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Abstract. We consider a slightly modified form of the standard Rudin–Keisler order
on ideals and demonstrate the existence of complete (with respect to this order) ideals
in various projective classes. Using our methods, we obtain a simple proof of Hjorth’s
theorem on the existence of a complete Π1

1 equivalence relation. This proof enables us
(under PD) to generalize Hjorth’s result to the classes of Π1

2n+1 equivalence relations.

1. Introduction. An ideal on ω is a family I of subsets of ω such that,
for any x, y ⊆ ω, one has x, y ∈ I ⇒ x ∪ y ∈ I and y ⊆ x ∈ I ⇒ y ∈ I. For
the present purposes, we identify the power set of the natural numbers with
the Cantor space 2ω and consider definable ideals on ω as subsets of 2ω.

One defines the Rudin–Keisler order, ≤RK, for families of subsets of ω
by letting I ≤RK J (for families I,J ⊆ P(ω)) iff there exists a function
f : ω → ω such that

x ∈ I ⇔ f−1[x] ∈ J

for each x ∈ 2ω. (Here and throughout this paper, we use the notation f [x]
(respectively, f−1[x]) to denote the f -image (respectively, the f -preimage)
of the set x ⊆ ω.) The map f is called a Rudin–Keisler reduction of I to J .

The Rudin–Keisler order was first described by Mary Ellen Rudin and
has been studied extensively since its introduction. Subsequently, several
variants of the Rudin–Keisler order have been considered. Many of these
are discussed in the survey [4] by Hrušák or in Chapter 3 of Kanovei [5].
In some cases, these variations of the Rudin–Keisler order coincide with the
ordinary Rudin–Keisler order when restricted to the class of ultrafilters (or
maximal ideals). For instance, the Katětov order, ≤K, has this property,
where I ≤K J iff there is f : ω → ω such that x ∈ I ⇒ f−1[x] ∈ J
for each x ⊆ ω. In what follows, we consider another modification of the
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Rudin–Keisler order which again agrees with the usual Rudin–Keisler order
on the set of ultrafilters. We will, however, be only interested in its restriction
to the class of projective (hence nonmaximal) ideals on ω.

1.1. The wRK-order. The following is our principal definition, which
we introduced in [1].

Definition 1.1. If I and J are ideals on ω, we say that I is weak
Rudin–Keisler reducible to J if there is an infinite set A ⊆ ω and a function
f : A → ω such that x ∈ I ⇔ f−1[x] ∈ J for each x ∈ 2ω. We write
I ≤wRK J and call the map f a weak Rudin–Keisler reduction of I to J .

If C is a family of ideals and J ∈ C is such that I ≤wRK J for each
I ∈ C, then we say that J is a wRK-complete C ideal on ω.

Note that, as with the usual Rudin–Keisler order, if U ≤wRK V and V
is an ultrafilter, then so is U . For the sake of completeness, we verify that
≤RK and ≤wRK coincide on the set of ultrafilters.

Proposition 1.2. If U and V are ultrafilters on ω, then U ≤wRK V iff
U ≤RK V.

Proof. One half of the claim follows from the definitions. For the other
half, suppose that U ≤wRK V via f : A → ω. We wish to define a Rudin–
Keisler reduction of U to V. Let y = f [A] and note that y ∈ U , since
f−1[y] = A = f−1[ω] ∈ V. Let z ⊆ y be such that z ∈ U and y \ z is
infinite. Such a z exists by the maximality of U . Let B = f−1[z] and define
h : ω → ω by letting h�B = f�B and defining h�(ω \ B) to be any fixed
bijection between ω \ B and y \ z. Since U and V are ultrafilters, to verify
that h is a Rudin–Keisler reduction of U to V it will suffice to check that
h−1[x] ∈ V whenever x ∈ U . Indeed, suppose that x ∈ U . We have

h−1[x] = h−1[x ∩ z] ∪ h−1[x \ z] ⊇ h−1[x ∩ z] = f−1[x ∩ z] ∈ V,
since x, z ∈ U and f is a weak Rudin–Keisler reduction of U to V. It follows
from the upward closure of V that h−1[x] ∈ V.

1.2. Factor algebras. Observe that if I ≤wRK J via f , there is an
embedding of the Boolean algebra 2ω/I into 2ω/J . To see this, let πI and
πJ be the quotient maps onto 2ω/I and 2ω/J , respectively. One may define
an injective homomorphism f̃ : 2ω/I → 2ω/J by

f̃(πI(x)) = πJ (f−1[x]).

