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Abstract. We show that if G is a non-archimedean, Roelcke precompact Polish
group, then G has Kazhdan’s property (T). Moreover, if G has a smallest open subgroup
of finite index, then G has a finite Kazhdan set. Examples of such G include automorphism
groups of countable ω-categorical structures, that is, the closed, oligomorphic permuta-
tion groups on a countable set. The proof uses work of the second author on the unitary
representations of such groups, together with a separation result for infinite permutation
groups. The latter allows the construction of a non-abelian free subgroup of G acting freely
in all infinite transitive permutation representations of G.

1. Introduction

1.1. Main results. A topological group G is non-archimedean if it has
a base of open neighbourhoods of the identity consisting of subgroups. The
symmetric group Sym(X) on a set X, consisting of the group of all permu-
tations of X, equipped with the topology of pointwise convergence, is an
example of such a group: pointwise stabilizers of finite sets form a base of
open neighbourhoods of the identity. It is well known that a Polish group
G is non-archimedean if and only if it is isomorphic to a closed subgroup of
Sym(X) for some countable X. Moreover, such groups are exactly automor-
phism groups of first-order structures on X.

A group G ≤ Sym(X) is said to be oligomorphic (in its action on X) if
G has only finitely many orbits on Xn for all n ∈ N (where the action on Xn

is the diagonal action). Such groups have been extensively studied from the
point of view of infinite permutation groups, combinatorics, model theory,
and topological dynamics (see, for example, [4], [11] and [8]). They arise
as automorphism groups of ω-categorical structures, and model-theoretic
methods produce a wide variety of examples of these.
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In [13], the second author studied the unitary representations of oligo-
morphic permutation groups, showing that they are completely reducible
and giving a description of the irreducible representations. Many of the re-
sults of [13] hold under a weaker (and more intrinsic) assumption than that
of being an oligomorphic group: that of Roelcke precompactness (see Defini-
tion 1.5 here). For G ≤ Sym(X) this means that whenever Y is a union of
finitely many G-orbits, then G acts oligomorphically on Y (see Lemma 1.6).
We note that in the interesting cases, Roelcke precompact groups are not
locally compact: more precisely, a Roelcke precompact topological group is
locally compact iff it is compact.

Using this description of the unitary representations, the paper [13] shows
that Kazhdan’s property (T) holds for a natural class of closed, oligomorphic
permutation groups G ≤ Sym(X) ([13, Theorem 6.6]; for the definition of
property (T), see Definition 4.2 here). Furthermore, [13, Theorem 6.7] gives
some examples—including the automorphism groups of the rational order-
ing (Q,≤) and the random graph—of such groups with strong property (T),
where the Kazhdan set can be taken to be finite. In the latter case, the proof
proceeds by finding a non-abelian free subgroup of G which acts freely on
X, an idea that goes back to Bekka [1]. We use a similar method here, com-
bined with techniques from permutation group theory, to prove the following
general result.

Theorem 1.1. Suppose that G is a non-archimedean, Roelcke precom-
pact Polish group and G◦ is the intersection of the open subgroups of finite
index in G. Then G and G◦ have Kazhdan’s property (T) and G◦ has a finite
Kazhdan set.

While so far property (T) has found most of its applications in the realm
of locally compact groups, we note that there are some interesting conse-
quences in our setting as well. Combining Theorem 1.1 with the results of
Glasner and Weiss [5], we obtain the following.

Corollary 1.2. Let G be a non-archimedean, Roelcke precompact group
and Gy X a continuous action on a compact Hausdorff space X. Then the
simplex of G-invariant measures on X is a Bauer simplex, i.e., the set of its
extreme points is closed.

The extreme points of the simplex of invariant measures are exactly the
ergodic measures (a measure µ is ergodic if every µ-invariant measurable
set A ⊆ X is null or co-null; a set A is µ-invariant if for every g ∈ G,
µ(A 4 gA) = 0). While Glasner and Weiss only state their theorem for
locally compact groups, the proof works equally well in general; see the book
of Phelps [12] for the general version of the ergodic decomposition theorem
needed in the proof.
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We also note that while amenable locally compact groups with property
(T) must be compact, this is not necessarily true in our setting. Indeed,
there are a number of automorphism groups of ω-categorical structures that
are amenable: for example, this is true if the structure has the so-called
Hrushovski property ; see [9] for more details. Amenability is relevant to
Corollary 1.2 because it ensures that the simplex of invariant measures is
non-empty for any G-flow X.

Apart from the description of the representations of non-archimedean,
Roelcke precompact Polish groups given in [13] (see Theorem 4.1 here), the
main ingredient in the proof of Theorem 1.1 is the following, which is the
main contribution of the current paper.

