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Brent Cody and Sean Cox (Richmond, VA)

Abstract. Foreman (2013) proved a Duality Theorem which gives an algebraic char-
acterization of certain ideal quotients in generic extensions. As an application he proved
that generic supercompactness of ω1 is preserved by any proper forcing. We generalize
portions of Foreman’s Duality Theorem to the context of generic extender embeddings
and ideal extenders (as introduced by Claverie (2010)). As an application we prove that
if ω1 is generically strong, then it remains so after adding any number of Cohen sub-
sets of ω1; however many other ω1-closed posets—such as Col(ω1, ω2)—can destroy the
generic strongness of ω1. This generalizes some results of Gitik–Shelah (1989) about in-
destructibility of strong cardinals to the generically strong context. We also prove similar
theorems for successor cardinals larger than ω1.

1. Introduction. Many conventional large cardinal properties are wit-
nessed by the existence of ultrafilters or elementary embeddings. Some of
these properties can be viewed as special cases of more general concepts,
namely generic large cardinal properties [For10, Remark 3.14], which are
usually witnessed by generic ultrafilters and generic elementary embed-
dings, and which can be arranged to hold at small cardinals. For exam-
ple, by collapsing below a measurable cardinal, one can arrange that there
is a precipitous ideal I on ω1 witnessing the generic measurability of ω1

in the sense that forcing with ℘(κ)/I − {[0]} naturally yields a V -normal
V -ultrafilter on ℘(κ)V with a well-founded ultrapower in the extension (see
[Cum10, Section 17.1]).

Preserving large cardinals through forcing by lifting elementary embed-
dings has been a major theme in set theory [Cum10]. In some cases, large
cardinals can be made indestructible by wide classes of forcing. For example,
given a supercompact cardinal κ, Laver [Lav78] used a preparatory forcing
iteration to produce a model in which κ remains supercompact, and the
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supercompactness of κ is indestructible by any further κ-directed closed
forcing. Gitik and Shelah [GS89] proved that the strongness of a cardinal κ
can be made indestructible by κ+-weakly closed forcing satisfying the Prikry
condition. As shown by Hamkins [Ham00], one can obtain indestructibility
results for many large cardinals by using a preparatory forcing he calls the
lottery preparation.

It is natural to wonder whether similar results hold for some generic large
cardinal properties. Let us first clear up some possibly confusing terminol-
ogy in the literature, which will also help the reader more easily understand
the division of Sections 3 and 4 in this paper, and Claverie’s [Cla10] dis-
tinction between ideally strong and generically strong. Conventional large
cardinals—such as measurable and supercompact cardinals—admit equiva-
lent definitions in terms of either embeddings or ultrafilters. This is not true
of generic large cardinals. Let us say that a cardinal κ is:

• generically measurable if there is a poset which forces that there is
an elementary embedding j : V → M with M well-founded and
crit(j) = κ;
• ideally measurable if there is a precipitous ideal on κ; equivalently,
κ is generically measurable and the poset which witnesses the generic
measurability is of the form ℘(κ)/I for some ideal I on κ;
• generically supercompact if for every λ > κ there is a poset which

forces that there is an elementary embedding j : V → M with M
well-founded, crit(j) = κ, and j”λ ∈M ;
• ideally supercompact if κ is generically supercompact and for each
λ the witnessing poset is of the form ℘(Pκ(λ))/I for some normal
precipitous ideal I on Pκ(λ); this is what Foreman [For13] calls generic
supercompactness.

Kakuda [Kak81] and Magidor [Mag80] independently proved that if κ
is a regular uncountable cardinal and P is a poset satisfying the κ-chain
condition, then I ⊆ ℘(κ) is a precipitous ideal if and only if P forces that
the ideal on κ generated by I is precipitous. In particular, if κ is ideally
measurable in the sense given above, then it remains so in any κ-c.c. forcing
extension. Their proof also shows that generic measurability of κ is preserved
by any κ-cc forcing; this is an easier result.

Foreman [For13] proved a Duality Theorem which gives an algebraic
characterization of ideal quotients arising in many settings where generic
large cardinal embeddings are lifted to generic extensions. As an application,
he proved the following theorem:

Theorem 1.1 (Foreman [For13]). If ω1 is generically supercompact or
ideally supercompact, then it remains so after any proper forcing.
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It should be noted that Foreman’s Theorem 1.1, and also our Theo-
rem 1.2 below, require no “preparation forcing”. We caution the reader that
what Foreman calls generic supercompactness is what we are calling ideal
supercompactness. We note that Foreman’s Duality Theorem is used in his
proof of preservation of ideal supercompactness; but the Duality Theorem
is not used in the proof of preservation of generic supercompactness.

Claverie [Cla10] introduced the notions of generically strong and ideally
strong cardinals. These are defined in Section 2 below, but roughly: κ is
generically strong iff there are arbitrarily strong well-founded generic em-
beddings of V ; and κ is ideally strong iff its generic strongness is witnessed
by what Claverie calls ideal extenders. In summary, just as precipitous ide-
als can be used to witness the generic measurability or supercompactness
of a cardinal, precipitous ideal extenders can be used to witness generic
strongness.

In this article we prove the following indestructibility result concerning
ideally strong cardinals and generically strong cardinals:

Theorem 1.2. If ω1 is ideally strong or generically strong, then it re-
mains so after forcing to add any number of Cohen subsets of ω1.

Let us remark that Theorem 1.2 is generalized below (see Theorem 2.14)
to include the case in which κ > ω1, assuming other technical requirements
related to internal approachability.

Theorem 1.2 will follow from Theorems 3.1 and 4.3 below. The-
orem 3.1—which applies to any generically strong setting—involves lifting
a generic strongness embedding through Cohen forcing using a ‘surgery’
argument (see [Cum10, Theorem 25.1] and [CM14]) rather than a master
condition argument which is possible in the supercompactness context. The-
orem 4.3—which is specific to the ideally strong setting—extends portions
of Foreman’s duality theory (see [For13] and [For10]) into the context of
ideal extenders, and allows us to conclude that a certain (κ, λ)-ideal exten-
der derived from a lifted embedding is precipitous. Theorems 3.1 and 4.3
are then used to prove Theorem 1.2 in Section 5.