Thus, if J is a wRK-complete ideal for a class C of ideals, then 2ω/I embeds
in 2ω/J for each I ∈ C. In other words, the algebra 2ω/J is injectively
universal for algebras of the form 2ω/I with I ∈ C.

In [7], Kechris discusses the “Borel cardinality” of a factor algebra of the
form 2ω/I. He regards 2ω/J as having greater Borel cardinality than 2ω/I
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if there is an embedding ϕ : 2ω/I → 2ω/J which has a Borel-measurable
lifting to 2ω. That is, there exists a Borel-measurable map ϕ∗ : 2ω → 2ω

such that the diagram

2ω
ϕ∗
−−−→ 2ωyπI yπJ

2ω/I ϕ−−−→ 2ω/J

commutes. Equivalently, 2ω/J has greater Borel cardinality than 2ω/I iff
there is a Borel-measurable map h : 2ω → 2ω such that x M y ∈ I ⇔
h(x) M h(y) ∈ J for all x, y ∈ 2ω, where “x M y” denotes the symmetric
difference of x and y.

Since all maps of the form x 7→ f−1[x] (for f : ω → ω) are continuous
on 2ω (in particular, Borel-measurable), our notion of I ≤wRK J implies
that 2ω/J has greater Borel cardinality than 2ω/I. It follows that if J is
a wRK-complete ideal for some class C of ideals, then 2ω/J has maximum
Borel cardinality among factor algebras by ideals in C.

1.3. wRK-complete ideals. In Section 3, we prove our principal re-
sults. These establish the existence of wRK-complete ideals for the classes
of Σ1

n ideals and Π1
1 ideals.

Theorem 1.3. For each natural number n > 0, there is a wRK-complete
Σ1
n ideal on ω.

Theorem 1.4. There is a wRK-complete Π1
1 ideal on ω.

The proof of Theorem 1.4 uses the prewellordering property of the point-
class Π1

1 as well as closure under universal quantification over the reals and
closure under countable unions and intersections. As such, the proof car-
ries over to any other ranked pointclass with similar closure properties. In
particular, assuming projective determinacy (PD), we obtain the following
corollary to the proof of Theorem 1.4.

Corollary 1.5. (PD) For each n, there is a wRK-complete Π1
2n+1 ideal

on ω.

In Section 4, we prove similar results for ideals which are “nontrivial” in
a certain sense.

Definition 1.6. An ideal I ⊆ 2ω is proper if I 6= 2ω and I contains all
finite subsets of ω.

Theorem 1.7. There is a wRK-complete proper uncountable Π1
1 ideal

on ω.
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1.4. Projective equivalence relations. There are analogies between
the theory of equivalence relations and that of ideals. In many cases, argu-
ments in the context of ideals carry over to equivalence relations. The proof
of Theorem 1.4 is an example of this.

We begin by establishing some terminology.

Suppose that E and F are equivalence relations on a Polish space X.
A map f : X → X is a reduction of E to F if, for each pair x, y ∈ X,
one has xEy ⇔ f(x)Ff(y). In general, one restricts attention to those
reductions which are at least Borel-measurable. In the case that there is
a Borel-measurable reduction of E to F , we say that E is Borel-reducible
to F and write E ≤B F . If C is a class of equivalence relations and F ∈ C
is such that E ≤B F for each E ∈ C, then we say that F is a complete
C equivalence relation.

Hjorth [3] proved that there is a Π1
1 (effectively co-analytic) equivalence

relation on 2ω which is a complete co-analytic equivalence relation. The key
step in his proof was the following parameterization theorem for co-analytic
equivalence relations.

Theorem 1.8 (Hjorth, 1996). There is a universal Π1
1 set for Π1

1 equiv-
alence relations, i.e., there is a (lightface) Π1

1 set E ⊆ 2ω×2ω×2ω such that
the cross-sections Eτ are exactly the Π1

1 equivalence relations on 2ω.

Hjorth’s proof involves admissible ordinals and critical use of the Luzin–
Sierpiński Theorem (see Moschovakis [8, Theorem 4A.4]) and is thus inti-
mately connected with the effective theory of Π1

1 sets. Even under PD, this
theory is not known to generalize to the classes Π1

2n+1. By combining ele-
ments of the proof of our Theorem 1.4 with an s-n-m Theorem argument,
we obtain Hjorth’s theorem without use of any effective theory specific to
the class Π1

1. In fact, our argument generalizes, assuming PD, to yield a
universal Π1

2n+1 set for Π1
2n+1 equivalence relations. In Section 5, we prove

the following result.