Theorem 1.3. Suppose G is a non-archimedean, Roelcke precompact
Polish group and G◦ is the intersection of the open subgroups of finite in-
dex in G. Suppose G◦ 6= {1G}. Then there exist f, g ∈ G◦ which generate a
(non-abelian) free subgroup F of G◦ with the property that if H ≤ G is open
and of infinite index, then F acts freely on the coset space G/H.

Here, recall that a group F acting on a set Y is acting freely if for all
non-identity g ∈ F and y ∈ Y we have gy 6= y. Thus each F -orbit on Y is
regular.

Theorems 1.1 and 1.3 answer Questions (1) (for non-archimedean groups)
and (2) at the end of [13].

Recall that an action of a group G on a discrete space X is called
amenable if there is a G-invariant finitely additive measure on X. As a
further corollary to Theorem 1.3, we note:

Corollary 1.4. Suppose G is a non-archimedean, Roelcke precompact
Polish group which is acting continuously on the discrete space X. Suppose
the action of G on X is amenable. Then X contains a finite orbit.

The proof of Theorem 1.3 rests ultimately on Neumann’s Lemma (see
Lemma 2.1), a very general result about separating finite sets in an infinite
permutation group.

The required consequences of this for closed, Roelcke precompact per-
mutation groups are given in Section 2. These results can be deduced from
‘folklore’ results in model theory, but we provide proofs in the language of
permutation groups. Theorem 1.3 is proved in Section 3 along with Corol-
lary 1.4. Section 4 discusses Kazhdan’s property (T) and contains the proof
of Theorem 1.1.

Notation. Our notation for permutation groups is fairly standard.
Groups act on the left. If G is a group acting on X and A ⊆ X, then
GA is the pointwise stabilizer {g ∈ G : ga = a for all a ∈ A}. If A = {a}
is a singleton, we denote this by Ga. If G is the automorphism group of
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some structure M with domain X, then we write G = Aut(M) and use
the alternative notation Aut(M/A) for GA. We do not usually distinguish
notationally between a structure and its underlying set.

1.2. Background

Definition 1.5. A topological group G is called Roelcke precompact if
for every open neighbourhood U of the identity there is a finite set E such
that G = UEU .

If G is non-archimedean, so G ≤ Sym(X) for some X, then U in Defini-
tion 1.5 can be taken to be an open subgroup and the condition for Roelcke
precompactness says that there are only finitely many double cosets of U in
G. In fact, if we take ā ∈ Xn and U = Gā its stabilizer, then the condition
says that there are finitely many G-orbits on Y 2, where Y is the G-orbit on
Xn containing ā. Recall that a group G is said to act oligomorphically on a
set Y if G has finitely many orbits on Y n for all n ∈ N. The following is a
restatement of [13, Theorem 2.4]:

Lemma 1.6. Suppose G ≤ Sym(X). Then G is Roelcke precompact if
and only if whenever Y is a union of finitely many G-orbits on X, then G
acts oligomorphically on Y .

If G is acting on X as in the above, then we say that G is locally oligo-
morphic on X. Note that in this case, if A ⊆ X is finite, then its pointwise
stabilizer GA is also locally oligomorphic on X (this follows easily from Roel-
cke precompactness).

We summarize the above as:

Corollary 1.7. A topological group G is non-archimedean, Polish and
Roelcke precompact if and only if it can be represented as a closed, locally
oligomorphic subgroup of Sym(X) for countable X.

Closed subgroups of Sym(X) are precisely automorphism groups of first-
order structures on X. Indeed, if G ≤ Sym(X), we consider the canonical
structure which has a relation for eachG-orbit onXn, for all n ∈ N. ThenG is
a closed subgroup of Sym(X) if and only if it is the full automorphism group
of this canonical structure. If X is countable, then, by the Ryll-Nardzewski
Theorem, G is oligomorphic if and only if this canonical structure is ω-
categorical. (The book [4] is a convenient reference for this material.)

The following fact is an easy consequence of Roelcke precompactness; see
[13, Corollary 2.5] for a proof.

Lemma 1.8. Suppose X is countable and G ≤ Sym(X) is locally oligo-
morphic. Then G has only countably many open subgroups.

We also note that for such G, there is a ‘universal’ choice for the set X.
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Lemma 1.9. Suppose G is a non-archimedean Polish group with count-
ably many open subgroups. Then there is a faithful action of G on a countable
set X = X(G) with the property that for every open subgroup U ≤ G, there
is a ∈ X such that U = Ga. Moreover, G is closed in Sym(X) under this
action.

Proof. Let (Ui : i ∈ I) be a system of representatives for the set of
conjugacy classes of open subgroups of G. Let X(G) be the disjoint union
of the (left) coset spaces G/Ui. So X(G) is countable and if U ≤ G is open
there is a unique i ∈ I such that U is conjugate to Ui, so U = gUig

−1 for
some g ∈ G. Then U is the stabilizer of the coset a = gUi ∈ X(G).