It is natural to ask whether Theorem 1.2 can be strengthened; for ex-
ample, whether the generic or ideal strongness of ω1 is necessarily preserved
by all ω1-closed forcings (not just forcings to add Cohen subsets to ω1). The
answer is no, for the following reason, as alluded to in Gitik–Shelah [GS89]
in the conventional large cardinal setting. Suppose G is Col(κ, κ+)-generic
over V , and that in V [G] the cardinal κ is generically measurable. Then
V must have an inner model with a Woodin cardinal. Otherwise, the core
model K exists in V and is absolute to V [G]; and moreover (see [CS12])
V [G] believes that K computes κ+ correctly; but this is a contradiction,

because κ+K ≤ κ+V < κ+V [G].
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2. Preliminaries

2.1. Ideal extenders. We refer the reader to Kanamori [Kan03] for
the definition of an extender.

Claverie [Cla10] gives a detailed account of ideal extenders and when
ideal extenders are precipitous. We recount his main definitions in this
section. Claverie defines a set F to be a (κ, λ)-system of filters if F ⊆
{(a, x) ∈ [λ]<ω × ℘([κ]<ω) : x ⊆ [κ]|a|} and for each a ∈ [λ]<ω the set
Fa := {x : (a, x) ∈ F} is a filter on [κ]|a|. The support of F is supp(F ) =
{a ∈ [λ]<ω : Fa 6= {[κ]|a|}}. In what follows we will identify each finite subset
of λ with the corresponding unique increasing enumeration of its elements;
in other words, a ∈ [λ]<ω will be identified with the function sa : |a| → a
listing the elements of a in increasing order. Given a, b ∈ [λ]<ω with a ⊆ b,
let s : |a| → |b| be the unique function such that a(n) = b(s(n)). For x in
℘([κ]|a|), define xa,b = {〈ui : i < |b|〉 ∈ [κ]|b| : 〈us(j) : j < |a|〉 ∈ x}. A (κ, λ)-
system of filters F is called compatible if for all a ⊆ b with a, b ∈ supp(F )
one has x ∈ Fa if and only if xa,b ∈ Fb. Given a ∈ [λ]<ω and x ∈ F+

a , we
define F ′ = span{F, (a, x)}, the span of F and (a, x), to be the smallest
(κ, λ)-system of filters such that F ⊆ F ′ and (a, x) ∈ F ′.

If F is a single filter on κ, the usual Boolean algebra BF := ℘(κ)/F is
forcing equivalent to the poset EF whose conditions are filters of the form
F ∪ {S}, where S ∈ F+ (1); the poset EF is ordered by reverse inclusion.
The following definition generalizes the latter poset to systems of filters:

Definition 2.1 ([Cla10, Definition 4.3(v)]). Given a (κ, λ)-system F
of filters, the forcing associated to F is denoted by EF and consists of all
conditions p = F p where F p is a compatible (κ, λ)-system of filters such that
supp(p) = supp(F p) ⊆ supp(F ) and F p is generated by one point x ∈ F+

a

for some a ∈ supp(p), i.e., F p = span{F, (a, x)}. The ordering on EF is
defined by p ≤ q if and only if supp(q) ⊆ supp(p) and for all a ∈ supp(q),
we have F qa ⊆ F pa , in other words F q ⊆ F p.

If F is a compatible (κ, λ)-system of filters and Ġ is the EF -name for the
generic object, let ĖF be the name for

⋃
Ġ. Then clearly ĖF is forced to be a

(κ, λ)-system of filters, and indeed, as shown in [Cla10], each (ĖGF )a = (
⋃
G)a

is a V -ultrafilter. Claverie defines two additional combinatorial properties of
(κ, λ)-systems of filters, potential normality and precipitousness (see [Cla10,
Definition 4.4]) such that the following two facts hold. First, if F is a compat-
ible potentially normal (κ, λ)-system of filters, then ĖGF is a (κ, λ)-extender
over V ; secondly, if F is in addition precipitous, then the generic ultrapower
jĖGF

: V → Ult(V, ĖGF ) is well-founded.

(1) Here F ∪ {S} denotes the filter generated by F ∪ {S}.
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Definition 2.2 ([Cla10, Definition 4.5]). Let κ < λ be ordinals. Then
F is a (κ, λ)-ideal extender if it is a compatible and potentially normal
(κ, λ)-system of filters such that for each a ∈ supp(F ), the filter Fa is <κ-
closed.

As noted in the introduction, precipitous (κ, λ)-ideal extenders can be
used to witness generic strongness, in a way similar to that in which precip-
itous ideals can be used to witness generic measurability or generic super-
compactness:

Definition 2.3 ([Cla10, Definition 4.9]). A regular cardinal κ is called
ideally strong if for all A ⊆ ORD, A ∈ V , there is some precipitous (κ, λ)-
ideal extender F such that whenever G is EF -generic, and ĖGF is the corre-

sponding V -(κ, λ)-extender, one has A ∈ Ult(V, ĖGF ).

Ideal strongness is a specific form of generic strongness, which is defined
as follows (2):

Definition 2.4 ([Cla10, Definition 4.20]). A cardinal κ is generically
strong if for every set of ordinals A, in V , there is a poset P such that in V P

there is a definable embedding j : V →M with crit(j) = κ, M well-founded,
and A ∈M .

Let us briefly mention a characterization of ideally strong cardinals which
we will use in our proof of Theorem 1.2.

Lemma 2.5. A regular cardinal κ is ideally strong (as in Definition 2.3)
if and only if for every λ ≥ κ there is a precipitous (κ, λ)-ideal extender
F such that, whenever G is (V,EF )-generic, the generic ultrapower jG :
V →M = Ult(V, ĖGF ) satisfies the following properties:

(1) crit(jG) = κ;
(2) jG(κ) > λ;
(3) HV

λ ⊆M .

One can also use the Vα-hierarchy to characterize ideally strong cardi-
nals. However, to obtain Vα ⊆ M = Ult(V, ĖGF ), the length of the generic

extender ĖGF must be at least (|Vα|+)V (see [Kan03, Exercise 26.7]). For
notational convenience, in what follows, we will use the characterization of
ideally strong cardinals given in Lemma 2.5.

