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Singular homology groups of
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Abstract. Let X be a one-dimensional Peano continuum. Then the singular homol-
ogy group H1(X) is isomorphic to a free abelian group of finite rank or the singular
homology group of the Hawaiian earring.

1. Introduction and main result. The study of singular homology of
one-dimensional spaces goes back to Curtis and Fort [3]. They proved that
for every one-dimensional separable metric space X the singular homology
groups Hk(X) are {0} for k ≥ 2.

A Peano continuum is a locally connected, connected, compact met-
ric space. As we have proved previously, the fundamental groups of one-
dimensional Peano continua determine their homotopy types [8], and in par-
ticular the fundamental groups of one-dimensional Peano continua which are
not semi-locally simply connected everywhere determine their homeomor-
phism types [7]. Consequently, the fundamental groups of one-dimensional
Peano continua are abundant. We recall that the Hawaiian earring is the
plane compactum

H =
⋃

1≤n<w

{(x, y) : (x− 1/n)2 + y2 = 1/n2}.

It is known that the singular homology group of the Hawaiian earring is
isomorphic to the abelian group

Zω ⊕
⊕
c

Q⊕
∏

p: prime

Ap,

where ω is the least infinite ordinal, c is the cardinality of the continuum,
and Ap is the p-adic completion of the free abelian group of rank c [11,
Theorem 3.1] (see Remark 1.3).
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In contrast to the case of the fundamental groups, we have

Theorem 1.1. Let X be a one-dimensional Peano continuum. Then the
singular homology group H1(X) is isomorphic to a free abelian group of
finite rank or the singular homology group of the Hawaiian earring.

The proof shows:

Corollary 1.2. Let X be a one-dimensional Peano continuum. If X
is semi-locally simply connected, then H1(X) is isomorphic to a free abelian
group of finite rank. Otherwise, H1(X) is isomorphic to the singular homol-
ogy group of the Hawaiian earring.

The result is somewhat unexpected, because the classification is the same
as those of the Čech homology groups and the shape groups (Čech homotopy
groups) of one-dimensional Peano continua, while that of the fundamental
groups is different, as mentioned above. Though proofs for the classifications
of the Čech homology groups and the shape groups are rather geometric,
the proof for the singular homology groups is highly group-theoretic as we
show in what follows.

As is well-known, M. G. Barratt and J. Milnor [1] proved that the three-
dimensional singular homology group of the two-dimensional Hawaiian ear-
ring is non-trivial, which shows a counter-intuitive behavior of singular ho-
mology. Our result is another counter-intuitive one even in dimension one.

Remark 1.3. The proof of [11, Theorem 3.1] depends on [6, Lemma
4.11]. However, there is a gap in the proof of the latter. Hence we prove
Lemma 3.6 of the present paper, which permits us to give another proof
and generalize [11, Theorem 3.1].

2. Sequences and abelian groups. To express finite or infinite se-
quences of paths and elements of groups, we introduce some notation, which
we have used in [6, 5, 9]. Let Seq be the set of all finite sequences of non-
negative integers and denote the length of s ∈ Seq by lh(s). The empty
sequence is denoted by ( ). For s, t ∈ Seq, let s ∗ t be the concatenation of
s and t, i.e. lh(s ∗ t) = lh(s) + lh(t) and (s ∗ t)i = si for 1 ≤ i ≤ lh(s) and
(s ∗ t)i = ti−lh(s) for lh(s) + 1 ≤ i ≤ lh(s) + lh(t). In general, s ∈ Seq is
denoted by (s1, . . . , sn) where sk (1 ≤ k ≤ n) are non-negative integers and
n = lh(s). The lexicographical ordering is denoted by �, i.e. for s, t ∈ Seq,
s � t if si < ti for the minimal i with si 6= ti or t extends s. For a non-empty
sequence s ∈ Seq, let s+ ∈ Seq be the sequence such that lh(s+) = lh(s)
and s+i = si for i < lh(s) and s+i = si + 1 for i = lh(s).

We recall some notions for abelian groups (in this section a group means
an abelian group). For a group A, the Ulm subgroup U(A) of A is

⋂
{n!A :

n < ω}. If A is torsionfree, U(A) becomes the divisible subgroup D(A) of A.



Singular homology of one-dimensional Peano continua 101

The divisible subgroup is a direct summand of A. A torsionfree divisible
group is a direct sum of copies of the rational group Q.

A group A is called complete mod-U if A/U(A) is complete [16, VII 39],
i.e. for a given an ∈ A (n ∈ N) such that n! | an+1 − an, there exists an
element a such that n! | a− an for every n ∈ N.

It is known that a group A is algebraically compact if and only if A
is complete mod-U and U(U(A)) = U(A) [4]. If A is torsionfree, then
U(A) = U(U(A)) = D(A). Hence, a torsionfree, complete mod-U group
is algebraically compact. The structure of a torsionfree algebraically com-
pact group is well-known and determined by cardinalities depending on
primes [16, p. 169]. Let Ẑ be the Z-completion of Z [16, p. 164]. Then

Ẑ ∼=
∏

p: prime Jp, where Jp is the p-adic integer group.

A subgroup S of a group A is pure if, for a ∈ S, n | a in A implies n | a
in S. It is known that a group A is algebraically compact if and only if A is
pure-injective, i.e. whenever A is a pure subgroup of a group B, then A is a
direct summand of B.

For a group A, RZ(A) is the subgroup
⋂
{Ker(h) : h ∈ Hom(A,Z)},

which is a radical, i.e. RZ(A/RZ(A)) = {0}. It is easy to see that A/RZ(A)
is a subgroup of a direct product of copies of Z. For undefined notions for
abelian groups, we refer the reader to [16].

