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A categorification of the square root of −1
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Yin Tian (New York)

Abstract. We give a graphical calculus for a monoidal DG category I whose Gro-
thendieck group is isomorphic to the ring Z[

√
−1]. We construct a categorical action of I

which lifts the action of Z[
√
−1] on Z2.

1. Introduction. Categorification is a procedure which lifts operations
at the level of sets or vector spaces to those at the level of categories. For in-
stance, addition could be lifted to the operation of direct sum in an additive
category; multiplication with −1 could be upgraded to a shift functor in a
triangulated category. The goal of this paper is to give a naive diagrammatic
categorification of the ring Z[

√
−1].

The program of categorification was initialized by Crane and Frenkel
[3] in a construction of four-dimensional topological quantum field theory.
A celebrated example is Khovanov homology [5] of links in S3 whose graded
Euler characteristic agrees with the Jones polynomial. Categorification at
roots of unity could be the first step towards categorifying quantum invari-
ants of 3-manifolds. In particular, Khovanov [6] categorified a prime root
of unity using Hopfological algebras. Later on the small quantum sl(2) at a
prime root of unity was categorified by Khovanov and Qi [7]. In this context,
this paper can be viewed as an attempt to categorify the simplest nonprime
root of unity

√
−1. The construction of our categorification is diagrammatic.

The diagrammatic approach was pioneered by Lauda in his categorification
of the quantum group Uq(sl2) [9].

Our main results are the following. Consider an action of Z[
√
−1] on

Z2 = Z〈x, y〉 where
√
−1 · x = y,

√
−1 · y = −x. Let H(A) denote the 0th

cohomology category of a DG category A. Let K0(A) denote the Grothen-
dieck group of H(A) if H(A) is triangulated.
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Theorem 1.1. There exists a DG category I such that H(I) is triangu-
lated. There is a monoidal bifunctor ⊗ : I ×I → I whose decategorification
makes K0(I) isomorphic to the ring Z[

√
−1].

Theorem 1.2. There exists a DG category DGP (R) generated by some
projective DG modules over a DG algebra R such that H(DGP (R)) is trian-
gulated. The Grothendieck group K0(DGP (R)) is isomorphic to Z2. More-
over, there is a categorical action η : I ×DGP (R) → DGP (R) which lifts
the action of Z[

√
−1] on Z2.

The DG algebra R is a quotient of a quiver algebra of the Khovanov–
Seidel quiver [8] with two vertices. The differential on R is trivial. Recall
that the quiver algebra R is motivated from the Fukaya category F(T 2) of
the torus. In particular, the category DGP (R) is related to a subcategory
of F(T 2) which is generated by two Lagrangians of slopes 0 and ∞ on T 2.
The automorphism Q of DGP (R) which lifts multiplication with

√
−1 on

K0(DGP (R)) can be visualized as rotation of π/2 around the intersection
point of the two Lagrangians.

A natural question for us is to find other categories which admit cate-
gorical actions of I.

The organization of the paper is the following. In Section 2 we define the
monoidal DG category I and show that there is a surjective ring homomor-
phism Z[

√
−1] � K0(I). In Section 3 we define the DG category DGP (R)

and show that K0(DGP (R)) is isomorphic to Z2. Then we construct the
categorical action of I on DGP (R) via DG R-bimodules.

2. The monoidal DG category I. We define I in two steps. In Sec-
tion 2.1 we construct an additive monoidal DG category I ′ using diagrams.
In Section 2.2 we enlarge I ′ to the category I of one-sided twisted com-
plexes over I ′. Then we discuss the Grothendieck group K0(I) and prove
the following.

Proposition 2.1. There exists a monoidal DG category I such that
H(I) is triangulated. Moreover, there is a surjective ring homomorphism
γ : Z[

√
−1] � K0(I).

In Section 3 we will show that γ is actually an isomorphism via the
categorical action of I.