Just as one can produce precipitous ideals by collapsing below large
cardinals, Claverie proves [Cla10, Lemma 4.8] that if κ is λ-strong in V as

(2) Definition 2.4 is equivalent to a first-order definition; in particular we could just
require the domain of j to be HV

θP,A where θP,A ≥ |P|+V and A ∈ HθP,A . Then θP,A will
always be uncountable in V P and by well-known arguments such embeddings lift to the
domain V .
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witnessed by a (κ, λ)-extender E, and µ < κ is a cardinal, then forcing with
the Levy collapse Col(µ,<κ) produces a model in which µ+ = κ and

F = {(a, x) : x ⊆ [κ]|a| and ∃y such that (a, y) ∈ E and y ⊆ x}
is a precipitous (κ, λ)-ideal extender.

Notice that if F is a filter, F0 and F1 are filter extensions of F , and
F1 * F0 as witnessed by some S ∈ F1 − F0, then the filter F ′0 generated by
F0 ∪{Sc} extends F0 and is incompatible with F1, in the sense that there is
no proper filter extension of F ′0∪F1. The following lemma is a generalization
of this fact, and will be used in our proof of Theorem 1.2.

Lemma 2.6. Given a (κ, λ)-system F of filters, the associated forcing
EF is a separative poset.

Proof. Suppose p, q ∈ EF are conditions and that p � q. We have
p = span{F, (a, x)} and q = span{F, (b, y)} for some a, b ∈ [λ]<ω and for

some x ∈ (Fa)
+ and y ∈ (Fb)

+. Since p � q we see that F qc 6⊆ F pc for some c in

supp(q). Let z ∈ F qc \F pc ; then [κ]|c|\z ∈ (F pc )+ ⊆ F+
c . Since F p is a compat-

ible (κ, λ)-system of filters and x ∈ F pa , we have xa,a∪c ∈ F pa∪c and similarly

([κ]|c| \ z)c,a∪c ∈ (F pa∪c)
+. Thus, xa,a∪c ∩ ([κ]|c| \ z)c,a∪c ∈ (F pa∪c)

+ ⊆ F+
a∪c,

which means that r = span{F, (a∪ c, xa,a∪c ∩ ([κ]|c| \ z)c,a∪c)} is a condition
in EF . Since xa,a∪c ∈ F ra∪c and thus x ∈ F ra , it follows that r ≤ p. Further-
more, since ([κ]|c| \ z)c,a∪c ∈ F ra∪c we have [κ]|c| \ z ∈ F rc , and thus r ⊥ q.
Therefore EF is separative.

2.2. Internal approachability. In this section we discuss the key tech-
nical issue which comes up in generalizing Theorem 1.2 to the case κ > ω1.

The following definition is standard; see Foreman–Magidor [FM95] for
details:

Definition 2.7. Let µ be a regular cardinal. A set X with µ ⊆ X is
called µ-internally approachable if there is a ⊆-increasing sequence ~N =
〈Ni : i < µ〉 such that:

• ~N is ⊆-continuous (i.e., Nj =
⋃
i<j Ni for each limit ordinal j < µ);

• |Ni| < µ for each i < µ;
• X =

⋃
i<µNi;

• 〈Ni : i < j〉 ∈ X for all j < µ.

We let IAµ denote the class of µ-internally approachable sets.

Remark 2.8. If ~N = 〈Ni : i < µ〉 witnesses that X ∈ IAµ, then
Ni ∩ µ ∈ µ for club-many i < µ. This is because µ is an uncountable regular
cardinal and the assumptions on ~N imply that {Ni : i < µ} is a closed
unbounded subset of Pµ(X). It is then an easy abstract fact that every club
subset of Pµ(X) contains a club subset of z such that z ∩ µ ∈ µ.
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Note that almost every countable subset of Hθ (for θ regular uncount-
able) is ω-internally approachable; this is just because models of set theory
are closed under finite sequences. A simple closing-off argument shows that
for any regular µ ≤ θ, the set IAµ ∩℘µ+(Hθ) is always stationary. Note also
that for any X ∈ ℘µ+(Hθ) we have X ∈ IAµ iff HX ∈ IAµ, where HX is the
transitive collapse of X. We refer the reader to Foreman–Magidor [FM95]
for proofs of the following lemma.

Lemma 2.9. Suppose GCH holds. Let θ ≥ µ be regular cardinals. Then
the following sets are equal modulo the nonstationary ideal on ℘µ+(Hθ):

• IAµ ∩ ℘µ+(Hθ);
• the set of N ∈ ℘µ+(Hθ) such that <µN ⊂ N .

If H is a countable transitive model and P ∈ H is a poset, then one
can use a diagonalization argument to build (H,P)-generic filters. If H is
uncountable then the diagonalization argument still works, provided that
H is internally approachable and believes P is sufficiently closed and well-
orderable:

Lemma 2.10. Suppose H is a transitive ZF− model, µ > ω is a cardinal,
H ∈ IAµ, Q ∈ H is a poset which is <µ-closed in H, and for every N ∈ H
if |N |V < µ then |N |H < µ. Suppose H has some wellorder of Q. Then for
every p ∈ Q there exists a g ⊂ Q such that p ∈ g and g is (H,Q)-generic.

Proof. Fix some p ∈ Q. Let ∆ ∈ H be a wellorder of Q, and let
〈Ni : i < µ〉 witness that H ∈ IAµ. Note that without loss of generality
we can assume that:

(1) p ∈ N0 and ∆ ∈ N0;
(2) 〈Ni : i ≤ `〉 ∈ N`+1 for all ` < µ;
(3) Ni ≺ H for all i < µ.

For a set N and a condition r, let us call r a weakly N -generic condition if
for every D ∈ N which is dense, there is some s ≥ r such that s ∈ D; note
we do not require that s ∈ D ∩N , so the upward closure of r might fail to
be an (N,Q)-generic filter in the usual sense.

Recursively construct a descending sequence 〈pi : i < µ〉 as follows:

• p0 := p.
• Assuming pi has been defined and is an element of Ni+1, let pi+1 be the
∆-least weakly Ni+1-generic condition below pi. Such a condition ex-
ists because |{D ∈ Ni+1 : D ⊆ Q is dense below pi}|H ≤ |Ni+1|H < µ
and Q is <µ-closed in H.
• Assuming j < µ is a limit ordinal and 〈pi : i < j〉 has been defined, let
pj be the ∆-least lower bound of 〈pi : i < j〉 in Q. Such a condition
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exists because 〈pi : i < j〉 ∈ H follows from 〈Ni : i < j〉 ∈ H (and Q
is <µ-closed in H).

