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On families of 9-congruent elliptic curves

by

Tom Fisher (Cambridge)

Introduction. Elliptic curves E1 and E2 are n-congruent if their
n-torsion subgroups E1[n] and E2[n] are isomorphic as Galois modules.
We say they are directly n-congruent if the isomorphism φ : E1[n]→ E2[n]
respects the Weil pairing en, and reverse n-congruent if en(φP, φQ) =
en(P,Q)−1 for all P,Q ∈ E1[n]. The elliptic curves directly and reverse
n-congruent to a given elliptic curve E are parametrised by the modular
curves YE(n) = XE(n) \ {cusps} and Y −E (n) = X−E (n) \ {cusps}. Finding
equations for these modular curves can help with finding non-trivial pairs of
n-congruent elliptic curves, where by “non-trivial” we mean that the elliptic
curves are not isogenous. Some of the potential applications are described
in [1], [3], [9], [14], [20].

Equations for XE(n), and the family of curves it parametrises, have been
computed for n = 2, 3, 4, 5, 6, 7, 8, 11 by Rubin and Silverberg [21]–[24], Pa-
padopoulos [19], Halberstadt and Kraus [15], Chen [6], and Fisher [13]. The
analogous problem for n-congruences that do not respect the Weil pairing
has been solved for the same values of n. The additional references for this
include papers by Fisher [11], [12], Bruin and Doerksen [4, Section 7], and
Poonen, Schaefer and Stoll [20, Section 7.2].

In this paper we treat the case n = 9. That is, we give equations for
XE(9) and X−E (9), and for the families of curves they parametrise. We use
these formulae to exhibit non-trivial triples of 9-congruent elliptic curves
over Q, and non-trivial pairs of 9-congruent elliptic curves over Q(T ). We
also give equations for the modular diagonal quotient surfaces whose points
parametrise pairs of 9-congruent elliptic curves.

We work over a field K of characteristic 0. We write K for the algebraic
closure, and ζn for a primitive nth root of unity.
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1. Statement of results. If n = 3 or 9 then every element of (Z/nZ)×

is either plus or minus a square. By composing the n-congruence with
multiplication-by-m for some integer m, it follows that any pair of n-con-
gruent elliptic curves are either directly or reverse n-congruent. In the case
n = 3, we have X±E (3) ∼= P1 and the families of curves parametrised are as
follows.

Theorem 1.1. Let E/K be the elliptic curve y2 = x3 − 27c4x − 54c6.
Then the family of elliptic curves parametrised by Y ±E (3) is

(1) y2 = x3 − 27A±(r, s)x− 54B±(r, s)

where

A+(r, s) = c4r
4 + 4c6r

3s+ 6c24r
2s2 + 4c4c6rs

3 − (3c34 − 4c26)s
4,

B+(r, s) = c6r
6 + 6c24r

5s+ 15c4c6r
4s2 + 20c26r

3s3

+ 15c24c6r
2s4 + 6(3c44 − 2c4c

2
6)rs

5 + (9c34c6 − 8c36)s
6,

and

A−(r, s) = −4(r4 − 6c4r
2s2 − 8c6rs

3 − 3c24s
4)/(c34 − c26),

B−(r, s) = −8B+(r, s)/(c34 − c26)2.

Proof. In the direct case this family of curves was first computed by Ru-
bin and Silverberg [21]. The above formulae are taken from [11, Sections 8, 9
and 13], with (r, s) = (λ, µ), respectively (r, s) = (c6ξ + c24η,−c4ξ − c6η).
They are available in Magma [2] via the function HessePolynomials.

Our new results are in the case n = 9, where the curves X±E (9) are
twists of X(9), and so have genus 10. We write these curves as the complete
intersection of two cubics in P3.

Theorem 1.2. Let E/K be the elliptic curve y2 = x3 + ax + b. Then
X±E (9) = {F±1 = F±2 = 0} ⊂ P3 where

F+
1 (x, y, z, t) = x2t+ 6xyz + 6bxt2 + 6y3 − 9ay2t+ 6a2yt2 − 3bz3

+ 3a2z2t+ 9abzt2 − (a3 − 12b2)t3,

F+
2 (x, y, z, t) = x2z + 6xy2 − 6axyt+ 2a2xt2 − 9ay2z − 18byz2 + 12a2yzt

+ a2z3 + 9abz2t− 3a3zt2 + a2bt3,

and

F−1 (x, y, z, t) = 9x2y + 3x2z − 6axyt+ 6bxt2 − 6ay3 + 27by2t+ 3ayz2

+ 18byzt+ 3a2yt2 + az3 + 3bz2t+ a2zt2 − abt3,
F−2 (x, y, z, t) = x3 + 6axyz + 18bxyt+ 3axz2 + 6bxzt+ a2xt2 + 9by3

+ 6a2y2t− 9byz2 + 6a2yzt− 3abyt2− 4bz3 + 2a2z2t+ 2b2t3.
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The families of curves parametrised by XE(9) and X−E (9) are given by
Theorem 1.1 and the following. By abuse of notation we write P both for a
point in P3 and for a vector representing this point.

