ON SOME METABELIAN 2-GROUPS AND APPLICATIONS I

BY

ABDELMALEK AZIZI (Oujda), ABDELKADER ZEKHNINI (Nador) and MOHAMMED TAOUS (Errachidia)

Abstract. Let G be some metabelian 2-group satisfying the condition $G/G' \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. In this paper, we construct all the subgroups of G of index 2 or 4, we give the abelianization types of these subgroups and we compute the kernel of the transfer map. Then we apply these results to study the capitulation problem for the 2-ideal classes of some fields \mathbf{k} satisfying the condition $\operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k}) \simeq G$, where $\mathbf{k}_2^{(2)}$ is the second Hilbert 2-class field of \mathbf{k} .

1. Introduction. Let k be an algebraic number field and let Cl(k) denote its class group. Let $k^{(1)}$ be the Hilbert class field of k, that is, the maximal abelian unramified extension of k. Let $k^{(2)}$ be the Hilbert class field of $k^{(1)}$ and set $G = Gal(k^{(2)}/k)$. Denote by F a finite extension of k and by H the subgroup of G which fixes F. Then we say that an ideal class of k capitulates in F if it is in the kernel of the homomorphism

$$j_{k\to F}: \mathrm{Cl}(k) \to \mathrm{Cl}(F)$$

induced by extension of ideals from k to F. An important problem in number theory is to explicitly determine the kernel of $j_{k\to F}$, which is usually called the *capitulation kernel*. As $j_{k\to F}$ corresponds, by the Artin reciprocity law, to the group-theoretical transfer (for details see [Mi])

$$V_{G\to H}: G/G'\to H/H',$$

where G' (resp. H') is the derived group of G (resp. H), to determine $\ker j_{k\to F}$ is equivalent to determining $\ker V_{G\to H}$, which transforms the capitulation problem to a problem in group theory. That is why the capitulation problem is completely solved if $G/G' \simeq (2,2)$, since the groups G such that $G/G' \simeq (2,2)$ are determined and well classified (see [Ki, Mi]). If $G/G' \simeq (2,2^n)$ for some integer $n \geq 2$, then G is metacyclic or not; in

 $^{2010\} Mathematics\ Subject\ Classification:\ 11R11,\ 11R20,\ 11R29,\ 11R32,\ 11R37,\ 20D15,\ 20D20,\ 20E28.$

Key words and phrases: 2-group, metabelian 2-group, capitulation, Hilbert class field, 2-class field tower.

the first case the capitulation problem is completely solved, whereas in the second case the problem is open (see [ATZ, BS]). If $G/G' \simeq (2, 2, 2)$, then the structure of G is unknown in most cases, so the capitulation problem is also open.

It is the purpose of this paper to provide answers to this problem in a particular case, continuing a project we started in [AZT4]; we give some group-theoretical results to solve the capitulation problem, in a particular case, if G satisfies the last condition. For this, we consider the following family of groups, defined for integers $n \ge 1$ and $m \ge 2$:

(1.1)
$$G_{m,n} = \langle \sigma, \tau, \rho : \rho^4 = \sigma^{2^m} = \tau^{2^{m+1}} = 1, \ \rho^2 = \varphi,$$

$$[\tau, \sigma] = 1, \ [\rho, \sigma] = \sigma^2, \ [\rho, \tau] = \tau^2 \rangle,$$

where

$$\varphi = \sigma^{2^{m-1}} \text{ or } \tau^{2^n} \sigma^{2^{m-1}}.$$

In this paper, we construct all the subgroups of $G_{m,n}$ of index 2 or 4, we give the abelianization types of these subgroups and we compute the kernel of the transfer map $V_{G\to H}: G_{m,n}/G'_{m,n}\to H/H'$ for any subgroup H of $G_{m,n}$, defined by the Artin map. Then we apply these results to study the capitulation of 2-ideal classes of some fields \mathbf{k} satisfying $\operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k}) \simeq G_{m,n}$, where $\mathbf{k}_2^{(2)}$ is the second Hilbert 2-class field of \mathbf{k} . Finally, we illustrate our results by examples which show that our group is realizable, i.e. there is a field \mathbf{k} such that $\operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k}) \simeq G_{m,n}$.

2. Main results. Recall first that a group G is said to be *metabelian* if its derived group G' is abelian, and a subgroup H of G, not reduced to the unit, is called *maximal* if it is the unique subgroup of G distinct from G and containing H. Let x, y and z be elements of G. Set $x^y = y^{-1}xy$. Then we easily show that

$$[xy, z] = [x, z]^y [y, z]$$
 and $[x, yz] = [x, z][x, y]^z$.

Let $G_{m,n}$ be the group defined by (1.1). Since $[\tau, \sigma] = 1$, $[\rho, \sigma] = \sigma^2$ and $[\rho, \tau] = \tau^2$, we have $G'_{m,n} = \langle \sigma^2, \tau^2 \rangle$, which is abelian. Thus $G_{m,n}$ is metabelian and $G_{m,n}/G'_{m,n} \simeq (2,2,2)$, since $\rho^2 = \sigma^{2^{m-1}}$ or $\tau^{2^n}\sigma^{2^{m-1}}$. Hence $G_{m,n}$ admits seven subgroups of index 2, denoted $H_{i,2}$, and seven subgroups of index 4, denoted $H_{i,4}$, where $1 \leq i \leq 7$. These subgroups, their derived groups and their abelianizations are given in Tables 1–4 below. Set $a = \min(m-1,n)$ and $b = \max(m,n+1)$.

First case: $\rho^2 = \sigma^{2^{m-1}}$.

Table 1. Subgroups of $G_{m,n}$ of index 2

i	$H_{i,2}$	$H_{i,2}'$	$H_{i,2}/H'_{i,2}$
1	$\langle \sigma, au angle$	$\langle 1 \rangle$	$(2^m, 2^{n+1})$
2	$\langle \sigma, \rho, \tau^2 \rangle$	$\langle \sigma^2, au^4 angle$	(2, 2, 2)
3	$\langle au, ho, \sigma^2 \rangle$	$\langle au^2, \sigma^4 angle$	(2, 2, 2)
4	$\langle \sigma \tau, \rho, \sigma^2 \rangle$	$\langle (\sigma\tau)^2, \sigma^4 \rangle$	(2, 2, 2)
5	$\langle \sigma \rho, \sigma, \tau^2 \rangle$	$\langle au^4, \sigma^2 angle$	(2, 2, 2)
6	$\langle au ho, au, \sigma^2 angle$	$\langle au^2, \sigma^4 angle$	(2, 2, 2)
7	$\langle \sigma \tau, \tau \rho, \sigma^2 \rangle$	$\langle (\sigma\tau)^2, \sigma^4 \rangle$	(2, 2, 2)

Table 2. Subgroups of $G_{m,n}$ of index 4

\overline{i}	$H_{i,4}$	$H'_{i,4}$	$H_{i,4}/H'_{i,4}$
1	$\langle \sigma, \tau^2 \rangle$	$\langle 1 \rangle$	$(2^m, 2^n)$
2	$\langle \sigma^2, au angle$	$\langle 1 \rangle$	$(2^{m-1}, 2^{n+1})$
3	$\langle ho, \sigma^2, au^2 angle$	$\langle \sigma^4, au^4 angle$	(2, 2, 2)
4	$\langle \sigma \tau, \tau^2 \rangle$	$\langle 1 \rangle$	$(2^a, 2^b)$
5	$\langle \sigma \rho, \sigma^2, \tau^2 \rangle$	$\langle \sigma^4, au^4 angle$	(2, 2, 2)
6	$\langle au ho, \sigma^2, au^2 angle$	$\langle \sigma^4, \tau^4 \rangle$	(2, 2, 2)
7	$\langle \sigma \tau \rho, \sigma^2, \tau^2 \rangle$	$\langle \sigma^4, \tau^4 \rangle$	(2, 2, 2)

Second case: $\rho^2 = \tau^{2^n} \sigma^{2^{m-1}}$.