A straightforward inductive proof shows that pj ∈ Nj+1 for all j, that
〈pi : i < `〉 ∈ N`+1 for all limit ordinals `, and that whenever j is a suc-
cessor ordinal then pj is a weakly generic condition for Nj . It follows (since
H =

⋃
i<µNi) that {pi : i < µ} generates an H-generic filter.

The role of IAµ in the theory of generic embeddings (with critical point
≥ ω2) has been explored in detail in Foreman–Magidor [FM95]. It also plays
a role in the current paper.

Definition 2.11. Let µ be a regular cardinal and suppose κ = µ+. We
say that κ is generically strong on IAµ if for every λ > κ and A ∈ V there
is a poset P such that in V P there is a definable embedding j : V → M
witnessing that κ is generically strong for A as in Definition 2.4, which in
addition has the following properties (3) in V P:

(1) M<µ ⊆M , and
(2) M |= HV

λ ∈ IAµ.

We say that κ is ideally strong on IAµ if for every cardinal λ ≥ κ there is
a precipitous (κ, λ+)-ideal extender F whose associated generic ultrapower
j : V →M satisfies (1) and (2).

Remark 2.12. Of course, if κ is ideally strong on IAµ then κ is generi-
cally strong on IAµ.

Remark 2.13. Notice that if κ = ω1 and µ = ω, then “κ is generically
strong on IAµ” is equivalent to “κ is generically strong”, and “κ is ideally
strong on IAµ” is equivalent to “κ is ideally strong”. This is simply because
all the relevant models are closed under finite (i.e., <µ-) sequences.

Now we are ready to state a theorem generalizing Theorem 1.2 to include
the case κ > ω1.

Theorem 2.14. Suppose µ is a regular cardinal, κ = µ+, and 2<κ = κ.
If κ is generically strong on IAµ then this is preserved by adding any number
of Cohen subsets of κ. Moreover, if κ is ideally strong on IAµ, then this is
preserved by adding any number of Cohen subsets of κ.

The remainder of the paper is a proof of Theorem 2.14. Note that by
Remark 2.13, Theorem 2.14 implies Theorem 1.2.

(3) The requirement that M<µ ⊆ M is somewhat ad hoc and unnecessary for the
results of this article when κ = ω1 and µ = ω; see Remark 2.13. We suspect that the main
results of this article for κ > ω1 can be proven without using this ad hoc requirement.
However, currently we do not see how to eliminate its use in the proof of Claim 3.4 of
Theorem 3.1 below.
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3. Lifting generic embeddings using surgery

Theorem 3.1. Suppose that µ ≥ ω is a regular cardinal, κ = µ+, and
2<κ = κ. Let θ and η be cardinals with η > θ+, η ≥ θκ, ηκ = η, and
2<η ≤ η+. Further suppose E is a poset such that


VE there is a (κ, η+)-extender Ė over the ground model V with well-
founded ultrapower jĖ : V →M such that crit(jĖ) = κ, jĖ(κ) > η+,
HV
η+ ⊆M , M<µ ⊆M , and M |= HV

η ∈ IAµ.

Then given any condition p ∈ Add(κ, θ)V , the poset E also forces that
there is an ultrafilter g which is (V,Add(κ, θ))-generic with p ∈ g, and that
the ultrapower map jĖ can be lifted to j∗

Ė
: V [g] → M [j∗

Ė
(g)] where

H
V [g]
η+
⊆M [j∗

Ė
(g)], M [j∗

Ė
(g)]<µ ⊆M [j∗

Ė
(g)], and M [j∗

Ė
(g)] |= H

V [g]
η ∈ IAµ.

Proof. Let κ ≥ ωV1 and suppose θ and η are cardinals with η > θ+,
η ≥ θκ, ηκ = η, and 2<η ≤ η+. Suppose there is a partial order E such that
if G is (V,E)-generic then there is a V -(κ, η+)-extender E ∈ V ′ := V [G]
such that the ultrapower j : V → M = Ult(V,E) ⊆ V ′ is well-founded and
has the following properties:

(1) η+ < j(κ) and the critical point of j is κ;

(2) HV
η+ ⊆M ;

(3) M<µ ⊆M ;

(4) M = {j(f)(a) : a ∈ [η+]<ω ∧ f : [κ]|a| → V ∧ f ∈ V };
(5) M |= HV

η ∈ IAµ.

Let us define P = Add(κ, θ)V and fix a condition p ∈ P. Our goal is to
show that in V ′, there is a (V,P)-generic filter g, with p ∈ g, such that
the embedding j can be lifted to the domain V [g] in such a way that the
lifted embedding j∗ : V [g] → M [j∗(g)] is a class of V ′ and satisfies the

following: H
V [g]
η+
⊆ M [j∗(g)], M [j∗(g)]<µ ∩ V ′ ⊆ M [j∗(g)], and M [j∗(g)] |=

H
V [g]
η ∈ IAµ. To accomplish this we will build a (V,P)-generic filter g in M ,

an (M, j(P))-generic filter H in V [G], and then we will modify H to obtain
another (M, j(P))-generic filter H∗ with j”g ⊆ H∗.

Lemma 3.2. If W ∈ ([Hη+ ]≤κ)V then j�W ∈M .

Proof. SupposeW ∈ ([Hη+ ]≤κ)V . First notice thatW ∈M as ([Hη+ ]≤κ)V

⊆ HV
η+ ⊆ M . Furthermore, j[W ] ∈ M because the elements of W can be

enumerated in a κ-sequence ~W , and then j[W ] is obtained as the range of

the sequence j( ~W )�κ ∈ M . By elementarity (W,∈) ∼= (j[W ],∈), and thus
the Mostowski collapse of (W,∈) equals that of (j[W ],∈). Thus, in M , there
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are isomorphisms

(W,∈)
π0−→ (W̄ ,∈)

π1−→ (j[W ],∈)

where π0 is the Mostowski collapse of W and π1 is the inverse of the
Mostowski collapse of j[W ]. It follows that j�W = π1 ◦ π0 ∈M .

V

κ = (µ+)V

(µ+)V
′

M

θ

j(κ) = (µ+)M

Claim 3.3. There is a (V,Add(κ, θ))-generic filter g ∈ M such that
p ∈ g.