Theorem 1.9. (PD) There is a universal Π1
2n+1 set for Π1

2n+1 equiva-
lence relations on 2ω.

As in Hjorth [3], the existence of complete Π1
2n+1 equivalence relation

follows immediately from Theorem 1.9. Indeed, if E is a universal set for
Π1

2n+1 equivalence relations on 2ω, one may define a complete Π1
2n+1 equiv-

alence relation F on 2ω × 2ω ≈ 2ω by

(σ, x)F (τ, y) ⇔ τ = σ & (x, y) ∈ Eτ .

If E is any Π1
2n+1 equivalence relation on 2ω, with E = Eτ , the (continuous)

map x 7→ (τ, x) reduces E to F .
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2. Preliminaries and notation. Our principal references are Kech-
ris [6] and Moschovakis [8]. Our notation is largely the same as theirs. We
review some key facts and terminology below.

For sets X, Y , and A ⊆ X × Y , if x ∈ X, let Ax denote the vertical
cross-section, {y ∈ Y : (x, y) ∈ A}, of A. As mentioned above, if f : X → Y
is any function and x ⊆ X, we let f [x] = {f(a) : a ∈ x} and, if y ⊆ Y , we
let f−1[y] = {a : f(a) ∈ y}. We will freely identify P(ω) with the Cantor
space 2ω. For example, we regard ∅ and ω as the elements 0̄ and 1̄ in the
Cantor space.

2.1. Classical notions. If Γ is a pointclass, we say that Γ is 2ω-param-
eterized if, for each Polish space X, there is a Γ-set U ⊆ 2ω ×X such that,
for each A ⊆ X with A ∈ Γ, there exists τ ∈ 2ω with A = Uτ . Such a set U
is called a universal Γ-set for X. Each of the projective classes Σ1

n and Π1
n

is 2ω-parameterized (see [6, Theorem 37.7]).
Suppose Γ is a pointclass; then Γ is ranked if, for each Polish space X

and each A ⊆ X, with A ∈ Γ, there is a Γ-rank ϕ : A→ ORD. That is, there
are relations S, P ⊆ X2 in Γ and Γ̄, respectively, such that, for each y ∈ A,

x ∈ A & ϕ(x) ≤ ϕ(y) ⇔ S(x, y) ⇔ P (x, y),

for each x ∈ X. (Here Γ̄ denotes the class of complements of Γ-sets.) In
other words, the predicate “x ∈ A & ϕ(x) ≤ ϕ(y)” is uniformly in Γ ∩ Γ̄,
provided that y ∈ A. See [6, §34] for an in-depth treatment of Γ-ranks. It
is a fundamental result that Π1

1 is a ranked pointclass. Assuming PD, the
classes Π1

2n+1 are also ranked. See [6, Theorems 34.4 and 39.2] for proofs of
these facts. The notation “x ≤ϕ y” is a shorthand to indicate “ϕ(x) ≤ ϕ(y)”
when ϕ is a Γ-rank on a set A and x, y ∈ A.

2.2. Effective theory. For each classical, or “boldface”, pointclass Γ
(e.g., Σ1

1, Π1
1, etc.) on a recursively presented Polish space, we let Γ denote

its effective, or “lightface”, counterpart, (e.g., Σ1
1, Π1

1, etc.). The effective
pointclasses share many of the properties of their classical brethren. For
instance, the pointclass Π1

1 is also ranked. (See [8, Theorem 4B.2].) For a
Π1

1-rank ϕ, the predicates S and P as above will, in fact, be in the (lightface)
classes Σ1

1 and Π1
1, respectively. As in the classical case, PD guarantees the

lightface classes Π1
2n+1 are ranked as well. (See [8, Theorem 6B.1].)

The other tools we require from the effective theory are the existence
of good universal systems and the resulting s-n-m Theorem. We say that a
Polish space X is a product space if X is a product of at most countably
many copies of 2ω. (This is a restricted definition compared to that in [8].)

Definition 2.1. Let Γ be a lightface pointclass and Γ the corresponding
boldface pointclass. A family {UX ⊆ 2ω ×X : X is a product space} of sets
is a good universal system for (boldface) Γ if the following hold:
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(1) Each UX is a (lightface) Γ-set.
(2) For each product space X, the set UX is universal for Γ-subsets of X,

i.e., the cross-sections UXτ are exactly the Γ-subsets of X.
(3) If A ⊆ X is a (lightface) Γ-set, there is a recursive ε ∈ 2ω such that

A = UXε .
(4) For each pair X1, X2 of product spaces, there is a recursive function

s : 2ω ×X1 → 2ω such that, for each α ∈ 2ω and x ∈ X1,

(α, x, y) ∈ UX1×X2 ⇔ (s(α, x), y) ∈ UX2 .