3. Paths in one-dimensional metric spaces and group-theoretic
properties. To investigate the divisibility inH1(X) we recall reduced paths
following [7].

For a ≤ b, a continuous map f : [a, b]→ X is called a path from f(a) to
f(b). The points f(a) and f(b) are called the initial point and the terminal
point of f respectively. When a = b, the path f is said to be degenerate.
A loop f is a path with f(a) = f(b). For a path f : [a, b] → X, f− denotes
the path such that f−(s) = f(a + b − s) for a ≤ s ≤ b. Two paths f :
[a, b] → X and g : [c, d] → X are equivalent, denoted f ≡ g, if there exists
a homeomorphism ϕ : [a, b] → [c, d] such that ϕ(a) = c, ϕ(b) = d and
f = g ·ϕ. Two paths f : [a, b]→ X and g : [c, d]→ X are homotopic if there
exists a continuous map H whose domain is the quadrangle in the plane
with vertices (a, 0), (b, 0), (c, 1) and (d, 1) such that

H(s, 0) = f(s) for a ≤ s ≤ b,
H(s, 1) = g(s) for c ≤ s ≤ d,
H((1− t)a+ tc, t) = f(a) = g(c) for 0 ≤ t ≤ 1,

H((1− t)b+ td, t) = f(b) = g(d) for 0 ≤ t ≤ 1.

The homotopy class containing the path f is denoted by [f ]. The homotopy
defined above is usually called “homotopy relative to end points”. Since all
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homotopies that appear in this paper have this property, we drop the phrase
“relative to end points” for simplicity.

A path f : [a, b] → X is reduced if no subloop of f is null-homotopic,
that is, for each pair u < v with f(u) = f(v), f�[u, v] is not null-homotopic.
Note that a constant map is reduced if and only if it is degenerate. For
paths f : [a, b] → X and g : [c, d] → X with f(b) = g(c), fg denotes the
concatenation of f and g, that is, the path from [a, b+d− c] to X such that
fg(s) = f(s) for a ≤ s ≤ b and fg(s) = g(s − b + c) for b ≤ s ≤ b + d − c.
A loop f is cyclically reduced if ff is reduced. An arc A between points x
and y is a subspace of X which is homeomorphic to the unit interval [0, 1]
whose end points are x and y.

Lemma 3.1 ([7, Lemma 2.4]). Let X be a one-dimensional normal space.
Then every path is homotopic to a reduced path, and the reduced path is
unique up to equivalence.

Lemma 3.2 ([7, Lemma 2.5]). For a reduced loop f, there exist a unique
reduced path g and a unique reduced loop h up to equivalence such that
f ≡ g−hg and h is cyclically reduced.

Lemma 3.3 ([7, Lemma 2.6]). Let X be a one-dimensional space. For
reduced paths f : [a, b] → X and g : [c, d] → X with f(b) = g(c), there exist
unique paths h, f ′ and g′ up to equivalence such that

• f ≡ f ′h− and g ≡ hg′;
• f ′g′ is a reduced path.

Though any path in a one-dimensional space X is homotopic to a re-
duced path (Lemma 3.1), there is no effective reduction procedure in gen-
eral (see Example 3.9). However, if f1 · · · fn is a path in X and each fi is a
reduced path, we obtain the reduced path of f1 · · · fn by cancellations using
Lemma 3.3 at most n − 1 times, i.e. we have a finite step reduction. For a
loop f in a space we denote the homotopy class of f by [f ] and the singular
homology class of f by [f ]h.

Definition 3.4. A sequence of non-degenerate reduced paths f1, . . . , f2N
is a 0-form if its concatenation f1 · · · f2N is a loop and the indices {1, . . . , 2N}
can be paired up into {ik, jk} (1 ≤ k ≤ N) so that fik ≡ f

−
jk

for 1 ≤ k ≤ N .

The word 0-form means that the concatenated loop represents the trivial
element in the singular homology group. We remark that the empty sequence
is a 0-form.

Definition 3.5. The length of a 0-form f1, . . . , f2N is N and its rank is
the cardinality of the set {1 ≤ i ≤ 2N − 1 : fifi+1 is not reduced}.
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Lemma 3.6. Let l0 be a reduced loop in a one-dimensional space X.
Then [l0]h = 0 in H1(X) if and only if l0 is a degenerate loop or there exists
a 0-form f1, . . . , f2N such that l0 ≡ f1 · · · f2N .

Proof. The “if” part is clear; we show the other direction. Since by
Lemma 3.1 any loop is homotopic to a unique reduced loop up to equivalence,
and the homotopy class of a 0-homologous loop belongs to the commutator
subgroup of the fundamental group by the Poincaré–Hurewicz theorem, it
suffices to show that any 0-homologous loop is homotopic to a reduced loop
of a 0-form.

We prove the lemma by induction on the rank r and the length N where
the ordering of the pairs (r,N) is lexicographical. We remark that this or-
dering is a wellordering, which ensures our induction works. If r = 0, then
the loop of a 0-form is reduced and we have the conclusion. On the other
hand, if N = 1, then f1f2 is homotopic to a degenerate loop. Hence we
proceed to the inductive steps.

We introduce a basic reduction of a 0-form f1, . . . , f2N0 . Suppose that
fi+1 · · · f2N0 is reduced and fi · · · f2N0 is not reduced. Let r0 be the rank of
f1, . . . , f2N0 . By Lemma 3.3 we have fi ≡ f ′ih and fi+1 · · · f2N0 ≡ h−f ′i+1

with f ′if
′
i+1 reduced. A basic reduction of f1, . . . , f2N0 is the following 0-form

f∗1 , . . . , f
∗
2N1

.