Table 3. Subgroups of $G_{m,n}$ of index 2

i	Conditions	$H_{i,2}$	$H_{i,2}'$	$H_{i,2}/H'_{i,2}$
1		$\langle \sigma, \tau \rangle$	⟨1⟩	$(2^m, 2^{n+1})$
2	n = 1	$\langle \sigma, ho angle$	$\langle \sigma^2 \rangle$	(2,4)
	$n \ge 2$	$\langle \sigma, \rho, \tau^2 \rangle$	$\langle \sigma^2, au^4 angle$	(2, 2, 2)
3	m = 2	$\langle au, ho angle$	$\langle au^2 angle$	(2, 4)
	$m \ge 3$	$\langle au, ho, \sigma^2 \rangle$	$\langle au^2, \sigma^4 angle$	(2, 2, 2)
4	$n=1$ and $m \geq 3$	$\langle \sigma au, ho angle$	$\langle (\sigma \tau)^2 \rangle$	(2, 4)
	$n \ge 2$ and $m = 2$	$\langle \sigma au, ho angle$	$\langle (\sigma \tau)^2 \rangle$	(2, 4)
	n=1 and $m=2$	$\langle \sigma \tau, \rho, \sigma^2 \rangle$	$\langle (\sigma \tau)^2 \rangle$	(2, 2, 2)
	$n \ge 2$ and $m \ge 3$	$\langle \sigma \tau, \rho, \sigma^2 \rangle$	$\langle (\sigma\tau)^2, \sigma^4 \rangle$	(2, 2, 2)
5	m = 2	$\langle \sigma ho, au angle$	$\langle au^2 angle$	(2, 4)
	$m \ge 3$	$\langle \sigma \rho, \tau, \sigma^2 \rangle$	$\langle au^2, \sigma^4 angle$	(2, 2, 2)
6	n = 1	$\langle \sigma, au ho angle$	$\langle \sigma^2 \rangle$	(2, 4)
	$n \ge 2$	$\langle \sigma, \tau \rho, \tau^2 \rangle$	$\langle \sigma^2, \tau^4 \rangle$	(2, 2, 2)
7	$n=1$ and $m \geq 3$	$\langle \sigma au, au ho angle$	$\langle (\sigma \tau)^2 \rangle$	(2, 4)
	$n \ge 2$ and $m = 2$	$\langle \sigma au, au ho angle$	$\langle (\sigma \tau)^2 \rangle$	(2, 4)
	n=1 and $m=2$	$\langle \sigma \tau, \tau \rho, \sigma^2 \rangle$	$\langle (\sigma \tau)^2 \rangle$	(2, 2, 2)
	$n \ge 2$ and $m \ge 3$	$\langle \sigma \tau, \tau \rho, \sigma^2 \rangle$	$\langle (\sigma\tau)^2, \sigma^4 \rangle$	(2, 2, 2)

\overline{i}	Conditions	$H_{i,4}$	$H'_{i,4}$	$H_{i,4}/H'_{i,4}$
1		$\langle \sigma, \tau^2 \rangle$	$\langle 1 \rangle$	$(2^m, 2^n)$
2		$\langle \sigma^2, au angle$	$\langle 1 \rangle$	$(2^{m-1}, 2^{n+1})$
3	$n=1$ and $m \geq 3$	$\langle \sigma^2, ho angle$	$\langle \sigma^4 angle$	(2,4)
	$m=2$ and $n\geq 2$	$\langle au^2, ho angle$	$\langle au^4 angle$	(2,4)
	n=1 and $m=2$	$\langle \sigma^2, \rho \rangle = \langle \tau^2, \rho \rangle$	$\langle 1 \rangle$	(2,4)
	$n \ge 2$ and $m \ge 3$	$\langle ho, au^2, \sigma^2 angle$	$\langle au^4, \sigma^4 \rangle$	(2, 2, 2)
4		$\langle \sigma au, au^2 angle$	$\langle 1 \rangle$	$(2^a, 2^b)$
5	$n=1$ and $m \geq 3$	$\langle \sigma^2, \sigma ho angle$	$\langle \sigma^4 angle$	(2,4)
	$m=2$ and $n\geq 2$	$\langle au^2, \sigma ho angle$	$\langle au^4 angle$	(2,4)
	n=1 and $m=2$	$\langle \sigma^2, \sigma \rho \rangle = \langle \tau^2, \sigma \rho \rangle$	$\langle 1 \rangle$	(2,4)
	$n \ge 2$ and $m \ge 3$	$\langle \sigma ho, au^2, \sigma^2 angle$	$\langle au^4, \sigma^4 angle$	(2, 2, 2)
6	$n=1$ and $m \geq 3$	$\langle \sigma^2, au ho angle$	$\langle \sigma^4 \rangle$	(2,4)
	$m=2$ and $n\geq 2$	$\langle au^2, au ho angle$	$\langle au^4 angle$	(2,4)
	n=1 and $m=2$	$\langle \sigma^2, \tau \rho \rangle = \langle \tau^2, \tau \rho \rangle$	$\langle 1 \rangle$	(2,4)
	$n \ge 2$ and $m \ge 3$	$\langle au ho, au^2, \sigma^2 angle$	$\langle au^4, \sigma^4 angle$	(2, 2, 2)
7	$n = 1$ and $m \ge 3$	$\langle \sigma^2, \sigma au ho angle$	$\langle \sigma^4 \rangle$	(2,4)
	$m=2$ and $n\geq 2$	$\langle au^2, \sigma au ho angle$	$\langle au^4 angle$	(2,4)
	n=1 and $m=2$	$\langle \sigma^2, \sigma \tau \rho \rangle = \langle \tau^2, \sigma \tau \rho \rangle$	$\langle 1 \rangle$	(2,4)
	$n \ge 2$ and $m \ge 3$	$\langle \sigma au ho, au^2, \sigma^2 angle$	$\langle au^4, \sigma^4 angle$	(2, 2, 2)

Table 4. Subgroups of $G_{m,n}$ of index 4

To check the tables entries, we need the following lemma.

LEMMA 2.1. Let $G_{m,n} = \langle \sigma, \tau, \rho \rangle$ denote the group defined above. Then:

- (1) $\rho^{-1}\sigma\rho = \sigma^{-1}$.
- (2) $\rho^{-1}\tau\rho = \tau^{-1}$.
- (3) ρ^2 commutes with σ and τ .
- (4) $(\sigma \tau \rho)^2 = (\sigma \rho)^2 = (\tau \rho)^2 = \rho^2$.
- (5) For all $r \in \mathbb{N}$, $[\rho, \tau^{2^r}] = \tau^{2^{r+1}}$ and $[\rho, \sigma^{2^r}] = \sigma^{2^{r+1}}$.

Proof. (1) and (2) are obvious, since $[\rho, \sigma] = \sigma^2$ and $[\rho, \tau] = \tau^2$.

- (3) As $\rho^2 = \sigma^{2^{m-1}}$ or $\tau^{2^n} \sigma^{2^{m-1}}$, we have $\rho^2 \in \langle \tau, \sigma \rangle$, which is an abelian group, because $[\tau, \sigma] = 1$. Hence the result.
- (4) $(\tau \rho)^2 = \tau \rho \tau \rho = \tau \rho^2 \rho^{-1} \tau \rho = \tau \rho^2 \tau^{-1} = \rho^2$. To prove the other results, we proceed similarly.
- (5) Since $[\rho, \tau] = \tau^2$, we have $[\rho, \tau^2] = \tau^4$. By induction, we show that $[\rho, \tau^{2^r}] = \tau^{2^{r+1}}$ for all $r \in \mathbb{N}$. Similarly, we prove that $[\rho, \sigma^{2^r}] = \sigma^{2^{r+1}}$.

Let us now prove some entries of the tables, using Lemma 2.1.

First case: $\rho^2 = \sigma^{2^{m-1}}$. For $H_{1,2} = \langle \sigma, \tau, G'_{m,n} \rangle = \langle \sigma, \tau \rangle$, we have $H'_{1,2} = \langle 1 \rangle$, since $[\sigma, \tau] = 1$. As $\sigma^{2^m} = \tau^{2^{n+1}} = 1$, we obtain $H_{1,2}/H'_{1,2} \simeq (2^m, 2^{n+1}) = (2^2, 2^{n+2})$.

For $H_{2,2} = \langle \sigma, \rho, G'_{m,n} \rangle = \langle \sigma, \rho, \tau^2, \sigma^2 \rangle = \langle \sigma, \rho, \tau^2 \rangle$. Therefore, by Lemma 2.1, we get $H'_{2,2} = \langle \sigma^2, \tau^4 \rangle$, thus $H_{2,2}/H'_{2,2} \simeq (2,2,2)$.

