On partial orderings having precalibre- \aleph_{1} and fragments of Martin's axiom

by
Joan Bagaria (Barcelona) and Saharon Shelah (Jerusalem)

Abstract

We define a countable antichain condition (ccc) property for partial orderings, weaker than precalibre- \aleph_{1}, and show that Martin's axiom restricted to the class of partial orderings that have the property does not imply Martin's axiom for σ-linked partial orderings. This yields a new solution to an old question of the first author about the relative strength of Martin's axiom for σ-centered partial orderings together with the assertion that every Aronszajn tree is special. We also answer a question of J. Steprāns and S. Watson (1988) by showing that, by a forcing that preserves cardinals, one can destroy the precalibre- \aleph_{1} property of a partial ordering while preserving its ccc-ness.

Introduction. A question asked in [1] is if MA(σ-centered) plus "Every Aronszajn tree is special" implies MA(σ-linked). The interest in this question originated in the result of Harrington-Shelah [5] showing that if \aleph_{1} is accessible to reals, i.e., there exists a real number x such that the cardinal \aleph_{1} in the model $L[x]$ is equal to the real \aleph_{1}, then MA implies that there exists a $\Delta_{3}^{1}(x)$ set of real numbers that does not have the Baire property. The hypothesis that \aleph_{1} is accessible to reals is necessary, for if \aleph_{1} is inaccessible to reals and MA holds, then \aleph_{1} is actually weakly compact in L ([5]), and K. Kunen showed that starting from a weakly compact cardinal one can get a model where MA holds and every projective set of reals has the Baire property.

In [1, using Todorčević's ρ-functions [12, it was shown that MA $(\sigma$-centered) plus "Every Aronszajn tree is special" is sufficient to produce a $\Delta_{3}^{1}(x)$ set of real numbers without the Baire property, assuming $\aleph_{1}=\aleph_{1}^{L[x]}$. Thus, it was natural to ask how weak is MA(σ-centered) plus "Every Aronszajn tree is special" as compared to the full MA, and in particular if it implies MA(σ-linked). The answer is negative, since it has been observed by D. Chodounský and J. Zapletal that a finite-support iteration of σ-centered

[^0]posets combined with the forcing that specializes Aronszajn trees has the Y-c.c. property, and therefore does not add random reals (see [2]).

In the first part of the paper we give a new and stronger negative answer, namely we show that a fragment of MA that includes MA(σ-centered), and even MA(3-Knaster), and implies "Every Aronszajn tree is special", does not imply MA(σ-linked). A partial ordering with the precalibre- \aleph_{1} property plays the key role in the construction of the model.

In the second part of the paper we answer a question of Steprāns-Watson [9. They ask if it is possible to destroy the precalibre- \aleph_{1} property of a partial ordering, while preserving its ccc-ness, in a forcing extension of the set-theoretic universe V that preserves cardinals. This is a natural question considering that, as shown in [9], on the one hand, assuming MA plus the Covering Lemma, every precalibre- \aleph_{1} partial ordering has precalibre- \aleph_{1} in every forcing extension of V that preserves cardinals; and on the other hand, the ccc property of a partial ordering having precalibre- \aleph_{1} can always be destroyed while preserving \aleph_{1}, and consistently even preserving all cardinals.

We answer the Steprāns-Watson question positively, and in a very strong sense. Namely, we show that it is consistent, modulo ZFC, that the Continuum Hypothesis holds and there exist a forcing notion T of cardinality \aleph_{1} that preserves \aleph_{1} (and therefore it preserves all cardinals, cofinalities, and the cardinal arithmetic), and two precalibre- \aleph_{1} partial orderings, such that forcing with T preserves their ccc-ness, but it also forces that their product is not ccc and therefore they do not have precalibre- \aleph_{1}.

1. Preliminaries. Recall that a partially ordered set (or poset) \mathbb{P} is $c c c$ if every antichain of \mathbb{P} is countable; it is productive-ccc if the product of \mathbb{P} with any ccc poset is also ccc; it is Knaster (or has property \mathcal{K}) if every uncountable subset of \mathbb{P} contains an uncountable subset consisting of pairwise compatible elements. More generally, for $k \geq 2, \mathbb{P}$ is k-Knaster if every uncountable subset of \mathbb{P} contains an uncountable subset such that any k of its elements have a common lower bound. Thus, Knaster is the same as 2 -Knaster. Furthermore, \mathbb{P} has precalibre- \aleph_{1} if every uncountable subset of \mathbb{P} has an uncountable subset such that any finite set of its elements has a common lower bound; it is σ-linked (or σ-2-linked) if it can be partitioned into countably many pieces so that each piece is pairwise compatible. More generally, for $k \geq 2, \mathbb{P}$ is σ - k-linked if it can be partitioned into countably many pieces so that any k elements in the same piece have a common lower bound. Finally, \mathbb{P} is σ-centered if it can be partitioned into countably many pieces so that any finite number of elements in the same piece have a common lower bound. We have the following implications, for every $k \geq 2$:

$$
\sigma \text {-centered } \Rightarrow \sigma \text { - } k \text {-linked } \Rightarrow k \text {-Knaster } \Rightarrow \text { productive-ccc } \Rightarrow \text { ccc }
$$

and

$$
\sigma \text {-centered } \Rightarrow \text { precalibre- } \aleph_{1} \Rightarrow k \text {-Knaster. }
$$

These are the only implications that can be proved in ZFC.
For any property Γ of posets that implies the ccc, and an infinite cardinal κ, Martin's axiom for Γ and for families of κ-many dense open sets, denoted by $\operatorname{MA}_{\kappa}(\Gamma)$, asserts: for every \mathbb{P} that satisfies the property Γ and every family $\left\{D_{\alpha}: \alpha<\kappa\right\}$ of dense open subsets of \mathbb{P}, there exists a filter $G \subseteq \mathbb{P}$ that is generic for the family, that is, $G \cap D_{\alpha} \neq \emptyset$ for every $\alpha<\kappa$.

When $\kappa=\aleph_{1}$ we omit the subscript and write $\operatorname{MA}(\Gamma)$ for $\mathrm{MA}_{\aleph_{1}}(\Gamma)$. Also, for an infinite cardinal θ, the notation $\mathrm{MA}_{<\theta}(\Gamma)$ means: $\mathrm{MA}_{\kappa}(\Gamma)$ for all $\kappa<\theta$. The axiom $\mathrm{MA}_{\aleph_{0}}(\Gamma)$ is provable in ZFC ; and it is consistent, modulo ZFC, that the Continuum Hypothesis fails and $\mathrm{MA}_{<2^{\aleph_{0}}}(\mathrm{ccc})$ holds (see [7], or [6]). Martin's axiom, denoted by MA, is MA(ccc).

Thus, we have the following implications, for every $k \geq 2$:

$$
\begin{aligned}
& \mathrm{MA}_{\kappa}(\mathrm{ccc}) \Rightarrow \mathrm{MA}_{\kappa}(\text { productive-ccc }) \Rightarrow \\
& \quad \Rightarrow \mathrm{MA}_{\kappa}(k \text {-Knaster }) \Rightarrow \mathrm{MA}_{\kappa}(\sigma-k \text {-linked }) \Rightarrow \mathrm{MA}_{\kappa}(\sigma \text {-centered })
\end{aligned}
$$

and

$$
\mathrm{MA}_{\kappa}(k \text {-Knaster }) \Rightarrow \mathrm{MA}_{\kappa}\left(\text { precalibre- } \aleph_{1}\right) \Rightarrow \mathrm{MA}_{\kappa}(\sigma \text {-centered })
$$

Again, the arrows cannot be reversed (see [13], [10] for even finer distinctions, and also [11] for Borel examples).

For all the facts mentioned in the rest of the paper without a proof, as well as for all undefined notions and notation, see [6].
2. The property Pr_{k}. Let us consider the following property of partial orderings, weaker than the k-Knaster property.

Definition 1. For $k \geq 2$, let $\operatorname{Pr}_{k}(\mathbb{Q})$ mean that \mathbb{Q} is a forcing notion such that if $p_{\varepsilon} \in \mathbb{Q}$, for all $\varepsilon<\aleph_{1}$, then we can find \bar{u} such that:
(a) $\bar{u}=\left\langle u_{\xi}: \xi<\aleph_{1}\right\rangle$.
(b) u_{ξ} is a finite subset of \aleph_{1}.
(c) $u_{\xi_{0}} \cap u_{\xi_{1}}=\emptyset$ whenever $\xi_{0} \neq \xi_{1}$.
(d) If $\xi_{0}<\cdots<\xi_{k-1}$, then we can find $\varepsilon_{l} \in u_{\xi_{l}}$, for $l<k$, such that $\left\{p_{\varepsilon_{l}}: l<k\right\}$ has a common lower bound.
Notice that $\operatorname{Pr}_{k}(\mathbb{Q})$ implies that \mathbb{Q} is ccc, and that $\operatorname{Pr}_{k+1}(\mathbb{Q})$ implies $\operatorname{Pr}_{k}(\mathbb{Q})$. Also note that if \mathbb{Q} is k-Knaster, then $\operatorname{Pr}_{k}(\mathbb{Q})$ holds. For a given subset $\left\{p_{\varepsilon}: \varepsilon<\aleph_{1}\right\}$ of \mathbb{Q}, there exists an uncountable $X \subseteq \aleph_{1}$ such that $\left\{p_{\varepsilon_{l}}: l<k\right\}$ has a common lower bound for every $\varepsilon_{0}<\cdots<\varepsilon_{k-1}$ in X, so we can take u_{ξ} to be the singleton that contains the ξ th element of X. Finally, observe that if \mathbb{Q} has precalibre- \aleph_{1}, then $\operatorname{Pr}_{k}(\mathbb{Q})$ holds for every $k \geq 2$.

Recall that if T is an Aronszajn tree on ω_{1}, then the forcing that specializes T consists of finite functions p from ω_{1} into ω such that if $\alpha \neq \beta$ are in the domain of p and are comparable in the tree ordering, then $p(\alpha) \neq p(\beta)$. The ordering is the reversed inclusion. It is consistent, modulo ZFC, that the specializing forcing is not productive-ccc, an example being the case when T is a Suslin tree. However, we have the following:

Lemma 2. If T is an Aronszajn tree and $\mathbb{Q}=\mathbb{Q}_{T}$ is the forcing that specializes T with finite conditions, then $\operatorname{Pr}_{k}(\mathbb{Q})$ holds for every $k \geq 2$.