2.1. The category I ′. In this section we define the additive DG cate-
gory I ′ whose morphism sets are cochain complexes of F2-vector spaces with
trivial differential. In other words, the morphism sets are just Z-graded F2-
vector spaces. We fix F2 as the ground field for morphisms throughout the
paper. We expect some difficulties in keeping track of signs when generaliz-
ing the ground field from F2 to Z.
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• Objects. The set of elementary objects of I ′ consists of nonnegative
products {Qk; k ≥ 0} of a single generator Q. The unit object 1 corresponds
to Q0. Let Qk[m] denote an object Qk with a cohomological grading shifted
by m ∈ Z. In general, an object of I ′ is a formal direct sum

⊕n
i=1Q

ki [mi].

• Morphisms. A morphism set HomI′(Q
k, Ql) is a Z-graded F2-vector

space generated by a set D(k, l) of planar diagrams from k points to l points,
modulo local relations. Morphisms extend linearly to formal direct sums.
The composition of morphisms is given by stacking diagrams vertically.
A vertical stacking of two diagrams is defined to be zero if their endpoints do
not match. The monoidal functor on the elementary objects and morphisms
is given by the horizontal composition. Throughout this subsection, we use
Hom to denote HomI′ for simplicity.

• Diagrams. Any diagram f ∈ D(k, l) is obtained by vertically stacking
finitely many generating diagrams in the strip R×[0, 1] such that f∩(R×{0})
= {1, . . . , k}×{0} and f∩(R×{1}) = {1, . . . , l}×{1}. All diagrams are read
from bottom to top as morphisms. Each generating diagram is a horizontal
composition of one elementary diagram with some trivial vertical strands.
The elementary diagrams consist of four types as shown in Figure 1:

(1) a vertical strand idQ ∈ Hom(Q,Q);
(2) a cup cup ∈ Hom(Q0, Q2);
(3) a cap cap ∈ Hom(Q2, Q0);
(4) a half strand hf ∈ Hom(Q0, Q).

(1) (2) (3) (4)

Fig. 1. The elementary diagrams of I′

• Local relations. The relations consist of four groups:

(R1) Isotopy relation:

(R1-a) vertical strands as idempotents;
(R1-b) isotopy of a single strand;
(R1-c) isotopy of disjoint diagrams.

(R2) Handle slides relation.

(R3) Loop relation: a loop equals the empty diagram, i.e., the identity
idQ0 ∈ Hom(Q0, Q0).

(R4) Commutativity of a half strand: a half strand commutes with a
trivial strand.
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Fig. 2. Local relations

• Cohomological grading. A cohomological grading gr is defined on the
elementary diagrams by:

gr(idQ) = gr(hf ) = 0, gr(cap) = 1, gr(cup) = −1.

Two sides of any relation have the same grading. Hence gr defines a grading
on the morphism sets. Let Hom(Qk, Ql) =

⊕
i Homi(Qk, Ql) be the decom-

position according to the grading.

Remark 2.2. The morphisms are actually generated by diagrams up
to isotopy relative to boundary by (R1). In particular, the object Q[−1] is
bi-adjoint to Q.

• More relations. We deduce more relations from the defining relations.

(R1-b-1)
=

(R1-b-2): (R2)
=

(R3)
=

(R2)
=

(R1-b-1)
=

Fig. 3. More relations

Lemma 2.3.

(1) The relations (R1-b-1) and (R1-b-2) are equivalent.
(2) A cup or a cap commutes with a trivial strand.

Proof. We prove that (R1-b-1) implies (R1-b-2) and a cup commutes
with a trivial strand as in Figure 3. The verification of the other relations
is similar.
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• The key isomorphism. Both morphisms cup ∈ Hom(Q0[1], Q2) and
cap ∈ Hom(Q2, Q0[1]) have cohomological grading 0. Moreover, they are
inverse to each other by (R2) and (R3). So we have the following.

Lemma 2.4. The isomorphism Q2 ∼= Q0[1] holds in I ′.