Theorem 1.3. Let X±E (3) and X±E (9) be as described in Theorems 1.1
and 1.2, with a = −27c4 and b = −54c6. For P ∈ X±E (9) with tangent line
P + λQ we write F±i (P + λQ) = γiλ

2 + δiλ
3 for i = 1, 2. Then the forgetful

map X±E (9)→ X±E (3) is given by (r : s) = (γ2 : 3γ1).

Let Z(n) be the modular diagonal quotient surface that classifies all pairs
of directly n-congruent elliptic curves (up to quadratic twist), and likewise
Z−(n) in the reverse case. It is shown in [16, Theorem 4] that the surfaces
Z±(9) are each birational over C to an elliptic surface. Using Theorem 1.2
we are able to determine these elliptic surfaces explicitly.

Theorem 1.4. The surface Z(9) is birational over Q to the elliptic sur-
face

y2 + (6T 2 + 3T + 2)xy + T 2(T + 1)(4T 3 + 9T + 9)y

= x3 − (16T 4 + 12T 3 + 9T 2 + 6T + 1)x2.

The surface Z−(9) is birational over Q to the elliptic surface

y2 + (12T 3 + 3T 2 − 6)xy + (T − 1)4(T 2 + T + 1)(4T 3 − 3T − 7)y

= x3 − 3(T + 1)(T − 1)(T 2 + T + 1)(9T 2 + 2T + 1)x2.

We use these results to prove [16, Conjecture 5] in the case n = 9.

Theorem 1.5. There are infinitely many non-trivial pairs of directly
9-congruent elliptic curves over Q, and these have infinitely many distinct
pairs of j-invariants. By “non-trivial” we mean that the elliptic curves are
not isogenous, even over Q. The same result holds in the reverse case.

Proof. For each positive integer m there are finitely many curves on
Z±(9) corresponding to pairs of elliptic curves related by a cyclic isogeny
of degree m. Each of these curves comes with a non-constant morphism
to X0(m) and so has positive genus for m sufficiently large. The elliptic
surfaces in Theorem 1.4 each have a Q-rational section of infinite order
given by (x, y) = (0, 0). Therefore the surfaces Z±(9) each contain infinitely
many curves birational to P1 over Q. Since these curves have genus 0, we
know by the above remarks that only finitely many correspond to pairs of
isogenous elliptic curves. Therefore there are non-trivial pairs of 9-congruent
elliptic curves over Q(T ). Moreover these elliptic curves have non-constant
j-invariant since, according to [16, Table 1], the fibres of the maps from
Z±(9) to the j-line have genus 3, 4 or 10. In Section 6 we give a more explicit
version of this first part of the proof by using Theorem 1.2 to exhibit some
non-trivial pairs of 9-congruent elliptic curves over Q(T ).
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The proof is completed by specialising T to a rational number. In this
way we obtain infinitely many pairs of elliptic curves over Q that are not
m-isogenous for any m ≤ d (for any fixed d). By avoiding finitely many
j-invariants, we may assume that these curves do not admit complex mul-
tiplication, in which case any isogeny defined over Q is the composite of an
isogeny defined over Q and an isomorphism defined over Q. We are done by
the theorem of Mazur [18], extended to composite m by Kenku [17], that
any cyclic isogeny defined over Q has degree m ≤ 163.

2. The modular curves X(3) and X(9). Let M = µn × Z/nZ be
equipped with the pairing

〈(ζ, a), (ξ, b)〉 = ζbξ−a.

The modular curve Y (n) = X(n) \ {cusps} parametrises pairs (E, φ) where
E is an elliptic curve and φ : E[n]→M is a symplectic isomorphism, i.e. an
isomorphism that matches up the Weil pairing on E[n] with the pairing 〈 , 〉
on M . We identify SL2(Z/nZ) with the group of symplectic automorphisms
of M . There is then a natural action of SL2(Z/nZ)/{±I} on X(n) with
quotient the j-line.

In the case n = 3 it is well known that Y (3) = A1\{t3 = 1} parametrises
the non-singular fibres in the Hesse pencil of plane cubics:

(2) {x3 + y3 + z3 − 3txyz = 0} ⊂ P2.

We need an analogous result in the case n = 9.

Lemma 2.1. The modular curve X(9) has equations

(3) X(9) =

{
a2b+ b2c+ c2a = 0

ab2 + bc2 + ca2 = d3

}
⊂ P3.

Moreover the forgetful map X(9)→ X(3) is given by

(4) t = −(a3 + b3 + c3 + 6abc)/(3d3).

Proof. In [13, Section 2] we showed, following work of Klein, Vélu and
others, that if n ≥ 5 is an odd integer then Y (n) ⊂ Z(n) where Z(n) ⊂ Pn−1
is defined as follows. We take co-ordinates (a0 : a1 : . . . : an−1) on Pn−1
and agree to read all subscripts mod n. Then Z(n) is defined by a0 = 0,
an−i = −ai and

rank (ai−jai+j)
n−1
i,j=0 ≤ 2.