Proof. Without loss of generality, $T=\left(\omega_{1},<_{T}\right)$. Let $p_{\alpha} \in \mathbb{Q}$ for $\alpha<\aleph_{1}$. By a Δ-system argument we may assume that $\left\{\operatorname{dom}\left(p_{\alpha}\right): \alpha<\aleph_{1}\right\}$ forms a Δ-system with root r. Moreover, we may assume that for some fixed n, $\left|\operatorname{dom}\left(p_{\alpha}\right) \backslash r\right|=n$ for all $\alpha<\omega_{1}$. Let $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ be an enumeration of $\operatorname{dom}\left(p_{\alpha}\right) \backslash r$. We may also assume that if $\alpha<\beta$, then the highest level of T that contains some $\alpha_{i}(1 \leq i \leq n)$ is strictly lower than the lowest level of T that contains some $\beta_{j}(1 \leq j \leq n)$.

Fix a uniform ultrafilter D over ω_{1}. For each $\alpha<\omega_{1}$ and $1 \leq i, j \leq n$, let

$$
D_{\alpha, i, j}:=\left\{\beta>\alpha: \alpha_{i}<_{T} \beta_{j}\right\}, \quad D_{\alpha, i, 0}:=\left\{\beta>\alpha: \alpha_{i} \nless_{T} \beta_{j} \text { for all } j\right\} .
$$

For every α and every i, there exists $j_{\alpha, i} \leq n$ such that $D_{\alpha, i, j_{\alpha, i}} \in D$. Moreover, for every $1 \leq i \leq n$, there exists $E_{i} \in D$ such that $j_{\alpha, i}$ is fixed, say with value j_{i} for all $\alpha \in E_{i}$. We claim that $j_{i}=0$ for all $1 \leq i \leq n$. For suppose i is such that $j_{i} \neq 0$. Pick $\alpha<\beta<\gamma$ in $E_{i} \cap D_{\alpha, i, j_{i}} \cap D_{\beta, i, j_{i}}$. Then $\alpha_{i}, \beta_{i}<_{T} \gamma_{j_{i}}$, hence $\alpha_{i}<_{T} \beta_{i}$. This yields an ω_{1}-chain in T, which is impossible. Now let $E:=\bigcap_{1 \leq i \leq n} E_{i} \in D$.

We claim that for every m and every α we can find $u \in\left[\omega_{1} \backslash \alpha\right]^{m}$ such that if $\beta<\gamma$ are in u, then $\beta_{i} \nless_{T} \gamma_{j}$ for every $1 \leq i, j \leq n$. Indeed, given m and α, choose any $\beta^{0} \in E \backslash \alpha$. Now given $\beta^{0}, \ldots, \beta^{l}$, all in E, let $\beta^{l+1} \in E \cap \bigcap_{1 \leq i \leq n} \bigcap_{l^{\prime} \leq l} D_{\beta^{l^{\prime}, i, 0}}$. Then the set $u:=\left\{\beta^{0}, \ldots, \beta^{m-1}\right\}$ is as required.

We can now choose $\left\langle u_{\xi}: \xi<\aleph_{1}\right\rangle$ pairwise disjoint, with $\left|u_{\alpha}\right|>k \cdot n$, so that if $\xi_{1}<\xi_{2}$, then $\sup \left(u_{\xi_{1}}\right)<\min \left(u_{\xi_{2}}\right)$, and each u_{ξ} is as above, i.e., if $\beta<\gamma$ are in u_{ξ}, then $\beta_{i} \nless_{T} \gamma_{j}$ for every $1 \leq i, j \leq n$. We claim that $\left\langle u_{\xi}: \xi<\aleph_{1}\right\rangle$ is as required. So, suppose $\xi_{0}<\cdots<\xi_{k-1}$. We choose $\alpha^{\ell} \in u_{\xi_{\ell}}$ by downward induction on $\ell \in\{0, \ldots, k-1\}$ so that $\left\{p_{\alpha^{\ell}}: \ell<k\right\}$ has a common lower bound. Let α^{k-1} be any element of $u_{\xi_{k-1}}$. Now suppose $\alpha^{\ell+1}, \ldots, \alpha^{k-1}$ have already been chosen and we shall choose α^{ℓ}. We may assume that for each $\beta \in u_{\xi_{\ell}}, p_{\beta}$ is incompatible with $p_{\alpha^{\ell^{\prime}}}$ for some ℓ^{\prime} in $\{\ell+1, \ldots, k-1\}$, for otherwise we could take as our α^{ℓ} any $\beta \in u_{\xi_{\ell}}$ with p_{β} compatible with all $p_{\alpha^{\ell^{\prime}}}, \ell^{\prime} \in\{\ell+1, \ldots, k-1\}$. Thus, for each $\beta \in u_{\xi_{\ell}}$ there exist $\ell^{\prime} \in\{\ell+1, \ldots, k-1\}$ and $1 \leq i, j \leq n$ such that $\beta_{i}<_{T} \alpha_{j}^{\ell^{\prime}}$. So,
since $\left|u_{\xi_{\beta}}\right|>k \cdot n$, there must exist $\beta, \beta^{\prime} \in u_{\xi_{\ell}}$ and ℓ^{\prime} such that $\beta_{i}, \beta_{i^{\prime}}<_{T} \alpha_{j}^{\ell^{\prime}}$ for some $1 \leq i, i^{\prime}, j \leq n$ with $\beta_{i} \neq \beta_{i^{\prime}}$. But this implies that β_{i} and $\beta_{i^{\prime}}$ are $<_{T}$-comparable, contradicting our choice of $u_{\xi_{\ell}}$.■

We show next that the property Pr_{k} for forcing notions is preserved under iterations with finite support, of any length.

Lemma 3. For any $k \geq 2$, the property Pr_{k} is preserved under finitesupport forcing iterations. That is, if

$$
\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{\sim}: \alpha \leq \lambda, \beta<\lambda\right\rangle
$$

is a finite-support iteration of forcing notions such that $\operatorname{Pr}_{k}\left(\mathbb{P}_{0}\right)$ holds and $\vdash_{\mathbb{P}_{\beta}} " \operatorname{Pr}_{k}\left(\mathbb{Q}_{\beta}\right)$ holds" for every $\beta<\lambda$, then $\operatorname{Pr}_{k}\left(\mathbb{P}_{\lambda}\right)$ holds.

Proof. We use induction on $\alpha \leq \lambda$. For $\alpha=0$ it is trivial. If α is a limit ordinal with $\operatorname{cf}(\alpha) \neq \aleph_{1}$, and $p_{\varepsilon} \in \mathbb{P}_{\alpha}$ for all $\varepsilon<\aleph_{1}$, then either uncountably many p_{ε} have the same support (in the case $\operatorname{cf}(\alpha)=\omega$) or the support of all p_{ε} is bounded by some $\alpha^{\prime}<\alpha$. In either case $\operatorname{Pr}_{k}\left(\mathbb{P}_{\alpha}\right)$ follows easily from the induction hypothesis.

If $\operatorname{cf}(\alpha)=\aleph_{1}$, then we may use a Δ-system argument, as in the usual proof of the preservation of the ccc.

So, suppose $\alpha=\beta+1$. Let $p_{\varepsilon} \in \mathbb{P}_{\alpha}$ for all $\varepsilon<\aleph_{1}$. Without loss of generality, we may assume that $\beta \in \operatorname{dom}\left(p_{\varepsilon}\right)$ for all $\varepsilon<\aleph_{1}$.

Since \mathbb{P}_{β} is ccc, there is $q \in \mathbb{P}_{\beta}$ such that

$$
q \Vdash_{\mathbb{P}_{\beta}} " \mid\left\{\varepsilon: p_{\varepsilon}\lceil\beta \in \underset{\sim}{G} \beta\} \mid=\aleph_{1} "\right.
$$

Let $G \subseteq \mathbb{P}_{\beta}$ be generic over V and with $q \in G$. In $V[G]$ we observe that $p_{\varepsilon}(\beta)[G] \in \mathbb{Q}_{\beta}[G]$, and $\operatorname{Pr}_{k}\left({\underset{\sim}{\sim}}_{\beta}[G]\right)$ holds. So, there is $\left\langle u_{\xi}^{0}: \xi<\aleph_{1}\right\rangle$ as in Definition 1 for the sequence $\left\langle p_{\varepsilon}(\beta)[G]: p_{\varepsilon} \upharpoonright \beta \in G\right\rangle$. Hence, $q \Vdash_{\mathbb{P}_{\beta}} "\left\langle\underset{\sim}{u} \underset{\xi}{0}: \xi<\aleph_{1}\right\rangle$ is as in Definition 1 for $\left\langle p_{\varepsilon}(\beta): p_{\varepsilon} \upharpoonright \beta \in \underset{\sim}{G} \beta\right\rangle$ ".

For each ξ, let $\left(q_{\xi}, u_{\xi}^{1}\right)$ be such that:

- $q_{\xi} \in \mathbb{P}_{\beta}$ and $q_{\xi} \leq q$.
- $q_{\xi} \Vdash_{\mathbb{P}_{\beta}}{ }_{\sim}^{u} u_{\xi}^{0}=u_{\xi}^{1 "}$, so u_{ξ}^{1} is finite.
- $q_{\xi} \leq p_{\varepsilon} \upharpoonright \beta$ for every $\varepsilon \in u_{\xi}^{1}$. (This can be ensured because if $\varepsilon \in u_{\xi}^{1}$, then $q_{\xi} \Vdash_{\mathbb{P}_{\beta}}$ " $p_{\varepsilon} \upharpoonright \beta \in \underset{\sim}{G}{ }_{\beta}$ ", so we may as well take $q_{\xi} \leq p_{\varepsilon} \upharpoonright \beta$.)
Now apply the induction hypothesis for \mathbb{P}_{β} to obtain $\left\langle u_{\zeta}^{2}: \zeta<\aleph_{1}\right\rangle$ as in the definition of Pr_{k} for the sequence $\left\langle q_{\xi}: \xi<\aleph_{1}\right\rangle$. We may assume, by refining the sequence if necessary, that $\max \left(u_{\zeta}^{2}\right)<\min \left(u_{\zeta^{\prime}}^{2}\right)$ whenever $\zeta<\zeta^{\prime}$.

