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On exposed points and extremal points of
convex sets in Rn and Hilbert space

by

Stoyu Barov (Sofia) and Jan J. Dijkstra (Crested Butte, CO)

Abstract. Let V be a Euclidean space or the Hilbert space `2, let k ∈ N with
k < dimV, and let B be convex and closed in V. Let P be a collection of linear k-subspaces
of V. A set C ⊂ V is called a P-imitation of B if B and C have identical orthogonal projec-
tions along every P ∈ P. An extremal point of B with respect to the projections under P
is a point that all closed subsets of B that are P-imitations of B have in common. A point
x of B is called exposed by P if there is a P ∈ P such that (x + P ) ∩ B = {x}. In the
present paper we show that all extremal points are limits of sequences of exposed points
whenever P is open. In addition, we discuss the question whether the exposed points form
a Gδ-set.

1. Introduction. Throughout this paper V stands for a separable real
Hilbert space. Thus V is isomorphic to either an Rn or `2. Let B be convex
and closed in V, and let Gk(V) consist of all k-dimensional linear subspaces
of V with the natural topology; see Definition 1. Let P ⊂ Gk(V). We say that
x ∈ B is exposed by P if there is a P ∈ P such that (x+ P ) ∩B = {x}. We
denote by X kp (B,P) the set of all points of B exposed by P. This definition
generalizes the concept of an exposed point as defined in [6], that is, a point
of B ⊂ Rn that is exposed by Gn−1(Rn). We call C ⊂ V a P-imitation of B if
C+P = B+P for every P ∈ P, that is, B and C have identical projections
along each element of P. The set of extremal points of B with respect to P is
denoted by X kt (B,P) and is defined as the intersection of all closed subsets
of B that are P-imitations of B. Clearly, every exposed point is extremal as
well. In [5, Theorem 14] we proved

Theorem 1. For closed and convex sets B ⊂ `2 with empty geometric
interior B◦ we have X kp (B,P) = X kt (B,P) = B for any k ∈ N and nonempty

open P ⊂ Gk(`2).
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Absent the condition on B◦ it is easy to see that exposed points and
extremal points do not coincide in general; see [1, Example 3] for a simple
example. The main purpose of this paper is to establish the following con-
nection between exposed and extremal points in the general setting.

Theorem 2. Let k ∈ N with k < dimV, let B ⊂ V be closed and convex,
and let P ⊂ Gk(V) be open. Then X kp (B,P) is dense in X kt (B,P).

We say that generic elements of a space have a certain property if the
space has a dense Gδ-subset all of whose elements have that property.

Theorem 3. Let B be closed and convex in Rn and let n ∈ N with
n ≥ 2. Then X 1

p (B,G1(Rn)) is a Gδ-set in X 1
t (B,G1(Rn)). Consequently, in

this case generic extremal points are exposed.

Choquet, Corson, and Klee [6] investigated the space X n−1p (B,Gn−1(Rn))
and proved this theorem for the case n = 2. Surprisingly, Theorem 3 fails
to hold for X 1

p (B,P) when P is an open proper subset of G1(Rn) (see Ex-
ample 2). Moreover, Corson [7] gives an example of a convex compactum
B ⊂ R3 such that X 2

p (B,G2(R3)) is of the first category and hence does not

contain a dense Gδ-subset of X 2
t (B,G2(R3)). This is generalized to higher

dimensions in Example 3.

2. Definitions and preliminaries. The inner product in V is denoted
by x · y and 0 stands for the zero vector. By a projection of a point onto a
plane we always mean the orthogonal projection. If ε > 0 and x ∈ V then
the open ball centred at x and with radius ε is denoted by Uε(x). The norm
on V is given by ‖u‖ =

√
u · u and the metric d is given by d(u, v) = ‖v−u‖.

We also define, for A ⊂ V,

A⊥ = {v ∈ V : v · x = v · y for all x, y ∈ A}
and

codimA = dimA⊥ ∈ {0, 1, . . . ,∞}.
A plane in V is a closed affine subspace of V; a k-plane in V is a k-dimen-

sional affine subspace of V. Let H be a hyperplane in V, that is, a plane with
codimension 1. The two components of V \H are called the sides of H. We
say that H cuts a subset A of V if A contains points on both sides of H.
We say that a hyperplane H in V is supporting to A at x if x ∈ H and H
does not cut A. A closed subset L of V is called a halfspace of V if it is the
union of a hyperplane and one of its sides.