It remains to prove that G is a closed subgroup of Sym(X(G)). As G is
Polish, it suffices to show that the original topology of G is the same as the
one inherited from Sym(X(G)). Indeed, if {gn} is a sequence in G converging
to 1 in Sym(X(G)), then it eventually enters every open subgroup of G,
which, as G is non-archimedean, means that gn → 1 in G.

Remark 1.10. It is worth noting that if M is a countable ω-categorical
structure and G = Aut(M), then the action of G on X(G) (as in Lemma 1.9)
is essentially that of G on M eq.

We finally observe that our setting is slightly more general than the
classical one of oligomorphic groups (and ω-categorical structures). Locally
oligomorphic groups can be represented as inverse limits of oligomorphic ones
(which, however, are not necessarily closed in Sym(X)). Examples can be
obtained by taking the disjoint union of countably many ω-categorical struc-
tures (in disjoint languages); then the automorphism group of this structure
is the direct product of the automorphism groups of the individual structures
and is locally oligomorphic. Perhaps more interestingly, consider the abelian
group M which is the direct sum of countably many copies of the Prüfer
p-group Z(p∞) (complex roots of 1 of order a power of p) for some prime p.
It can be checked that Aut(M) acts locally oligomorphically on M . Another
example is given by the ℵ0-partite random graph (with named parts). Fur-
ther interesting structures can be constructed from inverse limits of finite
covers of ω-categorical structures.

2. Algebraic closure and Neumann’s Lemma. The following result
is sometimes called Neumann’s Lemma (cf. [6, Corollary 4.2.2]). It is equiv-
alent to a well known result of B. H. Neumann on covering groups by cosets;
an independent, combinatorial proof can be found in [3], or [4, 2.16].

Lemma 2.1. Suppose G is a group acting on a set X and all G-orbits on
X are infinite. Suppose A,B ⊆ X are finite. Then there is some g ∈ G with
gA ∩B = ∅.
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The result has the following model-theoretic consequence, which can be
regarded as ‘folklore’.

Lemma 2.2. Suppose M is a countable, saturated first-order structure
and A,B,C ⊆ M are algebraic closures of some finite subsets of M with
B ⊆ C. Then there is g ∈ Aut(M/B) such that g(C) ∩A = B ∩A.

Here, the algebraic closure in M of a set E is the union of the finite
E-definable subsets of M . Saturation means that if E is finite and S is
a family of E-definable subsets of M with the finite intersection property,
then

⋂
S 6= ∅. It implies that the algebraic closure of a finite E ⊆ M

is the union of the finite Aut(M/E)-orbits (where Aut(M/E) denotes the
pointwise stabilizer of E in the automorphism group Aut(M)).

We give an analogous result for locally oligomorphic permutation groups.

Definition 2.3. Suppose G ≤ Sym(X) is locally oligomorphic on X. If
E ⊆ X is finite, the algebraic closure acl(E) of E in X is the union of the
finite GE-orbits.

Note that, with this notation, if Y is a G-orbit on X, then acl(E)∩ Y is
finite.

Lemma 2.4. Suppose M is countable and G ≤ Sym(M) is closed and
locally oligomorphic on M . If E ⊆ M is finite, then Gacl(E) is also locally
oligomorphic on M and has no finite orbits on M \ acl(E).

Proof. Let B = acl(E). Note that B is the union of a chain E = E0 ⊆
E1 ⊆ E2 ⊆ · · · of finite GE-invariant sets.

Claim. Suppose ā ∈ Mn is a finite tuple and let Ai be the GEi-orbit
containing ā. Then there is N ∈ N such that Ai = AN for all i ≥ N .

Proof. Note that GEi is a normal subgroup of finite index in GE . It
follows that {gAi : g ∈ GE} is a GE-invariant partition of A0 (with finitely
many parts). As GE has finitely many orbits on A2

0, there are only finitely
many possibilities for such a partition, so as Ai ⊇ Ai+1, they must be equal
for sufficiently large i. Claim

It is worth noting that the N here depends only on the GE-orbit contain-
ing ā, not on the particular representative ā. As GB =

⋂
iGEi , it follows that

in each GE-orbit, the GB-orbits coincide with the GEN
-orbits, and as GEN

has finite index in GE , there are only finitely many of them, showing that
GB is locally oligomorphic and that GB · ā is infinite whenever GE · ā is.

If a ∈M \acl(E), then by the Claim, Gacl(E) ·a = GEN
·a for some N ; as

GEN
has finite index in GE and GE · a is infinite, this means that Gacl(E) · a

is also infinite.
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Lemma 2.5. Suppose M is countable and G ≤ Sym(M) is closed and
locally oligomorphic on M . Suppose A,B,C are algebraic closures in M of
some finite subsets of M and B ⊆ C. Then there is g ∈ GB such that
g(C) ∩A = B ∩A.