Let $u_{\zeta}^{*}:=\bigcup\left\{u_{\xi}^{1}: \xi \in u_{\zeta}^{2}\right\}$. We claim that $\bar{u}^{*}=\left\langle u_{\zeta}^{*}: \zeta<\aleph_{1}\right\rangle$ is as in the definition, for the sequence $\left\langle p_{\varepsilon}: \varepsilon<\aleph_{1}\right\rangle$. Clearly, the u_{ζ}^{*} are finite and pairwise disjoint. Moreover, given $\zeta_{0}<\cdots<\zeta_{k-1}$, we can find $\xi_{0} \in$
$u_{\zeta_{0}}^{2}, \ldots, \xi_{k-1} \in u_{\zeta_{k-1}}^{2}$ such that in \mathbb{P}_{β} there is a common lower bound q_{*} to $\left\{q_{\xi_{0}}, \ldots, q_{\xi_{k}}\right\}$. Since $q_{*} \leq q_{\xi_{0}}, \ldots, q_{\xi_{k-1}} \leq q$, there are some $q_{* *} \leq q_{*}$ and $\varepsilon_{l} \in u_{\xi_{l}}^{1}$, for each $l<k$, such that for some \mathbb{P}_{β}-name $\underset{\sim}{p}$,

$$
q_{* *} \Vdash " \underset{\sim}{p} \leq{\underset{\sim}{\mathbb{Q}}}_{\beta} p_{\varepsilon_{0}}(\beta), \ldots, p_{\varepsilon_{k-1}}(\beta) " .
$$

Then the condition $q_{* *} * \underset{\sim}{p}$ is a common lower bound for the conditions $p_{\varepsilon_{0}}, \ldots, p_{\varepsilon_{k-1}}$.
3. On fragments of MA. We shall now prove that $\mathrm{MA}\left(\operatorname{Pr}_{k+1}\right)$ does not imply MA(σ - k-linked), which yields a negative answer to the first question stated in the Introduction. The following is the main lemma.

LEMmA 4. For $k \geq 2$, there is a forcing notion $\mathbb{P}_{*}=\mathbb{P}_{*}^{k}$ and \mathbb{P}_{*}-names \mathcal{A} and $\mathbb{Q}_{\mathcal{A}}=\mathbb{Q}_{\mathcal{A}}^{k}$ such that:
(1) \mathbb{P}_{*} has precalibre $-\aleph_{1}$ and is of cardinality \aleph_{1}.
(2) $\Vdash_{\mathbb{P}_{*}} " \mathcal{A} \subseteq\left[\aleph_{1}\right]^{k+1} "$.
(3) $\Vdash_{\mathbb{P}_{*}}$ "$\widetilde{\mathbb{Q}}_{\mathcal{A}}=\left\{v \in\left[\aleph_{1}\right]^{<\aleph_{0}}:[v]^{k+1} \cap \mathcal{A}=\emptyset\right\}$, ordered by \supseteq, is $\sigma-k$ linked".
(4) $\Vdash_{\mathbb{P}_{*}}$ " $\underset{\sim}{I}:=\left\{v \in \mathbb{Q}_{\mathcal{A}}: v \nsubseteq \alpha\right\}$ is dense for all $\alpha<\aleph_{1}$ ".
(5) $\Vdash_{\mathbb{P}_{*}}$ "If $v_{\alpha} \in \mathbb{Q}_{\mathcal{A}}$ is such that $v_{\alpha} \nsubseteq \alpha$ for $\alpha<\aleph_{1}$, and $u_{\xi} \in\left[\aleph_{1}\right]^{<\aleph_{0}}$, for $\xi<\aleph_{1}$, are non-empty and pairwise disjoint, then there exist $\xi_{0}<\cdots<\xi_{k}$ such that for every $\left\langle\alpha_{\ell}: \ell \leq k\right\rangle \in \prod_{\ell \leq k} u_{\xi_{\ell}}$ the set $\bigcup_{\ell \leq k} v_{\alpha_{\ell}}$ does not belong to $\mathbb{Q}_{\mathcal{A}} "$.

Proof. We define \mathbb{P}_{*} by: $p \in \mathbb{P}_{*}$ if and only if p has the form $(u, A, h)=$ $\left(u_{p}, A_{p}, h_{p}\right)$, where
(a) $u \in\left[\aleph_{1}\right]^{<\aleph_{0}}$,
(b) $A \subseteq[u]^{k+1}$, and
(c) $h: \wp_{p} \rightarrow \omega$, where $\wp_{p}:=\left\{v \subseteq u:[v]^{k+1} \cap A=\emptyset\right\}$ is such that if $w_{0}, \ldots, w_{k-1} \in \wp_{p}$ and h is constant on $\left\{w_{0}, \ldots, w_{k-1}\right\}$, then $w_{0} \cup$ $\cdots \cup w_{k-1} \in \wp_{p}$.
The order is given by: $p \leq q$ if and only if $u_{q} \subseteq u_{p}, A_{q}=A_{p} \cap\left[u_{q}\right]^{k+1}$, and $h_{q} \subseteq h_{p}$ (hence $\wp_{q}=\wp_{p} \cap \mathcal{P}\left(u_{q}\right)$ and $h_{p} \upharpoonright \wp_{q}=h_{q}$).
(1) Clearly, \mathbb{P}_{*} has cardinality \aleph_{1}, so we show that it has precalibre- \aleph_{1}. Given $\left\{q_{\xi}=\left(u_{\xi}, A_{\xi}, h_{\xi}\right): \xi<\aleph_{1}\right\} \subseteq \mathbb{P}_{*}$, and writing \wp_{ξ} instead of the more cumbersome $\wp_{q_{\xi}}$, we can find an uncountable $W \subseteq \aleph_{1}$ such that:
(i) The set $\left\{u_{\xi}: \xi \in W\right\}$ forms a Δ-system with heart u_{*}.
(ii) The sets $\left[u_{*}\right]^{k+1} \cap A_{\xi}$ for $\xi \in W$ are all the same. Hence the sets $\wp_{\xi} \cap \mathcal{P}\left(u_{*}\right)$ for $\xi \in W$ are also all the same.
(iii) The functions $h_{\xi} \upharpoonright\left(\wp_{\xi} \cap \mathcal{P}\left(u_{*}\right)\right)$ for $\xi \in W$ are all the same.
(iv) The ranges of h_{ξ}, for $\xi \in W$, are all the same, say R. So, R is finite.
(v) For each $i \in R$, the sets $\left\{w \cap u_{*}: h_{\xi}(w)=i\right\}$ for $\xi \in W$ are the same.
We will show that every finite subset of $\left\{q_{\xi}: \xi \in W\right\}$ has a common lower bound. Given $\xi_{0}, \ldots, \xi_{m} \in W$, let $q=\left(u_{q}, A_{q}, h_{q}\right)$ be such that:

- $u_{q}=\bigcup_{\ell \leq m} u_{\xi_{\ell}}$.
- $A_{q}=\bigcup_{\ell \leq m} A_{\xi_{\ell}}$. Note that this implies that the $\wp_{\xi_{\ell}}$ are contained in $\wp_{q}=\left\{v \subseteq u_{q}:[v]^{k+1} \cap A_{q}=\emptyset\right\}$. Indeed, if, say, $w \in \wp_{\xi_{\ell}}$, then $[w]^{k+1} \cap A_{\xi_{\ell}}=\emptyset$, and we claim that also $[w]^{k+1} \cap A_{\xi_{j}}=\emptyset$ for $j \leq m$. Indeed, if $v \in[w]^{k+1} \cap A_{\xi_{j}}$ with $j \neq \ell$, then $v \subseteq u_{*}$, and therefore $v \in\left[u_{*}\right]^{k+1} \cap A_{\xi_{j}}=\left[u_{*}\right]^{k+1} \cap A_{\xi_{\ell}}$. Hence, $v \in[w]^{k+1} \cap A_{\xi_{\ell}}$, which is impossible because $[w]^{k+1} \cap A_{\xi_{\ell}}$ is empty.
- $h_{q}: \wp_{q} \rightarrow \omega$ is such that $h_{q}(v)=h_{\xi_{\ell}}(v)$ for all $v \in \wp_{\xi_{\ell}}$, and the $h_{q}(v)$ are all distinct and greater than $\sup \left\{h_{q}(v): v \in \bigcup_{\ell \leq m} \wp_{\xi_{\ell}}\right\}$ for $v \notin \bigcup_{\ell \leq m} \wp_{\xi_{\ell}}$. Notice that h_{q} is well-defined because the restrictions $h_{\xi_{\ell}} \upharpoonright\left(\wp_{\xi_{\ell}} \cap \mathcal{P}\left(u_{*}\right)\right)$ for $\ell \leq m$ are all the same.
We claim that $q \in \mathbb{P}_{*}$. For this, we only need to show that if $\left\{w_{0}, \ldots, w_{k-1}\right\}$ $\subseteq \wp_{q}$ and h_{q} is constant on $\left\{w_{0}, \ldots, w_{k-1}\right\}$, then $\left[\bigcup_{j<k} w_{j}\right]^{k+1} \cap A_{q}=\emptyset$. So fix a set $\left\{w_{0}, \ldots, w_{k-1}\right\} \subseteq \wp_{q}$ and suppose h_{q} is constant on it, say with constant value i. By definition of h_{q} we must have $\left\{w_{0}, \ldots, w_{k-1}\right\} \subseteq \bigcup_{\ell \leq m} \wp_{\xi_{\ell}}$. Now suppose, towards a contradiction, that $v \in\left[\bigcup_{j<k} w_{j}\right]^{k+1} \cap A_{\xi_{\ell}}$ for some $\ell \leq m$. Let $s=\left\{w_{j}: j<k\right\} \cap \wp \xi_{\ell}$, and let $t=\left\{w_{j}: j<k\right\} \backslash s$. Thus, $v \subseteq \bigcup s \cup\left(\bigcup t \cap u_{*}\right)$, for if $\alpha \in v \backslash \bigcup s$, then $\alpha \in \bigcup t$ and $\alpha \in \bigcup \wp_{\xi_{\ell^{\prime}}}$ for some $\ell^{\prime} \neq \ell$, hence $\alpha \in u_{\xi} \cap u_{\xi^{\prime}}=u_{*}$.