Let A be a subset of V. We denote by A the closure and by intA the
interior of A in V. Furthermore, 〈A〉 stands for the convex hull of A and
aff A is the intersection of all planes that contain A. Note that codimA =
codim(aff A). We write ∂A for the geometric boundary of A, that is, the
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boundary with respect to aff A, and we let A◦ = A\∂A denote the geometric
interior. Note that if A is convex and A◦ 6= ∅ then A◦ is dense in A and
A◦ 6= ∅ if A is finite-dimensional.

Definition 1. Consider the closed unit ball B = {v ∈ V : ‖v‖ ≤ 1}.
Let K(B) stand for the hyperspace of all nonempty compact subsets of B.
Recall that the Hausdorff metric dH on K(B) associated with d is defined
as follows:

dH(A,B) = sup{d(x,A), d(y,B) : x ∈ B and y ∈ A}.

By [9, Theorem 1.11.3], K(B) is compact for V = Rn and complete for
V = `2.

We let Gm(V) stand for the collection of all m-dimensional linear sub-
spaces of V. We topologize Gm(V) by defining a metric ρ on Gm(V):

ρ(L1, L2) = dH(L1 ∩ B, L2 ∩ B).

It is readily seen that Gm(V) corresponds to a closed subset of K(B) and
is therefore also compact for V = Rn and complete for V = `2. When V is
finite-dimensional, Gm(V) is known as a Grassmann manifold.

Remark 1. We also allow the degenerate cases G0(V) = {{0}} and
Gm(Rm) = {Rm}. Note that X 0

p (B,G0(V)) = X 0
t (B,G0(V)) = B, and if B is

not a singleton then

Xmp (B,Gm(Rm)) = Xmt (B,Gm(Rm)) = ∅.

Definition 2. Let B be a closed and convex set in V. A subset F of B
is called a face of B if there is a hyperplane H of aff B that does not cut B
with the property F = B ∩ H. Note that F is also closed and convex and
that codimF > codimB. If F is a face of B we write F ≺ B. We say that
a subset F of B is a derived face of B if F = B or there exists a sequence
F = F1 ≺ · · · ≺ Fm = B for some m.

Definition 3. Let P be a collection of linear subspaces of a vector
space V. We say that an affine subspace H of V is consistent with P if there
is a P ∈ P such that z + P ⊂ H for some z ∈ H. Let B be a convex and
closed subset of V. A subset F of B is called a P-face of B if F = B∩H for
some hyperplane H of V that does not cut B and that is consistent with P.
A derived P-face is a derived face of a P-face. If k ∈ N and k < dimV then
we set

Fk(B,P) = {F : F is a derived P-face of B with codimF > k},

and we let Ek(B,P) be the closure of
⋃
Fk(B,P).

To determine which points are extremal we will rely on the following
result from [4, Theorems 15 and 16] and [5, Theorems 3 and 19].
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Theorem 4. Let k ∈ N, B be closed and convex in V, and P ⊂ Gk(V)
be such that P ⊂ intP. If codimB 6= k then Ek(B,P) = X kt (B,P). If
codimB = k then Ek(B,P) ⊂ X kt (B,P). If B◦ = ∅ then B = Ek(B,P) =
X kt (B,P).

Remark 2. Let P be somewhere dense, that is, intP 6= ∅, and let
codimB ≥ k. If P ∈ intP then P can be approximated by a P ′ ∈ P such
that P ′ ∩ aff B is a singleton (cf. [3, Lemma 13]) and hence B = Xp(B,P)
= Xt(B,P).

Definition 4. Let B ⊂ V be closed and convex. Let k ∈ N, k < dimV,
and P ⊂ Gk(V). For the proof of Theorem 2 we will work with the following
subspace of Gk(V)×B:

Tk(B,P) = {(P, x) ∈ P ×B : x ∈ F for some F ∈ Fk(B, {P})}.

3. Some lemmas. In this section we prove the lemmas that we need
to prove our main results.

Lemma 5. Let k ∈ N with k < dimV, and let B be closed and convex
in V. Let (wi)i∈N be a sequence of points in B that converges to w. Let
(Pi)i∈N be a sequence that converges to some P in Gk(V). If (w + P ) ∩ B
is bounded then for every neighbourhood U of (w + P ) ∩B there is a j ∈ N
such that (wi + Pi) ∩B ⊂ U for every i > j.