Case 1: f ′i and f ′i+1 are not empty. We cancel hh−, replace fi and fi+1

by f ′i and f ′i+1 respectively and write the 0-form f1, . . . , fi−1, f
′
i , f
′
i+1, fi+2,

. . . , f2N0 as f∗1 , . . . , f
∗
2N1

, whose rank is r0 − 1 and N1 = N0 + 1.

Case 2: f ′i or f ′i+1 is empty.

Subcase 2.1: f ′i is empty and fi−1f
′
i+1 is reduced, or f ′i+1 is empty and

f ′ifi+2 is reduced. We cancel hh−, rearrange pairings if necessary and get
a 0-form f∗1 , . . . , f

∗
2N1

. Then in the former case N1 = N0 − 1 or the rank
is r0 − 1 according to whether f ′i+1 is empty or not, and in the latter case
N1 = N0 − 1 or the rank is r0 − 1 according to whether f ′i is empty or not.

Subcase 2.2: Otherwise, i.e. f ′i is empty and fi−1f
′
i+1 is not reduced, or

f ′i+1 is empty and f ′ifi+2 is not reduced. We get a 0-form f∗1 , . . . , f
∗
2N1

as in
Case 2.1, whose rank is at most r0 and N1 = N0 (actually the rank is r0 but
this is not necessary for our argument).

Starting from a given loop l of a 0-form, we iterate basic reductions. If the
cases other than Subcase 2.2 appear, we have the conclusion by induction
hypothesis. We will show that Subcase 2.2 does not occur infinitely many
times, which completes the proof of Lemma 3.6. For contradiction, suppose
that Subcase 2.2 occurs infinitely many times starting from a loop l of a
0-form. Then we have an infinite sequence of 0-forms σn and 0 < an+1 <
an < · · · < a1 = b1 < · · · < bn < bn+1 < 1 such that:
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(1) the rank and the length of σn are the same as those of σ0;
(2) (l�[0, an])(l�[bn, 1]) is a concatenation of paths in σn.

We remark that (l�[an, a1])− ≡ l�[b1, bn]). Let a∞ = inf{an : n < ∞} and
b∞ = sup{bn : n <∞}.

In step m0 we have N pairings. If the two intervals of a pair are in
[0, a∞] ∪ [b∞, 1], then this pair is not changed in any step m for m ≥ m0.
For intervals appearing in some steps, we call an interval outside if it is con-
tained in [0, a∞] ∪ [b∞, 1], and inside if it is contained in [a∞, b∞]. We call
an interval [c, d] overlapping if c < a∞ < d < b∞ or a∞ < c < b∞ < d. First
we claim that an outside interval is never paired with an overlapping one.

For contradiction, suppose an outside interval [c0, d0] is paired with an
overlapping interval [c1, d1]. We assume c1 < a∞ < d1, since the other case
is symmetric. Once [c0, d0] and [c1, d1] are paired, infinitely many [u, d0]
are paired with some overlapping interval [c1, v] in some steps. This implies
that there are more than N pairs in some step one of whose intervals are
subintervals of [c0, d0], which is a contradiction.

Next we show that after some steps, all outside intervals are paired with
other outside intervals. If an outside interval I is paired with an inside
interval, then I is possibly partitioned. But such partitionings for I occur
only finitely many times, since this procedure fixes the number N0 of the
pairs. Now we consider a non-degenerate subinterval I0 of I, which will not
be partitioned. We claim that I0 will be paired with an outside interval.
Otherwise, I0 is paired with infinitely many inside intervals, which implies
that I0 is the degenerate path l(a∞) = l(b∞), a contradiction. Hence we
conclude that after some steps every outside interval is paired with another
outside one.

We remark that if an overlapping interval does not appear in some step,
then it does not appear in further steps, and if an overlapping interval is
paired with another overlapping interval in some step, then in further steps
two overlapping intervals are paired.

Next we show that after some steps all overlapping intervals are paired
with other overlapping intervals. For contradiction, suppose that an over-
lapping interval [c0, d0] with c0 < a∞ < d0 < b∞ is paired with an inside
interval, and in further steps its overlapping subintervals are paired with
inside intervals. Then as in the case of outside intervals there appear only
finitely many subintervals of [c0, a∞] in further steps, and hence we have
an overlapping interval [c1, d1] with c0 ≤ c1 < a∞ < d1 < d0 such that in
further steps an overlapping interval containing a∞ is of the form [c1, d] for
some d ≤ d1. Since l�[c1, a∞] is not degenerate, we have a contradiction as
in the case of outside intervals. The case a∞ < c0 < b∞ < d0 is symmetric
and we omit its proof.
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This implies that after some steps every inside interval is paired with
another inside interval. Now choose two points u0, u1 from an inside interval
so that l(u1) 6= l(u2). Then we have their copies in some inside interval at any
further steps and we have a contradiction l(u1) = l(a∞) = l(b∞) = l(u2).

Now we have completed the proof of Lemma 3.6. We remark that our
proof implies that the basic reductions stop after finitely many steps, since
Subcase 2.2 never occurs infinitely many times and other cases decrease the
order of the pair (r,N).

A family U of open subsets of a space X is of order 2 if U ∩ V ∩W = ∅
for any distinct U, V,W ∈ U . If a space X is one-dimensional, then every
finite open cover has a refinement of order 2 [15].

There is a natural homomorphism from singular homology to Čech ho-
mology. Though we shall use a result of [12] in principle, we need to investi-
gate the homomorphism more precisely and we present a direct presentation
of the homomorphism according to [10].

For a loop l in a one-dimensional space X, we define a loop fU in the
nerve XU as follows [14].