In the case n = 9 we set

(5) (a0 : a1 : . . . : a8) = (0 : a : −b : d : c : −c : −d : b : −a).
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Then Z(9) ⊂ P3 is defined by

rank


0 −a2 −b2 −d2 −c2

a2 0 −ad bc cd

b2 ad 0 ac −bd
d2 −bc −ac 0 −ab
c2 −cd bd ab 0

 ≤ 2,

equivalently

(a2b+ b2c+ c2a)d = 0, bc3 − ba3 − cd3 = 0,

ab3 − ac3 − bd3 = 0, ca3 − cb3 − ad3 = 0.

Adding together the last three equations and factoring shows that Z(9) is
the union of the curve defined in (3) and four isolated points

(0 : 0 : 0 : 1), (1 : 1 : 1 : 0), (1 : ζ3 : ζ23 : 0), (1 : ζ23 : ζ3 : 0).

Since X(9) is a curve, it must therefore be as defined in (3).
Now writing (x0 : x1 : . . . : xn−1) for our co-ordinates on Pn−1, and again

agreeing to read all subscripts mod n, it is shown in [10, Section 3] that the
family of elliptic curves parametrised by Y (n) is defined by

rank (ai−jxi+j)
n−1
i,j=0 ≤ 2.

In the case n = 9 the elliptic curve E corresponding to (a : b : c : d) ∈ Y (9)
is the curve of degree 9 in P8 defined by the equations

adx20 − b2x1x8 + a2x2x7 = 0,

bcx20 + d2x1x8 − a2x3x6 = 0,

cdx20 + c2x1x8 − a2x4x5 = 0

and their cyclic permutes. Thus E is defined by a total of 27 quadrics.
Let 0E be the point on E given by (5). In principle we could complete

the proof by putting the elliptic curve (E, 0E) in Weierstrass form. However
it is simpler to argue as follows. The action of E[9] on E by translation is
generated by the maps xi 7→ xi+1 and xi 7→ ζi9xi. From this we see that the
morphism

(x0 : x1 : . . . : x8) 7→ (x : y : z) = (x0x3x6 : x1x4x7 : x2x5x8)

quotients out by the action of E[3]. We may therefore identify this morphism
with the multiplication-by-3 map on E. On the other hand, we find by direct
calculation that the image takes the form (2) with t as specified in (4). The
forgetful map X(9)→ X(3) is therefore as claimed.

Remark 2.2. The action of SL2(Z/9Z) on X(9) ⊂ P3 is described
by a projective representation ρ : SL2(Z/9Z) → PGL4(K). According to



376 T. Fisher

[13, Section 2] it is given on the generators S =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
for

SL2(Z/9Z) by

ρ(S) =


ζ9−ζ89 ζ79 −ζ29 ζ49 −ζ59 ζ39 −ζ69
ζ79 −ζ29 ζ49 −ζ59 ζ9−ζ89 ζ39 −ζ69
ζ49 −ζ59 ζ9−ζ89 ζ79 −ζ29 ζ39 −ζ69
ζ39 −ζ69 ζ39 −ζ69 ζ39 −ζ69 0

 , ρ(T ) =


ζ9 0 0 0

0 ζ49 0 0

0 0 ζ79 0

0 0 0 ζ69

.
In particular, the action of ker(SL2(Z/9Z) → SL2(Z/3Z)) ∼= (Z/3Z)3 is
generated by

(a : b : c : d) 7→ (a : b : c : ζ3d),

(a : b : c : d) 7→ (b : c : a : d),

(a : b : c : d) 7→ (ζ3a+ b+ c : a+ ζ3b+ c : a+ b+ ζ3c : (ζ3 − 1)d).

It may be checked that the map X(9)→ X(3) in Lemma 2.1 quotients out
by this action.

The pencil of cubics defining X(9) ⊂ P3 is naturally a copy of X(3) ∼= P1.
To explain this, let F1 = a2b+ b2c+ c2a and F2 = ab2 + bc2 + ca2−d3 be the
cubics defining X(9). We write H(F ) for the Hessian matrix of a form F ,
that is, the matrix of second partial derivatives. Then

(6) detH(tF1 − F2) = −48(t3 − 1)(a3 + b3 + c3 − 3abc)d.

Therefore the Hessian vanishes for just four cubics in the pencil, and these
correspond to the cusps of X(3). The forgetful map X(9) → X(3) has the
following geometric description.

Lemma 2.3. For P ∈ X(9) with tangent line P+λQ we write Fi(P+λQ)
= γiλ

2 + δiλ
3 for i = 1, 2. Then the forgetful map X(9)→ X(3) is given by

t = γ2/γ1.