Proof. Let U be an open neighbourhood of (w+P )∩B. We may assume
that U is bounded. Striving for a contradiction, and without loss of gener-
ality, we may assume that (wi + Pi) ∩ B \ U 6= ∅ for every i ∈ N. Choose
ai ∈ (wi+Pi)∩B\U , and note that since Pi is connected we can pick ai in the
boundary of U . Thus {ai : i ∈ N} is bounded and so is A = {ai−wi : i ∈ N}
because (wi)i converges. Let M be such that A ⊂ BM = {x ∈ V : ‖x‖ ≤M}.
Since ai−wi ∈ Pi we may select, by the definition of ρ, a point yi in P ∩BM
such that d(ai − wi, yi) ≤ Mρ(Pi, P ) and hence limi→∞ d(ai − wi, yi) = 0.
Since P ∩BM is compact we may assume (by passing to a subsequence) that
limi→∞ yi = y ∈ P ∩ BM . Consequently, we also have limi→∞(ai − wi) = y
and limi→∞ ai = w+ y. In conclusion, w+ y ∈ B \U , which contradicts the
assumption that (w + P ) ∩B ⊂ U .

Lemma 6. Let k ∈ N with k < dimV, ε > 0, and let B be closed and
convex in V. Then the set Sε = {(P, x) ∈ Gk(V)×B : diam((x+P )∩B) ≥ ε}
is closed.

Proof. Let (P, x) ∈ Gk(V)×B be the limit of a sequence (Pi, xi)i in Sε.
If diam((x+P )∩B) < ε then choose a neighbourhood U of (x+P )∩B with
diamU < ε. Apply Lemma 5 to find a (Pi, xi) ∈ Sε such that (xi + Pi) ∩B
is contained in U , which implies that diamU ≥ ε. Thus (P, x) ∈ Sε.
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Lemma 7. Let k ∈ N with k < dimV, let B be closed and convex in V,
and let P ∈ Gk(V). Let w be a point in a {P}-face of B such that (w+P )∩B
is line-free. Then for every ε > 0 there is a w∗ ∈ B such that (P,w∗) is in
Tk(B, {P}) and Uε(w

∗) ∩ (w + P ) ∩B 6= ∅.
Proof. Let F ∗ be the {P}-face that contains w, so there is a supporting

hyperplane H to B at w such that w + P ⊂ H and F ∗ = B ∩H. Consider

F = {F : F is a derived face of F ∗ such that F ∩ (w + P ) 6= ∅}.
The collection F is nonempty because it contains F ∗.

Let us first assume that there is an F1 ∈ F such that F ◦1 = ∅. Consider
A = F1 ∩ (w + P ). According to [2, Lemma 5] the set

⋃
{F : F is a derived

face of F1 and codimF > k} is dense in F1. So, we can choose a derived
face F̂ of F1 and a w∗ ∈ F̂ such that codim F̂ > k and Uε(w

∗) ∩ A 6= ∅.
Consequently, F̂ ∈ Fk(B, {P}) and (P,w∗) ∈ Tk(B, {P}), as required.

Next, we may assume that F ◦ 6= ∅ for every F ∈ F . Striving for a
contradiction, assume that codimF ≤ k for every F ∈ F . Then we may
select an F ∈ F with maximal codimension. Note that H contains both
w + P and F and codimH = 1. Thus codim(aff F ) in H is at most k − 1.
Since dimP = k we have dim((w+P )∩aff F ) ≥ 1. Let ` be a line contained
in (w+P )∩aff F such that `∩F 6= ∅. Since (w+P )∩B is line-free, there is
a y ∈ `∩ ∂F . Since F ◦ 6= ∅, the point y is contained in some face G of F by
Hahn–Banach. Now we see that codimG > codimF and G ∈ F , contrary
to the choice of F . Thus, we can conclude that there is an F̂ ∈ F with
codim F̂ > k. In this case, for w∗ we simply take any point in F̂ ∩ (w+P ).

Lemma 8. Let k ∈ N with k < dimV and let B be closed and convex
in V. Let ε > 0, let P be a subset of Gk(V) such that P ⊂ intP, and
let (L,w) ∈ Tk(B, intP). Then there is an (L∗, w∗) ∈ Tk(B,P) such that
‖w − w∗‖ < ε, ρ(L,L∗) < ε, and diam((w∗ + L∗) ∩B) < ε.

Proof. Note that P 6= ∅ since L ∈ intP. Define the open nonempty set

U = {L′ ∈ intP : ρ(L′, L) < ε/2}
of Gk(V). We consider three cases.

Case I: codimB > k. According to Remark 2 we can approximate L
with an L∗ ∈ P such that L∗∩aff B is a singleton and hence (w+L∗)∩B =
{w}. Note that codim(L∗ + aff B) ≥ codimB − dimL∗ ≥ 1, thus B + L∗

is contained in some hyperplane of V. Consequently, B ∈ Fk(B, {L∗}) and
(L∗, w) ∈ Tk(B,P).

