β(b2(0))(a(−1)2 · b′2(0)) n a(0)a
′
(0))

=
(
b1((b2(−1)α

−1(a(−1)))1 · β−1(b′1))

× α((b2(−1)α
−1(a(−1)))2)(b′2(−1)α

−1(a′(−1)))
)

⊗ (β(b2(0))(a(0)(−1) · b′2(0)) n γ(a(0)(0))a
′
(0))

= (b1 × b2(−1)α
−1(a(−1)))(b

′
1 × b′2(−1)α

−1(a′(−1)))

⊗ (β(b2(0)) n a(0))(β(b′2(0)) n a′(0))

= λ(bn a)λ(b′ n a′),

Hence, λ is a Hom-algebra map, and the proof is finished.

Now we can obtain the main result of this section.

Theorem 4.3. Let ((H,α), (B, β)) be an admissible pair and let σ :
H ⊗ H → k be a normalized and convolution invertible right 2-cocycle.
Define a map

σ̃ : (B×] H)⊗ (σ̃ : B×] H)→ k, σ̃(b× h, b′ × h′) = εB(b)εB(b′)σ(h, h′),

for any b, b′ ∈ B and h, h′ ∈ H. Then σ̃ is a normalized and convolution
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invertible right 2-cocycle on B×] H, and we have

((B×] H)σ̃, β ⊗ α) = (B nHσ, β ⊗ α)

as left (B×] H,β ⊗ α)-Hom-comodule algebras. Moreover, σ̃ is unique with
this property.

Proof. Clearly, σ̃ is β ⊗ α-invariant, normalized and convolution invert-
ible. Next we show that it is a right 2-cocycle. By Propositions 3.15 and 3.16,
we know that (Hσ, α) is a left (H,α)-Hom-comodule algebra via ∆H . So by
Proposition 4.1, BnHσ is a Hom-associative algebra. For any b, b′ ∈ B and
h, h′ ∈ H, we have

(b× h) ·σ̃ (b′ × h′)
= (β⊗α)

(
(b1×b2(−1)α

−1(h1))(b′1×b′2(−1)α
−1(h′1))

)
σ̃(β(b2(0))×h2, β(b′2(0))×h

′
2)

= (β⊗α)(b1((b2(−1)α
−1(h1))1 ·β−1(b′1))×α((b2(−1)α

−1(h1))2)b′2(−1)α
−1(h′1))

εB(b2(0))εB(b′2(0))σ(h2, h
′
2)

= β(b1)β(1Hα
−1(h11) ·β−1(b′1))

×α2(1Hα
−1(h12))(1Hh

′
1)εB(b2)εB(b′2)σ(h2, h

′
2)

= b(α(h11) ·β−1(b′))×α2(h12)α(h′1)σ(h2, h
′
2)

= b(h1 ·β−1(b′))×α(α(h21)h′1)σ(α(h22), h′2) = (bnh)(b′nh′),

which means the Hom-multiplication on (B×] H)σ̃ coincides with the one
on B n Hσ. So by Proposition 3.15, σ̃ is a right 2-cocycle and we have
((B×] H)σ̃, β⊗α) = (BnHσ, β⊗α) as Hom-associative algebras. It is obvious

that they also coincide as left (B×] H,β ⊗ α)-Hom-comodules.

Finally, we show the uniqueness of σ̃. Since the Hom-multiplications on
((B×] H)σ̃, β⊗α) and (BnHσ, β⊗α) coincide, we apply εB⊗εH to conclude

that σ̃(b× h, b′ × h′) = εB(b)εB(b′)σ(h, h′).

5. Extending (lazy) 2-cocycles to a Radford biproduct, II. In
this section, we always let (H,α) denote a monoidal Hom-Hopf algebra with
a bijective antipode and (B, β) be a Hopf algebra in H

HHYD.

Let σ : B ⊗B → k be a morphism in H
HHYD, that is,

σ(β(b), β(b′)) = σ(b, b′),

σ(h1 · b, h2 · b′) = ε(h)σ(b, b′),

b(−1)b
′
(−1)σ(b(0), b

′
(0)) = σ(b, b′)1H ,

for any b, b′ ∈ B.
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Let (B, β) be a Hopf algebra in H
HHYD. Then the Hom-coalgebra struc-

ture of (B ⊗B, β ⊗ β) in H
HHYD is given by

∆B⊗B(b⊗ b′) = (b1 ⊗ b2(−1) · β−1(b′1))⊗ (β(b2(0))⊗ b′2)

for any b, b′ ∈ B.
So, if σ, τ : B ⊗ B → k are morphisms in H

HHYD, their convolution
product in H

HHYD is given by

(σ ∗ τ)(b, b′) = σ(b1, b2(−1) · β−1(b′1))τ(β(b2(0)), b
′
2)

for any b, b′ ∈ B.

Definition 5.1. Let (H,α) be a monoidal Hom-Hopf algebra with a
bijective antipode, (B, β) be a Hopf algebra in H

HHYD and σ : B ⊗ B → k
be a morphism in H

HHYD. For any a, b, c ∈ B,

(i) σ is called a left 2-cocycle in H
HHYD if

σ(a1, a2(−1) · β−1(b1))σ(β(a2(0))b2, c)

= σ(b1, b2(−1) · β−1(c1))σ(a, β(b2(0))c2);

(ii) σ is called lazy in H
HHYD if

σ(a1, a2(−1) · β−1(b1))β(a2(0))b2

= σ(β(a2(0)), b2)a1(a2(−1) · β−1(b1));

(iii) σ is called normalized if σ(b, 1) = σ(1, b) = ε(b).

