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ON SOME METABELIAN 2-GROUPS AND APPLICATIONS I

ABDELMALEK AZIZI (Oujda), ABDELKADER ZEKHNINI (Nador)
and MOHAMMED TAOUS (Errachidia)

Abstract. Let G be some metabelian 2-group satisfying the condition G/G’ ~ Z /27
X Z/27 x 7/27Z. In this paper, we construct all the subgroups of G of index 2 or 4, we
give the abelianization types of these subgroups and we compute the kernel of the transfer
map. Then we apply these results to study the capitulation problem for the 2-ideal classes
of some fields k satisfying the condition Gal(kf) /k) ~ G, where ng) is the second Hilbert
2-class field of k.

1. Introduction. Let k be an algebraic number field and let Cl(k)
denote its class group. Let k1) be the Hilbert class field of k, that is, the
maximal abelian unramified extension of k. Let k() be the Hilbert class field
of kM) and set G = Gal(k® /k). Denote by F' a finite extension of k and by
H the subgroup of G which fixes F'. Then we say that an ideal class of k
capitulates in F' if it is in the kernel of the homomorphism

induced by extension of ideals from k to F'. An important problem in number
theory is to explicitly determine the kernel of ji_,r, which is usually called
the capitulation kernel. As j._p corresponds, by the Artin reciprocity law,
to the group-theoretical transfer (for details see [Mil)

VG_)H : G/G/ — H/H/’

where G’ (resp. H') is the derived group of G (resp. H), to determine
ker jr_.r is equivalent to determining ker Vg, zr, which transforms the ca-
pitulation problem to a problem in group theory. That is why the capit-
ulation problem is completely solved if G/G’ ~ (2,2), since the groups G
such that G/G" ~ (2,2) are determined and well classified (see [Ki, Mi]).
If G/G" ~ (2,2™) for some integer n > 2, then G is metacyclic or not; in
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the first case the capitulation problem is completely solved, whereas in the
second case the problem is open (see [ATZ], BS]). If G/G’ ~ (2,2,2), then
the structure of G is unknown in most cases, so the capitulation problem is
also open.

It is the purpose of this paper to provide answers to this problem in a
particular case, continuing a project we started in [AZT4]; we give some
group-theoretical results to solve the capitulation problem, in a particular
case, if G satisfies the last condition. For this, we consider the following
family of groups, defined for integers n > 1 and m > 2:

om o 2n+1

(1.1)  Gun={(o,m,p:p*=0"" =71 =1,p2 =0,

[Ta U] =1, [pv U] = 027 [:0’ 7—] = 7—2>7

where
= o2 or 722"

In this paper, we construct all the subgroups of Gy, 5, of index 2 or 4, we give
the abelianization types of these subgroups and we compute the kernel of
the transfer map Vosp : Ginn/Gh,,, — H/H' for any subgroup H of Gy, p,
defined by the Artin map. Then we apply these results to study the capit-
ulation of 2-ideal classes of some fields k satisfying Gal(kg) /k) =~ G,
where k§2) is the second Hilbert 2-class field of k. Finally, we illustrate our
results by examples which show that our group is realizable, i.e. there is a

field k such that Gal(ks /k) ~ G .

2. Main results. Recall first that a group G is said to be metabelian
if its derived group G’ is abelian, and a subgroup H of G, not reduced to
the unit, is called mazimal if it is the unique subgroup of G distinct from G
and containing H. Let z, y and z be elements of G. Set z¥ = y~'zy. Then
we easily show that

[y, 2] = [z, 2)[y, 2] and [z, y2] = [z, 2][z,y]".

Let Gyn be the group defined by (L.1)). Since [r,0] = 1, [p,0] = o2
and [p,7] = 72, we have G,,, = (0?,7°), which is abelian. Thus G,

. m—1 n m—1
~ (2,2,2), since p? = o2 or 722",

is metabelian and G /G, , =~

Hence G, admits seven subgroups of index 2, denoted H;2, and seven
subgroups of index 4, denoted H; 4, where 1 < ¢ < 7. These subgroups, their
derived groups and their abelianizations are given in Tables below. Set

a = min(m — 1,n) and b = max(m,n + 1).