Proof. We temporarily write a1, a2, a3, a4 for a, b, c, d and let Λ be the
4× 4 alternating matrix with entries

Λij =
∂F1

∂ak

∂F2

∂al
− ∂F1

∂al

∂F2

∂ak
where (i, j, k, l) is an even permutation of (1, 2, 3, 4). Then specialising Λ at
P = (a : b : c : d) ∈ X(9) gives a matrix whose rows (or columns) span
the tangent line at P . Let D = (a3 + b3 + c3 − 3abc)d. We find by direct
calculation that

ΛH(Fi)Λ ≡ γiD


a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2

 mod (F1, F2)
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for i = 1, 2, where γ1 = −18d3 and γ2 = 6(a3+b3+c3+6abc). By Lemma 2.1
we have t = γ2/γ1.

3. Remarks on twisting. In this section we make some general re-
marks on computing twists of X(n). These will be used to find equations
for X−E (9) once we have found equations for XE(9) by another method. We
suppose that X(n) has been embedded in (and spans) PN−1, and that the
action of SL2(Z/nZ) is given by a projective representation

ρ : SL2(Z/nZ)→ PGLN (K).

We write ∝ for equality in PGLN (K), and a superscript −T for the inverse
transpose of a matrix. Let ι = ( 1 0

0 −1 ). We further suppose that

ρ(ιγι) ∝ ρ(γ)−T

for all γ ∈ SL2(Z/nZ). This condition is satisfied in the case of X(9) ⊂ P3

since the matrices ρ(S) and ρ(T ) in Remark 2.2 are symmetric, and the
matrices S and T defined there satisfy ιSι = S−1 and ιT ι = T−1.

Lemma 3.1. Let E/K be an elliptic curve and φ : E[n]→M a symplec-
tic isomorphism defined over K. Suppose h ∈ GLN (K) satisfies

σ(h)h−1 ∝ ρ(σ(φ)φ−1)

for all σ ∈ Gal(K/K). Then XE(n) ⊂ PN−1 and X−E (n) ⊂ PN−1 are the

twists of X(n)⊂ PN−1 given by XE(n)∼=X(n); x 7→ hx and X−E (n)∼=X(n);
x 7→ h−Tx. Moreover these isomorphisms are compatible with the maps to
the j-line.

Proof. This is a special case of [13, Lemma 3.2].

The following lemma generalises [20, Proposition 7.5].

Lemma 3.2. Let E/K be an elliptic curve. If h ∈ GLN (K) describes
XE(n) ⊂ PN−1 as a twist of X(n) ⊂ PN−1 via XE(n) ∼= X(n); x 7→ hx, and
this isomorphism is compatible with the maps to the j-line, then X−E (n) ⊂
PN−1 is the twist of X(n) ⊂ PN−1 via X−E (n) ∼= X(n); x 7→ h−Tx.

Proof. If h is the same as in Lemma 3.1 then the result is clear. In general
if h1 and h2 are two such maps then there is a commutative diagram

XE(n)
h1 // X(n)

β

��
XE(n)

h2 // X(n)

where β is an automorphism of X(n) defined over K. Since h1 and h2 are
compatible with the maps to the j-line, it follows that h2 ∝ ρ(γ)h1α

−1 for
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some γ ∈ SL2(Z/nZ) and α ∈ GLN (K). The change from h1 to h2 makes
no difference to the desired conclusions.

4. Formulae in the case of a rational 3-torsion point. In this
section we find formulae for X±E (9) and X±E (9)→ X±E (3) in the case E has
a rational 3-torsion point.

Lemma 4.1. Let E/K be an elliptic curve with a rational 3-torsion
point T , and discriminant ∆. Then E has a Weierstrass equation of the
form

(7) y2 + a1xy + a3y = x3

with T = (0, 0). Moreover K(E[3]) = K(ζ3,
3
√
∆).

Proof. Moving T to (0, 0) gives a Weierstrass equation y2+a1xy+a3y =
x3 + a2x

2 + a4x. Since 2T 6= 0 we have a3 6= 0. Then by a substitution
y ← y + rx we may assume a4 = 0. Now E meets the line y = 0 in
divisor 2(0, 0) + (−a2, 0). So for 3T = 0 we need a2 = 0. For the last
statement we note that ∆ = a33(a

3
1−27a3) and E[3] has basis T = (0, 0) and

T ′ = (3a3/(δ − a1), a3(ζ3δ − a1)/(δ − a1)) where δ = 3
√
a31 − 27a3.

Lemma 4.2. Let E/K be an elliptic curve with a rational 3-torsion
point, and discriminant ∆.

(i) The family of elliptic curves parametrised by Y (3) = A1 \ {t3 = 1}
is

y2 + 3txy + (t3 − 1)y = x3.

(ii) The family of elliptic curves parametrised by Y ±E (3) = A1 \ {t3 =
∆±1} is

y2 + 3txy + (t3 −∆±1)y = x3.