By (v),

$$
\left\{w \cap u_{*}: h_{\xi_{\ell}}(w)=i\right\}=\left\{w \cap u_{*}: h_{\xi_{\ell^{\prime}}}(w)=i\right\}
$$

for every $\ell^{\prime} \leq m$. So, for every $w_{j} \in t$, there exists $w_{j}^{\prime} \in \wp_{\ell}$ such that $w_{j} \cap u_{*}=w_{j}^{\prime} \cap u_{*}$ and $h_{\xi_{\ell}}\left(w_{j}^{\prime}\right)=i$. Let $t^{\prime}=s \cup\left\{w_{j}^{\prime}: w_{j} \in t\right\}$. Note that $t^{\prime} \subseteq \wp_{\xi_{\ell}}$ and $t^{\prime} \subseteq\left\{w: h_{\xi_{\ell}}(w)=i\right\}$. So,

$$
v \subseteq \bigcup t^{\prime} \subseteq \bigcup\left\{w: h_{\xi_{\ell}}(w)=i\right\}
$$

Thus, $v \in\left[\bigcup\left\{w: h_{\xi_{\ell}}(w)=i\right\}\right]^{k+1} \cap A_{\xi_{\ell}}$. But this is impossible because $\bigcup\{w$: $\left.h_{\xi_{\ell}}(w)=i\right\} \in \wp_{\xi_{\ell}}$ (since $h_{\xi_{\ell}}$ satisfies property (c) above), and therefore

$$
\left[\bigcup\left\{w: h_{\xi_{\ell}}(w)=i\right\}\right]^{k+1} \cap A_{\xi_{\ell}}=\emptyset
$$

Now one can easily check that $q \leq q_{\xi_{0}}, \ldots, q_{\xi_{m}}$. And this shows that the set $\left\{q_{\xi}: \xi \in W\right\}$ is finite-wise compatible.
(2) Let

$$
\underset{\sim}{\mathcal{A}}=\left\{(\check{v}, p): v \in A_{p}, p \in \mathbb{P}_{*}\right\}
$$

Thus, \mathcal{A} is a name for the set $\bigcup\left\{A_{p}: p \in G\right\}$, where G is the \mathbb{P}_{*}-generic filter. Clearly, (2) holds.
(3) Let

$$
\mathbb{Q}_{\mathcal{A}}=\left\{(\check{v}, p): v \in \wp_{p}, p \in \mathbb{P}_{*}\right\} .
$$

Thus, $\mathbb{Q}_{\mathcal{A}}$ is a name for the set $\bigcup\left\{\wp_{p}: p \in G\right\}$, where G is the \mathbb{P}_{*}-generic filter. Clearly, $\Vdash_{\mathbb{P}_{*}}$ " $\mathbb{Q}_{\mathcal{A}}=\left\{v \in\left[\aleph_{1}\right]^{<\aleph_{0}}:[v]^{k+1} \cap \mathcal{A}=\emptyset\right\}$ ". Moreover, if G is \mathbb{P}_{*}-generic over V, then, by (c), the function $\bigcup\left\{h_{p}: p \in G\right\}$ witnesses that the interpretation $i_{G}\left(\mathbb{Q}_{\mathcal{A}}\right)$, ordered by \supseteq, is σ - k-linked.
(4) Clear.
(5) Suppose that $p \in \mathbb{P}_{*}$ forces $\dot{v}_{\alpha} \in \mathbb{Q}_{\mathcal{A}}$ is such that $\dot{v}_{\alpha} \nsubseteq \alpha$ for all $\alpha<\aleph_{1}$; and it also forces $\dot{u}_{\xi} \in\left[\aleph_{1}\right]^{<\aleph_{0}}$ for all $\xi<\aleph_{1}$ are non-empty and pairwise disjoint.

For each $\xi<\aleph_{1}$, let $q_{\xi}=\left(u_{\xi}, A_{\xi}, h_{\xi}\right) \leq p$ and let $u_{\xi}^{*} \in\left[\aleph_{1}\right]^{<\aleph_{0}}$ and $\bar{v}_{\xi}^{*}=\left\langle v_{\xi, \alpha}^{*}: \alpha \in u_{\xi}^{*}\right\rangle$, with $v_{\xi, \alpha}^{*} \in\left[\aleph_{1}\right]^{<\aleph_{0}}$, be such that

$$
q_{\xi} \Vdash_{\mathbb{P}_{*}} " \dot{u}_{\xi}=u_{\xi}^{*} \text { and } \dot{v}_{\alpha}=v_{\xi, \alpha}^{*} \text { for } \alpha \in u_{\xi}^{* "} \text {. }
$$

We may assume, by extending q_{ξ} if necessary, that $u_{\xi}^{*} \cup \bigcup_{\alpha \in u_{\xi}^{*}} v_{\xi, \alpha}^{*} \subseteq u_{\xi}$.
As in (1), we can find an uncountable $W \subseteq \aleph_{1}$ such that (i)-(v) hold for the set of conditions $\left\{q_{\xi}: \xi \in W\right\}$. Hence $\left\{q_{\xi}: \xi \in W\right\}$ is pairwise compatible (in fact, finite-wise compatible), from which it follows that the set $\left\{u_{\xi}^{*}: \xi \in W\right\}$ is pairwise disjoint. Now choose $\xi_{0}<\cdots<\xi_{k}$ from W so that:

- the heart u_{*} of the Δ-system $\left\{u_{\xi}: \xi \in W\right\}$ is an initial segment of $u_{\xi_{\ell}}$ for all $\ell \leq k$,
- $\sup \left(u_{\xi_{\ell}}\right)<\inf \left(u_{\xi_{\ell+1}} \backslash u_{*}\right)$ for all $\ell<k$, and
- $u_{\xi_{\ell}}^{*} \subseteq u_{\xi_{\ell}} \backslash u_{*}$ for all $\ell \leq k$.

For each $\sigma=\left\langle\alpha_{\ell}: \ell \leq k\right\rangle \in \prod_{\ell \leq k} u_{\xi_{\ell}}^{*}$, pick $w_{\sigma} \in\left[\bigcup_{\ell \leq k} v_{\xi_{\ell}, \alpha_{\ell}}^{*}\right]^{k+1}$ such that $\left|w_{\sigma} \cap\left(v_{\xi_{\ell}, \alpha_{\ell}}^{*} \backslash \alpha_{\ell}\right)\right|=1$ for all $\ell \leq k$. This is possible because $v_{\xi_{\ell}, \alpha_{\ell}}^{*} \nsubseteq \alpha_{\ell}$.

CLAim 5. $w_{\sigma} \nsubseteq u_{\xi_{\ell}}$, hence $w_{\sigma} \notin A_{\xi_{\ell}}$, for all $\sigma \in \prod_{\ell \leq k} u_{\xi_{\ell}}^{*}$ and all $\ell \leq k$.
Proof. Fix $\sigma=\left\langle\alpha_{\ell}: \ell \leq k\right\rangle$ and $\ell \leq k$, and suppose for a contradiction that $w_{\sigma} \subseteq u_{\xi_{\ell}}$. Then $w_{\sigma} \subseteq u_{\xi_{\ell}} \backslash u_{*}$. If $\ell<k$, then as $\sup \left(u_{\xi_{\ell}}\right)<\inf \left(u_{\xi_{\ell+1}} \backslash u_{*}\right)$ $\leq \inf \left(u_{\xi_{\ell+1}}^{*}\right) \leq \alpha_{\ell+1}$, we would have $w_{\sigma} \backslash \alpha_{\ell+1}=\emptyset$, which contradicts our choice of w_{σ}. But if $\ell=k$, then since $\sup \left(v_{\xi_{\ell-1}, \alpha_{\ell-1}}^{*}\right) \leq \sup \left(u_{\xi_{\ell-1}}\right)<\inf \left(u_{\xi_{\ell}} \mid u_{*}\right)$, we would have $w_{\sigma} \cap v_{\xi_{\ell-1}, \alpha_{\ell-1}}^{*}=\emptyset$, which contradicts again our choice of w_{σ}.

Now define $q=\left(u_{q}, A_{q}, h_{q}\right)$ as follows:

- $u_{q}=\bigcup_{\ell \leq k} u_{\xi_{\ell}}$.
- $A_{q}=\left(\bigcup_{\ell \leq k} A_{\xi_{\ell}}\right) \cup\left\{w_{\sigma}: \sigma \in \prod_{\ell \leq k} u_{\xi_{\ell}}^{*}\right\}$. Note that since $w_{\sigma} \nsubseteq u_{\xi_{\ell}}$ (Claim 5), we have $w_{\sigma} \notin \wp \xi_{\ell}$ for all $\sigma \in \prod_{\ell \leq k} u_{\xi_{\ell}}^{*}$ and $\ell \leq k$. Hence, $\wp_{\xi_{\ell}} \subseteq \wp_{q}$ for all $\ell \leq k$.
- $h_{q}: \wp_{q} \rightarrow \omega$ is such that $h_{q}(v)=h_{\xi_{\ell}}(v)$ for $v \in \wp_{\xi_{\ell}}$, for all $\ell \leq k$, and the $h_{q}(v)$ are all distinct and greater than $\sup \left\{h_{q}(v): v \in \bigcup_{\ell \leq k} \wp \wp_{\ell}\right\}$ for $v \notin \bigcup_{\ell \leq k} \wp \xi_{\ell}$.
As in (1), we can now check that $q \in \mathbb{P}_{*}$. Moreover, by Claim 5. $A_{\xi_{\ell}}=$ $A_{q} \cap\left[u_{\xi_{\ell}}\right]^{k+1}$. Hence, $q \leq q_{\xi_{\ell}}$ for all $\ell \leq k$, and so

$$
q \Vdash_{\mathbb{P}_{*}} \text { " } \dot{u}_{\xi_{\ell}}=u_{\xi_{\ell}}^{*} \text { and } \dot{v}_{\alpha}=v_{\xi_{\ell}, \alpha}^{*} \text { for } \alpha \in u_{\xi_{\ell}}^{*} \text { ". }
$$