/



METABELIAN 2-GROUPS

101

First case: p* =

Second case: p* =T

m—1
O'2 .

Table 1. Subgroups of G, , of index 2

H;s P2 Hi»>/Hj

(o,7) (1 @m2rt
(0,p,7°) (0,74 (2,2,2)
(1,p,0° (%, 0% 2,2,2

(o7,p,0%)  ((o7)*0%)

( )
( )
(op,0o,72) (1%, 0%) (2,2,2)
( )
( )

()

(r?, 0%

(o1, TP, O'2> ((07)2, 0’4>

(tp, 7,0

~N O Ut s W,

Table 2. Subgroups of G,,,, of index 4

i Hia ia His/H],
1 (o0,7%) (1) (2m,2")

2 <O'277'> <1> (27n71,2n+1)
3 (p,o 7% (o' T (2,2,2)

4 (o7, 7%) (1) (24,2%)

5 (opo®, 7)) (ohTh) (2,2,2)

6 (tp,o%, 7 (ot ") (2,2,2)

7 AoTp, 0,72 (ot ") (2,2,2)

n m—1
2 0'2 .

Table 3. Subgroups of G,,» of index 2

i Conditions H; i His/Hj o
1 (o,7) (1) (2m, 2"+
2 n=1 (7,) (%) (2,4)
n>2 (o,p,7%) (o2, 7%) (2,2,2)
3 m =2 (1, p) 72 (2,4)
m >3 (1, p, %) (1%, 0%) (2,2,2)
4 nmn=1land m>3 (o, p) {(o1)?) (2,4)
n>2and m=2 (o1, p) ((e1)?) (2,4)
n=1and m=2 (or,p,0°) ((o7)? (2,2,2)
n>2 and m>3 (or,p,0%) {((o7) c%) (2,2,2)
5 m=2 (op,T) (%) (2,4)
m>3 (op, T, %) (1%, 0% (2,2,2)
6 n=1 (o, 7p) (0® (2,4)
n>2 (o,7p,T%) (02, 7%) (2,2,2)
7 m=1land m>3 (o7, Tp) {(o7)?) (2,4)
n>2and m=2 (o, 7p) {(o7)?) (2,4)
n=1and m=2 (o7,7p,c%) ((o7)? (2,2,2)
2,2,2

n>2 and m>3 (or,7p,0°) ((07)% 0"

~
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Table 4. Subgroups of G, of index 4

7 Conditions H; a4 5,4 Hi74/Hz{,4
1 (,7%) R
2 (02, 7) (1 (2m~1 2nth
3 n=1land m>3 (02, p) (o) (2,4)
m=2and n>2 (12, p) (%) (2,4)
n=1and m=2 (02,p) = (12, p) (1) (2,4)
n>2 and m>3 (p,7%,0%) (4, 0% (2,2,2)
4 (o1, 7%) (1) (2%, 2%
n=1and m >3 (02, 0p) (o) (2,4)
m=2and n>2 (1%, 0p) (%) (2,4)
n=1and m=2 (02, 0p) = (1%, 0p) (1) (2,4)
n>2 and m >3 (op, 7%, 0%) (r*, 0% (2,2,2)
6 nm=1and m>3 (o2, 7p) (o) (2,4)
m=2and n>2 (12, 7p) (%) (2,4)
n=1and m=2 (02, 7p) = (T2, Tp) (1) (2,4)
n>2 and m>3 (tp,7%,0%) (%, 0% (2,2,2)
7 m=1land m>3 (02, 07p) (o) (2,4)
m=2and n>2 (12, 07p) (%) (2,4)
n=1and m=2 (0% 01p) = (7°,07p) (1) (2,4)
n>2 and m>3 (o7p, 7%, 0%) (%, o*) (2,2,2)

To check the tables entries, we need the following lemma.