Proof. The family of elliptic curves in (i) is the same as that in (2), after a
quadratic twist by −3 or a substitution t← (t+2)/(t−1). Let c4, c6, ∆ be the
usual quantities associated to the Weierstrass equation (7). Then part (ii) is
the special case of Theorem 1.1 with (r, s) = (a21t−a31a3+36a23, t−a1a3) in the
direct case, and (r, s) = ((a31a3− 36a23)t+ 2a21, a1a3t+ 2) in the reverse case.
Alternatively, the lemma may be proved directly by an argument similar to
the proof of Lemma 4.1.

For a ∈ K we write 3
√
a for the image of x in K[x]/(x3 − a). Each

equation involving 3
√
a in the next theorem is written as a short-hand for

three equations, one for each K-algebra homomorphism K[x]/(x3−a)→ K.

Theorem 4.3. Let E/K be the elliptic curve

(8) y2 + 3tExy + (t3E −∆)y = x3.
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Then X(9) and X±E (9) have equations in A4 (with co-ordinates t, u, v, w)
given by

X(9): t− 3
√

1 = 9
(
u+ v

3
√

1 + w(
3
√

1)2
)3
,(9)

XE(9): t− 3
√
∆ = (tE −

3
√
∆)
(
u+ v

3
√
∆+ w(

3
√
∆)2

)3
,(10)

X−E (9): t− (
3
√
∆)−1 =

3

tE − 3
√
∆

(
u+ v

3
√
∆+ w(

3
√
∆)2

)3
.(11)

Moreover the maps to X(3) and X±E (3) are given by (t, u, v, w) 7→ t, where
t is the co-ordinate in Lemma 4.2.

Remark 4.4. The equations in Theorem 4.3 may be re-written as fol-
lows. First we expand and equate coefficients of 1, 3

√
1, ( 3
√

1)2, respectively
1, 3
√
∆, ( 3
√
∆)2. We then eliminate t, and homogenise (introducing a new

variable s) to obtain

X(9) =

{
u2v + v2w + w2u = s3

u2w + v2u+ w2v = 0

}
⊂ P3,

XE(9) =

{
f0(u, v, w)− tEf1(u, v, w) = s3

f1(u, v, w)− tEf2(u, v, w) = 0

}
⊂ P3,

X−E (9) =

{
f0(u, v, w) + tEf1(u, v, w) = 9s3

∆f2(u, v, w) + 9tEs
3 = 0

}
⊂ P3,

where

f0(u, v, w) = u3 +∆v3 +∆2w3 + 6∆uvw,

f1(u, v, w) = 3(u2v +∆v2w +∆w2u),

f2(u, v, w) = 3(u2w + v2u+∆w2v).

Proof of Theorem 4.3. The formulae for X(9) and X(9) → X(3) were
already established in Lemma 2.1.

Let Kn be the function field of X(n) over K. Let B ⊂ K×3 /(K
×
3 )3 be the

subgroup generated by all rational functions on X(3) with zeros and poles
only at the cusps. Since X(3) ∼= P1 has four cusps, B has dimension 3 as
an F3-vector space. By (9) we have K9 = K3(

3
√
B). So if t is the co-ordinate

on X±E (3) in Lemma 4.2 then X±E (9) has equations

t− (
3
√
∆)±1 = c±(E)

(
u+ v

3
√
∆+ w(

3
√
∆)2

)3
for some constant c±(E). Since on XE(9) there is a tautological rational
point (corresponding to E) above the point t = tE on XE(3), we can take
c+(E) = tE − 3

√
∆.
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The equations (9) and (10) for X(9) and XE(9) differ by a change of
co-ordinates defined over K. In writing down this change of co-ordinates it
is important to remember that each of (9) and (10) is really three equations.
Let α, β, γ, δ ∈ K satisfy

α3 =
tE − δ

9δ
, β3 =

tE − ζ3δ
9ζ3δ

, γ3 =
tE − ζ23δ

9ζ23δ
, δ3 = ∆.

Then an isomorphism XE(9)→ X(9) is given byuv
w

 7→
1 1 1

1 ζ3 ζ23
1 ζ23 ζ3


−1α β

γ


1 1 1

1 ζ3 ζ23
1 ζ23 ζ3


1

δ

δ2


uv
w

 .

By Lemma 3.2 an isomorphism X−E (9)→ X(9) is given byuv
w

 7→
1 1 1

1 ζ23 ζ3

1 ζ3 ζ23


−1α

−1

β−1

γ−1


1 1 1

1 ζ23 ζ3

1 ζ3 ζ23


1

δ−1

δ−2


uv
w

.
Therefore X−E (9) has equation

t− (
3
√
∆)−1 =

92

tE − 3
√
∆

(
u+ v(

3
√
∆)−1 + w(

3
√
∆)−2

)3
.

A final change of co-ordinates, replacing u, v, w by 1
3u,

1
3∆w,

1
3∆v, gives the

equation (11) as required.

5. Completion of proofs. In this section we complete the proofs of
Theorems 1.2–1.4. We start by using the results of the last section to prove
Theorems 1.2 and 1.3 in the case E(K)[3] 6= 0. By Lemma 4.1 we may
assume E takes the form (8). Then E has shorter Weierstrass equation
y2 = x3 + ax+ b where

a = −24∆tE − 3t4E , b = 16∆2 + 40∆t3E − 2t6E .