For $H_{1,4} = \langle \sigma, G'_{m,n} \rangle = \langle \sigma, \sigma^2, \tau^2 \rangle = \langle \sigma, \tau^2 \rangle$, we have $H'_{1,4} = \langle 1 \rangle$, since $[\sigma, \tau] = 1$. As $\sigma^{2^m} = \tau^{2^{n+1}} = 1$, we obtain $H_{1,4}/H'_{1,4} \simeq (2^m, 2^n)$.

For $H_{2,4} = \langle \tau, G'_{m,n} \rangle = \langle \tau, \tau^2, \sigma^2 \rangle = \langle \tau, \sigma^2 \rangle$, we have $H'_{2,4} = \langle 1 \rangle$, hence $H_{2,4}/H'_{2,4} \simeq (2^{m-1}, 2^{n+1})$.

The other entries of Tables 1 and 2 are checked similarly.

Second case: $\rho^2 = \tau^{2^n} \sigma^{2^{m-1}}$. We have $H_{2,2} = \langle \sigma, \rho, G'_{m,n} \rangle = \langle \sigma, \rho, \tau^2 \rangle$. Since $\rho^2 = \tau^{2^n} \sigma^{2^{m-1}}$, if n = 1 then $\rho^2 = \tau^2 \sigma^{2^{m-1}}$, and thus $\rho^2 \sigma^{-2^{m-1}} = \tau^2$. Hence $H_{2,2} = \langle \sigma, \rho \rangle$. If $n \geq 2$, then $H_{2,2} = \langle \sigma, \rho, \tau^2 \rangle$. Therefore, by Lemma 2.1, we get

$$H'_{2,2} = \begin{cases} \langle \sigma^2 \rangle & \text{if } n = 1, \\ \langle \sigma^2, \tau^4 \rangle & \text{if } n \ge 2. \end{cases}$$

As $\rho^4 = 1$ and $\rho^2 = \tau^{2^n} \sigma^{2^{m-1}}$, we obtain

$$H_{2,2}/H'_{2,2} \simeq \begin{cases} (2,4) & \text{if } n=1, \\ (2,2,2) & \text{if } n \geq 2. \end{cases}$$

We have $H_{4,2} = \langle \sigma \tau, \rho, G'_{m,n} \rangle = \langle \sigma \tau, \rho, \tau^2 \rangle = \langle \sigma \tau, \rho, \sigma^2 \rangle$. Since $\rho^2 = \tau^{2^n} \sigma^{2^{m-1}}$, we obtain:

- If n=1 and $m\geq 3$, then $\rho^2=\tau^2\sigma^{2^{m-1}}$ and $\tau^4=1$, thus $\rho^2=\tau^2(\sigma\tau)^{2^{m-1}}$, which implies $\rho^2(\sigma\tau)^{-2^{m-1}}=\tau^2$. Hence $H_{4,2}=\langle\sigma\tau,\rho\rangle$, and Lemma 2.1 yields $H'_{4,2}=\langle(\sigma\tau)^2\rangle$. Thus $H_{4,2}/H'_{4,2}\simeq(2,4)$ since $\rho^4=1$.
- If $n \geq 2$ and m = 2, then $\rho^2 = \tau^{2^n} \sigma^2$ and $\sigma^4 = 1$, thus $\rho^2 = (\sigma \tau)^{2^n} \sigma^2$, which implies $\rho^2(\sigma \tau)^{-2^n} = \sigma^2$. Hence $H_{4,2} = \langle \sigma \tau, \rho \rangle$, and Lemma 2.1 yields $H'_{4,2} = \langle (\sigma \tau)^2 \rangle$. Thus $H_{4,2}/H'_{4,2} \simeq (2,4)$ since $\rho^4 = 1$.
- If n = 1 and m = 2, then $\rho^2 = \tau^2 \sigma^2 = (\sigma \tau)^2$ and $\sigma^4 = \tau^4 = 1$, hence $H_{4,2} = \langle \sigma \tau, \rho, \sigma^2 \rangle$, and Lemma 2.1 yields $H'_{4,2} = \langle (\sigma \tau)^2 \rangle$. Thus $H_{4,2}/H'_{4,2} \simeq (2,2,2)$.
- If $n \geq 2$ and $m \geq 3$, then $H_{4,2} = \langle \sigma \tau, \rho, \sigma^2 \rangle$, and Lemma 2.1 yields $H'_{4,2} = \langle (\sigma \tau)^2, \sigma^4 \rangle$. Thus $H_{4,2}/H'_{4,2} \simeq (2,2,2)$.

For $H_{1,4} = \langle \sigma, G'_{m,n} \rangle = \langle \sigma, \sigma^2, \tau^2 \rangle = \langle \sigma, \tau^2 \rangle$, we have $H'_{1,4} = \langle 1 \rangle$, since $[\sigma, \tau] = 1$. As $\sigma^{2^m} = \tau^{2^{n+1}} = 1$, it follows that $H_{1,4}/H'_{1,4} \simeq (2^m, 2^n)$.

For $H_{3,4} = \langle \rho, G'_{m,n} \rangle = \langle \rho, \tau^2, \sigma^2 \rangle$, we have:

- If n = 1 and $m \ge 3$, then $\rho^2 = \tau^2 \sigma^{2^{m-1}}$ and $\tau^4 = 1$, which implies $\rho^2 \sigma^{-2^{m-1}} = \tau^2$. Hence $H_{3,4} = \langle \rho, \sigma^2 \rangle$, and Lemma 2.1 yields $H'_{3,4} = \langle \sigma^4 \rangle$. Thus $H_{3,4}/H'_{3,4} \simeq (2,4)$ since $\rho^4 = 1$.
- If $n \geq 2$ and m = 2, then $\rho^2 = \tau^{2^n} \sigma^2$ and $\sigma^4 = 1$, which implies $\rho^2 \tau^{-2^n} = \sigma^2$. Hence $H_{3,4} = \langle \tau^2, \rho \rangle$, and Lemma 2.1 yields $H'_{3,4} = \langle \tau^4 \rangle$. Thus $H_{3,4}/H'_{3,4} \simeq (2,4)$ since $\rho^4 = 1$.
- If n=1 and m=2, then $\rho^2=\tau^2\sigma^2$ and $\sigma^4=\tau^4=1$, hence $H_{3,4}=\langle \rho,\sigma^2\rangle=\langle \rho,\tau^2\rangle$, and Lemma 2.1 yields $H'_{3,4}=\langle 1\rangle$. Thus $H_{3,4}/H'_{3,4}\simeq(2,4)$.
- If $n \geq 2$ and $m \geq 3$, then $H_{3,4} = \langle \rho, \sigma^2, \tau^2 \rangle$, and Lemma 2.1 yields $H'_{3,4} = \langle \tau^4, \sigma^4 \rangle$. Thus $H_{3,4}/H'_{3,4} \simeq (2,2,2)$.

The other entries of Tables 3 and 4 are checked similarly.

PROPOSITION 2.2. Let $G_{m,n}$ be the group defined by (1.1). Then:

- (1) The order of $G_{m,n}$ is 2^{m+n+2} and that of $G'_{m,n}$ is 2^{m+n-1} .
- (2) The coclass of $G_{m,n}$ is $\min(m, n+1) + 1$ and its nilpotency class is $\max(m, n+1)$.
- (3) The center, Z(G), of G is of type (2,2).

Proof. (1) Since $\sigma^{2^m} = \tau^{2^{n+1}} = 1$, we have $\langle \sigma, \tau \rangle \simeq (2^m, 2^{n+1})$. Moreover, as $\rho^2 = \sigma^{2^{m-1}}$ or $\tau^{2^n} \sigma^{2^{m-1}}$, we obtain $\langle \sigma, \tau, \rho \rangle \simeq (2^m, 2^{n+1}, 2)$. Thus $|G_{m,n}| = 2^{m+n+2}$. Similarly, we prove that $|G'_{m,n}| = 2^{m+n-1}$, since $G'_{m,n} = \langle \sigma^2, \tau^2 \rangle$.