LeMMA 2.1. Let Gy = (0,7, p) denote the group defined above. Then:

(1) p~lop=0"1.

(2) plrp—r .

(3) p? commutes with o and 7.

(4) (07p)* = (0p)* = (1p)* = p”. B

(5) Forallr €N, [p,7¥ ] =7¥"" and [p,0* ]| =0 .

Proof. (1) and (2) are obvious, since [p, o] = o2 and [p, 7] = 72.

(3) As p2 = 02" or 72"62" ", we have p® € (, ), which is an abelian
group, because [7,0] = 1. Hence the result.

(4) (rp)? =Tprp=Tp*p"" '
we proceed similarly.

(5) Since [p, 7] =T

Tp = Tp*1~1 = p?. To prove the other results,

2 we have [p,72] = 7*. By induction, we show that
[p,72] = 72" for all r € N. Similarly, we prove that [p,02 ] = 02" .

Let us now prove some entries of the tables, using Lemma 2.1
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First case: p> = 02" '. For Hys = (o0,7,G,,) = (0,7), we have
Hi, = (1), since [0,7] = 1. As 0" = 72" = 1, we obtain Hyo/Hjqy ~
(2m, 20ty = (22,2F2).

For Hyy = (0,p,G}, ) = (0, p,7,0%) = (0, p, 7%). Therefore, by Lemma
we get Hj, = (02,71, thus Hyp/Hy, ~ (2,2,2).

For Hi4 = (0,G), ) = (0,0%,7%) = (0,7%), we have Hj, = (1), since
[0,7] = 1. As 62" = 72" =1, we obtain Hyg4/Hj 4~ (27,27).

For Hyy = (1,G), ) = (1,7%,0%) = (1,07), we have Hj, = (1), hence
Hoy/Hj , ~ (271,201,

The other entries of Tables |I| and [2] are checked similarly.

Second case: p* = 7% %" . We have Hyo = <0’ P, Grn) = (0,0, 72).
Since p? = 2 g2 ,if n = 1 then p? = 72¢2" ", and thus p o 2"
= 72. Hence Hay = (0,p). If n > 2, then Hys = (o, p, 7?). Therefore, by

Lemma we get

)

, _{(02> if n=1,
22 (02,74 ifn > 2.
As pt =1 and p? = 72" 02", we obtain

Hy o/ L (2,4)  ifn=1,
22072270 (2,2,2) ifn > 2.

We have Hyp = (o7,p,G},,) = (0T, p, %) = (o1, p,02). Since p? =
72" 62" we obtain:

2m1

and 74 = 1, thus p? =
= 72. Hence Hyo = (oT,p),

eIf n =1 and m > 3, then p?> = 720
)72
o7)?). Thus Hya/H} o ~ (2,4) since

72(o7)2" ", which implies p2(c
and Lemma [2.1| yields Hj, = (
p4 =1.

e If n>2and m = 2, then p? = 72”02 and o* = 1, thus p? = (07)?" 02,
which implies p (O‘T)_2n =02 Hence Hy s = <a7’ o), and Lemma [2.1] .
yields Hj o = ((07)?). Thus Hyp/Hj o ~ (2,4) since p* = 1.

e If n =1 and m = 2, then p? —7'202:(07) and o = 7% =1,
hence Hyo = (0T, p, 02>, and Lemma [2.1) yields Hj , = {(o7)?). Thus
Hyo/Hyy = (2,2,2).

e If n > 2 and m > 3, then Hyo = (0T, p,0?), and Lemma yields
H} o= ((07)?,0%). Thus Hyp/Hj, ~ (2,2,2).