The equations for XE(9) in Theorem 1.2 and Remark 4.4 are related by
u

v

w

s

 =


1 −3t2E 12∆tE − 3t4E 36∆t3E − 9t6E
0 −12tE 24∆+ 12t3E −216∆t2E
0 −12 36t2E −144∆tE − 72t4E
1 9t2E −36∆tE + 9t4E 96∆2 + 132∆t3E + 15t6E



x

y

z

t

 .

The equations for X−E (9) in Theorem 1.2 and Remark 4.4 are likewise related
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by a change of co-ordinates with matrix
∆tE −12∆2 + 12∆t3E −4∆2 + 7∆t3E −12∆2t2E + 3∆t5E
−2∆ 0 −6∆t2E 18∆t4E
t2E 0 4∆tE − t4E −16∆2 + 8∆t3E − t6E
−∆tE −4∆2 + 4∆t3E −4∆2 +∆t3E 12∆2t2E − 3∆t5E

 .

These matrices have determinants −21033(t3E − ∆)3 and 210∆3(t3E − ∆)4,
and so are non-singular by the discriminant condition for E. Theorem 1.2
in the case E(K)[3] 6= 0 now follows from Theorem 4.3.

Theorem 1.3 follows almost immediately from Lemma 2.3. The one detail
we must check is how the pencil of cubics defining X±E (9) in Theorem 1.2
matches up with the co-ordinates (r : s) on X±E (3) ∼= P1 in Theorem 1.1.
Computing the discriminant of the Weierstrass equation (1), we find that
the cusps of X±E (3) are the roots of f±(r, s) = 0 where

f+(r, s) = r4 − 6c4r
2s2 − 8c6rs

3 − 3c24s
4,

f−(r, s) = c4r
4 + 4c6r

3s+ 6c24r
2s2 + 4c4c6rs

3 − (3c34 − 4c26)s
4.

On the other hand, writing H(F ) for the Hessian matrix of F , we find that

detH(3rF±1 − sF
±
2 ) = f±(r, s)D±(x, y, z, t)

for some quartic form D±(x, y, z, t). Comparing with (6) and Lemma 2.3
shows that the forgetful map is as claimed in Theorem 1.3.

To extend the proofs of Theorems 1.2 and 1.3 to the case E(K)[3] = 0
we use the following two lemmas.

Lemma 5.1. Let X,Y, Y ′ be curves defined over K. Suppose there is a
commutative diagram

Y

π
��

ψ // Y ′

π′

��
X X

where π and π′ are morphisms defined over K, and ψ is an isomorphism
defined over a finite extension L/K. Suppose that π is the map that quotients
out by a finite K-rational subgroup A ⊂ Aut(Y ). If [L : K] and |A| are
coprime then Y and Y ′ are isomorphic over K.

Proof. The curve Y ′ is the twist of Y by a class ξ ∈ H1(K,A) whose
restriction to H1(L,A) is trivial. Since the composition

H1(K,A)
res−−→ H1(L,A)

cores−−−→ H1(K,A)

is multiplication by [L : K], and this degree is coprime to |A|, it follows that
ξ is trivial.
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Lemma 5.2. Let E/K be an elliptic curve and let p be a prime. Then
E(L)[p] 6= 0 for some finite extension L/K with [L : K] coprime to p.

Proof. The orbit sizes for the action of Galois on E[p] \ {0} add up to
p2 − 1. Therefore some orbit has size coprime to p.

To prove Theorem 1.2 we use Lemma 5.2 to find L/K an extension of
degree coprime to 3 with E(L)[3] 6= 0. We already know that the theorem
is true over L. We apply Lemma 5.1 with X = X±E (3), Y = X±E (9) and
Y ′ ⊂ P3 the curve defined in the statement of Theorem 1.2. We further
take π to be the forgetful map, and π′ the map defined in the statement
of Theorem 1.3. It follows that Theorem 1.2 is true over K. The proof of
Theorem 1.3 goes through exactly as before.

Remark 5.3. If elliptic curves E and E′ are quadratic twists, then it is
easy to see that the modular curves X±E (n) and X±E′(n) are isomorphic. With
F±1 and F±2 as defined in Theorem 1.2, this is borne out by the identities

F+
1 (λ2a, λ3b;λ3x, λ2y, λz, t) = λ6F+

1 (a, b;x, y, z, t),

F+
2 (λ2a, λ3b;λ3x, λ2y, λz, t) = λ7F+

2 (a, b;x, y, z, t),

and

F−1 (λ2a, λ3b;λ2x, λy, λz, t) = λ5F−1 (a, b;x, y, z, t),

F−2 (λ2a, λ3b;λ2x, λy, λz, t) = λ6F−2 (a, b;x, y, z, t).