(2) The lower central series of $G_{m,n}$ is defined inductively by $\gamma_1(G_{m,n}) = G_{m,n}$ and $\gamma_{i+1}(G_{m,n}) = [\gamma_i(G_{m,n}), G_{m,n}]$, that is, the subgroup of $G_{m,n}$ generated by the set $\{[a,b] = a^{-1}b^{-1}ab : a \in \gamma_i(G_{m,n}), b \in G_{m,n}\}$, so the coclass of $G_{m,n}$ is defined to be $cc(G_{m,n}) = h - c$, where $|G_{m,n}| = 2^h$ and $c = c(G_{m,n})$ is the nilpotency class of $G_{m,n}$. We easily get

$$\gamma_1(G_{m,n}) = G_{m,n},$$

$$\gamma_2(G_{m,n}) = G'_{m,n} = \langle \sigma^2, \tau^2 \rangle,$$

$$\gamma_3(G_{m,n}) = [G'_{m,n}, G_{m,n}] = \langle \sigma^4, \tau^4 \rangle.$$

Then Lemma 2.1(5) yields $\gamma_{j+1}(G_{m,n}) = [\gamma_j(G_{m,n}), G_{m,n}] = \langle \sigma^{2^j}, \tau^{2^j} \rangle$. Hence, if we set $v = \max(m, n+1)$, then $\gamma_{v+1}(G_{m,n}) = \langle \sigma^{2^v}, \tau^{2^v} \rangle = \langle 1 \rangle$ and $\gamma_v(G_{m,n}) = \langle \sigma^{2^{v-1}}, \tau^{2^{v-1}} \rangle \neq \langle 1 \rangle$. As $|G_{m,n}| = 2^{m+n+2}$, it follows that $c(G_{m,n}) = \max(m, n+1)$ and

$$cc(G_{m,n}) = m + n + 2 - \max(m, n+1) = \min(m, n+1) + 1.$$

(3) We use [Is, Lemma 12.12, p. 204] which states that if G is a p-group and A is a normal abelian subgroup of G such that G/A is cyclic, then $A/A \cap Z(G) \simeq G'$. Let $A = H_{1,2}$, so A is abelian and [G:A] = 2, thus

 $Z(G) \subset A \text{ and } A/Z(G) \simeq G'.$ Hence |G| = |A|[G:A] = 2|G'||Z(G)|, thus $|Z(G)| = \frac{1}{2}|G/G'| = 4$. On the other hand, by Lemma 2.1 we have $[\rho, \sigma^{2^{m-1}}] = \sigma^{2^m} = 1$ and $[\rho, \tau^{2^n}] = \sigma^{2^{n+1}} = 1$, so $\langle \sigma^{2^{m-1}}, \tau^{2^n} \rangle \subset Z(G)$. As $|\langle \sigma^{2^{m-1}}, \tau^{2^n} \rangle| = 4$, we conclude that $\langle \sigma^{2^{m-1}}, \tau^{2^n} \rangle = Z(G) \simeq (2, 2)$.

We continue with the following results.

PROPOSITION 2.3 ([Mi]). Let H be a normal subgroup of a group G. For $g \in G$, write $f = [\langle g \rangle.H:H]$ and let $\{x_1, \ldots, x_t\}$ be a set of representatives of $G/\langle g \rangle H$. Then the transfer map $V_{G \to H}: G/G' \to H/H'$ is given by

(2.1)
$$V_{G \to H}(gG') = \prod_{i=1}^{t} x_i^{-1} g^f x_i \cdot H'.$$

The following corollaries can be proved easily.

COROLLARY 2.4. Let H be a subgroup of $G_{m,n}$ of index 2. If $G_{m,n}/H = \{1, zH\}$, then

$$\mathbf{V}_{G\to H}(gG'_{m,n}) = \begin{cases} gz^{-1}gz.H' = g^2[g,z].H' & \text{if } g\in H, \\ g^2.H' & \text{if } g\not\in H. \end{cases}$$

COROLLARY 2.5. Let H be a normal subgroup of $G_{m,n}$ of index 4. If $G_{m,n}/H = \{1, zH, z^2H, z^3H\}$, then

$$\mathbf{V}_{G \to H}(gG'_{m,n}) = \begin{cases} gz^{-1}gz^{-1}gz^{-1}gz^{3}.H' & \text{if } g \in H, \\ g^{4}.H' & \text{if } gH = zH, \\ g^{2}z^{-1}g^{2}z.H' & \text{if } g \notin H \text{ and } gH \neq zH. \end{cases}$$

COROLLARY 2.6. Let H be a normal subgroup of $G_{m,n}$ of index 4. If $G_{m,n}/H = \{1, z_1H, z_2H, z_3H\}$ with $z_3 = z_1z_2$, then

$$V_{G \to H}(gG'_{m,n}) = \begin{cases} gz_1^{-1}gz_1z_2^{-1}gz_1^{-1}gz_1z_2.H' & \text{if } g \in H, \\ g^2z_i^{-1}g^2z_i.H' & \text{if } gH = z_jH \text{ with } i \neq j. \end{cases}$$

In what follows, we denote by $\ker V_H$ the kernel of the transfer map $V_{G\to H}: G_{m,n}/G'_{m,n}\to H/H'$, where H is a subgroup of $G_{m,n}$.

Theorem 2.7. Keep the previous notation.

$$\begin{split} \text{(I) } \textit{If } \rho^2 &= \sigma^{2^{m-1}}, \textit{ then } \\ & \ker \mathbf{V}_{H_{1,2}} = \langle \sigma G'_{m,n}, \tau G'_{m,n} \rangle, \\ & \ker \mathbf{V}_{H_{2,2}} = \langle \sigma G'_{m,n}, \tau \rho G'_{m,n} \rangle, \\ & \ker \mathbf{V}_{H_{3,2}} = \begin{cases} \langle \tau G'_{m,n}, \rho G'_{m,n} \rangle & \textit{if } m = 2, \\ \langle \tau G'_{m,n}, \sigma \rho G'_{m,n} \rangle & \textit{if } m \geq 3, \end{cases} \\ & \ker \mathbf{V}_{H_{4,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \rho G'_{m,n} \rangle & \textit{if } m = 2, \\ \langle \sigma \tau G'_{m,n}, \sigma \rho G'_{m,n} \rangle & \textit{if } m \geq 3, \end{cases} \end{split}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \tau G'_{m,n}, \sigma \rho G'_{m,n} \rangle & \text{if } m = 2, \\ \langle \tau G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } m \geq 3, \end{cases}$$

$$\ker \mathbf{V}_{H_{6,2}} = \langle \sigma G'_{m,n}, \rho G'_{m,n} \rangle,$$

$$\ker \mathbf{V}_{H_{7,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } m = 2, \\ \langle \sigma \tau G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } m \geq 3. \end{cases}$$

$$(II) \text{ If } \rho^2 = \tau^{2^n} \sigma^{2^{m-1}}, \text{ then }$$

$$\ker \mathbf{V}_{H_{1,2}} = \langle \sigma G'_{m,n}, \tau G'_{m,n} \rangle,$$

$$\ker \mathbf{V}_{H_{2,2}} = \begin{cases} \langle \sigma G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } n = 1, \\ \langle \sigma G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } m \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{3,2}} = \begin{cases} \langle \tau G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } m \geq 2, \\ \langle \tau G'_{m,n}, \sigma \rho G'_{m,n} \rangle & \text{if } m \geq 3, \end{cases}$$

$$\ker \mathbf{V}_{H_{3,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } m \geq 3, \\ \langle \tau G'_{m,n}, \sigma \rho G'_{m,n} \rangle & \text{if } m \geq 2, \\ \langle \sigma \tau G'_{m,n}, \sigma \rho G'_{m,n} \rangle & \text{if } m \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \tau G'_{m,n}, \sigma \rho G'_{m,n} \rangle & \text{if } m \geq 2, \\ \langle \tau G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } m \geq 3, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \sigma G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n = 1, \\ \langle \sigma G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n = 1, \\ \langle \sigma G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n \geq 2, \\ \langle \tau G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n \geq 2, \\ \langle \tau G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n \geq 2, \\ \langle \sigma \tau G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n \geq 2, \\ \langle \sigma \tau G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n \geq 2, \\ \langle \sigma \tau G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker \mathbf{V}_{H_{5,2}} = \begin{cases} \langle \sigma \tau G'_{m,n$$

(III) For all $1 \le i \le 7$, $\ker V_{H_{i,4}} = G_{m,n}/G'_{m,n}$.