Property (4) is also known as the s-n-m Theorem.
It follows from [8, Theorem 3H.1] that each of the projective classes

Σ1
n and Π1

n has a good universal system. For illustrative purposes, we now
describe a typical application of good universal systems.

Example 2.2. Let Γ be a pointclass, closed under finite intersections,
with an associated good universal system UX . There is a recursive function
f : (2ω)2 → 2ω such that, for σ, τ ∈ 2ω, we have U2ω

f(σ,τ) = U2ω
σ ∩ U2ω

τ .

To find such an f , let s : (2ω)3 → 2ω be the recursive function from
property (4) above, for the product spaces X1 = 2ω × 2ω and X2 = 2ω, and
let ε ∈ 2ω be recursive such that, for σ, τ, x ∈ 2ω,

(σ, x) ∈ U2ω & (τ, x) ∈ U2ω ⇔ (ε, σ, τ, x) = U2ω×2ω×2ω

⇔ (s(ε, σ, τ), x) ∈ U2ω .

Define f(σ, τ) = s(ε, σ, τ). This is the desired recursive function.

3. Projective ideals on ω

3.1. Σ1
n ideals. We now prove Theorem 1.3.

Proof of Theorem 1.3. Fix n ∈ ω. The proof is the same for each n.
First of all, let {Ap : p ∈ 2<ω} be a partition of ω into infinite sets and let
hp : ω → Ap be fixed bijections. Let U ⊆ 2ω × 2ω be a universal Σ1

n set
for 2ω. As a point of notation, if p ∈ 2<ω and τ ∈ 2ω, we write p ≺ τ if p is
an initial segment of τ . Define a Σ1

n set F ⊆ 2ω by letting x ∈ F iff there
exists τ ∈ 2ω such that

(1) (∀p ∈ 2<ω)(p 6≺ τ ⇒ x ∩Ap = ∅),
(2) h−1∅ [x] ∈ Uτ , and

(3) (∀p ∈ 2<ω)(p ≺ τ ⇒ h−1p [x] = h−1∅ [x]).

Let J be the ideal generated by F . Since the class Σ1
n is closed under

continuous images and countable unions, it follows that J is also Σ1
n.

To see that J is a wRK-complete Σ1
n ideal, suppose that I is an arbitrary

Σ1
n ideal and τ ∈ 2ω is such that I = Uτ . Define a map f :

⋃
p≺τ Ap → ω by

f�Ap = h−1p . This map is well-defined because the Ap are pairwise disjoint.
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Suppose first that x ∈ I. To see that y = f−1[x] ∈ J , it will suffice
to verify conditions (1)–(3) above and conclude that y ∈ F . That y satis-
fies condition (1) follows from the observation that, for each p 6≺ τ , since
dom(f) ∩ Ap = ∅, we have y ∩ Ap = ∅. Also, for each p ≺ τ , we have
y ∩Ap = hp[x] and therefore

h−1∅ [y] = h−1∅ [y ∩A∅] = h−1∅ [h∅[x]] = x ∈ I = Uτ .
This shows that y satisfies condition (2). Finally, the definition of f guar-
antees that y satisfies condition (3).

Suppose now that y = f−1[x] ∈ J . We wish to see that x ∈ I. Let
y0, . . . , yk ∈ F be such that y ⊆ y0 ∪ · · · ∪ yk. Let τ0, . . . , τk ∈ 2ω all be as
in the definition of F and such that each τi witnesses the membership of yi
in F . Let m ∈ ω be large enough that τi�m 6= τ�m for each τi 6= τ . Now
define x0, . . . , xk by letting xi = h−1τ�m[yi] for each i ≤ k. Note that xi = ∅
for i with τi 6= τ , and that xi ∈ Uτ = I for each i ≤ k. Finally, observe that

x = h−1τ�m[y] ⊆
⋃
i≤k

h−1τ�m[yi] = x0 ∪ · · · ∪ xk.

As I is an ideal, we conclude that x ∈ I.

We have shown that f is a weak Rudin–Keisler reduction of I to J . This
concludes the proof.

3.2. Co-analytic ideals. We now prove our main result for co-analytic
ideals on ω, Theorem 1.4. The key lemma in the proof is a parameterization
of the Π1

1 ideals on ω.