Proof. Working in M , we would like to apply Lemma 2.10 to the struc-
ture H = HV

η and the poset Q = Add(κ, θ) ∈ H. We will show that our

assumption M |= HV
η ∈ IAµ implies that all of the other hypotheses of

Lemma 2.10 hold. First let us show that, working in M , for N ∈ H, if
|N |M < µ then |N |H < µ. Assume not. Then for some N ∈ H we have

|N |M < µ and |N |V = |N |H ≥ µ. Let z ∈ P (N)V with |z|V = µ. Then
by elementarity, |j(z)|M = µ. From Lemma 3.2, it follows that j�z ∈ M ,
and since |z|V < crit(j) = κ we have j(z) = j”z ∈ M . Thus M |= µ
= |j(z)| = |j”z| = |z| ≤ |N |, a contradiction. It is easy to verify that all of
the other hypotheses of Lemma 2.10 are met, and hence we may apply that
lemma within M to obtain an (H,Add(κ, θ))-generic filter g with p ∈ g.
Since H = HV

η , it follows that g is also (V,Add(κ, θ))-generic.

Claim 3.4. There is an (M, j(Add(κ, θ)))-generic filter h ∈ V ′ = V [G].

Proof. All of M ’s dense subsets of j(Add(κ, θ)) are elements of j(HV
η ), so

it suffices to prove that, in V [G], the model j(HV
η ) and the poset j(Add(κ, θ))

∈ j(HV
η ) satisfy all the requirements of Lemma 2.10, which will yield the de-

sired generic object h. The proof uses the somewhat ad hoc requirement (1)
of Definition 2.11 (though this requirement is redundant when κ = ω1, by
Remark 2.13). We do not know if this requirement can be removed, but
suspect it is possible.

Now clearly j(HV
η ) believes that j(Add(κ, θ)) is <j(κ)-closed, and so in

particular <µ-closed, i.e., <j(µ)-closed. Also, notice that V [G] |= j(Hη)
V

∈ IAµ because M |= HV
η ∈ IAµ, and if ~N = 〈Ni : i < µ〉 ∈ M witnesses

this, then ~N�` ∈ HV
η ∈ V for each ` < µ, and hence 〈j(Ni) : i < µ〉 ∈ V [G].
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To show that j(HV
η ) and j(Add(κ, θ)) satisfy the remaining requirements of

Lemma 2.10 (from the point of view of V [G]), it suffices to prove:

(1) V [G] |= |j(HV
η )| ≤ µ, and

(2) j(HV
η ) is closed under <µ-sequences in V [G].

To see item (1): since

M = {j(f)(a) : a ∈ [η+]<ω ∧ f : [κ]|a| → V ∧ f ∈ V }

it follows that every element of j(HV
η ) is of the form j(f)(a) where

a ∈ [η+]<ω and f : [κ]|a| → HV
η is some function in V . Thus, |j(HV

η )|V [G] ≤
(η+)V · |κ(HV

η )|V = η+V ; the last equality follows from our assumption that

(2<η)V = (η+)V . Since η+V < j(κ) by assumption, η+V < j(κ) = j(µ+) =

µ+M ≤ µ+V [G]. This completes the proof of item (1).

To see item (2): V believes that HV
η is closed under <µ-sequences,

so by elementarity M believes that j(HV
η ) is closed under <µ-sequences.

The ad hoc assumption (1) of Definition 2.11 says that M is closed under
<µ-sequences in V [G]. Thus item (2) trivially follows.

We will modify the (M, j(P))-generic h given by Claim 3.4 to obtain h∗

such that h∗ is still (M, j(P))-generic and j[g] ⊆ h∗.
Working in V [G], we may define a function Q :=

⋃
j[g] where dom(Q) =

j[θ]×κ. Given p ∈ h ⊆ Add(j(κ), j(θ))M we define p∗ to be the function with
dom(p∗) = dom(p) such that p∗(α, β) = p(α, β) if (α, β) ∈ dom(p)−dom(Q)
and p∗(α, β) = Q(α, β) if (α, β) ∈ dom(Q)∩dom(p). Observe that the subset
of dom(p) on which modifications are made is contained in the range of j:

∆p := {(α, β) ∈ dom(p) : p∗(α, β) 6= p(α, β)} ⊆ j[θ]× κ ⊆ ran(j).

Now we let h∗ := {p∗ : p ∈ h} ∈ V [G] and argue that h∗ is an (M, j(P))-
generic filter.

Lemma 3.5. If p ∈ h then h∗ ∈ j(P).

Proof. It follows that p = j(f)(a) where a ∈ [η+]<ω and f : [κ]|a| → P
is a function in V . Let W :=

⋃
{dom(q) : q ∈ ran(f)} ⊆ θ × κ. Clearly

W ∈ ([Hθ]
≤κ)V and thus j�W ∈ M by Lemma 3.2. Furthermore, we have

dom(p) ⊆ j(W ), which implies dom(p) ∩ ran(j) ⊆ j[W ]. Observe that any
modifications made in obtaining p∗ from p must have been made over points
in j[W ]; in other words, ∆p ⊆ j[W ]. Working in M , we can use j�W and g to
define a function Qp with dom(Qp) = j[W ] as follows. Define Qp(α, β) = i
if g(j−1(α, β)) = i. Then Qp = Q�j[W ] ∈ M . Since p∗ can be obtained by
comparing p and Qp, it follows that p∗ is in M , and is thus a condition
in j(P).
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Lemma 3.6. h∗ is an (M, j(P))-generic filter.