Proof. We prove only some assertions, the others are shown similarly.

(I) Assume $\rho^2 = \sigma^{2^{m-1}}$. We know, from Table 1, that $H_{1,2} = \langle \sigma, \tau \rangle$; then $G_{m,n}/H_{1,2} = \{1, \rho H_{1,2}\}$ and $H'_{1,2} = \langle 1 \rangle$. Hence, by Corollary 2.4 and Lemma 2.1, we get

$$\begin{aligned} \mathbf{V}_{G_{m,n}\to H_{1,2}}(\sigma G'_{m,n}) &= \sigma^2[\sigma,\rho] H'_{1,2} = \sigma^2 \sigma^{-2} H'_{1,2} = H'_{1,2}, \\ \mathbf{V}_{G_{m,n}\to H_{1,2}}(\tau G'_{m,n}) &= \tau^2[\tau,\rho] H'_{1,2} = \tau^2 \tau^{-2} H'_{1,2} = H'_{1,2}, \\ \mathbf{V}_{G_{m,n}\to H_{1,2}}(\rho G'_{m,n}) &= \rho^2 H'_{1,2} \neq H'_{1,2}. \end{aligned}$$

Therefore ker $V_{H_{1,2}} = \langle \sigma G'_{m,n}, \tau G'_{m,n} \rangle$.

Similarly, from Table 1, we get $H_{3,2} = \langle \tau, \rho, \sigma^2 \rangle$, so $G_{m,n}/H_{3,2} = \{1, \sigma H_{3,2}\}$ and $H'_{3,2} = \langle \sigma^4, \tau^2 \rangle$. Hence, by Corollary 2.4 and Lemma 2.1, we get

$$V_{G_{m,n}\to H_{3,2}}(\sigma G'_{m,n}) = \sigma^2 H'_{3,2} \neq H'_{3,2},$$

$$\begin{aligned} \mathbf{V}_{G_{m,n}\to H_{3,2}}(\tau G'_{m,n}) &= \tau^2[\tau,\sigma]H'_{3,2} = \tau^2 H'_{3,2} = H'_{3,2}, \\ \mathbf{V}_{G_{m,n}\to H_{3,2}}(\rho G'_{m,n}) &= \rho^2[\rho,\sigma]H'_{3,2} = \rho^2\sigma^2 H'_{3,2} = \sigma^2\sigma^{2^{m-1}}H'_{3,2}, \end{aligned}$$

since $\rho^2 = \sigma^{2^{m-1}}$. If m = 2, then $\sigma^2 \sigma^{2^{m-1}} H'_{3,2} = \sigma^2 \sigma^2 H'_{3,2} = H'_{3,2}$; and if $m \geq 3$, then $\sigma^2 \sigma^{2^{m-1}} H'_{3,2} = \sigma^2 H'_{3,2} \neq H'_{3,2}$. Moreover,

$$V_{G_{m,n}\to H_{3,2}}(\sigma\rho G'_{m,n}) = \rho^2 H'_{3,2} = \sigma^{2^{m-1}} H'_{3,2},$$

since $\rho^2 = \sigma^{2^{m-1}}$. If m = 2, then $\sigma^{2^{m-1}} H'_{3,2} = \sigma^2 H'_{3,2} \neq H'_{3,2}$; and if $m \ge 3$, then $\sigma^{2^{m-1}} H'_{3,2} = (\sigma^4)^{2^{m-3}} H'_{3,2} = H'_{3,2}$.

Therefore

$$\ker V_{H_{3,2}} = \begin{cases} \langle \tau G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } m = 2, \\ \langle \tau G'_{m,n}, \sigma \rho G'_{m,n} \rangle & \text{if } m \ge 3. \end{cases}$$

(II) Assume now $\rho^2 = \tau^{2^n} \sigma^{2^{m-1}}$. We know, from Table 3, that

$$H_{2,2} = \begin{cases} \langle \sigma, \rho \rangle & \text{if } n = 1, \\ \langle \sigma, \rho, \tau^2 \rangle & \text{if } n \ge 2. \end{cases}$$

Then

$$H_{2,2}' = \begin{cases} \langle \sigma^2 \rangle & \text{if } n = 1, \\ \langle \sigma^2, \tau^4 \rangle & \text{if } n \geq 2, \end{cases} \quad \text{and} \quad G_{m,n}/H_{2,2} = \{1, \tau H_{1,2}\}.$$

Hence, by Corollary 2.4 and Lemma 2.1, we get

$$\begin{split} \mathbf{V}_{G_{m,n} \to H_{2,2}}(\sigma G'_{m,n}) &= \sigma^{2}[\sigma,\tau] H'_{2,2} = \sigma^{2} H'_{2,2} = H'_{2,2}, \\ \mathbf{V}_{G_{m,n} \to H_{2,2}}(\tau G'_{m,n}) &= \tau^{2} H'_{2,2} \neq H'_{2,2}, \\ \mathbf{V}_{G_{m,n} \to H_{2,2}}(\rho G'_{m,n}) &= \rho^{2}[\rho,\tau] H'_{2,2} \\ &= \tau^{2^{n}} \sigma^{2^{m-1}} \tau^{2} H'_{2,2} \\ &= \begin{cases} \tau^{2} \sigma^{2^{m-1}} \tau^{2} H'_{2,2} & \text{if } n = 1, \\ \tau^{2^{n}} \sigma^{2^{m-1}} \tau^{2} H'_{2,2} & \text{if } n \geq 2, \end{cases} \\ &= \begin{cases} \tau^{4} \sigma^{2^{m-1}} H'_{2,2} & \text{if } n = 1, \\ \tau^{2}(\tau^{4})^{2^{n-2}} \sigma^{2^{m-1}} H'_{2,2} & \text{if } n \geq 2, \end{cases} \\ &= \begin{cases} H'_{2,2} & \text{if } n = 1, \text{ since } \tau^{4} = 1, \\ \tau^{2} H'_{2,2} \neq H'_{2,2} & \text{if } n \geq 2, \end{cases} \\ \mathbf{V}_{G_{m,n} \to H_{2,2}}(\tau \rho G'_{m,n}) &= \rho^{2} H'_{2,2} \\ &= \tau^{2^{n}} \sigma^{2^{m-1}} H'_{2,2} & \text{if } n = 1, \\ \tau^{2^{n}} \sigma^{2^{m-1}} H'_{2,2} & \text{if } n = 1, \\ \tau^{2^{n}} \sigma^{2^{m-1}} H'_{2,2} & \text{if } n = 2, \end{cases} \end{split}$$

$$= \begin{cases} \tau^2 H_{2,2}' \neq H_{2,2}' & \text{if } n = 1, \\ H_{2,2}' & \text{if } n \geq 2. \end{cases}$$

Therefore

$$\ker \mathbf{V}_{H_{2,2}} = \begin{cases} \langle \sigma G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } n = 1, \\ \langle \sigma G'_{m,n}, \tau \rho G'_{m,n} \rangle & \text{if } n \geq 2. \end{cases}$$

Similarly, from Table 4,

$$H_{4,2} = \begin{cases} \langle \sigma\tau, \rho \rangle & \text{if } n = 1 \text{ and } m \ge 3, \\ \langle \sigma\tau, \rho \rangle & \text{if } n \ge 2 \text{ and } m = 2, \\ \langle \sigma\tau, \rho, \sigma^2 \rangle & \text{if } n = 1 \text{ and } m = 2, \\ \langle \sigma\tau, \rho, \sigma^2 \rangle & \text{if } n \ge 2 \text{ and } m \ge 3. \end{cases}$$

Hence

$$H'_{4,2} = \begin{cases} \langle (\sigma\tau)^2 \rangle & \text{if } n = 1 \text{ and } m \geq 3, \\ \langle (\sigma\tau)^2 \rangle & \text{if } n \geq 2 \text{ and } m = 2, \\ \langle (\sigma\tau)^2 \rangle & \text{if } n = 1 \text{ and } m = 2, \text{ since } \sigma^4 = 1, \\ \langle (\sigma\tau)^2, \sigma^4 \rangle & \text{if } n \geq 2 \text{ and } m \geq 3. \end{cases}$$