Lemma 3.1. There is a universal set for Π1
1 ideals on ω, i.e., there is

a Π1
1 set A ⊆ 2ω × 2ω such that the cross-sections Aτ are exactly the Π1

1

ideals on ω.

Proof. We proceed inductively to define Π1
1 sets A(0) ⊇ A(1) ⊇ · · · such

that A =
⋂
nA(n) is a universal set for Π1

1 ideals on ω. Along the way, we

will also select Π1
1-ranks ϕn : A(n) → ω1.

Let U ⊆ 2ω×2ω be a universal Π1
1 set. As the base case of our induction,

let A(0) = U ∪ (2ω×{∅}). Given the Π1
1 set A(n), with ϕn : A(n) → ω1 a Π1

1-
rank, we describe how to define A(n+1). Let A(n+1) ⊆ 2ω × 2ω be the set of
all (τ, x) such that either x = ∅ or the following hold:

(1) x ∈ A(n)
τ ,

(2) (∀y)(y ⊆ x⇒ y ∈ A(n)
τ ), and

(3) (∀y)((y ∈ A(n)
τ & (τ, y) ≤ϕn (τ, x))⇒ x ∪ y ∈ A(n)).

In essence, we are defining A(n+1)
τ by removing from A(n)

τ those x for which
there exist lower ranked witnesses to the failure of closure under finite
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unions. It follows from the definability properties of Π1
1-ranks that A(n+1)

is Π1
1. Finally, we choose ϕn+1 to be any Π1

1-rank on A(n+1).
Let A =

⋂
nA(n). Since each A(n) is Π1

1, so is A. First observe that,

if Uτ is already an ideal, then A(n)
τ = Uτ for each n, since the process of

producing A(n+1) from A(n) removes no elements from A(n)
τ in this case. It

follows that each Π1
1 ideal on ω appears as some cross-section Aτ .

It now only remains to see that every cross-section Aτ is an ideal on ω.

Indeed, suppose that x, y ∈ Aτ . Fix n ∈ ω. We know that x, y ∈ A(n+1)
τ

and we may assume that (τ, x) ≤ϕn (τ, y). Condition (3) in the definition

of A(n+1) thus implies that x ∪ y ∈ A(n)
τ . Similarly, the membership of x in

A(n+1) implies that every subset of x is a member of A(n)
τ , by condition (2).

As n was arbitrary, it follows that x ∪ y ∈ Aτ and that every subset of x is
a member of Aτ . In short, Aτ is an ideal.

Before proceeding with the proof of Theorem 1.4, we remark that an
argument analogous to the one used to produce a complete Π1

1 equivalence
relation from a universal set for Π1

1 equivalence relations does not work for
ideals, as the object one would obtain need not itself be an ideal. We thus
require “coding” all Π1

1 ideals into a single Π1
1 ideal.

Proof of Theorem 1.4. Let {Ap : p ∈ 2<ω} be a partition of ω into
infinite sets and let hp : ω → Ap be fixed bijections. Take A ⊆ 2ω × 2ω

to be a universal set for Π1
1 ideals, the existence of which is guaranteed by

Lemma 3.1. Define

J = {x ∈ 2ω : (∀τ ∈ 2ω)(∀∞p ≺ τ)(h−1p [x] ∈ Aτ )}.
First, we wish to see that J is an ideal. That J is downward closed follows

since each Aτ is downward closed and preimages preserve containment. To
verify closure under unions, fix x, y∈J and τ ∈2ω, and let p0 ≺ τ be such that
h−1p [x], h−1p [y]∈Aτ for each p≺τ with p⊇p0. For each p ≺ τ , if p⊇p0, we have

h−1p [x ∪ y] = h−1p [x] ∪ h−1p [y] ∈ Aτ ,
since Aτ is an ideal. In other words, h−1p [x ∪ y] ∈ Aτ , for all but finitely
many p ≺ τ . Since τ was arbitrary, we conclude that x ∪ y ∈ J .

To see that J is a wRK-complete Π1
1 ideal, suppose that I = Aτ is a

fixed Π1
1 ideal on ω. Define f :