Proof. Suppose A is a maximal antichain of j(P) in M and let
d :=

⋃
{dom(r) : r ∈ A}. We have |d|M ≤ j(κ) by elementarity since

P is (2<κ)+-c.c. in V and 2<κ = κ by hypothesis. Since d ∈ M there is an
a ∈ [η+]<ω and a function f : κ→ [θ×κ]≤κ in V such that d = j(f)(a). It fol-
lows that W :=

⋃
ran(f) ∈ ([Hθ]

≤κ)V and hence j�W ∈ M by Lemma 3.2.
Since d ∈ ran(j(f)) it follows that d ⊆ j(W ) and hence d ∩ ran(j) ⊆ j[W ].
We also have j[W ] ∈ M . Working in M , we can define a function QA
with dom(QA) = j[W ] by letting QA(α, β) = i if g(j−1(α, β)) = i. No-
tice that QA = Q�j[W ] and |j[W ]|M ≤ κ. By the <j(κ)-distributivity of
j(P) in M we deduce that h�j[W ] ∈ M and thus h�j[W ] ∈ j(P). Fur-
thermore, since QA ∈ M , there is an automorphism πA ∈ M of j(P)
which flips precisely those bits at which QA and h�j[W ] disagree. Since
π−1A [A] ∈ M is a maximal antichain of j(P) and h is (M, j(P))-generic, it

follows that there is a condition q ∈ π−1A [A] ∩ h, and by applying πA we see
that q∗ = πA(q) ∈ A ∩ h∗.

Since j[g] ⊆ h∗, the embedding j : V →M lifts to j∗ : V [g]→M [j∗(g)]

where j∗(g) = h∗. It remains to argue that H
V [g]
η+
⊆M [j∗(g)], M [j∗(g)]<µ∩V ′

⊆M [j∗(g)], and M [j∗(g)] |= H
V [g]
η ∈ IAµ.

To show thatH
V [g]
η+
⊆M [j∗(g)] we note that because g ∈M andHV

η+ ⊆M
we have H

V [g]
η+

= HV
η+ [g] ⊆ M ⊆ M [j∗(g)]. One can easily verify that

M [j∗(g)]<µ ∩ V ′ ⊆M [j∗(g)] using the fact that j(P) = Add(j(κ), j(θ))M is
<j(κ)-distributive in M .

It remains to show that M [j∗(g)] |= H
V [g]
η ∈ IAµ. Since we assumed

M |= HV
η ∈ IAµ, there is a ⊆-increasing sequence ~N = 〈Ni : i < µ〉 ∈ M

satisfying all the requirements of Definition 2.7:

• N` =
⋃
i<`Ni for each limit ` < µ,

• |Ni|M < µ for each i < µ,

• HV
η =

⋃
i<µNi, and

• 〈Ni : i < `〉 ∈ HV
η for all ` < µ.

Furthermore, without loss of generality we can assume that

• P = Add(κ, θ)V ∈ N0, and

• Ni ≺ HV
η .

We now argue that the sequence 〈Ni[g] : i < µ〉 ∈ M [j∗(g)] witnesses that

M [j∗(g)] |= H
V [g]
η ∈ IAµ where

Ni[g] = {τg : τ ∈ Ni is a P-name};
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that is, we will prove the following:

(1) N`[g] =
⋃
i<`Ni[g] for each limit ` < µ,

(2) |Ni[g]|M [j∗(g)] < µ for each i < µ,

(3) H
V [g]
η =

⋃
i<µ(Ni[g]), and

(4) 〈Ni[g] : i < `〉 ∈ HV [g]
η for all ` < µ.

Item (1) follows directly from the definition ofNi[g] and the fact that ~N is
⊆-continuous. For (2), we have |Ni|M < µ, which implies |Ni[g]|M [j∗(g)] < µ.

For (3), H
V [g]
η = HV

η [g] =
⋃
i<µ(Ni[g]). To establish (4), we remark that

by assumption we have 〈Ni : i < `〉 ∈ HV
η for each ` < µ, and since

g ∈ HV [g]
η = HV

η [g], we can build 〈Ni[g] : i < `〉 working in H
V [g]
η .

This concludes the proof of Theorem 3.1.

Theorem 3.1 already implies the portion of Theorem 2.14 which deals
with preservation of generically strong cardinals:

Corollary 3.7. If κ = µ+ is generically strong on IAµ then it remains
generically strong on IAµ after adding any number of Cohen subsets of κ.

The next section combines Theorem 3.1 with a generalization of Fore-
man’s Duality Theorem to get preservation of ideally strong cardinals.

4. Ideal extenders and duality. This section generalizes portions of
the “duality theory” of Foreman [For13] to the context of extender embed-
dings.

4.1. Derived ideal extenders. The following definition and lemma
are simple generalizations of the discussion in [For10, Section 3.2].

Definition 4.1. Suppose Q is a poset, κ < λ are ordinals, and Ė is a
Q-name such that


Q Ė is a normal (κ, λ)-extender over V.

Then F (Ė), called the ideal extender derived from Ė, is defined by: (a, S) ∈
F (Ė) iff:

• a ∈ [λ]<ω,
• S ⊆ [κ]|a|, and

• J(ǎ, Š) ∈ ĖKro(Q) = 1.

The name “ideal extender” will be justified in Lemma 4.2 below.

Note that in Definition 4.1 we do not require that Q forces Ult(V, Ė) to
be well-founded.
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Lemma 4.2. Suppose Q is a poset, κ < λ are ordinals, and Ė is a
Q-name such that 
Q Ė is a normal (κ, λ)-extender over V . Let F (Ė) be
the ideal extender derived from Ė as in Definition 4.1. Then:

(1) F (Ė) is a (κ, λ)-ideal extender in the sense of Definition 2.2.
(2) Let EF (Ė) be the associated forcing as in Definition 2.1. The map

ι : EF (Ė) → ro(Q)

defined by

p 7→ JF̌ p ⊂ ĖKro(Q) = J∀a ∈ supp(p̌) ∀S ∈ F̌ pa , S ∈ ĖaKro(Q)
is ≤- and ⊥-preserving (but not necessarily regular).

(3) If H is (V,Q)-generic then
⋃
ι−1[H] = ĖH .

Proof. (1) The fact that F (Ė) is a (κ, λ)-ideal extender, as in Defini-
tion 2.2, follows from the fact that the relevant properties hold for Ė with
boolean-value one in V ro(Q). It is easy to see that for each a ∈ [λ]<ω the
set F (Ė)a ( ℘([κ]|a|) is a filter since JĖa is an ultrafilter over V KQ = 1.
To see that F (Ė) is compatible we observe that the coherence property
of (κ, λ)-extenders [Kan03, (ii) on p. 154] holds for Ė with boolean value
one in V ro(Q), and this immediately implies that if a ⊆ b ∈ supp(F ) then
x ∈ F (Ė)a ⇔ xa,b ∈ F (Ė)b. The potential normality of F (Ė) follows from

the assumption that 1Q forces Ė to be a normal extender; we refer the reader
to the proof at the bottom of Claverie [Cla10, p. 66] for the details. Thus
F (Ė) is a (κ, λ)-ideal extender, as in Definition 2.2.