Case II: B◦ = ∅. By Theorem 1 we find a P ∈ U such that (w+P )∩B
= {w}. For i ∈ N define the nonempty set

Pi = {P ′ ∈ P : ρ(P ′, P ) < 1/i}
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and note that Pi ⊂ intP i. By Theorem 4 we have B = Ek(B,Pi) and we
can choose a wi ∈ B such that ‖wi − w‖ < 1/i and wi ∈ F for some
F ∈ Fk(B,Pi). So there is a Pi ∈ Pi with F ∈ Fk(B, {Pi}) and hence
(Pi, wi) ∈ Tk(B,P). Let O be a neighbourhood of w such that diamO < ε.
By Lemma 5 there exists an i ∈ N such that ρ(Pi, P ) < ε/2, ‖wi − w‖ < ε,
and (wi + Pi) ∩B ⊂ O. Taking w∗ = wi and L∗ = Pi we see that the proof
for this case is complete.

Case III: codimB ≤ k and B◦ 6= ∅. Let F ∈ Fk(B, {L}) be such that
w ∈ F . Since codimF > k we can find by [2, Remark 1] a sequence of affine
spaces Hk+1 ⊂ Hk ⊂ · · · ⊂ H0 = V such that w + L ⊂ H1, F ⊂ Hk+1, and
Hi is a hyperplane in Hi−1 that does not cut Hi−1∩B for i ∈ {1, . . . , k+1}.
Note that codimHi = i for each i and that B 6⊂ Hk+1 because codimB ≤ k.
Let i be such that B 6⊂ Hi but B ⊂ Hi−1. Choose a coordinate system such
that 0 ∈ B \Hi and ‖w‖ < ε/3. Set

U = Uε/3(w) ∩Hi, Z = (0, 1]U, C = B \ Z.
Since Z is open in the halfspace of Hi−1 that has Hi as its boundary and
that contains B, we see that C is closed. Also diamZ < ε and C is a cone
with vertex 0, that is, [0, 1]C = C. Since w ∈ F ∈ Fk(B, {L}) and L ∈ U
we find that w ∈ Ek(B,U). Hence w ∈ Ek(B,U) \ C ⊂ Xt(B,U) \ C by
Theorem 4. Thus C is not a U-imitation of B, and there are an L̂ ∈ U and a
ŵ ∈ B\C such that (ŵ+L̂)∩C = ∅. This means that (ŵ+L̂)∩B is a subset
of Z and thus diam((ŵ+ L̂)∩B) < ε. Let limn→∞ L̂n = L̂ with L̂n ∈ P for
every n. By Lemma 5 we can choose an i ∈ N such that ρ(L̂, L̂i) < ε/2 and
(ŵ+ L̂i)∩B ⊂ V \C, thus (ŵ+ L̂i)∩C = ∅. Set L∗ = L̂i and observe that
ρ(L,L∗) < ε.

Claim 1. (tŵ + L∗) ∩ C = ∅ for every t ≥ 1.

Proof. Suppose that there are t ∈ R, t ≥ 1, and v ∈ L∗ such that
tŵ + v ∈ C. Consider the point z = 1

t (tŵ + v) = ŵ + 1
t v. Observe that

z ∈ (ŵ + L∗) ∩ C, a contradiction.

Note that ŵ 6∈ L∗ because otherwise we would have had 0 ∈ (ŵ+L∗)∩C.
Thus Rŵ ∩ L∗ = {0} and the natural map from R × L∗ to Rŵ + L∗ is a
homeomorphism. By Claim 1 we see that ([1,∞)ŵ + L∗) ∩B is a subset of
the bounded set Z and is therefore compact. We may now define

s = max{t ≥ 1 : (tŵ + L∗) ∩B 6= ∅}.
Choose a v ∈ (sŵ+L∗)∩B and note that sŵ+L∗ = v+L∗ and (v+L∗)∩C = ∅
by Claim 1. Also, (v+L∗)∩B is compact because the set is contained in Z.
Observe that (v + L∗) ∩ B◦ = ∅, otherwise s would not be maximal. By
Hahn–Banach and the assumption B◦ 6= ∅ there exists a hyperplane H in V
such that (v+L∗) ⊂ H and H does not cut B. Note that v is in the {L∗}-face
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B∩H. By Lemma 7, we construct a sequence (w∗n)n of points in B such that
(L∗, w∗n) ∈ Tk(B,P) and U1/n(w∗n)∩ (v+L∗)∩B 6= ∅. Since (v+L∗)∩B is
compact, we may assume that (w∗n)n converges to a point in (v + L∗) ∩ B.
Now, we apply Lemma 5 to find some j ∈ N such that (w∗j + L∗) ∩ C = ∅
and hence (w∗j + L∗) ∩ B ⊂ Z and diam((w∗ + L∗) ∩ B) < ε. We observe
that w and w∗j are both in Z and thus ‖w∗j − w‖ < ε. Taking w∗j for w∗ we
conclude that (L∗, w∗) is as required.