• Bases of Hom spaces. It suffices to give a basis for Hom(Qk, Ql) for
k, l ∈ {0, 1} due to the isomorphism Q2 ∼= Q0[1]. We introduce more no-
tation here. Let hf ∈ Hom(Q,Q0) denote the opposite half strand as in
Figure 4. Note that gr(hf ) = 1. Let α0 = hf ◦ hf ∈ End(Q0) denote a ver-
tical composition of two half strands, and α1 ∈ End(Q) be a horizontal
composition of α0 and a trivial strand.

=: = =

Fig. 4. hf (left) and α0, α1 (right)

Since any nontrivial diagram commutes with a trivial strand, it is straight-
forward to get the following F2-bases of the Hom spaces.

Lemma 2.5. The Hom spaces Hom(Qk, Ql) for k, l ∈ {0, 1} are given by:

(1) End(Qi) = 〈αn
i | n ≥ 0〉 for i = 0, 1;

(2) Hom(Q0, Q) = 〈hf ◦ αn
0 | n ≥ 0〉 = 〈αn

1 ◦ hf | n ≥ 0〉;
(3) Hom(Q,Q0) = 〈hf ◦ αn

1 | n ≥ 0〉 = 〈αn
0 ◦ hf | n ≥ 0〉.

In other words, End(Qi) is the polynomial algebra over one generator αi.

2.2. Definition of I. Following [2] we define I as the DG category of
one-sided twisted complexes over I ′. More precisely, an object of I is of the
form{( n⊕

i=1

ai, f =
∑
i<j

f ji

) ∣∣∣ f ji ∈ Hom1
I′(ai,aj),

∑
k

(f jk ◦ f
k
i ) = 0 for all i, j

}
,

where ai are objects of I ′ for 1 ≤ i ≤ n.

Remark 2.6. The notion of one-sided twisted complex was introduced in
[2, Section 4, Definition 1]. The condition in general is

∑
k(f jk ◦f

k
i )+dI′(f

j
i )

= 0. But the differential dI′ is zero in our case so that we have the simplified
condition as above. The term “one-sided” refers to the condition f ji = 0 for
i ≥ j.
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The morphism set HomI((
⊕

ai, f =
∑
f i

′
i ), (

⊕
bj , g =

∑
gj

′

j )) is an

F2-vector space spanned by {hji ∈ HomI′(ai,bj)} with a differential dI ,

dI(h
j
i ) =

∑
i′

(hji ◦ f
i
i′) +

∑
j′

(gj
′

j ◦ h
j
i ).

Remark 2.7. The reason for enlarging I ′ to I is that the 0th cohomol-
ogy category H(I) of I is a triangulated category by [2, Section 4, Propo-
sition 2]. In other words, we can define a cone of a morphism in I, but not
in I ′.

The monoidal structure on I ′ extends to I in the usual way. We finally
have a strict monoidal DG category I.

• The Grothendieck group K0(I). We refer to [4] for an introduction
to DG categories and their homology categories. Let H(I) denote the 0th
cohomology category of I, which is a triangulated category by [2, Section 4,
Proposition 2]. Let K0(I) denote the Grothendieck group of H(I). The
induced monoidal functor ⊗ : H(I) ×H(I) → H(I) is bi-exact and hence
descends to a multiplication K0(⊗) : K0(I)×K0(I)→ K0(I).

Let [Q] ∈ K0(I) denote the class of the generating object Q of I. Then
K0(I) is a Z-algebra generated by [Q] with unit [Q0].

Proof of Proposition 2.1. The isomorphism Q2 ∼= Q0[1] in I descends to
[Q]2 = −1 in K0(I). Therefore we have a ring homomorphism

γ : Z[
√
−1]→ K0(I),

√
−1 7→ [Q],

which is surjective.

In the next section, we will show that γ is actually an isomorphism.

3. A categorical action of I on DGP (R). In Section 3.1, we define
the DG category DGP (R) which is generated by two projective DG R-
modules and show that K0(DGP (R)) ∼= Z2. In Section 3.2, we construct
a DG R-bimodule M and show that tensoring with M over R gives an
endofunctor of DGP (R). Moreover, we prove that M ⊗R M ∼= R[1] as R-
bimodules. In Section 3.3, we construct a categorical action of I onDGP (R),
where the object Q of I acts on DGP (R) by tensoring with M . Then we
show that the induced action on the Grothendieck groups is isomorphic to
the action of Z[

√
−1] on Z2.