(2) Suppose p ≤EF (Ė)
q. This means that supp(q) ⊆ supp(p) and for

every a ∈ supp(q) we have F qa ⊆ F pa . Thus for a ∈ supp(q) we have
JF̌ pa ⊆ ĖaK ≤ro(Q) JF̌ qa ⊆ ĖaK. Hence ι(p) =

∧
a∈supp(p)JF̌

p
a ⊆ ĖaK ≤ro(Q)∧

a∈supp(q)JF̌
q
a ⊆ ĖaK = ι(q).

Suppose p, q ∈ EF (Ė) where p = span{F (Ė), (a, x)} and q = span{F (Ė),

(b, y)} and that ι(p) and ι(q) are compatible in ro(Q), say r ∈ Q with
r ≤ ι(p), ι(q). Then forcing with Q below r yields an extension in which
there is a (κ, λ)-extender F such that F p∪F q ⊆ F . Since x ∈ Fa and y ∈ Fb,
it follows that xa,a∪b ∩ yb,a∪b ∈ Fa∪b and hence xa,a∪b ∩ yb,a∪b ∈ F (Ė)+a∪b.
This implies that

s := span{F (Ė), (a ∪ b, xa,a∪b ∩ yb,a∪b)}

is a condition in EF (Ė). Since xa,a∪b ∈ F sa∪b and s is a compatible (κ, λ)-

system of filters, it follows that x ∈ F sa . Similarly, y ∈ F sb . This implies that
s ≤ p, q.

(3) To see that
⋃
ι−1(H) = ĖH , just note that

⋃
ι−1[H] =

⋃
{p ∈ EF (Ė) :

ι(p) ∈ H} =
⋃
{p ∈ EF (Ė) : F p ⊆ ĖH} = ĖH .
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4.2. Duality for derived ideal extenders. In certain situations, the
map ι from Lemma 4.2 is a regular or even a dense embedding. In such
situations we can nicely characterize the poset EF (Ė) as a subalgebra of Q;

and moreover if Ult(V, Ė) was forced by Q to be well-founded, then F (Ė)
will be a precipitous ideal extender.

In the following theorem, the poset which plays the role of the Q from
Definition 4.1 and Lemma 4.2 above is itself a quotient of a forcing associated
with an ideal extender.

Theorem 4.3. Suppose F is a (κ, λ)-ideal extender as in Definition 2.2
and that EF is its associated forcing as in Definition 2.1. Suppose P is a
poset and τ is an EF -name such that EF forces the following statement
(here ĠF is the EF -name for the EF -generic object; so

⋃
ĠF is forced to be

a (κ, λ)-extender over V ):

• τ is (V,P)-generic, and the ultrapower map jĠF can be lifted to the

domain V [τ ] (4).

Then:

(1) The map e : P → ro(EF ) defined by e(p) = Jp̌ ∈ τK is a complete
embedding (this is an abstract forcing fact).

(2) Suppose g is (V,P)-generic. In V [g] let:

• j̃ be the EF
e[g] -name for the lifting of j

ĖĠF
to the domain V [g] (notice

that 
 EF
e[g]

τĠF = g, so the lifting is forced to exist by assumption);

• Ė be the EF
e[g] -name for the (κ, λ)-extender over V [g] derived from j̃;

• F (Ė) be the ideal extender derived from the EF
e[g] -name Ė as in

Definition 4.1;
• EF (Ė) be the forcing in V [g] associated with F (Ė) as in Defini-

tion 2.1.

Then in V [g] the map

ι : EF (Ė) → ro

(
EF
e[g]

)
defined as in Lemma 4.2 is a dense embedding.

(3) If the (κ, λ)-ideal extender F was precipitous in V then F (Ė) is
precipitous in V [g].

Proof. (1) is a well-known fact.

(2) A minor technical issue here is that although EF is separative by
Lemma 2.6—and thus EF can directly be viewed as a dense subset of

(4) We are assuming this lifting exists already in V EF , not in some further forcing
extension.
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ro(EF )—the quotient Q := EF
e[g] is not separative; so Q is technically not

a subset of ro(Q). Let Q/∼ denote the separative quotient of Q. Since Q/∼
is a dense subset of ro(Q), it suffices to show that given any [q]∼ ∈ Q/∼
there is an r ∈ EF (Ė) with ι(r) ≤ [q]∼. Suppose [q]∼ ∈ Q/∼. Then q =

F q = span{F, (a, x)} for some fixed a ∈ [λ]<ω and some x ∈ (Fa)
+, and

q is compatible with every element of e[g] (5). Notice that x ∈ (F (Ė)a)
+

since (a) q is compatible with every element of e[g], (b) 0 6= q 
 x ∈ Ė, and
(c) the ideal dual to the filter F (Ė)a = {S ⊆ κ : J(ǎ, Š) ∈ ĖKro(Q) = 1} is

{S ⊆ κ : J(ǎ, Š) ∈ ĖK = 0}. Thus r := span{F (Ė), (a, x)} is a condition in
EF (Ė) and by definition of ι we have ι(r) = J∀b ∈ supp(r) F̌ rb ⊆ ĖbKro(Q).
We will argue that ι(r) ≤ [q]∼. Notice that since F ⊆ F (Ė), it follows
that q = span{F, (a, x)} ⊆ span{F (Ė), (a, x)} = r. Note that q and r are
conditions in different posets, so this does not imply that r extends q. How-
ever, since for all b ∈ supp(q) we have F qb ⊆ F rb , it follows that if H is
(V [g], ro(Q))-generic and ι(r) ∈ H then [q]∼ ∈ H. Since ro(Q) is separative,
it follows that ι(r) ≤ [q]∼ in ro(Q).

(3) Assume the (κ, λ)-ideal extender F is precipitous in V . Let g be(
V,P)-generic. By part (3) of Lemma 4.2, together with part (2) of the

current theorem, generic ultrapowers of V [g] by EF (Ė) correspond exactly
to liftings of generic ultrapowers of V by F ; since these are well-founded
(by precipitousness of F ) the generic ultrapowers of V [g] by EF (Ė) are also
well-founded.