Lemma 9. Let k ∈ N with k < dimV, let B be closed and convex in V,
and let P be a subset of Gk(V) such that P ⊂ intP. Then Ek(B,P) =
Ek(B, intP) and X kt (B,P) = X kt (B, intP).

Proof. By Theorem 4 and Remark 2, Xt follows from E . Clearly, it suffices
to show that Ek(B, intP) ⊂ Ek(B,P), which means that

⋃
Fk(B, intP) ⊂

Ek(B,P). So let w ∈ F ∈ Fk(B, intP) and ε > 0. Then there is an L such
that (L,w) ∈ Tk(B, intP). By Lemma 8 there is an (L∗, w∗) ∈ Tk(B,P) such
that ‖w − w∗‖ < ε and hence w∗ ∈ Ek(B,P). Thus w ∈ Ek(B,P) because
that set is closed.

4. Proofs and examples. Theorem 2 follows immediately from the
following stronger theorem.

Theorem 10. Let k ∈ N with k < dimV, let B ⊂ V be closed and con-
vex, and let P be a Gδ-subset of Gk(V) such that P ⊂ intP. Then X kp (B,P)

is dense in X kt (B,P).

Proof. First of all, we may assume that P 6= ∅ since otherwise the theo-
rem is trivial. Now, if codimB ≥ k then we are done by Remark 2.

Thus we may assume that codimB < k. By Theorem 4 we know that
Ek(B,P) = X kt (B,P). By the definition of Ek(B,P) it suffices to show that⋃
Fk(B,P) ⊂ X kp (B,P). Let M denote the closure of Tk(B,P) in P×B and

notice that M is topologically complete because B and Gk(V) are complete
and P is topologically complete. For n ∈ N, define

Sn = {(P, x) ∈M : diam((x+ P ) ∩B) ≥ 1/n},
and note that this set is closed by Lemma 6. According to Lemma 8 every
element of Tk(B,P) can be approximated by an element of Tk(B,P) \ Sn,
thus Sn is nowhere dense in M . By the Baire Category Theorem we deduce
that M \

⋃∞
n=1 Sn is dense in M . Let F ∈ Fk(B,P), let x ∈ F , and let

ε > 0. Then there is a P ∈ P such that F is a derived {P}-face of B.
Thus (P, x) ∈ Tk(B,P) and there is a (P ′, x′) ∈ M \

⋃∞
n=1 Sn such that

‖x′ − x‖ < ε and P ′ ∈ P of course. Note that diam((x′ + P ′) ∩ B) < 1/n
for all n, and hence (x′ + P ′) ∩B = {x′} and x′ ∈ X kp (B,P). Consequently,⋃
Fk(B,P) ⊂ X kp (B,P) and the theorem is proved.
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With Lemma 9 we have

Corollary 11. Let k ∈ N with k < dimV, let B ⊂ V be closed and
convex, and let P ⊂ Gk(V) be such that P ⊂ intP. Then

X kp (B, intP) = X kt (B,P).

A natural question is whether we can replace the left hand side of the
equation in Corollary 11 by X kp (B,P), that is: Is Theorem 10 valid without
the Gδ-condition on P as in Theorem 4? The following example shows that
the answer is no.

Example 1. We construct a convex compactum B ⊂ R2 and a P ⊂
G1(R2) with P ⊂ intP such that X 1

p (B,P) is not dense in X 1
t (B,P). This

example can easily be generalized to higher dimensions using the method of
Example 3 below.

Let C be a Cantor set in I = [0, 1] such that 0, 1 ∈ C and every nonempty
open subset has positive Lebesgue measure λ. Let (an, bn), n ∈ N, list the
gaps of C, and set U =

⋃∞
n=1[an, bn]. Let χ be the characteristic function

on C and define f(x) =
	x
0 χ(t) dt for x ∈ I. Note that f is a nondecreasing

continuous function from I onto [0, λ(C)]. Moreover, f is constant on the
intervals [an, bn] and we set {mn} = f([an, bn]). If s < x < t in I and x ∈
C \U then λ(C ∩ (s, x)) > 0 and λ(C ∩ (x, t)) > 0, thus f(s) < f(x) < f(t).
Since the union U is dense in I, we see that M = {mn : n ∈ N} is dense
in [0, λ(C)]. Let P consist of the lines in G1(R2) that have a slope in M
and note that P ⊂ intP. Define F (x) =

	x
0 f(t) dt for x ∈ I and note that

the graph G of F is concave up, so the convex hull B of that graph is a
compactum in the plane that is bounded below by G and above by the line
segment that connects the origin (0, F (0)) with the point (1, F (1)). Note
that the part of G above [an, bn] is a straight line segment Ln.