We take a sequence 0 = t0 < · · · < tn = 1 and elements U0, . . . , Un ∈ U
with the following properties:

◦ l(ti) ∈ Ui for each 0 ≤ i ≤ n and U0 = Un = xU ;
◦ l([ti, ti+1]) ⊂ Ui ∪ Ui+1 for 0 ≤ i < m.

Define lU : [0, 1]→ XU by setting lU (ti) = Ui and extending linearly on each
[ti, ti+1]. Then lU is unique up to homotopy:

(1) Take another sequence 0 = t′0 < · · · < t′n=1 and elements U ′1, . . . , U
′
n

∈ U and define a loop l′U in XU so as to satisfy the above two
conditions. Then lU and l′U are homotopic.

(2) If m is a loop in X homotopic to l, then mU and lU are also homo-
topic.

The natural homomorphism σ : H1(X) → Ȟ1(X) for a path-connected
space X is defined by ρU (σ([l]h)) = [lU ]h, where ρU is the projection from
Ȟ1(X) to H1(XU ), [l]h is the homology class containing l, and [lU ]h is the
homology class containing lU .

For the following construction we suppose that X is a locally path-
connected metric space and U is an open cover of X consisting of path-
connected sets and is of order 2. Since we use this construction for locally
path-connected spaces, we always use covers consisting of path-connected
sets.

We use the preceding notation for a loop l in X and a cover of X. Let
U0 = {Ui : 0 ≤ i ≤ n} ⊆ U be a finite cover of Im(l) and pU0 = l(0). Choose
pU ∈ U for U ∈ U0 with U 6= U0. Then using the path-connectivity of U
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and V we inductively define an arc AUV = AV U ⊆ U ∪ V between pU and
pV for U, V ∈ U0 with U ∩ V 6= ∅ so that AUV is the unique arc between
pU and pV in (U ∪ V ) ∩

⋃
{AUV : U, V ∈ U0}. Then

⋃
{AUV : U, V ∈ U0} is

homeomorphic to a finite graph and (U ∪V )∩
⋃
{AUV : U, V ∈ U0} is simply

connected for any U, V ∈ U0. We remark that pU may not be a branching
point in this finite graph and AUU is the one-point set {pU}. Since U is
infinite, to avoid a tedious argument we do not construct a graph in X for
the nerve XU .

Next we construct a loop l in the finite graph
⋃
{AUV : U, V ∈ U} for a

loop l with base point U0 in the nerve XU0 , which is a finite graph, so that a
path in the edge UV corresponds to a path from pU to pV on the arc AUV .

We apply this construction to the above loop lU . Then lU�[ti, ti+1] is a
path from pUi to pUi+1 on the arc AUiUi+1 and lU (0) = l(0) = l(1) = lU (1).

Lemma 3.7. Let X be a one-dimensional locally path-connected metric
space. If l is a loop such that [l]h ∈ Ker(σ), then l is homologous to a sum of
arbitrarily small cycles. In addition, the cycles can be chosen in the image
of l.

Proof. Let l be a loop with [l]h ∈ Ker(σ). For a given cover V, by
the paracompactness of X we have a locally finite refinement V0 of V. By
Dowker’s theorem [15, 7.2.4], we have an open 2-cover V1 which refines V0.
Let U be the set of all path-connected components of sets V ∈ V1. Then U
is a 2-cover consisting of path-connected open sets. Hence, for a given ε > 0
we can choose an open 2-cover U of X which consists of path-connected
open sets with size less than ε/2. Taking sufficiently large n, according to
the preceding construction we obtain 0 = t0 < t1 < · · · < tn = 1, Ui ∈ U ,
U0, pU for U ∈ U0, lU and lU .

Let qi be a path from pUi to l(ti). Since [lU ]h = 0, we have a partition
of the index set {0, 1, . . . , n − 1} = {ik, jk : 1 ≤ k ≤ m} ∪ S such that
n = 2m+|S| and l�[tjk , tjk+1] = (l�[tik , tik+1])

− and Ui = Ui+1 for each i ∈ S.
We remark that this is the edge-path version of the 0-form in Lemma 3.6.
Hence lU is a null-homologous loop in X. We have

[l]h − [lU ]h = [l]h − [lU ]h +
n−1∑
i=1

[qi(qi)
−]h

=
[
(l�[t0, t1])q1(lU�[t0, t1])

−]
h

+
n−2∑
i=2

[
(l�[ti, ti+1])qi+1(lU�[ti, ti+1])

−(qi)
−]

h

+
[
(l�[tn−1, tn])(lU�[tn−1, tn])−q−n

]
h
.

Since the homology classes of cycles in the last summations are of size less
than ε and [lU ]h = 0, we have the conclusion.
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For the additional statement, we remark that Im(l) is a Peano continuum
and every path in X is homotopic to the reduced path in its image. Thus,
the preceding proof can be done in Im(l).

Lemma 3.8. Let X be a one-dimensional locally path-connected metric
space. Then RZ(H1(X)) ≤ Ker(σ).

Proof. Decompose X into path-connected components Xi (i ∈ I). Then
H1(X) =

⊕
i∈I H1(Xi) and RZ(H1(X)) =

⊕
i∈I RZ(H1(Xi)). Hence, with-

out loss of generality we can assume that X is path-connected. To prove
RZ(H1(X)) ≤ Ker(σ), for contradiction suppose that σ([l]h) 6= 0 and
[l]h ∈ RZ(H1(X)) for a loop l. According to the proof of Lemma 3.7,
there is a 2-cover U consisting of path-connected open sets such that
0 6= [lU ]h ∈ H1(XU ). Since H1(XU ) is a free abelian group, we conclude
that [l]h /∈ RZ(H1(X)), a contradiction.