Proof of Theorem 1.4. Treating a and b as additional variables, the equa-
tions for X±E (9) in Theorem 1.2 define a threefold. Our task is to quotient
out by the action of Gm in Remark 5.3, to give a surface birational to Z±(9).
One way to do so is by setting a = b, but this gives a highly singular model
for Z±(9), and does not seem to help in finding an elliptic fibration. Instead
we make the following substitutions.

We start with the direct case. Letting a = 12s− 3w2 and b = us+ 2w3

in Theorem 1.2, and expanding in powers of s, we find

F+
1 (6vs− 3w3, 2sT − w2, w, 1) = 12s2(g0 + 4sg1),

F+
2 (6vs− 3w3, 2sT − w2, w, 1) = 36s2(h0 + 4sh1),

where

g0 = u2 + 3uv + 3v2 + 9uw + 6Tvw + 3(T 2 − 12T + 24)w2,

g1 = T 3 − 9T 2 + 36T − 36,

h0 = v2w − (T − 1)uw2 + 2(T − 6)vw2 + (T 2 − 24T + 48)w3,

h1 = u+ (T 2 − 6T + 12)v − 3(T − 2)(T − 6)w.



Families of 9-congruent elliptic curves 383

The plane cubic {g0h1 − g1h0 = 0} ⊂ P2 is a smooth curve of genus one,
defined over Q(T ), with rational point (u : v : w) = (12 : T − 6 : −1).
The elliptic surface in Theorem 1.4 is obtained by putting this curve in
Weierstrass form, for example using the method in [5, Chapter 8]. To simplify
the final answer we also made a substitution T ← 2T + 3.

In the reverse case we set a = 3us − 3w2 and b = 3vs2 − 3uws + 2w3.
We then compute

F−1 (−3s2T − w2, s− w, 2w, 1) = 9s3q1,

F−2 (−3s2T − w2, s− w, 2w, 1) = 9s3(wq1 − sq2),

where

q1 = 3u2 − uv − 3uw + 2(3T − 1)us− 6vw

− 3(2T − 3)vs+ 2w2 − 3T 2ws+ 9T 2s2,

q2 = 3(T − 2)u2 + 3uv + uw − 2v2 − 6(2T − 3)vw

+ 3(6T − 1)vs+ 9T 2ws+ 3T 3s2.

The quadric intersection {q1 = q2 = 0} ⊂ P3 is a smooth curve of genus
one, defined over Q(T ), with rational point (u : v : w : s) = (2 : 1 : 1 : 0).
The elliptic surface in Theorem 1.4 is obtained by putting this curve in
Weierstrass form, again as described in [5, Chapter 8]. To simplify the final
answer we also made a substitution T ← (2T − 3)/(2T + 1).

6. Examples. We use Theorems 1.2 and 1.3 to find some non-trivial
pairs of 9-congruent elliptic curves over Q and Q(T ). By “non-trivial” we
mean that the elliptic curves are not isogenous. The examples may be
checked independently of our work by comparing traces of Frobenius.

6.1. Examples over Q. We refer to elliptic curves over Q by their labels
in Cremona’s tables [7]. For elliptic curves beyond the current range of his
tables we write the conductor followed by a ∗. The changes of co-ordinates
used to simplify the equations in Examples 6.1 and 6.2 below were found by
methods similar to those in [8].

Example 6.1. Let E be the elliptic curve 47775z1. The equations for
XE(9) in Theorem 1.2 with a = −41489280 and b = 102867483600 may be
simplified by substituting (x, y, z, t)T ←M(x, y, z, t)T where

M =


2520473760 937149484320 −1998984627360 −152410870080

0 79644600 −185343480 −3827880

0 −22932 47040 6468

0 −6 13 1

 .
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This gives a model for XE(9) with equations

−x2z + x2t+ 4xyz + 2xyt− 3xz2 + 2xzt− 3xt2 + 6y3 + 14y2z

+ y2t+ 6yz2 − 4yzt+ 9yt2 − 6z3 + 27z2t− 13zt2 − t3 = 0,

−3x2y + 4x2z + 3x2t+ 3xy2 + 20xyz − 12xyt− 3xz2 − 32xzt

+ 25xt2 + 21y3 + 16y2z − 24y2t− 12yz2 + 100yzt

+ 34yt2 + 39z3 − 21z2t− 56zt2 − 11t3 = 0.

On this curve we find rational points P1 = (1 : 0 : 0 : 0), P2 = (4 : −1 : −1 : 0)
and P3 = (1 : 2 : −1 : 0). By Theorem 1.3 these map to the points (r : s) =
(1 : 0), (2359 : 2) and (52318 : 47) on XE(3) ∼= P1. By Theorem 1.1, with
c4 = −a/27 = 1536640 and c6 = −b/54 = −1904953400, the corresponding
elliptic curves directly 9-congruent to E are

47775z1: y2 + y = x3 − x2 − 32013x+ 2215478,

429975∗: y2 + y = x3 − 314688780x− 2148671872069,

494901225∗: y2 + y = x3 − 23634650164230x− 21037908383222056594.