Let (x, F (x)) be a point of G with x ∈ (0, 1) and let ` be a supporting
hyperplane (a line in this case) to B at that point. Since F is differentiable,
` must be the tangent line to G and the slope of ` is f(x). If x ∈ I \U then
f(x) /∈M because f is strictly increasing at x. Thus (x, F (x)) /∈ X 1

p (B,P).
If x ∈ U then ` ∩ B = Ln for some n, so x is not exposed by any line. But
the endpoints (an, F (an)) and (bn, F (bn)) of Ln are in E1(B,P) = X 1

t (B,P).
Clearly, the closure of X 1

p (B,P) does not equal X 1
t (B,P).

We have the following improvement over Theorem 1.

Theorem 12. For closed and convex sets B ⊂ `2 with empty geomet-
ric interior B◦ we have X kp (B,P) = X kt (B,P) = B for any k ∈ N and

somewhere dense Gδ-set P ⊂ Gk(`2).
We showed in [5, Example 3] that one cannot do without the Gδ-con-

dition on P in this theorem.
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Proof of Theorem 12. Obviously it suffices to prove that B ⊂ X kp (B,P).

Define P ′ = P ∩ intP and note that P ′ is a nonempty Gδ-set with the
property P ′ ⊂ intP ′ = O. Let w ∈ B and define, for n ∈ N,

On = {P ∈ O : diam((w + P ) ∩B) < 1/n}.
By Lemma 6 every On is open. By Theorem 1 every nonempty open subset
of O contains a P with (w+P )∩B = {w}, thus

⋂∞
n=1On is dense in O. Since

O is topologically complete and P ′ is also a dense Gδ-set in O, we deduce
according to Baire that there is an element P in P ′∩

⋂∞
n=1On. Consequently,

(w + P ) ∩B = {w} and w ∈ X kp (B,P ′) ⊂ X kp (B,P).

Proof of Theorem 3. By Remark 2 we may assume that codimB = 0,
that is, dimB = n. If F1 ≺ F2 in Rn then we say that F1 is a facet of F2

if dimF1 = dimF2 − 1. Note that a facet F1 has a nonempty interior in
the (dimF2 − 1)-manifold ∂F2. Also these interiors are disjoint for different
facets of the same closed convex set. Consequently, by separability a closed
convex set can have only countably many facets. A sequence of derived
faces Fm ≺ Fm−1 ≺ · · · ≺ F1 = B of B is called regular if every Fi is
a facet of Fi−1. Also, we call every derived face of B for which a regular
sequence exists a regular derived face. Note that B has countably many
regular derived faces and one of them is B itself.

Claim 2. If x ∈ B\X 1
p (B,G1(Rn)) then x ∈ F ◦ for some regular derived

face F of B.

Proof. Let F be the set of all regular derived faces F of B such that
x ∈ F . Since F 6= ∅, we may select an F ∈ F with a minimal dimension.
We show that x ∈ F ◦. Indeed, suppose that x /∈ F ◦. Let H be a supporting
hyperplane at x to F in aff F . Then F̂ = H ∩ F is a face of F . Since F is
a regular derived face with a minimal dimension, F̂ cannot be a facet of F .
Thus dim F̂ ≤ dimF −2. Therefore, the codimension of F̂ in H is at least 1.
So we can select a line ` ∈ G1(Rn) such that x+` ⊂ H and ` is perpendicular
to aff F̂ . Then (x+ `)∩B = {x} and x is exposed, a contradiction. We may
conclude that x ∈ F ◦.

Claim 3. Let F be a derived face of B. If there is an exposed point of B
in F ◦ then F ⊂ X 1

p (B,G1(Rn)).

Proof. Take a coordinate system such that 0 ∈ F ◦ and 0 is exposed, so
there is an ` ∈ G1(Rn) with `∩B = {0}. Consider an x ∈ F and assume that
y ∈ (x+ `) ∩ B with y 6= x. Then ` = R(y − x). Next, since 0 ∈ F ◦ we can
choose a t > 0 such that −tx ∈ F . Since −tx, y ∈ B, we find by convexity
that w = t

1+ty + 1
1+t(−tx) is in B. On the other hand, w = t

1+t(y − x) and
therefore w ∈ `. Hence w ∈ B ∩ ` and w 6= 0, a contradiction. Therefore,
(x+ `) ∩B = {x} and the claim is proved.
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Consider the countable set

L = {F ◦ : F is a regular derived face of B with F ◦ ∩ X 1
p (B,G1(Rn)) = ∅}.