1

For Hy4 = (0,G), ) = (0,0%,7%) = (0,7%), we have H{, = (1), since
[0,7] = 1. As 02" = 727" =1, it follows that Hy4/Hy 4 = (27,27).
For H3 4 = (p,G},,,) = (p,7%,0%), we have:
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e If n=1and m > 3, then p? = 262" " and 7¢ = 1, which implies

p2072""" = 72, Hence Hs, = (p,0?), and Lemma yields Hj 4
= (0*). Thus Hs4/Hj, ~ (2,4) since p* = 1.

e If n > 2 and m = 2, then p?> = 72"0? and o* = 1, which implies
p?772" = 0% Hence H3 4 = (12, p), and Lemmayields Hj, = (T4).
Thus Hja/Hj, ~ (2,4) since p* = 1.

e If n=1and m = 2, then p2 = 7202 and 0% = 7* = 1, hence H3z 4 =
(p,0%) = (p,7%), and Lemmayields Hj3, = (1). Thus H3,/Hj 4 =~

2, 4).

° §f n)z 2 and m > 3, then Hs4 = (p,0%,7%), and Lemma yields
Hb = (r*,0%). Thus Hz4/H} 4 ~ (2,2,2).

The other entries of Tables [3] and [] are checked similarly. =
PROPOSITION 2.2. Let Gy, be the group defined by (1.1). Then:
(1) The order of G p is 22 and that of Gl ,, is 2™+ L.

m,n
(2) The coclass of Gy, is min(m,n + 1) + 1 and its nilpotency class is
max(m,n + 1).

(3) The center, Z(G), of G is of type (2,2).

Proof. (1) Since 02" = 72""" = 1, we have (o, 7) ~ (2™, 2"+1). More-
over, as p? = 02" or 72"02" ", we obtain (o,7,p) ~ (2™,2"+L 2). Thus
|G| = 2742 Similarly, we prove that |G}, | = 2", since G, ,, =
(02, 7%).

(2) The lower central series of G, 5, is defined inductively by v1 (G n) =
Gmn and vit1(Gman) = [i(Gmn), Gmnl, that is, the subgroup of Gy,
generated by the set {[a,b] = a='b"tab : a € ;(Gmn), b € Gman}, so the
coclass of G, 5, is defined to be cc(Gp,n) = h — ¢, where |Gy, | = 2h and
¢ = ¢(Gpm,n) is the nilpotency class of Gy, . We easily get

’Yl(Gm,n) = Gm,na
'72(Gm7n) = G;n,n = <U277—2>7
73(Gm,n) = [G;mn, Gm,n] = <U47T4>'

Then Lemma [2.15) yields 7j41(Gmn) = [j(Gmmn)s Gmn] = (02, 72).
Hence, if we set v = max(m,n + 1), then 7, 11(Gmn) = (02, 727) = (1)

and Yo (Gn) = (02, 7277) £ (1), As |Gpun| = 27172 it follows that
¢(Gm,n) = max(m,n + 1) and

cc(Gmn) =m~+n+2—max(m,n+ 1) =min(m,n+ 1) + 1.

(3) We use [[s, Lemma 12.12, p. 204] which states that if G is a p-group
and A is a normal abelian subgroup of G such that G/A is cyclic, then
A/JANZ(G) ~ G'. Let A = Hj9, so A is abelian and [G : A] = 2, thus
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Z(G) ¢ Aand A/Z(G) ~ G'. Hence |G| = |A|[G : A] = 2|G'|Z(G)|,
thus |Z(G)| = %|G/G’\ = 4. On the other hand, by Lemma we have
[p,o?" =02 =1and [p,72"] = 62" =1, 50 (62" ", 72") C Z(G). As
(2", 72")| = 4, we conclude that (62", 72") = Z(G) ~ (2,2). =

We continue with the following results.

ProposITION 2.3 ([Mi]). Let H be a normal subgroup of a group G. For
g € G, write f = [(g).H : H| and let {z1,...,x} be a set of representatives
of G/{g)H. Then the transfer map VG%H :G/G" — H/H' is given by

(2.1) Vaou(gG) Haz gl H'.

The following corollaries can be proved easily.