Since X−E (9) is not locally soluble at p = 7 there are no elliptic curves reverse
9-congruent to E.

In addition to Example 6.1 we have found two further triples of directly
9-congruent non-isogenous elliptic curves over Q. These are

4650j1: y2 + xy = x3 + x2 − 2700x+ 54000,

553350∗: y2 + xy = x3 + x2 − 10472207700x− 455228489646000,

1966950∗: y2 + xy = x3 − x2 − 20654522386242x− 36130051534030639084,

and

27606c1: y2 + xy = x3 − 10289707x+ 12703497719,

358878n1: y2 + xy = x3 + 2940333x− 1416695391,

1242270∗: y2 + xy + y = x3 − x2 − 359912x− 322105301.

The elliptic curves 1701a1, 1701g1 and 22113c1 are also 9-congruent but
only the last two of these are directly 9-congruent.

Example 6.2. Let E be the elliptic curve 201c1. The equations for
X−E (9) in Theorem 1.2 with a = −1029699 and b = 402173694 may be
simplified by substituting

x

y

z

t

←

−26471709 −23136696 20106774 −20376135

−45147 −39828 33990 −34509

90294 79332 −68304 69342

77 68 −58 59



x

y

z

t

 .
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This gives a model for X−E (9) with equations

−x3 + 4x2y + 3x2z − x2t+ 6xy2 + 2xyz − 2xyt− 6xz2 + 4xzt

− 11xt2 + y3 + 7y2t− 2yz2 + 4yzt− 4yt2 + 6z3 − 7z2t+ 4zt2 + t3 = 0,

2x3 − x2y + 5x2t− 10xy2 − 2xyz + 16xyt− 3xz2 + 4xzt+ 8xt2

− 5y3 − y2z − 3y2t− yz2 − 2yzt+ 12yt2 + 3z3 − 4z2t+ 2zt2 − 3t3 = 0.

On this curve we find the rational point (1 : −2 : −1 : 0). The corresponding
elliptic curve reverse 9-congruent to E is

374865∗: y2 + xy = x3 + x2 − 60068738107x+ 4858035498982726.

6.2. Examples over Q(T ). Again we start our investigations with the
equations for X±E (9) in Theorem 1.2. To find some interesting examples over
Q(T ), we set a = b = −27j/(4(j−1728)) to obtain a model for Z±(9), fibred
over the j-line. We then looked for some rational curves on this surface, by
intersecting with coordinate hyperplanes. Once an example was found we
simplified it using the identities in Remark 5.3.

The following example gives a proof of Theorem 1.5 in the direct case,
without going via Theorem 1.4.

Example 6.3. Let E/Q(T ) be the elliptic curve y2 = x3 +a(T )x+ b(T )
where

a(T ) = 1
2(39T 4 − 60T 3 − 162T 2 + 60T + 39),

b(T ) = 47T 6 + 120T 5 + 21T 4 + 21T 2 − 120T + 47.

Then on XE(9), with equations as in Theorem 1.2, we find the rational point

(x : y : z : t) =
(
15
2 (3T 4 + 8T 3 − 2T 2 − 8T + 3) : T 2 + 1 : 1 : 0

)
.

The corresponding elliptic curve directly 9-congruent to E is the elliptic
curve directly 3-congruent to E constructed in Theorem 1.1 with c4 =
−a(T )/27, c6 = −b(T )/54 and (r : s) = (47T 6 − 78T 5 − 153T 4 + 244T 3 +
153T 2 − 78T − 47 : 18(T 2 + 1)(T 2 + 6T − 1)). Specialising to T = 0 gives
a pair of elliptic curves with conductors 80640 and 5886720. In particular
these curves are not isogenous.

The following example gives a proof of Theorem 1.5 in the reverse case,
without going via Theorem 1.4.

Example 6.4. Let E/Q(T ) be the elliptic curve y2 = x3 +a(T )x+ b(T )
where

a(T ) = 3(3T + 1)(6T 3 − 3T − 1)(9T 3 − 9T − 4)2,

b(T ) = 2(3T 3 + 27T 2 + 21T + 4)(6T 3 − 3T − 1)2(9T 3 − 9T − 4)2.



386 T. Fisher

Then on X−E (9), with equations as in Theorem 1.2, we find the rational point

(x : y : z : t) = (−(6T 3 − 3T − 1)(9T 3 − 9T − 4) : T : 1 : 0).

The corresponding elliptic curve reverse 9-congruent to E is the elliptic curve
reverse 3-congruent to E constructed in Theorem 1.1 with c4 = −a(T )/27,
c6 = −b(T )/54 and (r : s) = ((3T + 1)(9T 3 − 9T − 4)(6T 3 − 3T − 1)
× (180T 4 +321T 3 +216T 2 +66T +8) : 3(369T 6 +1107T 5 +1431T 4 +1017T 3

+ 414T 2 + 90T + 8)). Specialising to T = −1/4 gives the pair of ellip-
tic curves 2304o1 and 343296g1. In particular these curves are not isoge-
nous.
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