And since $w_{\sigma} \in\left[\bigcup_{\ell \leq k} v_{\alpha_{\ell}}^{*}\right]^{k+1} \cap A_{q}$ for every $\sigma \in \prod_{\ell \leq k} u_{\xi_{\ell}}^{*}$, we have

$$
q \Vdash_{\mathbb{P}_{*}} \text { " } \bigcup_{\ell \leq k} \dot{v}_{\alpha_{\ell}} \notin \mathbb{Q}_{\sim}^{\mathcal{A}} \text { for all }\left\langle\alpha_{\ell}: \ell \leq k\right\rangle \in \prod_{\ell \leq k} \dot{u}_{\xi_{\ell}} " .
$$

This finishes the proof of Lemma 4.
Lemma 6. Let $k \geq 2$ and let \mathbb{P}_{*} be as in Lemma 4. Suppose $\underset{\sim}{\mathbb{Q}}$ is a \mathbb{P}_{*}-name for a forcing notion that satisfies Pr_{k+1}. Then
$\vdash_{\mathbb{P}_{*} * \mathbb{Q}}$ "There is no directed $G \subseteq \mathbb{Q}_{\mathcal{A}}$ such that $\underset{\sim}{I}{ }_{\sim} \cap G \neq \emptyset$ for all $\alpha<\aleph_{1}$ ", where ${\underset{\sim}{I}}_{\alpha}$ is a name for the dense open set $\left\{v \in \mathbb{Q}_{\mathcal{A}}: v \nsubseteq \alpha\right\}$.

Proof. Suppose for a contradiction that $p * \dot{q} \in \mathbb{P}_{*} * \underset{\sim}{\mathbb{Q}}$ and
$p * \dot{q} \Vdash_{\mathbb{P}_{*} * \mathbb{Q}}$ "There exists $G \subseteq \mathbb{Q}_{\mathcal{A}}$ directed with $\underset{\sim}{\underset{\sim}{I}}{ }_{\alpha} \cap G \neq \emptyset$ for all $\alpha<\aleph_{1}$ ".
Suppose $G_{0} \subseteq \mathbb{P}_{*}$ is a filter generic over V with $p \in G_{0}$. So, in $V\left[G_{0}\right]$, letting $q=i_{G_{0}}(\dot{q})$ and $\mathbb{Q}=i_{G_{0}}(\underset{\sim}{\mathbb{Q}})$, we see that for some \mathbb{Q}-name $\underset{\sim}{G}$,

$$
q \Vdash_{\mathbb{Q}} " G \subseteq \mathbb{Q}_{\mathcal{A}} \text { is directed and } I_{\alpha} \cap \underset{\sim}{G} \neq \emptyset \text { for all } \alpha<\aleph_{1} "
$$

For each $\alpha<\aleph_{1}$, let $q_{\alpha} \leq q$, and let $v_{\alpha} \in\left[\aleph_{1}\right]^{<\aleph_{0}}$ be such that

$$
q_{\alpha} \Vdash_{\mathbb{Q}} " \check{v}_{\alpha} \in I_{\alpha} \cap \underset{\sim}{G} " .
$$

Thus, $v_{\alpha} \nsubseteq \alpha$ for all $\alpha<\aleph_{1}$.
Since \mathbb{Q} satisfies Pr_{k+1}, there exists $\bar{u}=\left\langle u_{\xi}: \xi<\aleph_{1}\right\rangle$ such that:
(a) u_{ξ} is a finite subset of \aleph_{1} for all $\xi<\aleph_{1}$,
(b) $u_{\xi_{0}} \cap u_{\xi_{1}}=\emptyset$ whenever $\xi_{0} \neq \xi_{1}$, and
(c) if $\xi_{0}<\cdots<\xi_{k}$, then we can find $\alpha_{\ell} \in u_{\xi_{\ell}}$ for $\ell \leq k$ such that $\left\{q_{\alpha_{\ell}}: \ell \leq k\right\}$ have a common lower bound.
By Lemma 4, we can find $\xi_{0}<\cdots<\xi_{k}$ such that for every $\left\langle\alpha_{\ell}: \ell \leq k\right\rangle$ in $\prod_{\ell \leq k} u_{\xi_{\ell}}$ the set $\bigcup_{\ell \leq k} v_{\alpha_{\ell}}$ does not belong to $\mathbb{Q}_{\mathcal{A}}$.

By (c), let $\alpha_{\ell} \in u_{\xi_{\ell}}$ for $\ell \leq k$ be such that $\left\{q_{\alpha_{\ell}}: \ell \leq k\right\}$ have a common lower bound, say r. Then r forces that $\left\{\tilde{v}_{\alpha_{\ell}}: \ell \leq k\right\} \subseteq \underset{\sim}{G}$. And since r forces that $\underset{\sim}{G}$ is directed, it also forces that $\bigcup_{\ell \leq k} v_{\alpha_{\ell}} \in \mathbb{Q}_{\mathcal{A}}$, a contradiction.

All elements are now in place to prove the main result of this section.
Theorem 7. Let $k \geq 2$. Assume $\lambda=\lambda^{<\theta}$, where $\theta=\operatorname{cf}(\theta)>\aleph_{1}$. Then there is a finite-support iteration

$$
\overline{\mathbb{P}}=\left\langle\mathbb{P}_{\alpha},{\underset{\sim}{\mathbb{Q}}}_{\beta}: \alpha \leq \lambda, \beta<\lambda\right\rangle
$$

where:
(1) \mathbb{P}_{0} is the forcing \mathbb{P}_{*} from Lemma 4 .
(2) $\vdash_{\mathbb{P}_{\beta}} " \operatorname{Pr}_{k+1}\left(\mathbb{Q}_{\beta}\right) "$ for every $0<\beta<\lambda$.
(3) In $V^{\mathbb{P}_{\lambda}}$ the axiom $\mathrm{MA}_{<\theta}\left(\operatorname{Pr}_{k+1}\right)$ holds, hence in particular (Lem$m a$ 2) every Aronszajn tree on ω_{1} is special.
(4) $\mathbb{Q}_{\mathcal{A}}$ witnesses that $\mathrm{MA}\left(\sigma\right.$ - k-linked) fails in $V^{\mathbb{P}_{\lambda}}$.

Proof. To obtain (3), we proceed in the standard way as in all iterations forcing (some fragment of) MA, that is, we iterate all posets with the Pr_{k+1} property and having cardinality $<\theta$, which are given by some fixed bookkeeping function (see [6] or 7] for details).

Since after forcing with \mathbb{P}_{0} the rest of the iteration $\overline{\mathbb{P}}$ has the property Pr_{k+1} (Lemma 3), (4) follows immediately from Lemma 6 .

Corollary 8. For every $k \geq 2$, ZFC plus $\mathrm{MA}\left(\operatorname{Pr}_{k+1}\right)$ does not imply MA (σ - k-linked).

Thus, since $\mathrm{MA}\left(\operatorname{Pr}_{k+1}\right)$ implies both MA(σ-centered) and "Every Aronszajn tree is special", the corollary answers in the negative and in a strong way the question from [1]: Does MA $(\sigma$-centered) plus "Every Aronszajn tree is special" imply MA $(\sigma$-linked $)$?
4. On destroying precalibre- \aleph_{1} while preserving the ccc. We turn now to the second question stated in the Introduction (Steprāns-Watson [9]): Is it consistent that there exists a precalibre- \aleph_{1} poset which is ccc but does not have precalibre- \aleph_{1} in some forcing extension that preserves cardinals?

Note that the forcing extension cannot be ccc, since ccc forcing preserves the precalibre- \aleph_{1} property. Also, as shown in [9], assuming MA plus the Covering Lemma, every forcing that preserves cardinals also preserves the precalibre- \aleph_{1} property. Moreover, the examples provided in [9] of cardinalpreserving forcing notions that destroy precalibre- \aleph_{1} do so by actually destroying the ccc property.

A positive answer to the Steprāns-Watson question is provided by the following theorem. Before stating it, let us recall a strong form of Jensen's diamond principle, diamond-star relativized to a stationary set S, which is also due to Jensen. For S a stationary subset of ω_{1}, let
\diamond_{S}^{*} : There exists a sequence $\left\langle\mathcal{S}_{\alpha}: \alpha \in S\right\rangle$, where \mathcal{S}_{α} is a countable set of subsets of α, such that for every $X \subseteq \omega_{1}$ there is a club $C \subseteq \omega_{1}$ with $X \cap \alpha \in \mathcal{S}_{\alpha}$ for every $\alpha \in C \cap S$.

The principle \diamond_{S}^{*} holds in the constructible universe L, for every stationary $S \subseteq \omega_{1}$ (see [3, 3.5] for a proof in the case $S=\omega_{1}$, which can be easily adapted to any stationary S). Also, \diamond_{S}^{*} can be forced by a σ-closed forcing notion (see [7, Chapter VII, Exercises H18 and H20], where it is shown how to force the even stronger form of diamond known as \diamond_{S}^{+}).