Proof. Let ā, c̄ be finite tuples with A = acl(ā) and C = acl(c̄) (where
algebraic closure is from the action of G on M , of course). Consider the
action of H = GB on M . By Lemma 2.4, H is locally oligomorphic on M
and has no finite orbits on M \ B. Let S be the H-orbit containing c̄ and
let S1, . . . , Sk be the Hā-orbits on S (note that there are finitely many of
these, as H is oligomorphic on the union of the H-orbits which contain the
elements of the tuples ā, c̄).

Write M \ B as the union of a chain X0 ⊆ X1 ⊆ X2 ⊆ · · · of subsets
each of which is a finite union of H-orbits. Recall that the intersection of
A,C with each Xi is finite. So by Lemma 2.1, for each j ∈ N there is some
c̄ ′ ∈ S such that

(Xj ∩ acl(c̄ ′)) ∩ (Xj ∩ acl(ā)) = ∅.
Thus, for each j ∈ N there is some i ≤ k such that this holds for all c̄ ′ ∈ Si.
So there is some i ≤ k such that this holds for all j and for all c̄ ′ ∈ Si. In
particular, there is c̄ ′ ∈ S such that acl(c̄ ′) ∩ acl(ā) ⊆ B, as required.

Remark 2.6. The result can be derived from the model-theoretic state-
ment of Lemma 2.2, though some care is required as the canonical struc-
ture for a locally oligomorphic G ≤ Sym(X) is not saturated if there are
infinitely many G-orbits on X. However, if we regard it as a multi-sorted
structure (with a sort for each of the G-orbits on X), then it is saturated
(as a multi-sorted structure) and Lemma 2.2 also holds in this context. Nev-
ertheless, it seems worthwhile to offer a direct proof which does not use the
model-theoretic terminology.

Definition 2.7. Suppose G is a topological group. Then G◦ denotes the
intersection of the open subgroups of finite index in G.

Lemma 2.8. Suppose G is a non-archimedean, Roelcke precompact Pol-
ish group. Consider G as a closed subgroup of Sym(X(G)) (as in Lem-
ma 1.9). Then G◦ = Gacl(∅) and it is Roelcke precompact. Moreover (G◦)◦

= G◦.

Proof. By definition, an element of X(G) is in acl(∅) if and only if its
stabilizer is open and of finite index. Moreover, any such subgroup is the
stabilizer of some point of X(G), so the first statement is immediate from
Lemma 2.4.

For the second statement, suppose U ⊆ G◦ is open and of finite index.
The topology on G◦ is the subspace topology so there is some e ∈ X(G)
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such that Ge ∩ G◦ ≤ U ≤ G◦. Let D be the U -orbit on X(G) contain-
ing e; let C be the G◦-orbit and E the G-orbit. Note that by the Claim in
the proof of Lemma 2.4, C is equal to the GX -orbit containing e, for some
finite, G-invariant X ⊆ acl(∅). Thus {gC : g ∈ G} is a finite partition of E.
So as U is of finite index in G◦, we deduce that {gD : g ∈ G} is also a
finite partition of E. Let V be the setwise stabilizer of D in G. So this is
an open subgroup of finite index in G and V ∩ G◦ = U . (To see this, let
v ∈ V ∩ G◦. Then there is u ∈ U such that v · e = u · e, so u−1v ∈ Ge.
Therefore v ∈ uGe ∩G◦ = u(Ge ∩G◦) ⊆ U .) But V ≥ G◦, so U = G◦.

Lemma 2.9. Let G be a non-archimedean, Roelcke precompact Polish
group and π : G → K be a continuous homomorphism to a compact Polish
group. Then π(G) is closed in K. In particular, G/G◦ is a compact, profinite
group.

Proof. Without loss of generality, we may assume that π(G) is dense
in K. Let V ≤ G be an open subgroup. As G is Roelcke precompact, there
is a finite F ⊆ G such that V FV = G. Because K is compact, we obtain

K = π(V )π(F )π(V ) = π(V )π(F )π(V ).

So K is the disjoint union of finitely many double cosets of the compact
group π(V ), which are closed and, therefore, open. In particular, π(V ) is
open.

The open subgroup V ≤ G was arbitrary, so for all V , π(V ) is somewhere
dense. As G is Polish, this implies that π(G) is non-meager in K (see, for
example, [9, Proposition 3.2]). As π(G) is also a Borel subgroup of K, it
must be open and closed [7, 9.11], implying that π is surjective.