Example 3.9. We show the existence of a loop l which is homotopic
to the constant loop, but does not contain a non-degenerate subloop of
the form ff−. We denote the clockwise winding onto the ith circle of the
Hawaiian earring H by ai. Let Seq(2) be the subset of Seq consisting of
sequences of 0, 1. We define a loop as an infinite concatenation of loops whose
sizes converge to zero. Let l = Seq(2) \ {( )} and l be the loop obtained by
concatenating ai and a−i according to the lexicographical ordering of l, i.e.

l�
[ n−1∑

i=1

2−2i +

n∑
i=1

s(i)2−2i+1,

n−1∑
i=1

2−2i +

n∑
i=1

s(i)2−2i+1 + 2−2n
]
≡ ai

if sn = 0, and

l�
[ n−1∑

i=1

2−2i +

n∑
i=1

s(i)2−2i+1,

n−1∑
i=1

2−2i +

n∑
i=1

s(i)2−2i+1 + 2−2n
]
≡ a−i

if sn = 1, where n = lh(s).

To show that l is homotopic to the constant loop, let pn be the projection
of H to the bouquet Bn consisting of the first n circles. Then pn ◦ l is a loop
in Bn and it is easy to see that pn ◦ l is null-homotopic. Then l itself is
null-homotopic [10, Thm. 1]. The reason for the non-existence of a subloop
of l of the form ff− is that in l both ai and a−i have immediate successors,
but neither has an immediate predecessor.

The next example shows that we cannot replace the notion of reduced-
ness of a loop in a space X with a sequence of reduced loops in the nerves
of X.

Example 3.10. We construct a reduced loop l in H such that no pro-
jection of l to Bn is reduced for 1 ≤ n < ω. The construction is similar to
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the above. Let l = Seq(2) \ {〈 〉} and concatenate aiai and a−i according to
the lexicographical ordering on l instead of concatenating ai and a−i .

That pn◦l is not reduced can be seen as follows. Consider the appearance
of anan in pn◦ l. Then a−n follows immediately, i.e. there is a subloop anana

−
n

of pn ◦ l and hence pn ◦ l is not reduced. To see that l is reduced, for con-
tradiction suppose that a non-degenerate subloop l′ of l is null-homotopic.
Without loss of generality we may assume that the base point of l′ is o. Then
l′ should be an infinite concatenation of ai. Let n be minimal such that an
or a−n appears in l′. Since l′ is null-homotopic, the times of appearances of
an and a−n are the same. In the subloop between neighboring an and a−n ,
or a−n and an, an+1 appears one more time than a−n+1, and hence l′ is not
null-homotopic. Thus, l is reduced.

4. Construction of loops. For our construction of loops and cycles we
prepare some notions which have been used in [6, 5, 9], but some modification
is necessary, since we need to deal with loops with different base points.
Though this has been done by J. Cannon and G. Conner in the proof of [2,
Theorem 6.7], their presentation is not sufficiently precise to prove the next
lemma. An exact presentation as in the previous section is preferable, and
we follow [6, 5, 9].

Suppose that natural numbers ki are given. Let

S = {s ∈ Seq : 0 ≤ si < ki for 1 ≤ i ≤ lh(s)},

and for s ∈ S let as =
∑lh(s)

i=1 si/
∏i

j=1 kj . Next let

T = {t ∈ Seq : 0 ≤ ti < (i+ 1)ki for 1 ≤ i ≤ lh(t)}.
Let Sm = {s ∈ S : lh(s) = m} and Tm = {t ∈ T : lh(t) = m}. For t ∈ Seq
with 0 ≤ ti < (i+ 1)ki, define st, ct ∈ Seq with lh(st) = lh(ct) = lh(t) by

(i+ 1)(st)i + (ct)i = ti, 0 ≤ (st)i < ki, 0 ≤ (ct)i < i+ 1.

Let

bt =

lh(t)∑
i=1

((3i+ 2)(st)i + (ct)i + 1)/
i∏

j=1

(3j + 2)kj

=

lh(t)∑
i=1

(3ti − (st)i + 1)/
i∏

j=1

(3j + 2)kj

and εm = 1/
∏m

i=1(3i + 2)ki. If (ct)lh(t) < lh(t) = m for t ∈ T , then t+ ∈ T
and bt+ = bt +3εm. But if (ct)lh(t) = lh(t) = m, then bt +3εm is not equal to
any bt′ for t′ ∈ T . We remark that as ≤ as′ if and only if s � s′ for s, s′ ∈ S,
and bt ≤ bt′ if and only if t � t′ for t, t′ ∈ T .

Let f : [0, 1]→ X be a path.
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(∗) Suppose that we are given finite open covers Un of Im(f) such that
each U ∈ Un is path-connected, the diameter of each U ∈ Un is less
than 1/n, and Un+1 is a refinement of Un, and also suppose that Us

in Ulh(s) and kn are chosen so that f([as, as+ ]) ⊆ Us and Ut ⊆ Us for
s ≺ t.

Let ls be a loop in Us ∈ Ulh(s) with base point f(as) for s ∈ S with lh(s) = n.
Let αm+1 =

∑m
i=1

∑
s∈Si

(i+ 1)![ls]h + α1 in H1(X) for m ≥ 1. Our purpose

is to define a path g along f so that g · f− is a loop and

(m+ 1)! | [g · f−]h + α1 − αm for each m ∈ N.

