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MAXIMAL FUNCTION AND CARLESON MEASURES IN
THE THEORY OF BÉKOLLÉ–BONAMI WEIGHTS

BY

CARNOT D. KENFACK (Yaoundé) and BENOÎT F. SEHBA (Accra)

Abstract. Let ω be a Békollé–Bonami weight. We give a complete characterization
of the positive measures µ such that�

H

|Mωf(z)|q dµ(z) ≤ C
( �
H

|f(z)|pω(z) dV (z)
)q/p

and

µ({z ∈ H : Mf(z) > λ}) ≤ C

λq

( �
H

|f(z)|pω(z) dV (z)
)q/p

,

where Mω is the weighted Hardy–Littlewood maximal function on the upper half-plane H
and 1 ≤ p, q <∞.

1. Introduction. Let H be the upper half-plane, that is, the set {z =
x + iy ∈ C : x ∈ R and y > 0}. Given ω a non-negative locally integrable
function on H (i.e. a weight), and 1 ≤ p < ∞, we denote by Lpω(H) the set
of functions f defined on H such that

‖f‖pp,ω :=
�

D

|f(z)|pω(z) dV (z) <∞

with dV being the Lebesgue measure on H. We write Lp(H) when ω(z) = 1
for any z ∈ H.

Given a weight ω and 1 < p < ∞, we say ω is in the Békollé–Bonami
class Bp if [ω]Bp <∞, where

[ω]Bp := sup
I⊂R, I interval

(
1

|QI |

�

QI

ω(z) dV (z)

)(
1

|QI |

�

QI

ω(z)1−p
′
dV (z)

)p−1
,

QI := {z = x + iy ∈ C : x ∈ I and 0 < y < |I|}, |QI | =
	
QI
dV (z),

pp′ = p + p′. This is the exact range of weights ω for which the orthogonal
projection P from L2(H, dV (z)) to its closed subspace consisting of analytic
functions is bounded on Lpω(H) (see [B, BB, PR]).
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Let 1 < p <∞, and ω ∈ Bp. In this note we provide a full characteriza-
tion of positive measures µ on H such that the Carleson-type embedding

(1.1)
�

H
|Mωf(z)|q dµ(z) ≤ C

( �
H
|f(z)|pω(z) dV (z)

)q/p
holds when p ≤ q <∞ and when p > q, where Mω is the weighted Hardy–
Littlewood maximal function,

Mωf(z) := sup
I interval inR, z∈QI

1

|QI |ω

�

QI

|f(z)|ω(z) dV (z),

|QI |ω = ω(QI) :=
	
QI
ω(z) dV (z).

We also characterize those positive measures µ on H such that

(1.2) µ({z ∈ H : Mf(z) > λ}) ≤ C

λq

( �
H
|f(z)|pω(z) dV (z)

)q/p
where M is the unweighted Hardy–Littlewood maximal function (M = Mω

with ω(z) = 1 for all z ∈ H).

Before stating our main results, let us see how the above questions are
related to some others in complex analysis. We recall that the Bergman
space Apω(H) is the subspace of Lpω(H) consisting of holomorphic functions
on H. The unweighted Bergman space Ap(H) is just the subspace of Lp(H)
consisting of holomorphic functions on H. A positive measure on H is called
a q-Carleson measure for Apω(H) if there is a constant C > 0 such that for
any f ∈ Apω(H),

(1.3)
�

H
|f(z)|q dµ(z) ≤ C

( �
H
|f(z)|pω(z) dV (z)

)q/p
.

Carleson measures are very useful in the study of many other questions in
complex and harmonic analysis: Toeplitz operators, Cesàro-type integrals,
embeddings between different analytic function spaces, etc. Carleson mea-
sures as defined by (1.3) in the case p = q were first characterized by L. Car-
leson for Hardy spaces on the unit disc of the complex plane [CL1, CL2].
The case p < q was handled by P. L. Duren [DP], while the result for q < p
is due to I. V. Videnskĭı [VV]. The Bergman space version of the results of
L. Carleson and P. L. Duren is due to Hastings [HW]. Estimations with loss
(q < p) for these spaces are essentially due to D. Luecking [LD1]. We note
that the full characterization of Carleson measures for Bergman spaces on
the unit disc with Békollé–Bonami weights was obtained by O. Constantin
[CO]. For some other developments, also in the setting of the unit ball of Cn,
we refer to [CW, GD2, HL, LD2, OP, SD].

Let f ∈ Ap(H) and z ∈ H. Let I be the unique interval such that QI
is centered at z, and denote by D(z, |I|/2) the disc with center z and ra-
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dius |I|/2. By applying the mean value property and observing that
D(z, |I|/2) ⊂ QI and |D(z, |I|/2)| ' |QI |, we deduce that there is a constant
C > 0 independent of f and z such that

|f(z)| ≤ C

|QI |

�

QI

|f(w)| dV (w).

It follows that in the case ω(z) = 1 for any z ∈ H, any measure satisfying
(1.1) is a q-Carleson measure for Ap(H).