Theorem 9. It is consistent, modulo ZFC, that the CH holds and there exist:
(1) A forcing notion T of cardinality \aleph_{1} that preserves cardinals.
(2) Two posets \mathbb{P}_{0} and \mathbb{P}_{1} of cardinality \aleph_{1} that have precalibre- \aleph_{1} and are such that

$$
\Vdash_{T} \text { " } \mathbb{P}_{0}, \mathbb{P}_{1} \text { are ccc, but } \mathbb{P}_{0} \times \mathbb{P}_{1} \text { is not ccc". }
$$

Hence \Vdash_{T} " \mathbb{P}_{0} and \mathbb{P}_{1} do not have precalibre- \aleph_{1} ".
Proof. Let $\left\{S_{1}, S_{2}\right\}$ be a partition of $\Omega:=\left\{\delta<\omega_{1}: \delta\right.$ limit $\}$ into two stationary sets. By a preliminary forcing, we may assume that $\diamond_{S_{1}}^{*}$ holds. So, there exists $\left\langle\mathcal{S}_{\alpha}: \alpha \in S_{1}\right\rangle$, where \mathcal{S}_{α} is a countable set of subsets of α, such that for every $X \subseteq \omega_{1}$ there is a club $C \subseteq \omega_{1}$ with $X \cap \alpha \in \mathcal{S}_{\alpha}$ for every $\alpha \in C \cap S_{1}$. In particular, the CH holds. Using $\diamond_{S_{1}}^{*}$, we can build an S_{1}-oracle, i.e., an C-increasing sequence $\bar{M}=\left\langle M_{\delta}: \delta \in S_{1}\right\rangle$ with M_{δ} countable and transitive, $\delta \in M_{\delta}, M_{\delta} \models$ " $\mathrm{ZFC}^{-}+\delta$ is countable", and such that for every $A \subseteq \omega_{1}$ there is a club $C_{A} \subseteq \omega_{1}$ such that $A \cap \delta \in M_{\delta}$ for every $\delta \in C_{A} \cap S_{1}$. (For the latter, one simply needs to require that $\mathcal{S}_{\delta} \subseteq M_{\delta}$ for all $\delta \in S_{1}$.) Moreover, we can build \bar{M} so that it has the following additional property:
(*) For every regular uncountable cardinal χ and a well-ordering $<_{\chi}^{*}$ of $H(\chi)$, the set of all (universes of) countable $N \preceq\left\langle H(\chi), \in,<_{\chi}^{*}\right\rangle$ such that the Mostowski collapse of N belongs to M_{δ}, where $\delta:=N \cap \omega_{1}$, is stationary in $[H(\chi)]^{\aleph_{0}}$.

Property (*) will be needed to prove that the tree partial ordering T (defined below) has many branches, and also to prove that the product partial ordering $\mathbb{Q} \times T$ (defined below) is S_{1}-proper (Claim 10 later on), and so it does not collapse \aleph_{1}.

To ensure ($*$), take a large enough regular cardinal λ and define the sequence \bar{M} so that, for every $\delta \in S_{1}, M_{\delta}$ is the Mostowski collapse of a countable elementary substructure X of $H(\lambda)$ that contains $\bar{M} \upharpoonright \delta$, for all ordinals $\leq \delta$, and all elements of \mathcal{S}_{δ}. To see that $(*)$ holds, fix a regular uncountable cardinal χ, a well-ordering $<_{\chi}^{*}$ of $H(\chi)$, and a club $E \subseteq[H(\chi)]^{\aleph_{0}}$. Let $\bar{N}=\left\langle N_{\alpha}: \alpha<\aleph_{1}\right\rangle$ be an \subset-increasing and \in-increasing continuous chain of elementary substructures of $\left\langle H(\chi), \in,\left\langle_{\chi}^{*}\right\rangle\right.$ with the universe of N_{α} in E for all $\alpha<\aleph_{1}$. We shall find $\delta \in S_{1}$ such that the transitive collapse of N_{δ} belongs to M_{δ}, where $\delta=N_{\delta} \cap \omega_{1}$.

Fix a bijection $h: \aleph_{1} \rightarrow \bigcup_{\alpha<\aleph_{1}} N_{\alpha}$, and let $\Gamma: \aleph_{1} \times \aleph_{1} \rightarrow \aleph_{1}$ be the standard pairing function (cf. [6, Chapter 3]). Observe that the set

$$
D:=\left\{\delta<\aleph_{1}: \delta \text { is closed under } \Gamma \text { and } h \text { maps } \delta \text { onto } N_{\delta}\right\}
$$

is a club. Now let

$$
\begin{aligned}
X_{1} & :=\{\Gamma(i, j): h(i) \in h(j)\} \\
X_{2} & :=\left\{\Gamma(\alpha, i): h(i) \in N_{\alpha}\right\} \\
X_{3} & :=\left\{\Gamma(i, j): h(i)<_{\chi}^{*} h(j)\right\} \\
X & :=\left\{3 j+i: j \in X_{i} \text { and } i \in\{1,2,3\}\right\}
\end{aligned}
$$

The set $S_{1}^{\prime}:=\left\{\delta \in S_{1}: X \cap \delta \in M_{\delta}\right\}$ is stationary. Thus, since the set $C:=\left\{\delta<\aleph_{1}: \delta=N_{\delta} \cap \omega_{1}\right\}$ is a club, we can pick $\delta \in C \cap D \cap S_{1}^{\prime}$. Since $\delta \in D$, the structure

$$
Y:=\left\langle X_{2} \cap \delta,\left\{\langle i, j\rangle: \Gamma(i, j) \in X_{1} \cap \delta\right\},\left\{\langle i, j\rangle: \Gamma(i, j) \in X_{3} \cap \delta\right\}\right\rangle
$$

is isomorphic to N_{δ}, and therefore Y and N_{δ} have the same transitive collapse; and Y belongs to M_{δ}, because $\delta \in S_{1}^{\prime}$. Hence, since $M_{\delta} \models \mathrm{ZFC}^{-}$, the transitive collapse of Y belongs to M_{δ}. Finally, since $\delta \in C, \delta=N_{\delta} \cap \omega_{1}$.

We shall now define the forcing T. Let us write $\aleph_{1}^{<\aleph_{1}}$ for the set of all countable sequences of countable ordinals. Let
$T:=\left\{\eta \in \aleph_{1}^{<\aleph_{1}}:\right.$ Range $(\eta) \subset S_{1}, \eta$ is increasing and continuous, of successor length, and if $\varepsilon<\operatorname{lh}(\eta)$, then $\left.\eta \upharpoonright \varepsilon \in M_{\eta(\varepsilon)}\right\}$.
Let \leq_{T} be the partial order on T given by end-extension. Thus, $\left(T, \leq_{T}\right)$ is a tree. Note that, since $\delta \in M_{\delta}$ for every $\delta \in S_{1}$, if $\eta \in T$, then η in $M_{\text {sup Range }(\eta)}$. Also notice that if $\eta \in T$, then $\eta \nearrow\langle\delta\rangle \in T$ for every $\delta \in S_{1}$ greater than sup Range (η). In particular, every node of T of finite length has \aleph_{1}-many extensions of any greater finite length. Now suppose $\alpha<\omega_{1}$ is a limit, and suppose inductively that for every successor $\beta<\alpha$, every node of T of length β has \aleph_{1}-many extensions of every higher successor length below α.

We claim that every $\eta \in T$ of length less than α has \aleph_{1}-many extensions in T of length $\alpha+1$ (and in fact, the set of their suprema is stationary).

For every $\delta<\omega_{1}$, let $T_{\delta}:=\{\eta \in T:$ sup Range $(\eta)<\delta\}$. Notice that T_{δ} is countable: otherwise, uncountably many $\eta \in T_{\delta}$ would have the same sup Range (η), and therefore they would all belong to the model $M_{\text {sup Range }(\eta)}$, which is impossible because it is countable. Now fix a node $\eta \in T$ of length less than α, and let $B:=\left\{b_{\gamma}: \gamma<\omega_{1}\right\}$ be an enumeration of all the branches (i.e., linearly ordered subsets of T closed under predecessors) b of T that contain η and have length α (i.e., $\bigcup\left\{\operatorname{dom}\left(\eta^{\prime}\right): \eta^{\prime} \in b\right\}=\alpha$). For a club C of δ the set $\left\{b_{\gamma}: \gamma<\delta\right\}$ belongs to M_{δ}.

We shall next build a sequence $B^{*}:=\left\langle b_{\xi}^{*}: \xi<\omega_{1}\right\rangle$ of branches from B so that the set $\sup B^{*}:=\left\langle\sup \operatorname{Range}\left(\bigcup b_{\xi}^{*}\right): \xi<\omega_{1}\right\rangle$ is the increasing enumeration of a club. To this end, start by fixing an increasing sequence $\left\langle\alpha_{n}: n<\omega\right\rangle$ of successor ordinals converging to α, with α_{0} greater than the length of η. Then let $b_{0}^{*}:=b_{0}$. Given b_{ξ}^{*}, let γ be the least ordinal such that $\bigcup b_{\gamma}\left(\alpha_{0}\right)>\sup$ Range $\left(\bigcup b_{\xi}^{*}\right)$, and let $b_{\xi+1}^{*}:=b_{\gamma}$. Finally, given b_{ξ}^{*} for all $\xi<\delta$, where $\delta<\omega_{1}$ is a limit ordinal, pick an increasing sequence $\left\langle\xi_{n}: n<\omega\right\rangle$ converging to δ. By construction, the sequence $\left\langle\right.$ sup Range $\left.\left(\bigcup b_{\xi_{n}}^{*}\right): n<\omega\right\rangle$ is increasing. Now let $f: \alpha \rightarrow \aleph_{1}$ be such that $f \upharpoonright\left[0, \alpha_{0}\right]=\bigcup b_{\xi_{0}}^{*} \upharpoonright\left[0, \alpha_{0}\right]$, and $f \upharpoonright\left(\alpha_{n}, \alpha_{n+1}\right]=\bigcup b_{\xi_{n+1}}^{*} \upharpoonright\left(\alpha_{n}, \alpha_{n+1}\right]$ for all $n<\omega$. Then set $b_{\delta}^{*}:=\{f \upharpoonright \beta: \beta<\alpha$ is a successor $\}$. One can easily check that b_{δ}^{*} is a branch of T of length α with sup Range $\left(\bigcup b_{\delta}^{*}\right)=\sup \left\{\sup R a n g e\left(\bigcup b_{\xi}^{*}\right): \xi<\zeta\right\}$. Finally, notice that if $\delta \in S_{1} \cap C$ is greater than α and belongs to the club enumerated by $\sup B^{*}$, then since $M_{\delta} \models$ " δ is countable", we can pick the sequences $\left\langle\alpha_{n}: n<\omega\right\rangle$ and $\left\langle\xi_{n}: n<\omega\right\rangle$ in M_{δ}. Then the sequence $\left\langle b_{\xi_{n}}^{*}: n<\omega\right\rangle$ belongs to M_{δ}, and therefore $\left(\bigcup b_{\delta}^{*}\right) \frown\langle\delta\rangle \in T$.