⋃
p≺τ Ap → ω by f�Ap = h−1p . As before, f is

well-defined by the disjointness of the Ap. Also, note that f−1[x]∩Ap = hp[x],
for each p ≺ τ . Thus,

h−1p [f−1[x]] = h−1p [f−1[x] ∩Ap] = h−1p [hp[x]] = x

and hence x ∈ I iff h−1p [f−1[x]] ∈ Aτ for each p ≺ τ , since I = Aτ . This,

combined with the observation that f−1[x] ∩ Ap = ∅ for each p 6≺ τ , shows
that x ∈ I iff f−1[x] ∈ J .
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3.3. Free abelian subgroups. It is a theorem of Nöbeling [9] that
the group B of bounded sequences in Zω is free. This result, however, re-
quires an essential use of the axiom of choice. Indeed, Blass [2] has shown
(under ZFC) that there are only countably many Borel-measurable homo-
morphisms ϕ : B → Z. (In this case, Borel-measurability is equivalent to
the statement that ϕ−1[{n}] is Borel for each n ∈ ω.) Blass further showed
that (under AD) there are only countably many homomorphisms ϕ : B → Z
(Borel-measurable or otherwise). On the other hand, for any free abelian
group G, there must be c-many homomorphisms ϕ : B → Z. Thus, Blass’
result shows that B is not free under AD. In essence, his result reveals that
there is no explicit free basis of B.

By contrast, the method of proof of Theorem 1.3 enables us to produce,
in a large class of Polish groups, free abelian Kσ subgroups with free bases
of a very explicit nature. It will follow that the free subgroups we describe
have c-many definable homomorphisms into Z.

Theorem 3.2. Let G be a Polish group with an element of infinite order.
The countable power Gω contains a Kσ subgroup H which is free abelian
on c-many generators and such that there exist c-many Borel-measurable
homomorphisms ϕ : H → Z.

Proof. Fix a Polish group G, with identity element e, and g ∈ G such
that the powers of g are all distinct. For notational reasons, we will work
with the group G2<ω

rather than Gω. Of course, these groups are isomorphic
and so nothing is changed by this assumption. Define a set S ⊆ G2<ω

by
letting x ∈ S iff there exists τ ∈ 2ω such that

(1) (∀p ∈ 2<ω)(p 6≺ τ ⇒ x(p) = e), and
(2) (∀p ∈ 2<ω)(p ≺ τ ⇒ x(p) = g).

For τ ∈ 2ω, let xτ denote the unique element of S whose membership in S
is witnessed by τ . Take H to be the subgroup generated by S.

First, observe that S is the projection onto the second coordinate of the
compact set

{(τ, x) ∈ 2ω × {e, g}2<ω
: (∀p ≺ τ)(x(np) = g) ∧ (∀p 6≺ τ)(x(np) = e)}

and is itself compact. Hence, H is compactly generated and therefore Kσ.
To see that H is a free abelian group, it suffices to show that there are no

relations among the elements of S, besides those dictated by commutativity.
Indeed, suppose that xσ0 , . . . , xσm , xτ0 , . . . , xτn ∈ S, with {σ0, . . . , σm} and
{τ0, . . . , τn} sets of pairwise distinct reals, and i0, . . . , im, j0, . . . , jn ∈ Z (all
nonzero) are such that

y = xi0σ0 · . . . · x
im
σm = xj0τ0 · . . . · x

jm
τn = z.

Our first claim is that {σ0, . . . , σm} = {τ0, . . . , τn}. Suppose that this was
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not the case. For instance, if σ0 /∈ {τ0, . . . , τn}, then we may choose k ∈ ω
large enough that

σ0�k, τ0�k, . . . , τn�k

are all distinct and

σ0�k, . . . , σm�k

are distinct as well. Then y(σ0�k) = gi0 6= e, but z(σ0�k) = e, since σ0�k 6≺ τp
for each p ≤ n. This is a contradiction.

We may also assume that σp = τp for each p ≤ n. Observe now that if k
is as above, we have, for each p ≤ n,

gip = y(σp�k) = z(σp�k) = gjp .

Since g has infinite order, we conclude that ip = jp for each p ≤ n. This
shows that S is a free basis for H.

Finally, we exhibit c-many Borel-measurable homomorphisms ϕ : H → Z.
Since S is a free basis for H, it will suffice to define these homomorphisms
on S and then extend to H. For each α ∈ 2ω, let ϕα�S be given by

ϕα(xτ ) =

{
1 if τ = α,

0 otherwise.

We see that {ϕα : α ∈ 2ω} is a family of c-many distinct group homomor-
phisms of H into Z. To verify that each ϕα is Borel-measurable, observe
that, for each n ∈ Z,

ϕ−1α [{n}] = {x ∈ H : (∃k ∈ ω)(∃s ∈ Zk+1)(∃τ0, . . . , τk ∈ 2ω)(∀i ≤ k)(τi 6= α

& x = xnα · xs(0)τ0 · . . . · x
s(k)
τk

)}.