COROLLARY 2.4. Let H be a subgroup of Gy, of index 2. If Gy, n/H =
{1,zH}, then
g2 H' = ¢*[g,2|.H' if g H
v oy {gz 92 9°lg, ,
Y g>.H if g€ H.
COROLLARY 2.5. Let H be a normal subgroup of Gy, of index 4. If
Gmn/H ={1,2zH,2?H, 23H}, then
gz tgz"lgz g3 H' if g€ H,
Veon(9Gmn) = g* H' if gH = zH,
¢?z g’z H' if g€ H and gH #+ zH.
COROLLARY 2.6. Let H be a normal subgroup of Gy, of index 4. If
Gmn/H ={1,21H, 20H, 23 H} with z3 = 2122, then
gz gz125 gz tgzize H' if g€ H,
g2z tg?z H' if gH = z;H with i # j.
In what follows, we denote by ker Vy the kernel of the transfer map
Veonu : Gun/Gh,,, — H/H', where H is a subgroup of Gy, -
THEOREM 2.7. Keep the previous notation.
(1) If p> = 0®" ", then
ker Vi, , = (0G0 TG )
TpGln)s

VGHH(QG;)@,TL) = {

ker Vp,, = (oG

ker V <TG/rrL nva > Zf m =2,
V2 T (1 Gl 0pGl) i 3,
<O-TG:n n P mn> Zf m = 27
ker V
o VHz { (o7Gn,00G ) if >3,



106 A. AZIZI ET AL.

kerVg, , = { <TGEn " O-p?;—rl7n> Zf =2
B (TG PGn)  if m >3,
ker Vg, = (oG], n,pG;mn),
(017G s TPG o ) if M =2,
(017G PG ) if m > 3.
A0) If p* = 72"62""" | then
ker Vg, , = (oG TG;WQ,

ker VH7,2 = {

<0G$nn, pGrn)  f =1,
( oG ) if > 2,
<TG’m o PGn) i m=2,
(TG 0pGhy ) if M >3,

n=1and m>3 or

(o1Gl s PGl ) if { -
m,n>’ m,n > e
ker Vi, { 2 and m = 2,

: , L, mn=1and m=2 or
O'TGmn,O'me7n> if {n > 2 and m > 3,

ker V (tG mn,UpG > if m=2,
OV = (1 Gl ) i >3,
(oG] nanG n) ifn=1,

ker Vi, =1 ¢ if n>2

’ , . n=1and m >3 or
<0'7'Gm,n77'me,n> Zf {n > 2 and m = 27

, , . n=1and m=2 or
<07Gm,n’me,n> /l’f {n Z 2 and m 2 3
(IIT) For all1 <i <7, kerVy,, = Gmn/G,
Proof. We prove only some assertions, the others are shown similarly.
(1) Assume p? = 02", We know, from Table [1| that His = (o,7);
then Gy, n/H12 = {1,pH12} and Hj , = (1). Hence, by Corollary and
Lemma [2.1] we get
Vst 2(0G, ) =0 ?[o, p|H1 2=0 072H12 = Hj,,
VGm,n—>H1,2 (TG;n,n) =T [7', P]HLQ =71 2H1,2 = H1,2,

VGm,n%Hl 2(pG/ ) = pQHLQ # H{,Z
Therefore ker Vg, 2= <0G;n n TG;n,n>'

Similarly, from Table we get H3 o= <T p,02),50 Gy, n/H3 2={1,0H32}
and Hj, = = (0*,72). Hence, by Corollary [2.4 and Lemma [2.1} we get

VGm,naHs,z(UG;n,n) = 02H3,2 # H3,2,

kel“VH72 =
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VGm,n%Hs,z (TGlm,n) 72 [7—7 U]HZ/’)Q = TZHé,Q = HZ/S 25

m—1
VG n—sHs 2 (pG;n,n) = p’lp, U]Hz/),,z = PQUZH:I’),Q =%’ H3 2y

. -1 -1 .