For t ∈ Tm, define g�[bt, bt − εm] ≡ lst and for t ∈ T with lh(t) = m and
0 ≤ (ct)m < m, define g�[bt + εm, bt + 2εm] ≡ (f�[ast , as+t

])−. If we define

these for t ∈ T with lh(t) ≤ m, the parts in [0, 1] where g is not defined are⋃
t∈Tm

(bt, bt + εm)∪ {1}. For t satisfying ti = (i+ 1)(ki− 1) + i (for 1 ≤ i ≤
m = lh(t)), we have bt + εm = 1. If g(x) is defined for x ∈ (bt, bt + εm), then
g(x) ∈ Ust . Hence g uniquely extends to a continuous map on [0, 1], which
we also denote by g. Now g is a path from f(0) to f(1), and hence gf− is a
loop. We shall show that

[gf−]h −
m−1∑
i=1

∑
s∈Si

(i+ 1)![ls]h

is divisible by (m+ 1)!.

For a fixed 1 ≤ m < ω, we cut g into finitely many pieces and consider
an element of the chain group:

m−1∑
i=1

∑
t∈Ti

g�[bt − εi, bt] +
m−1∑
i=1

∑
t∈Ti, 0≤(ct)i<i

g�[bt + εi, bt + 2εi]

+
∑
t∈Tm

g�[bt, bt + εm].

We see that g�[bt− εi, bt] ≡ lst is a loop if lh(t) = i, and g�[bt, bt + 2εi] is
also a loop if lh(t) = i and 0 ≤ (ct)i < i.

For s ∈ Sm, let Tm,s = {t ∈ Tm : st = s}. For t ∈ Tm, define t∗ so that
t = t∗ ∗ (tlh(t∗)+1, . . . , tm), (ct)lh(t∗) < lh(t∗), and (ct)i = i for lh(t∗) < i ≤ m.
We remark that t∗ = t if and only if (ct)m < m, and t∗ = ( ) if and only if
(ct)i = i for 1 ≤ i ≤ m.

Since g�[bt, bt+εm] is determined only by st, if st = st′ then g�[bt, bt+εm]
≡ g�[bt′ , bt′ + εm] for t, t′ ∈ Tm.

If t∗ = t′∗ for distinct t, t′ ∈ Tm, then st 6= st′ . Hence the correspondence
t → st on {t ∈ Tm : t∗ = u} is one-to-one for u ∈

⋃m
i=1 Ti with u(lh(u)) <

lh(u) or for u = ( ). In addition, for u ∈
⋃m

i=1 Ti with u(lh(u)) < lh(u) we
have g�[bu+εlh(u), bu+2εlh(u)] ≡ (f�[asu , a

+
su ])−, and for t ∈ Tm with t∗ = ( )
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we have a corresponding subpath in f− with which g�[bt, bt + εm] forms a
loop.

Let Cm = {t ∈ Tm : (ct)i = i for 1 ≤ i ≤ m}. Since |{t ∈ Tm : st = s}| =
(m+ 1)! for s ∈ Sm, we have

[gf−]h =

m−1∑
i=1

∑
s∈Si

(i+ 1)![ls]h +
∑
s∈Sm

(m+ 1)!βs,

where βs = [g�[bt, bt + εm](f�[as, a+s ])−]h for t ∈ Cm with st = s.

Hence, [gf−]h + α1 − αm =
∑

s∈Sm
(m + 1)!βs and [gf−]h + α1 is as

desired.

Lemma 4.1. Let X be a one-dimensional Peano continuum. Then Ker(σ)
is complete mod-U.

Proof. Let αm ∈ Ker(σ) and (m+1)! |αm+1−αm in Ker(σ) for 1 ≤ m <
ω. Then there exists γm ∈ Ker(σ) such that (m+ 1)!γm = αm+1 − αm.

Let f : [0, 1] → X be a path such that Im(f) = X and let Um be finite
open covers of X such that each U ∈ Um is path-connected, the diameter
of each U ∈ Um is less than 1/m, and Um+1 is a refinement of Um. To use
the preceding construction, we inductively choose km in the following way.
First, km should be so large that for each s ∈ S with lh(s) = m there exists
U ∈ Um with f([as, as+ ]) ⊆ U . By Lemma 3.7, γm can be expressed as the
sum of the homology classes of arbitrarily small loops. We want loops in
some U ∈ Um, hence the number of loops might be large. Second, km should
be so large that γm can be expressed by km loops each of which is in some
U ∈ Um.

We choose km which satisfies the two conditions. Since each U ∈ Um is
path-connected, a sum of the homology classes of loops in U can be replaced
by a homologous loop in U . Hence there are Us ∈ Ulh(s) and loops ls in Us

with base point f(as) such that

γm =
∑

lh(s)=m

[ls]h.

Then αm+1 =
∑m

i=1

∑
s∈Si

(i + 1)![ls ]h + α1 in H1(X) for m ≥ 1. Now, the
assumptions for the preceding construction are satisfied and we have the
desired element [gf−]h + α1.

Lemma 4.2 ([11, Theorem 2.1]). Let X be a one-dimensional normal
space. Then H1(X) is torsionfree.

Now, according to the facts in Section 2, Lemmas 4.1 and 4.2 imply

Lemma 4.3. Let X be a one-dimensional Peano continuum. Then Ker(σ)
is algebraically compact.
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Lemma 4.4 (folklore). Let X be a one-dimensional Peano continuum.
If X is semi-locally simply connected, then the Čech homology group Ȟ1(X)
is isomorphic to a free abelian group of finite rank. Otherwise, Ȟ1(X) is
isomorphic to Zω.

Next we construct loops whose homotopy classes are in Ker(σ) and the
homology classes which generate pure subgroups of H1(X) when X is not
semi-locally simply connected. Suppose that X is not semi-locally simply
connected at x0 ∈ X.