On the other hand, $G_{m,n}/H_{4,2} = \{1, \sigma H_{4,2}\} = \{1, \tau H_{4,2}\}$. Thus by Corollary 2.4 and Lemma 2.1, we get

$$V_{G_{m,n} \to H_{4,2}}(\sigma G'_{m,n}) = \sigma^2 H'_{4,2} \neq H'_{3,2},$$

$$V_{G_{m,n} \to H_{4,2}}(\tau G'_{m,n}) = \tau^2 H'_{4,2} \neq H'_{4,2},$$

$$V_{G_{m,n} \to H_{4,2}}(\sigma \tau G'_{m,n}) = (\sigma \tau)^2 [\sigma \tau, \sigma] H'_{4,2} = H'_{4,2},$$

$$V_{G_{m,n} \to H_{4,2}}(\rho G'_{m,n}) = \rho^2 [\rho, \sigma] H'_{4,2} = \rho^2 \sigma^2 H'_{4,2} = \sigma^2 \tau^{2n} \sigma^{2m-1} H'_{4,2}$$

$$= \begin{cases} \sigma^2 \tau^2 (\sigma \tau)^{2m-1} H'_{4,2} & \text{if } n = 1 \text{ and } m \geq 3, \text{ since } \tau^4 = 1, \\ \sigma^4 (\sigma \tau)^{2n} H'_{4,2} & \text{if } n = 1 \text{ and } m = 2, \text{ since } \sigma^4 = 1, \\ \sigma^2 (\sigma \tau)^{2n} \sigma^{-2n} \sigma^{2m-1} H'_{4,2} & \text{if } n \geq 2 \text{ and } m \geq 3, \end{cases}$$

$$= \begin{cases} H'_{4,2} & \text{if } n = 1 \text{ and } m \geq 3, \text{ since } \tau^4 = 1, \\ H'_{4,2} & \text{if } n \geq 2 \text{ and } m \geq 2, \text{ since } \sigma^4 = 1, \\ T'^2 H'_{4,2} \neq H'_{4,2} & \text{if } n = 1 \text{ and } m \geq 2, \\ \sigma^2 H'_{4,2} \neq H'_{4,2} & \text{if } n \geq 2 \text{ and } m \geq 3, \end{cases}$$

$$V_{G_{m,n} \to H_{4,2}}(\sigma \rho G'_{m,n}) = (\sigma \rho)^2 H'_{4,2} = \rho^2 H'_{4,2} = \tau^{2n} \sigma^{2m-1} H'_{4,2}$$

$$= \begin{cases} \tau^2 (\sigma \tau)^{2m-1} H'_{4,2} & \text{if } n = 1 \text{ and } m \geq 3, \text{ since } \tau^4 = 1, \\ \sigma^2 (\sigma \tau)^{2m-1} H'_{4,2} & \text{if } n = 1 \text{ and } m \geq 3, \text{ since } \tau^4 = 1, \\ \sigma^2 (\sigma \tau)^{2m-1} H'_{4,2} & \text{if } n = 1 \text{ and } m \geq 3, \text{ since } \tau^4 = 1, \end{cases}$$

$$= \begin{cases} \tau^2 (\sigma \tau)^{2m-1} H'_{4,2} & \text{if } n = 1 \text{ and } m \geq 3, \text{ since } \tau^4 = 1, \\ \sigma^2 (\sigma \tau)^{2m-1} H'_{4,2} & \text{if } n = 1 \text{ and } m \geq 3, \text{ since } \sigma^4 = 1, \end{cases}$$

$$= \begin{cases} \tau^2 (\sigma \tau)^{2m-1} H'_{4,2} & \text{if } n = 1 \text{ and } m \geq 3, \text{ since } \tau^4 = 1, \\ \sigma^2 (\sigma \tau)^{2m-1} H'_{4,2} & \text{if } n \geq 2 \text{ and } m = 2, \text{ since } \sigma^4 = 1, \end{cases}$$

$$= \begin{cases} \tau^2 (\sigma \tau)^{2m-1} H'_{4,2} & \text{if } n \geq 2 \text{ and } m \geq 2, \text{ since } \sigma^4 = 1, \\ \sigma^2 (\sigma \tau)^{2m-1} H'_{4,2} & \text{if } n \geq 2 \text{ and } m \geq 2, \text{ since } \sigma^4 = 1, \end{cases}$$

$$= \begin{cases} \tau^2 H'_{4,2} \neq H'_{4,2} & \text{if } n = 1 \text{ and } m \geq 3, \text{ since } \tau^4 = 1, \\ \sigma^2 H'_{4,2} \neq H'_{4,2} & \text{if } n \geq 2 \text{ and } m = 2, \text{ since } \sigma^4 = 1, \\ H'_{4,2} & \text{if } n = 1 \text{ and } m = 2, \\ H'_{4,2} & \text{if } n \geq 2 \text{ and } m \geq 3. \end{cases}$$

Therefore

$$\ker \mathbf{V}_{H_{4,2}} = \begin{cases} \langle \sigma \tau G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } \begin{cases} n = 1 \text{ and } m \geq 3 \text{ or } \\ n \geq 2 \text{ and } m = 2, \end{cases} \\ \langle \sigma \tau G'_{m,n}, \sigma \rho G'_{m,n} \rangle & \text{if } \begin{cases} n = 1 \text{ and } m \geq 3 \text{ or } \end{cases} \\ n = 1 \text{ and } m = 2 \text{ or } \end{cases}$$

(III) We know, from Table 2, that $H_{1,4}=\langle \sigma,\tau^2\rangle$, so $G_{m,n}/H_{1,4}=\{1,\tau H_{1,4},\rho H_{1,4},\tau \rho H_{1,4}\}$ and $H'_{1,4}=\langle 1\rangle$. Hence Corollary 2.6 and Lemma 2.1 yield

$$V_{G_{m,n}\to H_{1,4}}(\sigma G'_{m,n}) = \sigma \tau^{-1} \sigma \tau \rho^{-1} \sigma \tau^{-1} \sigma \tau \rho H'_{1,4} = H'_{1,4},$$

$$V_{G_{m,n}\to H_{1,4}}(\tau G'_{m,n}) = \tau^2 \rho^{-1} \tau^2 \rho H'_{1,4} = H'_{1,4},$$

$$V_{G_{m,n}\to H_{1,4}}(\rho G'_{m,n}) = \rho^2 \tau^{-1} \rho^{-2} \tau H'_{1,4} = H'_{1,4}.$$

Therefore ker $V_{H_{1,4}} = \langle \sigma G'_{m,n}, \tau G'_{m,n}, \rho G'_{m,n} \rangle = G_{m,n}/G'_{m,n}$.

3. Applications. Let \mathbf{k} be a number field and $C_{\mathbf{k},2}$ be its 2-class group, that is, the 2-Sylow subgroup of the ideal class group $C_{\mathbf{k}}$ of \mathbf{k} , in the wide sense. Let $\mathbf{k}_2^{(1)}$ be the Hilbert 2-class field of \mathbf{k} in the wide sense. Then the Hilbert 2-class field tower of \mathbf{k} is defined inductively by $\mathbf{k}_2^{(0)} = \mathbf{k}$ and $\mathbf{k}_2^{(n+1)} = (\mathbf{k}_2^{(n)})^{(1)}$, where n is a positive integer. Let \mathbb{M} be an unramified extension of \mathbf{k} and $C_{\mathbb{M}}$ be the subgroup of $C_{\mathbf{k}}$ associated to \mathbb{M} by class field theory. Denote by $j_{\mathbf{k} \to \mathbb{M}} : C_{\mathbf{k}} \to C_{\mathbb{M}}$ the homomorphism that associates to the class of an ideal \mathcal{A} of \mathbf{k} the class of the ideal generated by \mathcal{A} in \mathbb{M} , and by $\mathcal{N}_{\mathbb{M}/\mathbf{k}}$ the norm of the extension \mathbb{M}/\mathbf{k} .

Throughout this section, assume that $\operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k}) \simeq G_{m,n}$. Hence, according to class field theory, $C_{\mathbf{k},2} \simeq G_{m,n}/G'_{m,n} \simeq (2,2,2)$, thus $C_{\mathbf{k},2} = \langle \mathfrak{a}, \mathfrak{b}, \mathfrak{c} \rangle \simeq \langle \sigma G'_{m,n}, \tau G'_{m,n}, \rho G'_{m,n} \rangle$, where $(\mathfrak{a}, \mathbf{k}_2^{(2)}/\mathbf{k}) = \sigma G'_{m,n}$, $(\mathfrak{b}, \mathbf{k}_2^{(2)}/\mathbf{k}) = \tau G'_{m,n}$ and $(\mathfrak{c}, \mathbf{k}_2^{(2)}/\mathbf{k}) = \rho G'_{m,n}$, with $(\cdot, \mathbf{k}_2^{(2)}/\mathbf{k})$ denoting the Artin symbol in $\mathbf{k}_2^{(2)}/\mathbf{k}$.