since p? = 0" . If m = 2, then 020%™ H}, = 0%0?H}, = H},; and if
-1

m > 3, then 0?0®" " Hj, = 0?Hj, # Hj . Moreover,

m—1
VGm n%Hsz(UpG:n n) = szé2 =0’ H{’)Q’

smcep =o?"" . If m = 2, then 02" H32202H32#H32;and1fm>3
then 0" Hj , = (0*)*"" 3H32 = H3,.
Therefore
(TGl s PGl ) iEm =2,
keI"VH32 = ’ ’ ; )
: (TG oGy ) i M > 3.

(II) Assume now p? = 72" 62" We know, from Table [3| that
Hyo = o\ .
(o,p,7%) ifn>2.
Then
2 .
, (0%) ifn=1,
= and G Hoo ={1,7THi2}.
2,2 { 0 ifn>2, mun/Hap = {1,7H1 2}
Hence, by Corollary and Lemma 2.1, we get
VGm,n%Hz,z(UG;n,n) = 02[07 T]Hé,Q = 02H§,2 = Hé,z»
VGm,nﬁHz,Q (TG;n,n) = 72H5,2 i Hé,Z?
VGm,n%HZZ (pG;n,n) = pQ [p7 T]Hé,Q
= 72n02m_172H§’2
7'2027”_17'2}[572 ifn=1,
72n02m7172H§’2 if n > 2,

7'402m_1H§,2 ifn=1,
7'2(7'4)27172027”71]75’2 if n > 2,

B Hj, if n =1, since 7% =1,
T2Hy o # Hy, ifn>2,

VGm,n%HZQ (TPG;TL,n) = pQHé 2

_on _om-1l,y
=70 H272

-1 .
0¥ Hy, ifn=1,
- —1 .

e T HY, ifn>2
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Hj, if n>2.
Therefore ! : '
ker Vi, , { (0Grny PGon) ?f n=1,
: (0G0, TPGY ) i > 2.
Similarly, from Table
(o, p) if n=1and m > 3,
(o, p) if n>2and m =2,
Hyp = :
’ (o7,p,0%) ifn=1and m =2,
(o1,p,02%) ifn>2and m > 3.
Hence
{(o7)?) if n=1and m > 3,
H, = {(o7)?) ?fn22andm:2, .
’ {(o7)?) if n =1 and m = 2, since 0% = 1,

((o7)%,0%) ifn>2and m > 3.
On the other hand, Gy, n/Ha2 = {1,0Hs2} = {1, 7Hy2}. Thus by Corollary
and Lemma [2.1] we get
VGm,n—>H4,2 (UG/m,n) = 02H4,1,2 # H:/a,27
VGm,n_)H4,2(TG;n,’n) = TQHZ/,L,Q # Hi,27
VGynstiz(0TCG ) = (07)*[07,0]Hy o = Hy,

/ 2 / 2 _27y/ 2_9on om—1,.y
VGnnHio(PGmpn) = p7lp,0lHyy = p"0”Hy g = 0°7% 0% Hy,

0272(07)27”71}[!1,2 if n =1 and m > 3, since 74 =1,
o*(oT)*"H} if n > 2 and m = 2, since o* = 1,
- 027202[{4’1’2 if n=1and m =2,
02(07)2n0_2n02m_1Hfl’2 if n > 2 and m > 3,
(H), if n =1 and m > 3, since 7% =1,
Hj, if n > 2 and m = 2, since o* = 1,
- TQHLQ#HQ,Q ifn=1and m =2,
UQHjt’z;éHL’LQ ifn>2and m >3,

n m—1
VGm,n—>H4,2(O-pG;n,n) = (UP)QHQQ = pQHz/LQ =72 0? Hz/u

7-2(07-)27'1_1[-[4172 if n =1 and m > 3, since 74 = 1,
o*(oT)*"Hy , if n > 2 and m = 2, since 0* = 1,
o’r*H}, ifn=1and m=2,