Proposition 5.2. If we define a Hom-multiplication ·σ on (B, β) by

b ·σ b′ = σ(b1, b2(−1) · β−1(b′1))β(β(b2(0))b
′
2)

for any b, b′ ∈ B, then

(a) (σB, β) = (B, ·σ, 1B, β) is a monoidal Hom-associative algebra if and
only if σ is a normalized left 2-cocycle in H

HHYD.
(b) (σB, β) is a left (H,α)-Hom-module algebra with the same action as

(B, β).

Proof. (a) Use the same idea as in the proof of Proposition 3.13.

(b) We check that (σB, β) is a left (H,α)-Hom-module algebra. Clearly,
h · 1B = ε(h)1B for any h ∈ H. Next we show the identity h · (b ·σ b′) =
(h1 · b) ·σ (h2 · b′) for any h ∈ H and b, b′ ∈ B. Indeed, we have

(h1 · b) ·σ (h2 · b′)
= σ

(
h11 · b1, (h12 · b2)(−1) · β−1(h21 · b′1)

)
β
(
β((h12 · b2)(0))(h22 · b′2)

)
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= σ
(
h11 · b1, (h1211α

−1(b2(−1)))S(h122) · β−1(h21 · b′1)
)

β
(
β(α(h1212) · b2(0))(h22 · b′2)

)
= σ

(
h11 · b1, (α−1(h121)α−1(b2(−1)))S(α(h1222)) · β−1(h21 · b′1)

)
β
(
β(α(h1221) · b2(0))(h22 · b′2)

)
= σ

(
α(h111) · b1, α(h112) · (α−1(b2(−1))S(α−1(h122)) · β−2(h21 · b′1))

)
β(β(h121 · b2(0))(h22 · b′2))

= σ
(
b1, α

−1(b2(−1))S(α−2(h12)) · (α−2(h21) · β−2(b′1))
)
β(h11 · β(b2(0)))

β(h22 · b′2)

= σ
(
b1, α

−1(b2(−1))(α
−3(S(h12))α−3(h21)) · β−1(b′1)

)
(α(h11) · β2(b2(0)))

(α(h22) · β(b′2))

= σ
(
b1, α

−1(b2(−1))(α
−3(S(h21))α−2(h221)) · β−1(b′1)

)
(h1 · β2(b2(0)))

(α2(h222) · β(b′2))

= σ
(
b1, α

−1(b2(−1))(α
−3(S(α(h211)))α−2(h212)) · β−1(b′1)

)
(h1 · β2(b2(0)))

(α(h22) · β(b′2))

= σ
(
b1, b2(−1) · β−1(b′1)

)
(h1 · β2(b2(0)))(h2 · β(b′2)) = h · (b ·σ b′).

Theorem 5.3. Let (H,α) be a monoidal Hom-Hopf algebra with a bi-
jective antipode and (B, β) be a Hopf algebra in H

HHYD. If σ : B ⊗ B → k
is a normalized left 2-cocycle in H

HHYD, and

σ̄ : (B×] H)⊗ (B×] H)→ k, σ̄(b× h, b′ × h′) = σ(b, α−1(h) · β−1(b′))ε(h′),

for any b, b′ ∈ B and h, h′ ∈ H, then σ̄ is a normalized left 2-cocycle on
B×] H, and we have (σ̄(B×] H), β ⊗ α) = (σB ] H, β ⊗ α) as monoidal Hom-
algebras. Moreover, σ̄ is unique with these properties.

Proof. It is easy to see that σ̄ is normalized. We will show that the Hom-
multiplications on (σB ] H, β ⊗ α) and (σ̄(B×] H), β ⊗ α) coincide. Indeed,

(b ] h)(b′ ] h′)

= σ
(
b1, b2(−1) ·β−1((h1 ·β−1(b′))1)

)
β(β(b2(0))(h1 ·β−1(b′))2) ] α(h2)h′

= σ
(
b1, b2(−1) · (α−1(h11) ·β−2(b′1))

)
(β2(b2(0))(α(h12) · b′2)) ] α(h2)h′

= σ
(
b1, α

−1(b2(−1))α
−2(h1) ·β−1(b′1)

)
(β2(b2(0))(α(h21) · b′2)) ] α2(h22)h′

= σ
(
b1, α

−1(b2(−1))α
−2(h1) ·β−1(b′1)

)
(β⊗α)

(
(β(b2(0))×h2)(b′2×α−1(h′))

)
= σ

(
b1, α

−1(b2(−1))α
−2(h1) ·β−1(b′1)

)
ε(b′2(−1)α

−1(h′1))

(β⊗α)((β(b2(0))×h2)(β(b′2(0))×h
′
2))
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= σ̄
(
b1 × b2(−1)α

−1(h1), b′1 × b′2(−1)α
−1(h′1)

)
(β ⊗ α)((β(b2(0))× h2)(β(b′2(0))× h

′
2))

= (b× h) ·σ̄ (b′ × h′),
for any b, b′ ∈ σB and h, h′ ∈ H. So from Proposition 5.2 and 3.13, we deduce
that σ̄ is a left 2-cocycle on (B×] H,β⊗α) and certainly (σ̄(B×] H), β⊗α) =

(σB ] H, β ⊗ α) as monoidal Hom-algebras.

Moreover, if (σ̄(B×] H), β ⊗ α) = (σB ] H, β ⊗ α) as monoidal Hom-
algebras, the uniqueness of σ̄ follows easily by applying εB ⊗ εH to the
Hom-multiplications on (σ̄(B×] H), β ⊗ α) and (σB ] H, β ⊗ α).
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