For the last statement of the lemma, let K = lim←−G/N , where the inverse
limit is taken over all finite index, open, normal subgroups of G directed
by reverse inclusion. (Note that, as G is Roelcke precompact, it has only
countably many open subgroups, so K is Polish.) Then there is a natural
injective homomorphism π : G/G◦ → K with dense image. By the main
statement of the lemma, π is also surjective, and therefore a topological
group isomorphism.

3. Constructing automorphisms without fixed points

Theorem 3.1. Suppose M is a countable set and G ≤ Sym(M) is
closed and locally oligomorphic. Suppose G◦ 6= 1. Then there exist elements
f, g ∈ G◦ generating a non-abelian free subgroup F of G◦ which acts freely
on M \ acl(∅).

Suppose that M and G are as in the theorem. Note that by Lemma 2.4,
G◦ is closed and locally oligomorphic on M \ acl(∅). Also, by Lemma 2.8,
(G◦)◦ = G◦. So for the rest of the proof we may assume without loss of
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generality that G = G◦ and acl(∅) = ∅. Note that the assumption that
G◦ 6= 1 means that some G◦-orbit is infinite.

We will regard M as a first order structure with automorphism group G
(for example, by giving it its canonical structure).

Let A = {acl(E) : E ⊆ M finite} be the set of algebraic closures of
finite subsets of M . By a partial automorphism of M we mean a bijection
P → Q between elements of A which extends to an element of G. We build
f, g in the theorem by a back-and-forth argument as the union of a chain
of partial automorphisms, ϕ : A → B and γ : A′ → B′ (approximating f, g
respectively). It will suffice to show how to extend the domain of one of ϕ, γ
in the ‘forth’ step (by symmetry, the argument for extending images in the
‘back’ step will be the same).

Consider F2 = 〈a, b〉, the free group on generators a, b. The non-identity
elements of F2 can be thought of as reduced words ω(a, b) in a, b, that is,
expressions ω(a, b) = c1 · · · cr where ci ∈ {a, b, a−1, b−1} and ci 6= c−1

i+1 for
all i < r. If ϕ, γ are partial automorphisms of M then by ω(ϕ, γ) we mean
the composition obtained by substituting ϕ for a and γ for b in ω(a, b). We
refer to this as a reduced word in ϕ, γ. This is a bijection between subsets
of M which extends to an element of G (of course, it could be empty); a
fixed point of this is an element x ∈ M such that ω(ϕ, γ)x is defined and
equal to x.

Theorem 3.1 is a consequence of the following:

Proposition 3.2. Suppose M is as above and ϕ : A → B, γ : A′ → B′

are partial automorphisms of M such that no reduced word in ϕ, γ has a fixed
point. Suppose A ⊆ C ∈ A. Then there is an extension ϕ̃ : C → D of ϕ to a
partial automorphism with domain C such that no reduced word in ϕ̃, γ has
a fixed point.

Proof. First we show that we can choose D (and ϕ̃) so that D ∩ (C ∪
B ∪ A′ ∪ B′) = B. As ϕ extends to an element of G, there is some partial
automorphism ϕ′ : C → D′ extending ϕ. So B ⊆ D′ and by Lemma 2.5 there
is g ∈ GB with gD′ ∩ (C ∪ B ∪ A′ ∪ B′) = B. Let D = gD′ and ϕ̃ : C → D
be the composition g ◦ ϕ′. This has the required property.

Now we show that this choice of ϕ̃ works. We first note the following:

Observation. If ϕ̃−1z is defined and z ∈ C ∪ B ∪ A′ ∪ B′, then z ∈
(C ∪ B ∪ A′ ∪ B′) ∩ D = B. So z ∈ B and therefore ϕ−1z is defined and
ϕ̃−1z = ϕ−1z ∈ A. Similarly, if ϕ̃w is defined and ϕ̃w ∈ C∪B∪A′∪B′, then
ϕ̃w ∈ (C ∪B ∪A′ ∪B′) ∩D = B, so w ∈ A, ϕw is defined and ϕw = ϕ̃w.

Now suppose π1 · · ·πr is a reduced word in ϕ̃, γ and x, y ∈ M are such
that

(∗) π1 · · ·πrx = y.
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So πi ∈ {ϕ̃, ϕ̃−1, γ, γ−1} and πi+1 6= π−1
i . We show that most of the terms

ϕ̃, ϕ̃−1 in this equation can be replaced by ϕ, ϕ−1 without changing the
validity of the equation.

Claim. Suppose πi = ϕ̃−1 and i < r. Then we can replace πi by π′i = ϕ−1

in (∗). Similarly, if πj = ϕ̃ and j > 1 then we can replace πj by π′j = ϕ
in (∗).