It is well known that each subgroup $H_{i,j}$, where $1 \le i \le 7$ and j = 2 or 4, of $C_{\mathbf{k},2}$ is associated, by class field theory, to a unique unramified extension $\mathbf{K}_{i,j}$ of $\mathbf{k}_2^{(1)}$ such that $H_{i,j}/H'_{i,j} \simeq C_{\mathbf{K}_{i,j},2}$.

Our goal is to study the capitulation problem of the 2-ideal classes of \mathbf{k} in its unramified quadratic and biquadratic extensions $\mathbf{K}_{i,2}$ and $\mathbf{K}_{i,4}$. By

class field theory, $\ker j_{\mathbf{k}\to\mathbb{M}}$ is determined by the kernel of the transfer map $V_{G\to H}: G/G'\to H/H'$, where $G=\operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ and $H=\operatorname{Gal}(\mathbb{M}_2^{(2)}/\mathbb{M})$.

Theorem 3.1. Keep the previous notation.

(1) If
$$\rho^2 = \sigma^{2^{m-1}}$$
, then
$$\ker j_{\mathbf{k} \to \mathbf{K}_{1,2}} = \langle \mathfrak{a}, \mathfrak{b} \rangle, \\ \ker j_{\mathbf{k} \to \mathbf{K}_{2,2}} = \langle \mathfrak{a}, \mathfrak{bc} \rangle, \\ \ker j_{\mathbf{k} \to \mathbf{K}_{3,2}} = \begin{cases} \langle \mathfrak{b}, \mathfrak{c} \rangle & \text{if } m = 2, \\ \langle \mathfrak{b}, \mathfrak{ac} \rangle & \text{if } m \geq 3, \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{4,2}} = \begin{cases} \langle \mathfrak{ab}, \mathfrak{c} \rangle & \text{if } m = 2, \\ \langle \mathfrak{ab}, \mathfrak{ac} \rangle & \text{if } m \geq 3, \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{5,2}} = \begin{cases} \langle \mathfrak{b}, \mathfrak{ac} \rangle & \text{if } m = 2, \\ \langle \mathfrak{b}, \mathfrak{c} \rangle & \text{if } m \geq 3, \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{5,2}} = \begin{cases} \langle \mathfrak{b}, \mathfrak{c} \rangle & \text{if } m \geq 3, \\ \langle \mathfrak{b}, \mathfrak{c} \rangle & \text{if } m \geq 3, \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{6,2}} = \langle \mathfrak{a}, \mathfrak{c} \rangle,$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{7,2}} = \begin{cases} \langle \mathfrak{ab}, \mathfrak{bc} \rangle & \text{if } m = 2, \\ \langle \mathfrak{ab}, \mathfrak{c} \rangle & \text{if } m \geq 3. \end{cases}$$

(2) If
$$\rho^2 = \tau^{2^n} \sigma^{2^{m-1}}$$
, then
$$\ker j_{\mathbf{k} \to \mathbf{K}_{1,2}} = \langle \mathfrak{a}, \mathfrak{b} \rangle,$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{2,2}} = \begin{cases} \langle \mathfrak{a}, \mathfrak{c} \rangle & \text{if } n = 1, \\ \langle \mathfrak{a}, \mathfrak{bc} \rangle & \text{if } m \geq 2, \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{3,2}} = \begin{cases} \langle \mathfrak{b}, \mathfrak{c} \rangle & \text{if } m \geq 2, \\ \langle \mathfrak{b}, \mathfrak{ac} \rangle & \text{if } m \geq 3, \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{4,2}} = \begin{cases} \langle \mathfrak{ab}, \mathfrak{c} \rangle & \text{if } m \geq 3, \\ \langle \mathfrak{ab}, \mathfrak{ac} \rangle & \text{if } \begin{cases} n = 1 \text{ and } m \geq 3 \text{ or } \\ n \geq 2 \text{ and } m = 2, \\ \langle \mathfrak{ab}, \mathfrak{ac} \rangle & \text{if } m \geq 2, \\ \langle \mathfrak{b}, \mathfrak{c} \rangle & \text{if } m \geq 2, \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{5,2}} = \begin{cases} \langle \mathfrak{b}, \mathfrak{ac} \rangle & \text{if } m \geq 3, \\ \langle \mathfrak{b}, \mathfrak{c} \rangle & \text{if } m \geq 3, \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{5,2}} = \begin{cases} \langle \mathfrak{a}, \mathfrak{bc} \rangle & \text{if } n = 1, \\ \langle \mathfrak{a}, \mathfrak{bc} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{5,2}} = \begin{cases} \langle \mathfrak{ab}, \mathfrak{bc} \rangle & \text{if } n \geq 2, \\ \langle \mathfrak{ab}, \mathfrak{c} \rangle & \text{if } n \geq 2, \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{7,2}} = \begin{cases} \langle \mathfrak{ab}, \mathfrak{bc} \rangle & \text{if } \begin{cases} n = 1 \text{ and } m \geq 3 \text{ or } \\ n \geq 2 \text{ and } m = 2, \end{cases}$$

$$\langle \mathfrak{ab}, \mathfrak{c} \rangle & \text{if } \begin{cases} n = 1 \text{ and } m \geq 3 \text{ or } \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{7,2}} = \begin{cases} \langle \mathfrak{ab}, \mathfrak{bc} \rangle & \text{if } \begin{cases} n = 1 \text{ and } m \geq 3 \text{ or } \\ n \geq 2 \text{ and } m = 2, \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{7,2}} = \begin{cases} \langle \mathfrak{ab}, \mathfrak{bc} \rangle & \text{if } \begin{cases} n = 1 \text{ and } m \geq 3 \text{ or } \\ n \geq 2 \text{ and } m = 2, \end{cases}$$

$$\ker j_{\mathbf{k} \to \mathbf{K}_{7,2}} = \begin{cases} \langle \mathfrak{ab}, \mathfrak{bc} \rangle & \text{if } \begin{cases} n = 1 \text{ and } m \geq 3 \text{ or } \\ n \geq 2 \text{ and } m = 2, \end{cases}$$

- (3) For all $1 \le i \le 7$, $\ker j_{\mathbf{k} \to \mathbf{K}_{i,4}} = C_{\mathbf{k},2}$.
- (4) The 2-class group of $\mathbf{k}_{2}^{(1)}$ is of type $(2^{m-1}, 2^{n})$.
- (5) The Hilbert 2-class field tower of \mathbf{k} stops at $\mathbf{k}_2^{(2)}$.

Proof. (1) According to Theorem 2.7, since $\ker V_{H_{1,2}} = \langle \sigma G'_{m,n}, \tau G'_{m,n} \rangle$, we have $\ker j_{\mathbf{k} \to \mathbf{K}_{1,2}} = \langle \mathfrak{a}, \mathfrak{b} \rangle$. Similarly, as

$$\ker V_{H_{3,2}} = \begin{cases} \langle \tau G'_{m,n}, \rho G'_{m,n} \rangle & \text{if } m = 2, \\ \langle \tau G'_{m,n}, \sigma \rho G'_{m,n} \rangle & \text{if } m \ge 3, \end{cases}$$

we have

$$\ker j_{\mathbf{k} \to \mathbf{K}_{3,2}} = \begin{cases} \langle \mathfrak{b}, \mathfrak{c} \rangle & \text{if } m = 2, \\ \langle \mathfrak{b}, \mathfrak{ac} \rangle & \text{if } m \geq 3. \end{cases}$$

The other assertions are proved similarly.