3.1. The category DGP (R). We define the DG F2-algebra R as a
quotient of a quiver algebra of the Khovanov–Seidel quiver with two vertices

x
a == y

b

��
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Definition 3.1. Let R be a DG F2-algebra with two idempotents
e(x), e(y), two generators a, b, and relations

e(z)e(z′) = δz,z′e(z) for z, z′ ∈ {x, y},
e(x)a = ae(y) = a, e(y)b = be(x) = b, aba = bab = 0.

The differential on R is trivial. The cohomological grading is zero except
gr(b) = 1.

We refer to [1, Section 10] for an introduction to DG modules and pro-
jective DG modules. Let P (x) = R · e(x) and P (y) = R · e(y) denote two
projective DG R-modules. Let DG(R) denote the DG category of DG left
R-modules.

We define DGP (R) as the smallest full subcategory of DG(R) which
contains the projective DG R-modules {P (x), P (y)} and is closed under the
cohomological grading shift functor [1] and taking mapping cones. The 0th
cohomology categoryH(DGP (R)) is just the homotopy category of bounded
complexes of projective modules {P (x), P (y)}.

Lemma 3.2. The Grothendieck group K0(DGP (R)) of H(DGP (R)) is
isomorphic to Z〈x, y〉.

Proof. Since H(DGP (R)) is generated by P (x) and P (y), the map

Z〈x, y〉 → K0(DGP (R)), x 7→ [P (x)], y 7→ [P (y)],

is surjective. It is also injective because the dimension vectors of P (x) and
P (y) are (2, 1) and (1, 2), which are linearly independent.

3.2. The DG R-bimodule M . As left R-modules, we define

M = P (y)⊕ P (x)[1],

where ymx ∈ P (y) and xmy ∈ P (x)[1] are the generators with gr(ymx) = 0
and gr(xmy) = −1. In other words, M is a 6-dimensional F2-vector space
with a basis

{ymx, a · ymx, ba · ymx,xmy, b · xmy, ab · xmy}.
The right R-module structure on M is given by

ymx ·e(x) = ymx, xmy ·e(y) = xmy, ymx ·a = b ·xmy, xmy ·b = a ·ymx.

The differential on M is trivial. It is easy to verify that M is a well-defined
R-bimodule.

Lemma 3.3. We have the tensor products M ⊗R P (x) ∼= P (y) and
M ⊗R P (y) ∼= P (x)[1] as DG left R-modules. Hence, tensoring with M
is an endofunctor of DGP (R).

Proof. We directly compute that M ⊗R P (x) has a basis

{ymx ⊗ e(x), a · ymx ⊗ e(x), ba · ymx ⊗ e(x)}
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such that M ⊗R P (x) is isomorphic to P (y) as a left R-module. The other
isomorphism is similar. Hence tensoring with M preserves DGP (R) since
DGP (R) is generated by P (x), P (y).

Comparing to the isomorphism Q2 ∼= Q0[1] in I, we have the following
isomorphisms of DG R-bimodules.

Lemma 3.4. The tensor product M ⊗R M is isomorphic to R[1] as DG
R-bimodules.

Proof. We define the following map of R-bimodules:

f : R[1]→M ⊗R M, e(x) 7→ xmy ⊗ ymx, e(y) 7→ ymx ⊗ xmy.

This is well-defined since

f(be(x)) = b · xmy ⊗ ymx = ymx · a⊗ ymx

= ymx ⊗ a · ymx = ymx ⊗ xmy · b = f(e(y)b),

f(ae(y)) = a · ymx ⊗ xmy = xmy · b⊗ xmy

= xmy ⊗ b · xmy = xmy ⊗ ymx · a = f(e(x)a).

The gradings gr(xmy⊗ymx) = gr(ymx⊗xmy) = −1 agree with the gradings
gr(e(x)) = gr(e(y)) = −1 in R[1]. It is easy to see that this map is actually
an isomorphism.