(07)2n0*2n02m71H4’172 if n >2and m > 3,
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7'2Hf172 #* HQ’Q if n =1 and m > 3, since 7% =1,
UZHi,z # Hj, ifn>2and m =2, since ot =1,

Hz/L,Q ifn=1and m =2,
HZIL,Q if n>2and m > 3.
Therefore
, , X n = 1 and m 2 3 or
<O'TGm7n7 me,n> if { n>2 and m = 2>
kel"VH472 =

) , .. n=1and m=2or
(017G, opGry ) if { n > 2 and m > 3.

(ITIT) We know, from Table that Hyq = (0,72), 50 Gmn/Hi4a =
{1,7H14,pH14,7pH1 4} and H{A = (1). Hence Corollary and Lemma
2.0] yield

VGmn—sHia (O’G:n’n) = UT_lan_laT_lanH{A = H{A,

VGmsta(TGh ) = TQP_lT2PH{,4 = Hi 4,

VG st s(PGr ) = PQT_IP_2TH1,4 = Hj .
Therefore ker Vi, , = (0G0 TGl s PG ) = Grn /Gl ®

3. Applications. Let k be a number field and Cy 5 be its 2-class group,
that is, the 2-Sylow subgroup of the ideal class group Cy of k, in the wide
sense. Let kgl) be the Hilbert 2-class field of k in the wide sense. Then
the Hilbert 2-class field tower of k is defined inductively by ki) = k and
kgnﬂ) = (kgn))(l), where n is a positive integer. Let M be an unramified
extension of k and Cyy be the subgroup of Cy associated to Ml by class field
theory. Denote by jx_.m : Cx — Cy the homomorphism that associates to
the class of an ideal A of k the class of the ideal generated by A in M, and
by NM/k the norm of the extension M/k.

Throughout this section, assume that Gal(kg) /k) ~ Gy, . Hence, ac-
cording to class field theory, Cxo =~ Gm,n/G’mm ~ (2,2,2), thus Cxo =
(0,0, ¢) = (0G0, TGl s PG ), where (0, k) /k) = 0Gl . (6,5 k) =
TG, and (c,kg)/k) = pG}, ,, With (-,ng)/k) denoting the Artin symbol
in k) /k.

It is well known that each subgroup H; ;, where 1 <7 < 7and j = 2 or 4,
of Cy 2 is associated, by class field theory, to a unique unramified extension
K; ; of kél) such that H”/HZ’J ~ Ck,  2-

Our goal is to study the capitulation problem of the 2-ideal classes of
k in its unramified quadratic and biquadratic extensions K; 2> and K; 4. By
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class field theory, ker jix_n is determined by the kernel of the transfer map
Voon : G/G' — H/H', where G = Gal(k?) /k) and H = Gal(M{” /M).
THEOREM 3.1. Keep the previous notation.
(1) If p2 = 02", then

kerjk—>K1 2 <a) b>7
kerjk‘)KQ 2 <a bc>7
k . b? C> Zf m = 27
er =
Ik—Ks,2 b,ac) if m >3,

, b,ac) if m=2,
KOTTkoKan =\ p ) ifm >3
ker.jk*)KG,g = {a, C>,

" _ [ (ab,be) ifm=2,
o IkoKra = {ab,c) ifm>3

)
=
S,
=
0
~
w
V)

Il

n=1and m>3 or

) {(ab,c> if{nZQandm:Z
ker jk sK,, =

b ac) if n=1and m=2 or
av,ac; 1 n>2andm >3,

ker jk—>K5’2 —

ker jk—)K(}’Q =

=1and m>3 or
and m = 2,

kerjk—>K7,2 = n=1and m=2 or

{ab, c) if{nZQandmZ&
(3) For all1 <i <7, ker jk K, , = Ck2-

(4) The 2-class group of kgl) is of type (2m~1 27,

(5) The Hilbert 2-class field tower of k stops at kéQ).
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Proof. (1) According to Theorem since ker Vi, , = (0G0, TGhn)s
we have ker ji k, , = (a,b). Similarly, as

ker V . <TG;n no pG:n,n> if m =2,
Hsz2 = (TGl 00Gry ) ifm >3,

we have

Kop i ~ [(be) ifm=2,
T IkKsa = (b,ac) if m > 3.