By $(*)$ the set of all countable $N \preceq\left\langle H\left(\aleph_{2}\right), \in,<_{\aleph_{2}}^{*}\right\rangle$ that contain B^{*} and $\left\langle\alpha_{n}: n<\omega\right\rangle$, with $\alpha \subseteq N$, and such that the Mostowski collapse of N belongs to M_{δ}, where $\delta:=N \cap \omega_{1}$, is stationary in $[H(\chi)]^{\aleph_{0}}$. So, since the set $\operatorname{Lim}\left(\sup B^{*}\right)$ of limit points of $\sup B^{*}$ is a club, there is such an N with $\delta:=N \cap \omega_{1} \in \operatorname{Lim}\left(\sup B^{*}\right)$. If \bar{N} is the transitive collapse of N, we deduce that $B^{*} \upharpoonright \delta \in \bar{N} \in M_{\delta}$, and so in M_{δ} we can build, as above, the branch b_{δ}^{*}. Therefore, since $\delta=\sup$ Range $\left(\bigcup b_{\delta}^{*}\right)$, we see that $\bigcup b_{\delta}^{*} \cup\{\langle\alpha, \delta\rangle\}$ is in T and extends η. We have thus shown that η has \aleph_{1}-many extensions in T of length $\alpha+1$. Even more, the set $\{\sup$ Range $(\bigcup b): b$ is a branch of length $\alpha+1$ that extends $\eta\}$ is stationary.

Note however that since the complement of S_{1} is stationary, T has no branch of length ω_{1}, because the range of such a branch would be a club contained in S_{1}. But since every $\eta \in T$ has extensions of length $\alpha+1$ for every α greater than or equal to the length of η, forcing with $\left(T, \geq_{T}\right)$ yields a branch of T of length ω_{1}.

In order to obtain the forcing notions \mathbb{P}_{0} and \mathbb{P}_{1} claimed by the theorem, we need first to force with the forcing \mathbb{Q} which we define as follows. For u a
subset of T, let $[u]_{T}^{2}$ be the set of all pairs $\{\eta, \nu\} \subseteq u$ such that $\eta \neq \nu$ and η and ν are $<_{T}$-comparable. Let

$$
\mathbb{Q}:=\left\{p:[u]_{T}^{2} \rightarrow\{0,1\}: u \text { is a finite subset of } T\right\}
$$

ordered by reversed inclusion.
It is easily seen that \mathbb{Q} is ccc and it has cardinality \aleph_{1}, so forcing with \mathbb{Q} does not collapse cardinals, does not change cofinalities, and preserves cardinal arithmetic. (In fact, \mathbb{Q} is equivalent, as a forcing notion, to the poset for adding \aleph_{1} Cohen reals, which is σ-centered, but we shall not make use of this fact.)

Notice that if $G \subseteq \mathbb{Q}$ is a generic filter over V, then $\bigcup G:[T]_{T}^{2} \rightarrow\{0,1\}$.
Recall that, for $S \subseteq \aleph_{1}$ stationary, a forcing notion \mathbb{P} is called S-proper if for all (some) large enough regular cardinals χ and all (stationarily many) countable $\langle N, \in\rangle \preceq\langle H(\chi), \in\rangle$ that contain \mathbb{P} and are such that $N \cap \aleph_{1} \in S$, and all $p \in \mathbb{P} \cap N$, there is a condition $q \leq p$ that is (N, \mathbb{P})-generic. If \mathbb{P} is S-proper, then it does not collapse \aleph_{1}. (See [8] or 4] for details.)

Claim 10. The forcing $\mathbb{Q} \times T$ is S_{1}-proper, hence it does not collapse \aleph_{1}.
Proof. Let χ be a large enough regular cardinal, and let $<_{\chi}^{*}$ be a wellordering of $H(\chi)$. Let $N \preceq\left\langle H(\chi), \in,<_{\chi}^{*}\right\rangle$ be countable and such that $\mathbb{Q} \times T$ belongs to $N, \delta:=N \cap \aleph_{1} \in S_{1}$, and the Mostowski collapse of N belongs to M_{δ}. Fix $\left(q_{0}, \eta_{0}\right) \in(\mathbb{Q} \times T) \cap N$. It will be sufficient to find a condition $\eta_{*} \in T$ such that $\eta_{0} \leq_{T} \eta_{*}$ and $\left(q_{0}, \eta_{*}\right)$ is $(N, \mathbb{Q} \times T)$-generic.

Let

$$
\mathbb{Q}_{\delta}:=\left\{p \in \mathbb{Q}: \text { if }\{\eta, \nu\} \in \operatorname{dom}(p), \text { then } \eta, \nu \in T_{\delta}\right\} .
$$

Thus, \mathbb{Q}_{δ} is countable. Moreover, notice that $T_{\delta}=T \cap N$, and therefore $\mathbb{Q}_{\delta}=\mathbb{Q} \cap N$. Hence, T_{δ} and \mathbb{Q}_{δ} are the Mostowski collapses of T and \mathbb{Q}, respectively, and so they belong to M_{δ}.

In M_{δ}, let $\left\langle\left(p_{n}, D_{n}\right): n<\omega\right\rangle$ list all pairs (p, D) such that $p \in \mathbb{Q}_{\delta}$ and D is a dense open subset of $\mathbb{Q}_{\delta} \times T_{\delta}$ that belongs to the Mostowski collapse of N. That is, D is the Mostowski collapse of a dense open subset of $\mathbb{Q} \times T$ that belongs to N.

Also in M_{δ}, fix an increasing sequence $\left\langle\delta_{n}: n<\omega\right\rangle$ converging to δ, and let

$$
D_{n}^{\prime}:=\left\{(p, \nu) \in D_{n}: \operatorname{lh}(\nu)>\delta_{n}\right\} .
$$

Clearly, D_{n}^{\prime} is dense open.
Note that, as the Mostowski collapse of N belongs to M_{δ}, we find that $<_{\chi}^{*} \upharpoonright\left(\mathbb{Q}_{\delta} \times T_{\delta}\right)=\left(<_{\chi}^{*} \upharpoonright(\mathbb{Q} \times T)\right) \cap N \in M_{\delta}$.

Now, still in M_{δ}, and starting with $\left(q_{0}, \eta_{0}\right)$, we inductively choose a sequence $\left\langle\left(q_{n}, \eta_{n}\right): n<\omega\right\rangle$ with $q_{n} \in \mathbb{Q}_{\delta}$ and $\eta_{n} \in T_{\delta}$, and such that if $n=m+1$, then:
(a) $p_{n} \geq q_{n}$ and $\eta_{m}<_{T} \eta_{n}$.
(b) $\left(q_{n}, \eta_{n}\right) \in D_{n}^{\prime}$.
(c) $\left(q_{n}, \eta_{n}\right)$ is the $<_{\chi}^{*}$-least such that (a) and (b) hold.

Then $\eta_{*}:=\left(\bigcup_{n} \eta_{n}\right) \cup\{\langle\delta, \delta\rangle\} \in T$ and $\eta^{*} \in M_{\delta}$, hence $\left(q_{0}, \eta_{*}\right) \in \mathbb{Q} \times T$. Clearly, $\left(q_{0}, \eta_{*}\right) \leq\left(q_{0}, \eta_{0}\right)$. So, we need only check that $\left(q_{0}, \eta_{*}\right)$ is $(N, \mathbb{Q} \times T)$ generic.

Fix an open dense $E \subseteq \mathbb{Q} \times T$ that belongs to N. We need to see that $E \cap N$ is predense below $\left(q_{0}, \eta_{*}\right)$. So, fix $(r, \nu) \leq\left(q_{0}, \eta_{*}\right)$. Since \mathbb{Q} is ccc, q_{0} is (N, \mathbb{Q})-generic, so we can find $r^{\prime} \in\{p:(p, \eta) \in E$ for some $\eta\} \cap N$ that is compatible with r. Let n be such that $p_{n}=r^{\prime}$ and D_{n} is the Mostowski collapse of E. Then $\left(p_{n}, \eta_{n}\right)$ belongs to the transitive collapse of E, hence to $E \cap N$, and is compatible with (r, ν), as $\left(p_{n}, \eta_{*}\right) \leq\left(p_{n}, \eta_{n}\right)$.

We thus conclude that if $G \subseteq \mathbb{Q}$ is a filter generic over V, then in $V[G]$ the forcing T does not collapse \aleph_{1}, and therefore, being of cardinality \aleph_{1}, it preserves cardinals, cofinalities, and the cardinal arithmetic.

We shall now define the \mathbb{Q}-names for the forcing notions $\underset{\sim}{\mathbb{P}} \ell$, for $\ell \in\{0,1\}$, as follows: in $V^{\mathbb{Q}}$, let $\underset{\sim}{b}=\bigcup \underset{\sim}{G}$, where $\underset{\sim}{G}$ is the standard \mathbb{Q}-name for the \mathbb{Q}-generic filter over V. Then let
$\underset{\sim}{\mathbb{P}} \ell:=\{(w, c): w \subseteq T$ is finite, c is a function from w into ω such that

$$
\text { if } \left.\{\eta, \nu\} \in[w]_{T}^{2} \text { and } \underset{\sim}{b}(\{\eta, \nu\})=\ell \text {, then } c(\eta) \neq c(\nu)\right\} .
$$

A condition (w, c) is stronger than a condition (v, d) if and only if $w \supseteq v$ and $c \supseteq d$.

We shall show that if G is \mathbb{Q}-generic over V, then in the extension $V[G]$, the partial orderings $\mathbb{P}_{\ell}=\underset{\sim}{\mathbb{P}} \ell[G]$, for $\ell \in\{0,1\}$, and the forcing T are as required.