3.3. The action of I on DGP (R). We define a functor τ : I →
DG(R⊗F2R

op) of monoidal DG categories by τ(Q0) = R and τ(Q) = M on
objects. Here τ maps the monoidal structure on I to the monoidal structure
on DG(R ⊗F2 R

op) given by tensoring R-bimodules over R. From now on,
we use HomR to denote Hom spaces in DG(R⊗F2 R

op) for simplicity.
• Definition of τ on morphisms. There are three nontrivial generators

cup, cap, hf in I.
Recall that cup ∈ HomI(Q

0, Q2) and cap ∈ HomI(Q
2, Q0) give the

isomorphism Q2 ∼= Q0[1]. We define

τ(cup) = f, τ(cap) = f−1,

where f ∈ HomR(R,M ⊗M) is given in the proof of Lemma 3.4.
For the half strand hf ∈ HomI(Q

0, Q), we define τ(hf ) = g ∈
HomR(R,M) as

g : R→M, e(x) 7→ xmy · b = a · ymx, e(y) 7→ ymx · a = b · xmy.

We check that g is a well-defined R-bimodule map:

g(be(x)) = b · xmy · b = ymx · ab = g(e(y)b),

g(ae(y)) = a · ymx · a = xmy · ba = g(e(x)a).

• Verification of τ on the relations. By definition τ maps the isotopy
relation (R1-c) to identity homomorphisms of R-bimodules. The relations
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(R2) and (R3) are preserved under τ because τ(cup) = f : R[1]→ M ⊗M
is an isomorphism. It remains to verify the relations (R1-b) and (R4).

For (R1-b), it is enough to show that

(τ(cap)⊗ τ(idQ)) ◦ (τ(idQ)⊗ τ(cup)) = (f−1 ⊗ idM ) ◦ (idM ⊗ f)

= idM ∈ HomR(M,M).

We check this on the generator xmy:

(f−1 ⊗ idM ) ◦ (idM ⊗ f)(xmy) = (f−1 ⊗ idM ) ◦ (idM ⊗ f)(xmy ⊗ e(y))

= (f−1 ⊗ idM )(xmy ⊗ ymx ⊗ xmy)

= e(x) · xmy = xmy.

The verification on the other generator ymx is similar.

For (R4), it is enough to show that

τ(hf)⊗τ(idQ) = g⊗idM = idM⊗g = τ(idQ)⊗τ(hf) ∈ HomR(M,M⊗M).

We check this on the generator xmy:

(g ⊗ idM )(xmy) = (g ⊗ idM )(e(x)⊗ xmy) = xmy · b⊗ xmy

= xmy ⊗ b · xmy =x my ⊗ ymx · a
= (idM ⊗ g)(xmy ⊗ e(y)) = (idM ⊗ g)(xmy).

The verification on the other generator ymx is similar.

As a conclusion, the functor τ : I → DG(R ⊗ Rop) is well-defined.
Since tensoring with τ(Q) = M is an endofunctor of DGP (R), τ induces
a categorical action η : I × DGP (R) → DGP (R) via tensoring with
R-bimodules.

• Computation of K0(η). Let K0(η) : K0(I) × Z〈x, y〉 → Z〈x, y〉 be
the induced map on the Grothendieck groups under the isomorphism
K0(DGP (R)) ∼= Z〈x, y〉 in Lemma 3.2. Recall from Lemma 3.2 that γ :
Z[
√
−1] → K0(I) is surjective. We compute the pullback of K0(η) under γ

by Lemma 3.3:
√
−1 · x = [Q] · [P (x)] = [M ⊗R P (x)] = [P (y)] = y,
√
−1 · y = [Q] · [P (y)] = [M ⊗R P (y)] = [P (x)[1]] = −x.

The pullback map agrees with the action of Z[
√
−1] on Z〈x, y〉.

Since this action is faithful, we conclude that γ is an injective map, hence
an isomorphism. Thus we have finished proving Theorems 1.1 and 1.2.
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