Obviously,
⋃
L ⊂ B \ X 1

p (B,G1(Rn)). If x ∈ B \ X 1
p (B,G1(Rn)) then by

Claim 2 there is a regular derived face F of B with x ∈ F ◦. By Claim 3
no point of F ◦ can be exposed, thus F ◦ ∈ L. We observe that

⋃
L =

B \ X 1
p (B,G1(Rn)). Every F ◦ ∈ L is an open subset of a closed set in Rn,

thus σ-compact. Since L is countable,
⋃
L is also σ-compact. Hence

X 1
p (B,G1(Rn)) is a Gδ-set in B and of course also in X 1

t (B,G1(Rn)).

The following example shows that in Theorem 3 we may not replace
G1(Rn) by an open proper subset.

Example 2. We give an example for a compact and convex set K in R3

for which the set of points exposed by G1(R3)\G1(H), for some linear 2-space
H of R3, is not a Gδ-set. In R3 take an xyz-coordinate system and set

K1 = {(x, 0, z) : (x+ 1)2 + (z + 1)2 = 1},
K2 = {(x, 0, z) : (x− 1)2 + (z + 1)2 = 1}.

Let B be formed by revolving 〈K1∪K2〉 around the z-axis. The intersection
of B and the xy-plane is denoted by D = {(x, y, 0) : x2 + y2 ≤ 1}. Let
A = {an : n ∈ N} be a dense countable subset of the circle ∂D. For n ∈ N
let En be the hyperplane determined by the point (0, 0, 1/n) and the tangent
line rn at an to ∂D in the xy-plane. Let Vn be the halfspace determined by En
that contains the origin. Define a compact convex subset K of R3 by

K = B ∩
∞⋂
n=1

Vn.

Let P = {P ∈ G1(R3) : P 6⊂ xy-plane}. It suffices to prove that X 1
p (K,P)

∩ ∂D = A.
Note that if ` is a line through an and a point on the z-axis between 0

and 1/n then `∩K = {an}. Thus an ∈ X 1
p (K,P) for every n ∈ N. Take w in

∂D \A. We prove that w /∈ X 1
p (K,P). Let ` ∈ P be arbitrary. Then ` = Rv

for some nonzero vector v = (vx, vy, vz) with vz < 0. Note that w+Rv does
not expose w in B (see [1, Example 3]). Thus, (w + Rv) ∩ B = w + [0, s]v
for some s > 0.

Claim 4. If En ∩ (w + R+v) 6= ∅ then |vz|/
√
v2x + v2y ≤ 1/n, where

R+ = (0,∞).

Proof. Suppose u ∈ En ∩ (w + R+v). Let û be the projection of u onto
the xy-plane. Note that u lies below the xy-plane because vz < 0, and hence
û and 0 lie on opposite sides of rn in the xy-plane. Let p be the point of
intersection of rn with the line segment that connects û to 0. Since rn is
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tangent to the unit circle ∂D we see that ‖p‖ ≥ 1 and ‖p − û‖ ≤ ‖q − û‖
for any point q ∈ ∂D, in particular for w. Note that the slope of the line
w + Rv with respect to the xy-plane is

|vz|√
v2x + v2y

=
‖u− û‖
‖w − û‖

≤ ‖u− û‖
‖p− û‖

.

Looking at the plane that contains the z-axis and u, we find by similarity
of triangles that

‖u− û‖
‖p− û‖

=
1/n

‖p‖
≤ 1

n
.

By Claim 4, only finitely many elements of {En : n ∈ N} intersect
w + R+v. Thus there exists a t ∈ (0, s] such that w + [0, t]v is contained in
every halfspace Vn. Therefore, w + [0, t]v ⊂ K and w /∈ X 1

p (K,P). Being

countable and dense in ∂D the subset A is not a Gδ-set. Hence X 1
p (K,P) is

not a Gδ-set.

We turn to the question whether Theorem 3 is valid for k > 1. Klee [8,
Example (6.10)] showed that there is a compact convex body B in R3 such
that X 2

p (B,G2(R3)) is not a Gδ-set. Corson [7] constructed a more refined

example: there is a compact convex body B in R3 such that X 2
p (B,G2(R3))

is of the first category and therefore does not contain a dense Gδ-subset of
X 2
t (B,G2(R3)). The question here is whether there are similar statements

for X kp (B,Gk(Rn)) for 1 < k < n.
We need a proposition. If we assume that 0 ∈ B then aff B is a linear

space and we can use X kp (B) to denote X kp (B,Gk(aff B)).