Proof. Note that as the word is reduced, πi+1 is equal to γ, γ−1, or ϕ̃−1

(as we will want to repeat this argument we also consider the possibility that
it is ϕ−1). If z = πi+1 · · ·πrx then z is in the image of πi+1, so z ∈ A′∪B′∪C.
By the Observation, it follows that ϕ−1z is defined (and equal to ϕ̃−1z), so
we can replace πi by ϕ−1 as required. Similarly, πj−1 is equal to γ, γ−1 or
ϕ̃ (or ϕ). So w = πj+1 · · ·πrx is such that ϕ̃w is defined and in the set
A′∪B′∪C. Again by the Observation, ϕw is defined (and equal to ϕ̃w) and
we can make the required replacement. Claim

Now make all of the replacements allowed by the Claim. The only possible
ϕ̃−1 remaining is if πr = ϕ̃−1, and the only possible ϕ̃ remaining is if π1 = ϕ̃.

Thus, after the replacements we have

(∗∗) ϕ̃sβϕ̃−tx = y,

where s, t ∈ {0, 1} and β is a (possibly trivial) reduced word in ϕ, γ. Suppose
for a contradiction that x = y.

We consider various cases. If β is trivial, then exactly one of s, t is 1
and (possibly after rearranging (∗∗)) we have ϕ̃x = x. Then x ∈ C ∩D, so
x ∈ B and ϕx is defined. Thus ϕx = x, contradicting the assumption on
ϕ, γ. Suppose now that β is non-trivial. If s = t = 1, then we can rearrange
(∗∗) to obtain βz = z where z = ϕ̃−1x. As β is a non-trivial reduced word
in ϕ, γ, this is a contradiction. We also have a contradiction if s = t = 0.
For the remaining cases, by rearranging (∗∗) if necessary, we can assume
s = 1 and t = 0, that is, ϕ̃βx = x. Then x ∈ D ∩ (A ∪ B ∪ A′ ∪ B′), so
x ∈ B, βx ∈ A and ϕ(βx) is defined, with ϕβx = x. But ϕβ is a non-trivial
reduced word in γ, ϕ (it comes from the same word as π1 · · ·πr) so we have
a contradiction.

Proof of Theorem 3.1. Recall that we are assuming (without loss of gen-
erality) that acl(∅) = ∅ and M is infinite (the latter from the assumption
that G◦ 6= 1). We build chains of partial automorphisms

ϕ1 ⊆ ϕ2 ⊆ ϕ3 ⊆ · · · and γ1 ⊆ γ2 ⊆ γ3 ⊆ · · ·
such that f =

⋃
i ϕi and g =

⋃
i γi are automorphisms. At each stage we use

Proposition 3.2 to extend the domain or image of one of ϕi, γi so that f, g will
be automorphisms. We can start off with ϕ1, γ1 so that no reduced word in
ϕ1, γ1 has any fixed points. To do so, we just ensure (using Lemma 2.5) that
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the domains and images of φ1, γ1 are all disjoint. Then by the proposition,
the same will be true of all the ϕi, γi, and therefore of f, g. So no reduced
word in f, g has any fixed points: in particular, no reduced word in f, g is
the identity so f, g freely generate a free group whose non-identity elements
have no fixed points on M .

Proof of Theorem 1.3. Consider G as acting as a closed, locally oligo-
morphic subgroup of Sym(X(G)), where X(G) is as in Lemma 1.9. Let f, g
be as given by Theorem 3.1 withM = X(G). Suppose H ≤ G is open and of
infinite index and 1 6= k ∈ F . By construction of X(G), there is an injective
G-morphism from the coset space G/H to X(G). As H is of infinite index in
G, clearly the image of G/H is in M \ acl(∅). It follows that k has no fixed
points on G/H, as required.

Proof of Corollary 1.4. For G as in the statement of the corollary, if
G◦ = 1, then by Lemmas 2.4 and 2.8, every orbit of G is finite. Otherwise, by
Theorem 1.3 there is a non-abelian free subgroup F of G as in Theorem 1.3.
If all orbits of X are infinite, then F acts freely on X. But this is impossible
if the action of G (and therefore of F ) on X is amenable.

As a further application of Theorem 1.3, we note the following.

Corollary 3.3. Suppose G is a non-archimedean, Roelcke precompact
Polish group. Then G is not equal to the union of its open subgroups of
infinite index.

Proof. Open subgroups of infinite index are exactly the stabilizers of
elements of X(G) \ acl(∅). So the statement follows once we know that some
element of G fixes no element of X(G)\acl(∅). But we just showed that there
is a free group of rank 2 with this property, which is more than enough.

Note that very little is used in the proof of Theorem 3.1 apart from Neu-
mann’s Lemma, in the form of Lemma 2.5. As the corresponding result holds
for countable, saturated structures (Lemma 2.2) or, more generally, count-
able multi-sorted structures which are saturated as multi-sorted structures,
the proof of Theorem 3.1 also gives the following.