In particular, ϕ−1[{n}] is analytic for each n ∈ ω. On the other hand, every
Σ1

1-measurable map between Borel spaces is Borel-measurable and hence
each ϕα is Borel-measurable. We cannot, however, use Pettis’ Theorem to
conclude that the ϕα are continuous, since H is not a Baire group.

4. Parameterizing co-analytic proper ideals. We turn our atten-
tion to proper ideals, that is, ideals I such that I 6= 2ω and I contains
all finite subsets of ω (equivalently,

⋃
I = ω). Before proceeding, we recall

some standard notation:

Fin = {x ∈ 2ω : (∀∞n)(x(n) = 0)}, Inf = 2ω \ Fin,
Cof = {x ∈ 2ω : ω \ x ∈ Fin}, Coinf = 2ω \ Cof.

Theorem 4.1 is an elaboration on the method of Lemma 3.1 which pro-
duces a universal set for proper uncountable co-analytic ideals.

Theorem 4.1. There is a universal set for proper uncountable co-ana-
lytic ideals.
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Proof. For τ ∈ 2ω, let (τ)0 = {n : 2n ∈ τ} and (τ)1 = {n : (2n+1) ∈ τ},
and let f : 2ω → Inf \ Cof be a Borel surjection. Let U ⊆ 2ω × 2ω be a
universal co-analytic set. We define co-analytic sets V(0) ⊇ V(1) ⊇ · · · , by

induction, such that each V(n)τ contains P(f((τ)0)). Let V(0) ⊆ 2ω × 2ω be
the set of (τ, x) ∈ 2ω × 2ω such that

• x ⊆ f((τ)0) or
• x ∈ U(τ)1 and x is co-infinite.

Given V(n) ⊆ 2ω × 2ω, let ϕn : V(n) → ω1 be a Π1
1-rank. Define V(n+1) ⊆

2ω × 2ω by (τ, x) ∈ V(n+1) iff either x ⊆ f((τ)0) or

(1) x ∈ V(n)τ ,

(2) (∀y)(y ⊆ x⇒ y ∈ V(n)τ ),

(3) (∀y)(y ⊆ f((τ)0)⇒ x ∪ y ∈ V(n)τ ), and

(4) (∀y)((y ∈ V(n)τ & (τ, y) ≤ϕn (τ, x))⇒ x ∪ y ∈ V(n)τ ).

By the properties of Π1
1-ranks, each V(n) is Π1

1. Let

V =
{

(τ, x) : (∃u ∈ Fin)(∀n)
(
u M x ∈

⋂
n

V(n)τ

)}
and note that V is Π1

1.

What follows will establish that the cross-sections Vτ are exactly the
uncountable co-analytic proper ideals on ω.

First, we verify that each Vτ is an ideal. Since Vτ is the set of finite

variants of members of
⋂
n V

(n)
τ , it will suffice to show that

⋂
n V

(n)
τ is an

ideal.

To verify downward closure, fix y ⊆ x ∈
⋂
n V

(n)
τ . In the case that x ⊆

f((τ)0), we have y ∈ P(f((τ)0)) ⊆ V(n)τ for each n. Hence y ∈
⋂
n V

(n)
τ . In

the case that x * f((τ)0), part (2) of the definition of V(n+1) from V(n)

implies that y ∈ V(n)τ for each n.

Suppose that x, y ∈
⋂
n V

(n)
τ . We wish to see that x ∪ y ∈

⋂
n V

(n)
τ . If

x, y ⊆ f((τ)0), then x ∪ y ∈ P(f((τ)0)) ⊆
⋂
n V

(n)
τ . If y ⊆ f((τ)0) and

x * f((τ)0), then (3) implies that x ∪ y ∈ V(n)τ . We argue similarly if
x * f((τ)0) and y ⊆ f((τ)0). Finally, if x, y * f((τ)0), then, for each n,

we have x, y ∈ V (n+1)
τ and, with no loss of generality, assume that y ≤ϕn x.

Then (4) implies that x ∪ y ∈ V(n)τ . As this holds for each n, it follows that

x ∪ y ∈
⋂
n V

(n)
τ .

In order to check that each Vτ is proper, we begin by noting that Vτ is
an ideal which contains all finite variants of its members and, in particular,
must contain the ideal Fin. That Vτ ( 2ω for each τ follows by observing
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that, for each x ∈ Vτ , there is y ∈ V(0)τ ⊆ Coinf such that x and y are equal
mod finite. In particular, for each x ∈ Vτ , we have x 6= ω.