Claim 11. In $V[G], \mathbb{P}_{\ell}$ has precalibre- \aleph_{1}.
Proof. Assume $p_{\alpha}=\left(w_{\alpha}, c_{\alpha}\right) \in \mathbb{P}_{\ell}$ for $\alpha<\omega_{1}$. We shall find an uncountable $S \subseteq \aleph_{1}$ such that $\left\{p_{\alpha}: \alpha \in S\right\}$ is finite-wise compatible. For each $\delta \in S_{2}$, let
$s_{\delta}:=\left\{\eta \upharpoonright(\gamma+1): \eta \in w_{\delta}\right.$, and γ is maximal such that $\left.\gamma<\operatorname{lh}(\eta) \wedge \eta(\gamma)<\delta\right\}$.
As η is an increasing and continuous sequence of ordinals from S_{1}, hence disjoint from S_{2}, the set s_{δ} is well-defined. Notice that s_{δ} is a finite subset of $T_{\delta}:=\{\eta \in T$: sup Range $(\eta)<\delta\}$, which is countable.

Let $s_{\delta}^{1}:=w_{\delta} \cap T_{\delta}$. Note that $s_{\delta}^{1} \subseteq s_{\delta}$.
Let $f: S_{2} \rightarrow \omega_{1}$ be given by $f(\delta)=\max \left\{\sup \operatorname{Range}(\eta): \eta \in s_{\delta}\right\}$. Thus, f is regressive, hence constant on a stationary $S_{3} \subseteq S_{2}$. Let δ_{0} be the constant value of f on S_{3}. Then $s_{\delta} \subseteq T_{\delta_{0}}$ for every $\delta \in S_{3}$. So, since $T_{\delta_{0}}$ is countable, there exist $S_{4} \subseteq S_{3}$ stationary and s_{*} such that $s_{\delta}=s_{*}$ for
every $\delta \in S_{4}$. Further, there is a stationary $S_{5} \subseteq S_{4}$ and s_{*}^{1} and c_{*} such that for all $\delta \in S_{5}$,

$$
s_{\delta}^{1}=s_{*}^{1}, \quad c_{\delta} \upharpoonright s_{*}^{1}=c_{*}, \quad \text { and } \quad \forall \alpha<\delta\left(w_{\alpha} \subseteq T_{\delta}\right)
$$

Hence, if $\delta_{1}<\delta_{2}$ are from S_{5}, then not only $w_{\delta_{1}} \cap w_{\delta_{2}}=s_{*}^{1}$, but also if $\eta_{1} \in w_{\delta_{1}}-s_{*}^{1}$ and $\eta_{2} \in w_{\delta_{2}}-s_{*}^{1}$, then η_{1} and η_{2} are $<_{T}$-incomparable. Indeed, suppose otherwise, say $\eta_{1}<_{T} \eta_{2}$. If $\gamma+1=\operatorname{lh}\left(\eta_{1}\right)$, then $\eta_{2} \upharpoonright(\gamma+1)=$ $\eta_{1}<_{T} \eta_{2}$, and $\eta_{2}(\gamma)=\eta_{1}(\gamma)<\delta_{2}$, by choice of S_{5}. Hence, by the definition of $s_{\delta_{2}}, \eta_{2} \upharpoonright(\gamma+1)=\eta_{1}$ is an initial segment of some member of $s_{\delta_{2}}=s_{*}$, and so it belongs to $T_{\delta_{1}}$, hence $\eta_{1} \in s_{*}^{1}$, contradicting the assumption that $\eta_{1} \notin s_{*}^{1}$.

So, $\left\{p_{\delta}: \delta \in S_{5}\right\}$ is as required.
It only remains to show that forcing with T over $V[G]$ preserves the ccc-ness of \mathbb{P}_{0} and \mathbb{P}_{1}, but makes their product not ccc.

Claim 12. If G_{T} is T-generic over $V[G]$, then in the generic extension $V[G]\left[G_{T}\right]$, the forcing \mathbb{P}_{ℓ} is ccc.

Proof. First notice that, by the Product Lemma (see [6, 15.9]), G is \mathbb{Q}-generic over $V\left[G_{T}\right]$, and $V[G]\left[G_{T}\right]=V\left[G_{T}\right][G]$. Now suppose that $\underset{\sim}{A}=$ $\left\{\left(\underset{\sim}{w}{ }_{\alpha}, \underset{\sim}{c} \alpha\right): \alpha<\omega_{1}\right\} \in V\left[G_{T}\right]$ is a \mathbb{Q}-name for an uncountable subset of \mathbb{P}_{ℓ}. For each $\alpha<\omega_{1}$, let $p_{\alpha} \in \mathbb{Q}$ and $\left(w_{\alpha}, c_{\alpha}\right)$ be such that $p_{\alpha} \Vdash$ " $\left(\underset{\sim}{\underset{\sim}{w}}, \underset{\sim}{c}{\underset{\sim}{c}}_{\alpha}\right)=$ $\left(w_{\alpha}, c_{\alpha}\right)$ ". Let u_{α} be such that $\operatorname{dom}\left(p_{\alpha}\right)=\left[u_{\alpha}\right]_{T}^{2}$. By extending p_{α} if necessary, we may assume that $w_{\alpha} \subseteq u_{\alpha}$ for all $\alpha<\omega_{1}$. We shall find $\alpha \neq \beta$ and a condition p that extends both p_{α} and p_{β} and forces that $\left(w_{\alpha}, c_{\alpha}\right)$ and $\left(w_{\beta}, c_{\beta}\right)$ are compatible. For this, first extend $\left(w_{\alpha}, c_{\alpha}\right)$ to $\left(u_{\alpha}, d_{\alpha}\right)$ by letting d_{α} give different values in $\omega \backslash \operatorname{Range}\left(c_{\alpha}\right)$ to all $\eta \in u_{\alpha} \backslash w_{\alpha}$. We may assume that the set $\left\{u_{\alpha}: \alpha<\omega_{1}\right\}$ forms a Δ-system with root r. Moreover, we may assume that p_{α} restricted to $[r]_{T}^{2}$ is the same for all $\alpha<\omega_{1}$, and also that d_{α} restricted to r is the same for all $\alpha<\omega_{1}$. Now pick $\alpha \neq \beta$ and let $p:\left[u_{\alpha} \cup u_{\beta}\right]_{T}^{2} \rightarrow\{0,1\}$ be such that $p \upharpoonright\left[u_{\alpha}\right]_{T}^{2}=p_{\alpha}, p \upharpoonright\left[u_{\beta}\right]_{T}^{2}=p_{\beta}$, and $p(\{\eta, \nu\}) \neq \ell$ for all other pairs in $\left[u_{\alpha} \cup u_{\beta}\right]_{T}^{2}$. Then p extends both p_{α} and p_{β}, and forces that $\left(u_{\alpha}, d_{\alpha}\right)$ and $\left(u_{\beta}, d_{\beta}\right)$ are compatible, hence it forces that $\left(w_{\alpha}, c_{\alpha}\right)$ and $\left(w_{\beta}, c_{\beta}\right)$ are compatible.

But in $V[G]\left[G_{T}\right]$, the product $\mathbb{P}_{0} \times \mathbb{P}_{1}$ is not ccc. Indeed, let $\eta^{*}=\bigcup G_{T}$. For every $\alpha<\omega_{1}$, let $p_{\alpha}^{\ell}:=\left(\left\{\eta^{*} \upharpoonright(\alpha+1)\right\}, c_{\alpha}^{\ell}\right) \in \mathbb{P}_{\ell}$, where $c_{\alpha}^{\ell}\left(\eta^{*} \upharpoonright(\alpha+1)\right)=0$. Then the set $\left\{\left(p_{\alpha}^{0}, p_{\alpha}^{1}\right): \alpha<\omega_{1}\right\}$ is an uncountable antichain.

This finishes the proof of Theorem 9. -
Acknowledgements. The research work of the first author was partially supported by the Spanish Government under grant MTM2011-25229, and by the Generalitat de Catalunya (Catalan Government) under grant 2009 SGR 187. The research of the second author was supported by European Research Council grant 338821. Publication 1041 on his list.

References

[1] J. Bagaria, Fragments of Martin's axiom and Δ_{3}^{1} sets of reals, Ann. Pure Appl. Logic 69 (1994), 1-25.
[2] D. Chodounský and J. Zapletal, Why Y-c.c, arXiv:1409.4596 (2014).
[3] K. J. Devlin, Constructibility, Perspectives Math. Logic, Springer, 1984.
[4] M. Goldstern, A taste of proper forcing, in: Set Theory. Techniques and Applications, C. A. Di Prisco et al. (eds.), Kluwer, 1998, 71-82.
[5] L. Harrington and S. Shelah, Some exact equiconsistency results in set theory, Notre Dame J. Formal Logic 26 (2) (1985), 178-188.
[6] T. Jech, Set Theory. The Third Millennium Edition, Revised and Expanded, Springer Monogr. Math., Springer, 2003.
[7] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
[8] S. Shelah, Proper and Improper Forcing, 2nd ed., Perspectives Math. Logic, Springer, 1998.
[9] J. Steprāns and S. Watson, Destroying precaliber \aleph_{1} : an application of a Δ-system lemma for closed sets, Fund. Math. 129 (1988), 223-229.
[10] S. Todorčević, Remarks on cellularity in products, Compos. Math. 57 (1986), 357372.
[11] S. Todorčević, Two examples of Borel partially ordered sets with the countable chain condition, Proc. Amer. Math. Soc. 112 (1991), 1125-1128.
[12] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261294.
[13] S. Todorčević and B. Veličković, Martin's axiom and partitions, Compos. Math. 63 (1987), 391-408.

Joan Bagaria
ICREA (Institució Catalana de Recerca
i Estudis Avançats)
and
Departament de Lògica, Història
i Filosofia de la Ciència
Universitat de Barcelona
Montalegre 6
08001 Barcelona, Catalonia, Spain
E-mail: joan.bagaria@icrea.cat bagaria@ub.edu

Saharon Shelah
Einstein Institute of Mathematics The Hebrew University of Jerusalem Edmond J. Safra Campus Givat Ram, Jerusalem 91904, Israel E-mail: shelah@huji.ac.il

[^0]: 2010 Mathematics Subject Classification: Primary 03Exx; Secondary 03E50, 03E57. Key words and phrases: Martin's axiom, precalibre, countable antichain condition.