Corollary 3.4. SupposeM is a countable saturated structure with some
infinite sort. Then there exist f, g ∈ Aut(M/acl(∅)) such that F = 〈f, g〉 is
the free group on f, g and a non-identity element of F fixes no elements of
M eq \ acleq(∅). �

Example 3.5. We give an example of a countable (non-saturated) struc-
ture with a rich automorphism group for which the above corollary fails. Let
L be a language with countably many binary relation symbols (Ei : i ∈ N).
Consider the class C of finite L-structures A where each Ei is an equivalence
relation on A and only finitely many of the Ei are not the universal relation
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A2 on A. Then C has countably many isomorphism types and it is easy to
check that it is a Fraïssé amalgamation class. Let M be the Fraïssé limit.
Then M is a countable, homogeneous L-structure.

Since M is constructed as the union of a chain of finite structures in C,
if a, b ∈ M then there exists n such that En(a, b). In particular, M is not
saturated. If g ∈ Aut(M) and a ∈M , then En(a, ga) for some n, therefore g
fixes the En-class which contains a. It is easy to see that the En-classes are
non-algebraic elements of M eq, therefore every automorphism of M fixes a
non-algebraic element of M eq. In particular, Aut(M) is the union of proper
open subgroups of infinite index.

Note that, of course, Neumann’s Lemma fails for M eq in this example:
acleq(a) contains the En-equivalence classes of a and we have just observed
that there is no automorphism which moves this to a set disjoint from it
(over acleq(∅)).

4. Property (T) for non-archimedean, Roelcke precompact Pol-
ish groups. The book [2] is a convenient reference for the background to
this section.

A unitary representation of a topological group G is a homomorphism
π : G→ U(H) to the unitary group of some Hilbert space H which is strongly
continuous, meaning that for every ξ ∈ H the map G → H given by g 7→
π(g)ξ is continuous. If H is an open subgroup of G, consider the action of
G on the coset space Y = G/H. Then Y is a discrete space and the action
of G on Y is continuous. It is easy to check that the corresponding action
of G on `2(Y ) gives a unitary representation of G (called the quasi-regular
representation λG/H).

From [13], we have the following:

Theorem 4.1. Suppose G is a non-archimedean, Roelcke precompact
Polish group. Then every unitary representation of G is a direct sum of
irreducible unitary representations. Moreover, every irreducible unitary rep-
resentation of G is a subrepresentation of `2(G/H) for some open subgroup
H of G.

Proof. The first statement is part of [13, Theorem 4.2]. The rest of the
proof is similar to that of [13, Proposition 6.2]. If π : G → U(H) is an irre-
ducible unitary representation of G, then by [13, Theorem 4.2] again, π is
isomorphic to an induced representation IndG

K(σ) for some open subgroup K
of G and irreducible representation σ ofK which factors through a finite quo-
tient K/H of K. In particular, π is a subrepresentation of IndG

K(IndK
H(1H))

(where 1H is the trivial representation of H), which is the same thing as
`2(Y ) with Y = G/H.

We now recall the definition of property (T) for topological groups.
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Definition 4.2. Suppose G is a topological group, Q ⊆ G and ε > 0.
If π : G → U(H) is a unitary representation of G, we say that a non-zero
vector ξ ∈ H is (Q, ε)-invariant (for π) if

sup
x∈Q
‖π(x)ξ − ξ‖ < ε‖ξ‖.

We say that (Q, ε) is a Kazhdan pair if for every unitary representation
π of G, if π has a (Q, ε)-invariant vector, then it has a (non-zero) invari-
ant vector. We say that G has Kazhdan’s property (T) (respectively, strong
property (T)) if there is a Kazhdan pair (Q, ε) with Q compact (respectively,
finite).

The following fact will be useful [2, Proposition 1.7.6 and Remark 1.7.9].

Lemma 4.3. Let G be a completely metrizable group and N CG a closed
normal subgroup. If both N and G/N have property (T), then so does G.

In [13, Theorem 6.6], it was shown that automorphism groups of certain
ω-categorical structures (those without algebraicity and with weak elimina-
tion of imaginaries) have property (T). Furthermore, [13, Theorem 6.7] gave
some examples of ω-categorical structuresM whose automorphism groups G
have strong property (T). In the latter case, the proof proceeded by exhibit-
ing a free action of a non-abelian free group on the structure. We use the same
idea, together with Theorem 1.3, to prove the second part of Theorem 1.1:
if X is countable and G ≤ Sym(X) is closed and Roelcke precompact, then
G◦ has strong property (T). This generalizes the results in [13].