The first lemma is well-known and it can be proved using arbitrarily
small simple closed curves; we omit its proof.

Lemma 4.5. Let X be a one-dimensional space Peano continuum which
is not semi-locally simply connected at x0. Then there exists a closed sub-
space Y such that (Y, x0) is homotopy equivalent to the Hawaiian earring
(H, o).

Then we have a dendrite D in Y such that Y \D consists of countably
many open arcs An which converge to x0 by [7, Theorem 1.2 and its proof].

We construct certain reduced loops in Y . Let ln be a reduced loop which
starts from x0, reaches one end of An in D, goes through An and goes back
to x0 in D. We call this direction of An to be plus and the reverse direction
to be minus.

Let l∗n be the reduced loop of l2nl2n+1l
−
2nl
−
2n+1, i.e l∗n goes plus A2n, plus

A2n+1, minus A2n and minus A2n+1 when we disregard D. We call this
last property (∗n) for simplicity. Moreover, the reduced loops of l∗0 · · · l∗m for
m ≥ n also have property (∗n). Let l∗ be the reduced loop of the infinite
concatenation l∗0 · · · l∗n · · · . Then we see that, for each δ > 0, l∗�[1 − δ, 1]
has property (∗n) for sufficiently large n, and for each n there exists δ > 0
such that l∗�[0, 1− δ] has property (∗n). We remark that l∗− does not have
property (∗n).

For a non-degenerate path f : [0, 1] → X, a tail of f is a subpath
f�[1− δ, 1] for some δ > 0. The following lemma is straightforward and we
omit its proof.

Lemma 4.6. Let f0 · · · fk be a reduced path. There exists a tail m0 of l∗

such that every subpath m in f0 · · · fk which is equivalent to m0 or m−0 is a
subpath of some fi.

Lemma 4.7. The homology class [l∗]h generates a pure subgroup of H1(X)
which is isomorphic to Z.

Proof. Since H1(X) is torsionfree, it is sufficient to show that [l∗]h is not
divisible by any n ≥ 2. For contradiction, suppose that [l∗]h is divisible by
some n ≥ 2. Then we have a cyclically reduced loop l and a reduced path p
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such that plp− is reduced with base point x0 and l∗plnp− is a 0-form among
paths in X. We consider several cases.

Case 1: p is degenerate and l∗ln is reduced. We have l∗ln ≡ f1 · · · fk
where f1, . . . , fk are paired forming a 0-form. By Lemma 4.6 we have a tail
m0 which has the property in the lemma for l∗l · · · l and f1 · · · fk under these
presentations. Then the number of occurrences of m0 in f1 · · · fk is the same
as that of m−0 . Let a+ be the number of occurrences of m0 in l and a−

be the number of occurrences of m0 in l. Then na+ + 1 = na− and hence
n(a− − a+) = 1, which contradicts n ≥ 2.

Case 2: p is non-degenerate and l∗plnp− is reduced. We choose m0 sim-
ilarly to Case 1 considering p and p−. Since the number of occurrences of
m0 in p is the same as that of m−0 in p−, and that of m−0 in p is the same
as that of m0 in p−, we have a contradiction as in Case 1.

Case 3: p is degenerate and l∗ln is not reduced. Since there is a tail t
of l∗ such that t− is a head of l, the reduced loop of l∗ln is of the form
q0q2l

n−1 where q0q1 ≡ l∗ and q1q2 ≡ l. Using the presentation q0q2q1 · · · q1q2
and the 0-form, we choose m0. Let a+ be the number of occurrences of m0

in l ≡ q1q2 and a− be the number of occurrences of m0 in l as before. Since
m−0 occurs once in q1 and m0 does not, we have n − 1 + n(a+ − 1) = na−,
and hence n(a+ − a−) = 1, which is a contradiction.

Case 4: p is non-degenerate and l∗plnp− is not reduced. For a sufficiently
small tail m0 of l∗, we have q0m0 ≡ l∗ and m−0 p0 ≡ p. Then in the reduction
of q0p0l

np−0 m0 any tail of l or its inverse is canceled. Hence we have a
contradiction as in Case 2.

Lemma 4.8. Let X be a one-dimensional normal space. If Y is a path-
connected subspace of X, then H1(Y ) is a subgroup of H1(X).

Proof. Since every element of H1(Y ) is the homology class of a loop
in Y , we let l be a reduced loop in Y . We only deal with the case that l
is non-degenerate. Since the reduced loop of a loop is in the image of the
original loop, the reducedness does not depend on whether we consider the
loop in X or in Y . Suppose that the homotopy class of l belongs to the
commutator subgroup of π1(X). Then l is equivalent to a 0-form where each
path is in X, but Lemma 3.6 implies that each path is in Y . Therefore,
H1(Y ) is a subgroup of H1(X).

Proof of Theorem 1.1. Let h : H1(X) → Z be a homomorphism. By
Lemma 4.1 we have h(Ker(σ)) = {0}, and consequently by Lemma 3.8 we
have Ker(σ) = RZ(H1(X)). Therefore H1(X)/Ker(σ) is a subgroup of the
direct product of copies of Z, which is obviously torsionfree. By Lemma 4.3
this implies that Ker(σ) is a direct summand. If X is semi-locally simply con-
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nected, then it is well-known thatH1(X) is a free abelian group of finite rank.
Otherwise, we have Ȟ1(X) ∼= Zω and hence H1(X) ∼= Ker(σ) ⊕ Zω. Since
there exists a subspace of X which is homotopy equivalent to the Hawai-
ian earring H, the divisible part D(H1(X)) contains D(H1(H)) ∼=

⊕
cQ by

Lemma 4.8. Since the cardinality of H1(X) is equal to or less than c, we
have D(H1(X)) ∼=