Proposition 13. Let B be a closed and convex subset of Rn. Then, for
2 ≤ k ≤ dimB,

X kp (B × I) = (X kp (B)× (0, 1)) ∪ (X k−1p (B)× {0, 1}).
Proof. Choose a coordinate system such that 0 ∈ B◦. Let π : Rn × R

→ Rn be the projection. We identify Rn with Rn × {0} ⊂ Rn+1. Fix 2 ≤
k ≤ dimB.

Let x = (a, s) ∈ X kp (B× I). Thus there is an L ∈ Gk(aff B×R) such that
(x+L)∩ (B× I) = {x}. Consider the case 0 < s < 1. Put L′ = π(L) ∈ aff B.
Since x+L does not contain the line {a}×R we see that dimL′ = dimL = k
and L′ ∈ Gk(aff B). If b ∈ L′ is such that a + b ∈ B then there is a t ∈ R
with (b, t) ∈ L. Because s is interior to I we can select an r ∈ (0, 1) such
that q = s + rt ∈ I. Then c = a + rb ∈ B and (c, q) ∈ (x + L) ∩ B. Thus
c = a and hence b = 0. We have (a+ L′) ∩B = {a} and a ∈ X kp (B).

Now, let s = 0. Let L̂ = L∩(Rn×{0}). Note that dim L̂ ≥ k−1 and select
a (k− 1)-subspace P of L̂. Then (x+P )∩B = {a} and x ∈ X k−1p (B)×{0}.
The case s = 1 is obviously the same.
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For the other direction, let (a, s) = x ∈ X kp (B)× (0, 1). Then there is an
L ∈ Gk(aff B) such that (a+L)∩B = {a}. This implies (x+L)∩ (B× I) =
(x+ L) ∩ (B × {s}) = {x}. Hence x ∈ X kp (B × I).

Now, let (a, 0) = x ∈ X k−1p (B) × {0}. So, there is an L ∈ Gk−1(aff B)

such that (a + L) ∩ B = {a}. Set L̂ = L + R(a, 1) ∈ Gk(aff B × R) and let
(b, t) ∈ (x+ L̂)∩ (B× I). Thus t ∈ I and b = a+ p+ ta ∈ B for some p ∈ L.
Since 0 ∈ B◦ we have

1

1 + t
b = a+

1

1 + t
p ∈ (a+ L) ∩B = {a}.

So b = 1
1+ta and U = a+ t

1+tB
◦ ⊂ B by convexity. If t > 0 then U is an open

neighbourhood of a in aff B and hence (a + L) ∩ U is open in a + L. Thus
dim((a+L)∩B) = dimL = k−1 ≥ 1, which contradicts (a+L)∩B = {a}.
Consequently, t = 0 and hence x = (b, t), which means that x ∈ X kp (B×I).

Example 3. Let B ⊂ R3 be Corson’s example as described above. Let
n ≥ 3 and Kn = B × In−3 ⊂ Rn. Since aff B = R3 we have aff Kn = Rn.
We show by induction with respect to n that whenever 2 ≤ k < n the set
X kp (Kn) contains a nonempty open first category subspace. Consequently,

X kp (Kn) does not contain a dense Gδ-subset of the complete space X kt (Kn).

For the base case of the induction we have n = 3 thus k = 2 with K3 = B
obviously satisfying the hypothesis. Assume now that the hypothesis is valid
for some n ≥ 3, and consider Kn+1 and 2 ≤ k ≤ n. We apply Proposition 13
to get

X kp (Kn+1) = (X kp (Kn)× (0, 1)) ∪ (X k−1p (Kn)× {0, 1}).

If k < n then by the hypothesis X kp (Kn) contains a nonempty open first
category subspace O and hence O × (0, 1) is a nonempty open first cate-
gory subspace of X kp (Kn). If k = n then X kp (Kn) = ∅ (see Remark 1). So

X kp (Kn+1) = X k−1p (Kn)×{0, 1}, the union of two clopen copies of X k−1p (Kn).

Since k − 1 = n− 1 ≥ 2 the induction hypothesis applies to X k−1p (Kn) and
the proof is complete.

These examples show why we work in the space Gk(V)×B for the proof
of Theorem 10: the Baire category argument cannot work in B.

We finish our paper with the following open problem.

Question 1. Let B be closed and convex in `2 with intB 6= ∅. Is
X 1
p (B,G1(`2)) a Gδ-set in X 1

t (B,G1(`2))?
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