The other assertions are proved similarly.
(4) It is well known that C, o), = G,
2
group of kg). As G, = (0%, 7%) ~ (2™71,2") since 0% =
result is proved.

m,n?

where C, (), is the 2-class
5 )2
=1, the

7_27L+1

(5) Hi4, Ha4 and Hy 4 are the three subgroups of index 2 of the group
Hi 2, hence K 4, K24 and Ky 4 are the three unramified quadratic exten-
sions of Kj 2. On the other hand, the 2-class groups of these fields are of
rank 2, since, by class field theory, Ck, ;2 ~ ”/H cwithi=1,2o0r 4
and j = 2 or 4. Thus Tables [1} l l I and I imply that CK1 a2 = (2m 2t
and Ck,,2 ~ (2™,2"). Hence ha(Ki4) = h2(Ki32)/2, where ho(K) de-
notes the 2-class number of the field K. Therefore, we can apply [BLS,
Proposition 7], which says that K;2 has an abelian 2-class field tower if
and only if it has a quadratic unramified extension K;4/K; 2 such that
ho(K14) = h2(Ki2)/2. Thus Ko has abelian 2-class field tower which
terminates at the first stage; this implies that the 2-class field tower of k

terminates at kéQ), since k C K 2. Moreover, we know from Proposition

that [Gyn| = 2772 and |G, | = 2771 hence k5 # k5. =

4. Example. Let p; = p2 = 5 (mod 8) be different primes. Denote
by k the imaginary bicyclic biquadratic field Q(v/d,4), where d = 2p;ps.
Let k( ) be the Hilbert 2-class ﬁeld of k, k( ) its second Hilbert 2-class
field, and G the Galois group of k2 / k. Accordmg to [AT], k has an el-
ementary abelian 2-class group Cyo of rank 3, that is, of type (2,2,2).

Set K = k(v2) = Q(v2, V/P1pz,vV—1), and let ¢ denote the unit index of
K" = Q(v/2, /p1pz). Denote by ha(—pip2) (resp. hao(p1p2)) the 2-class num-
ber of Q(y/—p1p2) (resp. Q(\/p1pz2)). Then, from [Ka], we have ha(—p1p2) =
2+l with m > 2, and ha(pip2) = 2" with n > 1. Assume that ¢ = 1.
Then, by [AZT3, Lemma 6], m > 2 and n > 1, and by [AZT3, The-
orem 2|, G ~ Gy, . The following result is proved in [AZT3], and we
give it here to illustrate the results shown above. For more details, see
[AZT3].
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THEOREM 4.1. Let p1 = po = 5 (mod 8) be two different primes. Set
k = Q(2p1p2,1). Then k has fourteen unramified extensions within its
first Hilbert 2-class field kgl) (see [AZTI]). Denote by Cy o the 2-class group
of k. Then the following assertions hold:

(1)

Ezactly four elements of Cy 2 capitulate in each unramified quadratic
extension of k.

All the 2-classes of k capitulate in each unramified biquadratic ex-
tension of k.

The Hilbert 2-class field tower of k stops at k(22) (see [AZT2]).
Ck(21)72 ~ (2”, 2m—1)‘

The coclass of G is 3 and its nilpotency class is n + 2.

The 2-class groups of the unramified quadratic extensions of k are
of types (2,4), (2,2,2) or (2™, 2"1).

The 2-class groups of the unramified biquadratic extensions of k

are of types (2,4), (2,2,2), (2m,2n), (2m~1 2n+1) op (2min(m—1n)
2max(m,n+1)) )
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