Finally, if I is an uncountable proper ideal on ω, then I * Fin. Therefore

let τ ∈ 2ω be such that P(f((τ)0)) ⊆ I and I = U(τ)1 . We have V(0)τ = I
and, in fact, V(n)τ = V

(0)
τ for each n, since V(0)τ is already a proper ideal

containing P(f((τ)0)). This completes the proof.

As discussed in the Introduction, Theorem 4.1 implies Theorem 1.7. The
argument is essentially the same as that used to deduce Theorem 1.4 from
Lemma 3.1.

As before, PD yields a corresponding result for the projective classes
Π1

2n+1.

By slightly modifying the proof of Theorem 1.3 one can also show that
there is a wRK-complete proper uncountable Σ1

n ideal for each n ∈ ω.

5. Projective equivalence relations. We now give our proof of
Hjorth’s theorem on co-analytic equivalence relations (Theorem 1.8), as well
as our generalization of it under PD (Theorem 1.9).

Proof of Theorems 1.8 and 1.9. Let V ⊆ (2ω)4 and W ⊆ (2ω)5 be part
of a good universal system for Π1

2n+1. In particular, V and W are both
Π1

2n+1. Let ϕ : V → ORD be a Π1
2n+1-rank. (For n ≥ 1, the existence of such

a ϕ follows from PD. If n = 0, then such a ϕ exists under ZFC.) Define
V∗ ⊆ (2ω)4 by (α, τ, x, y) ∈ V∗ iff x = y or

(1) (x, y), (y, x) ∈ Vα,τ ,
(2) (∀z)(((x, y), (y, z)∈Vα,τ & (α, τ, y, z)≤ϕ (α, τ, x, y))⇒ (x, z)∈Vα,τ ),

and
(3) (∀z)(((z, x), (x, y)∈Vα,τ & (α, τ, z, x)≤ϕ (α, τ, x, y))⇒ (z, y)∈Vα,τ ).

Note that, by the definability properties of Π1
2n+1-ranks, V∗ is itself Π1

2n+1.

We now require a recursive function f : 2ω → 2ω such that V∗α = Vf(α)
for each α ∈ 2ω. To produce such an f , let ε ∈ 2ω be recursive and such that
V∗ =Wε. Thus, for each (α, τ, x, y) ∈ (2ω)4,

(α, τ, x, y) ∈ V∗ ⇔ (ε, α, τ, x, y) ∈ W ⇔ (s(ε, α), τ, x, y) ∈ V,

where s : (2ω)2 → 2ω is as in the definition of a good universal system.
Define f by f(α) = s(ε, α).

Let U ⊆ (2ω)3 be any universal Π1
2n+1 set for Π1

2n+1. The set U ∪
({(τ, x, x) : τ, x ∈ 2ω}) is also Π1

2n+1 and hence, by the definition of a
good universal system, there is a recursive α0 ∈ 2ω such that U ∪ ({(τ, x, x) :
τ, x ∈ 2ω}) = Vα0 . Now define αn = fn(α0), i.e., αn+1 = f(αn) for each n.
As f is recursive, so is the map n 7→ αn. Thus, the set A =

⋂
n Vαn is Π1

2n+1.
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First, each Π1
2n+1 equivalence relation on 2ω appears as a cross-sec-

tion Aτ . Indeed, if E is a Π1
2n+1 equivalence relation, with τ such that

Uτ = E, then each (x, y) ∈ Vα0,τ already satisfies conditions (1)–(3) above
and hence

Vα0,τ = V∗α0,τ = Vα1,τ = V∗α1,τ = Vα2,τ = · · · .

It follows that Aτ = Vα0,τ = Uτ .

The proof will be complete when we have verified that each Aτ is an
equivalence relation. It is a consequence of the choice of α0 and the defi-
nition of V∗ that (x, x) ∈ Aτ for each τ, x ∈ 2ω. Also, condition (1) above
guarantees that (x, y) ∈ Aτ iff (y, x) ∈ Aτ . To verify transitivity, sup-
pose that (x, y), (y, z) ∈ Aτ =

⋂
n Vαn =

⋂
n V∗αn

. Fix n and assume that
(αn, τ, x, y) ≤ϕ (αn, τ, y, z). Since (y, z) ∈ V∗αn,τ , condition (3) guarantees
that (x, z) ∈ Vαn,τ . If instead (αn, τ, y, z) ≤ϕ (αn, τ, x, y), then an analogous
reasoning, using condition (2), shows that (x, z) ∈ Vαn,τ . In either case,
since n was arbitrary, it follows that (x, z) ∈

⋂
Vαn,τ = Aτ . We conclude

that each Aτ is an equivalence relation.
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