- (4) It is well known that $C_{\mathbf{k}_{2}^{(1)},2} \simeq G'_{m,n}$, where $C_{\mathbf{k}_{2}^{(1)},2}$ is the 2-class group of $\mathbf{k}_{2}^{(1)}$. As $G'_{m,n} = \langle \sigma^{2}, \tau^{2} \rangle \simeq (2^{m-1}, 2^{n})$ since $\sigma^{2^{m}} = \tau^{2^{n+1}} = 1$, the result is proved.
- (5) $H_{1,4}$, $H_{2,4}$ and $H_{4,4}$ are the three subgroups of index 2 of the group $H_{1,2}$, hence $\mathbf{K}_{1,4}$, $\mathbf{K}_{2,4}$ and $\mathbf{K}_{4,4}$ are the three unramified quadratic extensions of $\mathbf{K}_{1,2}$. On the other hand, the 2-class groups of these fields are of rank 2, since, by class field theory, $C_{\mathbf{K}_{i,j},2} \simeq H_{i,j}/H'_{i,j}$ with i=1,2 or 4 and j=2 or 4. Thus Tables 1, 2, 3 and 4 imply that $C_{\mathbf{K}_{1,2},2} \simeq (2^m, 2^{n+1})$ and $C_{\mathbf{K}_{1,4},2} \simeq (2^m, 2^n)$. Hence $h_2(\mathbf{K}_{1,4}) = h_2(\mathbf{K}_{1,2})/2$, where $h_2(K)$ denotes the 2-class number of the field K. Therefore, we can apply [BLS, Proposition 7], which says that $\mathbf{K}_{1,2}$ has an abelian 2-class field tower if and only if it has a quadratic unramified extension $\mathbf{K}_{1,4}/\mathbf{K}_{1,2}$ such that $h_2(\mathbf{K}_{1,4}) = h_2(\mathbf{K}_{1,2})/2$. Thus $\mathbf{K}_{1,2}$ has abelian 2-class field tower which terminates at the first stage; this implies that the 2-class field tower of \mathbf{k} terminates at $\mathbf{k}_2^{(2)}$, since $\mathbf{k} \subset \mathbf{K}_{1,2}$. Moreover, we know from Proposition 2.2 that $|G_{m,n}| = 2^{n+m+2}$ and $|G'_{m,n}| = 2^{n+m-1}$, hence $\mathbf{k}_2^{(1)} \neq \mathbf{k}_2^{(2)}$.
- **4. Example.** Let $p_1 \equiv p_2 \equiv 5 \pmod{8}$ be different primes. Denote by **k** the imaginary bicyclic biquadratic field $\mathbb{Q}(\sqrt{d},i)$, where $d=2p_1p_2$. Let $\mathbf{k}_2^{(1)}$ be the Hilbert 2-class field of \mathbf{k} , $\mathbf{k}_2^{(2)}$ its second Hilbert 2-class field, and G the Galois group of $\mathbf{k}_2^{(2)}/\mathbf{k}$. According to [AT], **k** has an elementary abelian 2-class group $\mathbf{C}_{\mathbf{k},2}$ of rank 3, that is, of type (2,2,2). Set $\mathbf{K} = \mathbf{k}(\sqrt{2}) = \mathbb{Q}(\sqrt{2}, \sqrt{p_1p_2}, \sqrt{-1})$, and let q denote the unit index of $\mathbf{K}^+ = \mathbb{Q}(\sqrt{2}, \sqrt{p_1p_2})$. Denote by $h_2(-p_1p_2)$ (resp. $h_2(p_1p_2)$) the 2-class number of $\mathbb{Q}(\sqrt{-p_1p_2})$ (resp. $\mathbb{Q}(\sqrt{p_1p_2})$). Then, from [Ka], we have $h_2(-p_1p_2) = 2^{m+1}$ with $m \geq 2$, and $h_2(p_1p_2) = 2^n$ with $n \geq 1$. Assume that q = 1. Then, by [AZT3, Lemma 6], $m \geq 2$ and $n \geq 1$, and by [AZT3, Theorem 2], $G \simeq G_{m,n}$. The following result is proved in [AZT3], and we give it here to illustrate the results shown above. For more details, see [AZT3].

THEOREM 4.1. Let $p_1 \equiv p_2 \equiv 5 \pmod{8}$ be two different primes. Set $\mathbf{k} = \mathbb{Q}(\sqrt{2p_1p_2}, i)$. Then \mathbf{k} has fourteen unramified extensions within its first Hilbert 2-class field $\mathbf{k}_2^{(1)}$ (see [AZT1]). Denote by $\mathbf{C}_{\mathbf{k},2}$ the 2-class group of \mathbf{k} . Then the following assertions hold:

- (1) Exactly four elements of $C_{\mathbf{k},2}$ capitulate in each unramified quadratic extension of \mathbf{k} .
- (2) All the 2-classes of \mathbf{k} capitulate in each unramified biquadratic extension of \mathbf{k} .
- (3) The Hilbert 2-class field tower of \mathbf{k} stops at $\mathbf{k}_2^{(2)}$ (see [AZT2]).
- (4) $\mathbf{C}_{\mathbf{k}_{0}^{(1)},2} \simeq (2^{n},2^{m-1}).$
- (5) The coclass of G is 3 and its nilpotency class is n + 2.
- (6) The 2-class groups of the unramified quadratic extensions of \mathbf{k} are of types (2,4), (2,2,2) or $(2^m,2^{n+1})$.
- (7) The 2-class groups of the unramified biquadratic extensions of \mathbf{k} are of types (2,4), (2,2,2), $(2^m,2^n)$, $(2^{m-1},2^{n+1})$ or $(2^{\min(m-1,n)},2^{\max(m,n+1)})$.

Acknowledgements. We thank the referees for their suggestions and comments.

REFERENCES

- [AT] A. Azizi and M. Taous, Détermination des corps $\mathbf{k} = \mathbb{Q}(\sqrt{d}, i)$ dont les 2-groupes de classes sont de type (2, 4) ou (2, 2, 2), Rend. Istit. Mat. Univ. Trieste 40 (2008), 93–116.
- [ATZ] A. Azizi, M. Taous and A. Zekhnini, On the 2-groups whose abelianizations are of type (2,4) and applications, Publ. Math. Debrecen, to appear.
- [AZT1] A. Azizi, A. Zekhnini and M. Taous, On the unramified quadratic and biquadratic extensions of the field $\mathbb{Q}(\sqrt{d}, i)$, Int. J. Algebra 6 (2012), 1169–1173.
- [AZT2] A. Azizi, A. Zekhnini and M. Taous, On the 2-class field tower of $\mathbb{Q}(\sqrt{2p_1p_2}, i)$ and the Galois group of its second Hilbert 2-class field, Collect. Math. 65 (2014), 131–141.
- [AZT3] A. Azizi, A. Zekhnini and M. Taous, Structure of $Gal(\mathbb{k}_2^{(2)}/\mathbb{k})$ for some fields $\mathbf{k} = \mathbb{Q}(\sqrt{2p_1p_2}, i)$ with $Cl_2(\mathbf{k}) \simeq (2, 2, 2)$, Abh. Math. Sem. Univ. Hamburg 84 (2014), 203–231.
- [AZT4] A. Azizi, A. Zekhnini and M. Taous, On some metabelian 2-group whose abelianization is of type (2, 2, 2) and applications, J. Taibah Univ. Sci. 9 (2015), 346–350.
- [BLS] E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields with abelian 2-class field tower, J. Number Theory 73 (1998), 182–194.
- [BS] E. Benjamin and C. Snyder, Number fields with 2-class number isomorphic to $(2, 2^m)$, preprint, 1994.
- [Is] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
- [Ka] P. Kaplan, Sur le 2-groupe de classes d'idéaux des corps quadratiques, J. Reine Angew. Math. 283/284 (1976), 313–363.

- [Ki] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's theorem 94, J. Number Theory 8 (1976), 271–279.
- [Mi] K. Miyake, Algebraic investigations of Hilbert's Theorem 94, the principal ideal theorem and capitulation problem, Exposition. Math. 7 (1989), 289–346.

Abdelmalek Azizi
Department of Mathematics
Faculty of Sciences
Mohammed First University
Oujda, Morocco
E-mail: abdelmalekazizi@yahoo.fr

Abdelkader Zekhnini Department of Mathematics Polydisciplinary Faculty of Nador Mohammed First University Nador, Morocco E-mail: zekha1@yahoo.fr Mohammed Taous
Department of Mathematics
Faculty of Sciences and Technology
Moulay Ismail University
Errachidia, Morocco
E-mail: taousm@hotmail.com

Received 19 February 2015; revised 16 April 2015 (6552)