⊕
cQ. The remaining task is to determine the cardinality

of the reduced algebraically compact group.
Since σ([l∗]h) = 0 for l∗ in Lemma 4.7, we see that [l∗]h generates a

pure subgroup of Ker(σ). To show that Ker(σ) contains a pure subgroup
isomorphic to a free abelian group of continuum rank, we modify the con-
struction of l∗ as in the proof of [11, Lemma 3.5]. There exists an almost
disjoint family consisting of infinite sets of integers, where S and T are al-
most disjoint if S ∩ T is finite. Let l∗S be the reduced loop of l∗i0 · · · l

∗
in
· · · ,

where i0 < · · · < in < · · · is the enumeration of S in the order of the in-
tegers. Now it suffices to show that l∗S1

, . . . , l∗Sn
are linearly independent for

an almost disjoint family S1, . . . , Sn. We have a finite set F of integers such
that Si ∩ Sj ⊆ F for distinct i, j. For a set S of integers let rS : Y → Y be
a retraction such that rS(An) ⊆ D for n /∈ S and rS�An is the identity for
n ∈ S. Let λ1[l

∗
S1

]h + · · ·+ λn[l∗Sn
]h = 0. By Lemma 4.8, we may work in Y .

Let S = Si \ F . Since (rS)∗([l
∗
Sj

]h) is trivial for j 6= i but S 6= ∅ and H1(X)

is torsionfree, (rS)∗([l
∗
Si

]h) is non-zero and hence λi = 0.

Remark 4.9. Here we show that the compactness of a space is essential
for the algebraic compactness of Ker(σ) in Lemma 4.3. Let X be a subspace
of the plane obtained by attaching copies of H to the half line {0} × [0,∞):

X = {0} × [1,∞) ∪
⋃

3≤n<ω
1≤m<ω

{(x, y) : (x− 1/n)2 + (y −m)2 = 1/n2}.

Then X is a locally path-connected, path-connected, separable metric space.
In the mth copy of the Hawaiian earring, we have a non-trivial element αm

in Ker(σ) such that 〈[αm]h〉 is a pure subgroup of H1(X), where σ is the
natural homomorphism to the Čech homology group. Then

(m+ 1)!
∣∣ m+1∑

i=1

i![αi]h −
m∑
i=1

i![αi]h.

Suppose that Ker(σ) is algebraically compact. Then there is a loop l such
that (m+ 1)! | [l]h−

∑m
i=1 i![αi]h for each 1 ≤ m < ω. Since the image of l is

compact, there exists m0 such that

Im(l) ⊆ {0}× [1,m0−1]∪
⋃

3≤n<ω
1≤m≤m0−1

{(x, y) : (x−1/n)2 + (y−m)2 = 1/n2}.

Considering the retraction of X to
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3≤n<ω

{(x, y) : (x− 1/n)2 + (y −m0)
2 = 1/n2},

we conclude that (m0+1)! | −m0![αm0 ]h. Since H1(X) is torsionfree, we have
m0 + 1 | [αm0 ]h, which contradicts 〈[αm0 ]h〉 being a pure subgroup.

Though Ker(σ) may not be algebraically compact for a non-compact
space X, we have the following.

Theorem 4.10. Let X be a one-dimensional locally path-connected met-
ric space. Then Ker(σ) = RZ(H1(X)).

Proof. By Lemma 3.8 it suffices to show that Ker(σ) ≤ RZ(H1(X)).
Since each path-connected component is open by local path-connectivity,
the Čech homology group is the direct product of the Čech homology groups
of the path-connected components. Hence without loss of generality we may
assume that X is path-connected. Let l be a loop with [l]h ∈ Ker(σ) and h :

H1(X)→ Z be a homomorphism. We define a map ϕ : Ẑ→ Ker(σ) such that

h◦ϕ becomes to be a homomorphism. For u ∈ Ẑ, i.e. u =
∑∞

i=1m!am where
0 ≤ am ≤ m, we define a loop lu as follows. We modify the construction in
the proof of Lemma 4.1. Replace f by l, and for each am express am[l]h as
the sum of the homology classes of loops each of which is in some U ∈ Um.
Then there is a loop lu such that

(m+ 1)!
∣∣ [lu]h −

m∑
i=1

i!ai[l]h.

Let ϕ(u) = [lu]h. For u, v ∈ Ẑ, let u =
∑∞

i=1 i!ai, v =
∑∞

i=1 i!bi and u+ v =∑∞
i=1 i!ci where 0 ≤ ai, bi, ci ≤ i. Since

(m+ 1)!
∣∣ m∑

i=1

i!ci −
( m∑

i=1

i!ai +
m∑
i=1

i!bi

)
,

we have

(m+ 1)! |h([lu+v]h)− (h([lu]h + h([lv]h))

for every m, and so h◦ϕ(u+v) = h◦ϕ(u)+h◦ϕ(v). Since Z is cotorsionfree,
h ◦ ϕ is a trivial homomorphism, which implies h([l]h) = h ◦ ϕ(1) = 0.

Remark 4.11. According to Theorem 1.1,H1(X)/RZ(H1(X)) is isomor-
phic to a free abelian group of finite rank or Zω. Even for one-dimensional
locally path-connected separable metric spaces X, H1(X)/RZ(H1(X)) is
complicated. For this we refer the reader to [13, Section 6], where we de-
fined a factor HT

n (X) of the singular homology group Hn(X) and in our case
HT

1 (X) ∼= H1(X)/RZ(H1(X)). The spaces defined there are not metrizable,
but by a standard method we get metrizable spaces X with the same H1(X)
and HT

1 (X).
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