Proof of Theorem 1.1. Suppose G is a non-archimedean, Roelcke pre-
compact Polish group. By Lemma 2.9, the quotient group G/G◦ is compact
and therefore has property (T). In view of Lemma 4.3, to prove the theorem,
it remains to show that G◦ has property (T). By Theorem 1.3, there exists
a set Q = {f1, f2} ⊆ G◦ which generates a non-abelian free subgroup F of
G◦ with the property that if H is a proper, open subgroup of G◦, then F
acts freely on the coset space G◦/H. Following an argument similar to the
one in [1], we show that (Q,

√
2−
√

3) is a Kazhdan pair for G◦. By Theo-
rem 4.1, it suffices to show that for any proper open subgroup H ≤ G◦ and
all ξ ∈ `2(G◦/H),

(†) max
i=1,2

‖π(fi) · ξ − ξ‖ ≥
√

2−
√

3 ‖ξ‖.

By Theorem 3.1, the restriction of π to F is a direct sum of copies of the
left-regular representation of F and Kesten’s theorem [10] tells us that

‖π(f1) + π(f−1
1 ) + π(f2) + π(f−1

2 )‖ = 2
√

3.
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A simple calculation using the Cauchy–Schwarz inequality (see [1, pp. 515–
516] for details) yields

2∑
i=1

‖π(fi) · ξ − ξ‖2 ≥ 4− 2
√

3,

thus proving (†).

Acknowledgements. Both authors thank Dugald Macpherson for
helpful discussions about some of the material in this paper. The paper was
completed while the authors were participating in the trimester programme
‘Universality and Homogeneity’ at the Hausdorff Institute for Mathematics,
Bonn. We are also grateful to the anonymous referee for carefully reading
the paper and making useful suggestions.

The second author was partially supported by the ANR grant GrupoLoco
(ANR-11-JS01-008).

References

[1] M. B. Bekka, Kazhdan’s property (T) for the unitary group of a separable Hilbert
space, Geom. Funct. Anal. 13 (2003), 509–520.

[2] B. Bekka, P. de la Harpe, and A. Valette, Kazhdan’s Property (T), New Math.
Monogr. 11, Cambridge Univ. Press, Cambridge, 2008

[3] B. J. Birch, R. G. Burns, S. O. Macdonald and P. M. Neumann, On the orbit-sizes
of permutation groups containing elements separating finite subsets, Bull. Austral.
Math. Soc. 14 (1976), 7–10.

[4] P. J. Cameron, Oligomorphic Permutation Groups, London Math. Soc. Lecture Note
Ser. 152, Cambridge Univ. Press, Cambridge, 1990.

[5] E. Glasner and B. Weiss, Kazhdan’s property T and the geometry of the collection
of invariant measures, Geom. Funct. Anal. 7 (1997), 917–935.

[6] W. Hodges, Model Theory, Encyclopedia Math. Appl. 42, Cambridge Univ. Press,
Cambridge, 1993.

[7] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer,
New York, 1995.

[8] A. S. Kechris, Dynamics of non-archimedean Polish groups, in: European Congress
of Mathematics (Kraków, 2012), R. Latała et al. (eds.), Eur. Math. Soc., 2014,
375–397.

[9] A. S. Kechris and C. Rosendal, Turbulence, amalgamation, and generic automor-
phisms of homogeneous structures, Proc. Lond. Math. Soc. 94 (2007), 302–350.

[10] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959),
336–354.

[11] D. Macpherson, A survey of homogeneous structures, Discrete Math. 311 (2011),
1599–1634.

[12] R. R. Phelps, Lectures on Choquet’s Theorem, 2nd ed., Lecture Notes in Math. 1757,
Springer, Berlin, 2001.

[13] T. Tsankov, Unitary representations of oligomorphic groups, Geom. Funct. Anal. 22
(2012), 528–555.

http://dx.doi.org/10.1007/s00039-003-0420-0
http://dx.doi.org/10.1017/S0004972700024813
http://dx.doi.org/10.1007/s000390050030
http://dx.doi.org/10.1090/S0002-9947-1959-0109367-6
http://dx.doi.org/10.1016/j.disc.2011.01.024
http://dx.doi.org/10.1007/s00039-012-0156-9


Free actions of free groups 63

David M. Evans
Department of Mathematics
Imperial College London
London SW7 2AZ, UK
E-mail: david.evans@imperial.ac.uk

Todor Tsankov
Université Paris 7

UFR de Mathématiques, Case 7012
75205 Paris Cedex 13, France

E-mail: todor@math.univ-paris-diderot.fr

Received 23 May 2014;
in revised form 19 June 2015




	1 Introduction
	1.1 Main results
	1.2 Background

	2 Algebraic closure and Neumann's Lemma
	3 Constructing automorphisms without fixed points
	4 Property (T) for non-archimedean, Roelcke precompact Polish groups
	References