5. Proof of main theorem. In this section we combine the results of
Sections 3 and 4 to finish proving Theorem 2.14. Note that we only have to
deal with preservation of ideally strong cardinals; preservation of generically
strong cardinals was taken care of by Corollary 3.7.

Proof of Theorem 2.14. Suppose µ is a regular cardinal, κ = µ+ is ide-
ally strong on IAµ, and 2<κ = κ. Let θ > κ be a cardinal and let g′ be
(V,Add(κ, θ))-generic. Suppose κ is not ideally strong on IAµ in V [g′]. Thus,
in V [g′], for some cardinal η > κ meeting all the hypotheses of Theorem 3.1,
there is no precipitous (κ, η+)-ideal extender F such that the associated
generic ultrapower jG : V [g′] → M = Ult(V [g′], ĖGF ) satisfies j(κ) > η+,

HV
η+ ⊆M , M<µ∩V [g′] ⊆M , and M |= H

V [g′]
η ∈ IAµ. Let p0 ∈ g′ force this;

that is,

(5) Recall that by Lemma 2.6, we know EF is separative and thus can be viewed as a
dense subset of ro(EF ), the target of the map e.
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p0 
VAdd(κ,θ) there is no precipitous (κ, η+)-ideal extender F such that the

associated generic ultrapower jĠF : V [ġ]→M = Ult(V [ġ], ĠF )

satisfies crit(jĠF ) = κ, jĠF (κ) > η+, H
V [ġ]
η+
⊆M , M<µ ∩ V [ġ]

⊆M and M |= H
V [ġ]
η ∈ IAµ,

where ġ ∈ V is the canonical name for a generic filter for Add(κ, θ).

Using the fact that κ is ideally strong on IAµ in V , let F ∈ V be a pre-
cipitous (κ, η+)-ideal extender such that the associated generic ultrapower

jGF : V →M = Ult(V,GF ) satisfies crit(jGF ) = κ, jGF (κ) > η+, HV
η+ ⊆M ,

M<µ ∩ V ⊆ M , and M |= HV
η ∈ IAµ, where GF is a (V,EF )-generic fil-

ter. By Theorem 3.1, it follows that we can find a (V,Add(κ, θ))-generic
filter g with p0 ∈ g and g ∈M , such that the embedding jGF lifts to j∗GF :

V [g] → M [j∗GF (g)] and satisfies H
V [g]
η+

⊆ M [j∗GF (g)], M [j∗GF (g)]<µ ∩ V [g]

⊆M [j∗GF (g)], and M [j∗GF (g)] |= H
V [g]
η ∈ IAµ, where j∗GF (g) ∈ V [GF ] is some

(M, j(Add(κ, θ)))-generic filter. Thus there is an EF -name τ with τGF = g
satisfying the hypothesis of Theorem 4.3 with P = Add(κ, θ)V . Not only
does the hypothesis of Theorem 4.3 hold, but Theorem 3.1 also shows that

(5.1) 
VEF if the original ultrapower map jĠF : V → M = Ult(V, ĠF )

satisfies crit(jĠF ) = κ, jĠF (κ) > η+, HV
η+ ⊆ M , M<µ ∩ V

⊆ M , and M |= HV
η ∈ IAµ, then the embedding lifted

to j∗
ĠF

: V [τ ] → M [j∗
ĠF

(τ)] satisfies H
V [τ ]
η+

⊆ M [j∗
ĠF

(τ)],

M [j∗
ĠF

(τ)]<µ∩V [τ ] ⊆M [j∗
ĠF

(τ)], andM [j∗
ĠF

(τ)] |=H
V [τ ]
η ∈ IAµ.

By Theorem 4.3, the embedding e : P → ro(EF ) defined by e(p) = Jp̌ ∈ τK
is complete. As in the conclusion of Theorem 4.3, in V [g] we have the
following objects: j̃ is the EF /e[g]-name j∗

ĠF
/e[g] for the lift of jĠF ,

Ė is the EF /e[g]-name for the (κ, η+)-extender over V [g] derived from j̃,
F (Ė) is the (κ, η+)-ideal extender in V [g] derived from Ė, EF (Ė) is the

associated forcing, and ι : EF (Ė) → ro
( EF
e[g]

)
is the natural dense embed-

ding. Now if HF (Ė) is (V [g],EF (Ė))-generic and HF = ι[HF (Ė)] is the cor-

responding
(
V [g], EFe[g]

)
-generic filter, then by Lemma 4.2,

⋃
ι−1[HF ] = ĖHF

is the V [g]-(κ, η+)-extender derived from j̃HF . Since ι−1[HF ] = HF (Ė) we

have
⋃
HF (Ė) = ĖHF and hence the ultrapower jHF (Ė)

: V [g] → M̄ =

Ult(V [g],
⋃
HF (Ė)) by the V [g]-(κ, η+)-extender

⋃
HF (Ė) is well-founded.

Furthermore, by (5.1), and the fact that jHF (Ė)
= j̃HF = (j∗

ĠF
)HF , it

follows that H
V [g]
η+

⊆ Ult(V [g],
⋃
HF (Ė)). Thus, the precipitous (κ, η+)-

ideal extender F (Ė) ∈ V [g] has an associated generic ultrapower embed-



148 B. Cody and S. Cox

ding jHF (Ė)
: V [g] → M̄ which satisfies crit(jHF (Ė)

) = κ, jHF (Ė)
(κ) > η+,

H
V [g]
η+
⊆ M̄ , M̄<µ∩V [g] ⊆ M̄ , and M̄ |= H

V [g]
η ∈ IAµ. This is a contradiction

because p0 ∈ g forces that such an ideal extender does not exist.

6. Questions

Question 6.1. Aside from adding Cohen subsets of ω1, what other
posets will not destroy the ideal or generic strongness of ω1? Note that
by the discussion in the introduction, only forcings which do not collapse ω2

have any hope of (provably) preserving generic strongness of ω1.

Question 6.2. Is the ideal strongness ofω1 indestructible by Sacks(ω1, θ)?

Question 6.3. Does Theorem 3.1 still hold for κ ≥ ω2 if we remove
requirement (1) from Definition 2.11 (i.e., the requirement that <µM ⊂M)?
The only place where this assumption was used was the proof of Claim 3.4.
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