A full characterization of q-Carleson measures for Ap(H) which uses
Bergman balls can be found in [NS]. We are not aware of any result on
q-Carleson measures for Apω(H) for non-constant weights. Our results in
this paper provide a full answer when on the left hand side of (1.3) the
function is replaced by its weighted maximal function.

Our first main result is the following.

Theorem 1.1. Let 1 < p ≤ q <∞, and let ω be a weight on H. Assume
that ω ∈ Bp. Then the following assertions are equivalent:

(i) There exists a constant C1 > 0 such that for any f ∈ Lpω(H),

(1.4)
( �
H
|Mωf(z)|q dµ(z)

)1/q
≤ C1‖f‖p,ω.

(ii) There is a constant C2 such that for any interval I ⊂ R,

(1.5) µ(QI) ≤ C2(ω(QI))
q/p.

Our second result provides estimations with loss.

Theorem 1.2. Let 1 < q < p <∞, and let ω be a weight on H. Assume
that ω ∈ Bp. Then (1.4) holds if and only if the function

(1.6) Kµ(z) := sup
I⊂R, I interval, z∈QI

µ(QI)

ω(QI)

belongs to Lsω(H) where s = p/(p− q).
Note in particular that taking dµ(z) = σ(z)dV (z) with σ 6= ω, we obtain

a two-weight estimate with loss for the Hardy–Littlewood maximal function,
which is in general a very hard question (see [GD1, VE]).

Our last result provides weak-type estimates.

Theorem 1.3. Let 1 ≤ p ≤ q < ∞, and let ω be a weight on H. Then
the following assertions are equivalent:

(a) There is a constant C1 > 0 such that for any f ∈ Lpω(H) and any
λ > 0,

(1.7) µ({z ∈ H : Mf(z) > λ}) ≤ C1

λq

( �
H
|f(z)|pω(z) dV (z)

)q/p
.
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(b) There is a constant C2 > 0 such that for any interval I ⊂ R,

(1.8) |QI |−q/p
(

1

|QI |

�

QI

ω1−p′(z) dV (z)

)q/p′
µ(QI) ≤ C2

where (|QI |−1
	
QI
ω1−p′(z) dV (z))1/p

′
is understood as (infQI ω)−1

when p = 1.
(c) There exists a constant C3 > 0 such that for any locally integrable

function f and any interval I ⊂ R,

(1.9)

(
1

|QI |

�

QI

|f(z)| dV (z)

)q
µ(QI) ≤ C3

( �

QI

|f(z)|pω(z) dV (z)
)q/p

.

A special case of Theorem 1.3 appears when µ is a continuous mea-
sure with respect to the Lebesgue measure dV in the sense that dµ(z) =
σ(z) dV (z); this provides a weak-type two-weight norm inequality for the
maximal function.

To prove the sufficiency part in the three theorems above, we will observe
that the matter can be reduced to the case of the dyadic maximal function.
We then use an idea that comes from real harmonic analysis (see for example
[CD, GR, SE]) and consists in discretizing integrals using appropriate level
sets and, in our case, the nice properties of the upper halves of Carleson
boxes when they are supported by dyadic intervals. The proof of Theorem 1.1
in particular consists just in rewriting the same type of proof from real
harmonic analysis taking into account the fact that the second weight in our
case is a measure, and the hypothesis on this measure. For the proof of the
necessity in Theorem 1.2, let us observe that when it comes to estimations
with loss for the case of the usual Carleson measures for analytic functions,
one needs atomic decomposition of functions in the Bergman spaces to apply
a method developed by D. Luecking [LD1]. We do not see how this can be
extended here; we show instead that one can restrict to the dyadic case,
and we then introduce a function g whose maximal function dominates the
function Kµ. It turns out that to prove that the condition Kµ ∈ Lsω(H) is
necessary, it is enough to prove that if the embedding (1.4) holds, then g
belongs to Lsω(H). To do so, we use boundedness of the maximal functions
and a duality argument.

As Carleson-type embeddings considered in this note might be of some
interest for researchers in analytic function spaces who are not necessarily
accustomed to techniques of real harmonic analysis, we write down all the
steps of the proofs, even those which to people in real harmonic analysis
might seem useless.

For two positive quantities A and B, the notation A . B (resp. B . A)
will mean that there is a universal constant C > 0 such that A ≤ CB (resp.
B ≤ CA). When A . B and B . A, we write A w B.
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2. Useful observations and results. For an interval I ⊂ R, the upper
half of the Carleson box QI associated to I is the subset TI defined by

TI := {z = x+ iy ∈ C : x ∈ I and |I|/2 < y < |I|}.

Note that |QI | w |TI |.
We record the following weighted inequality.

Lemma 2.1. Let 1 < p < ∞. Assume that ω belongs to the Békollé–
Bonami class Bp. Then there is a constant C > 0 such that for any interval
I ⊂ R,

ω(QI) ≤ C[ω]Bpω(TI).

Proof. Using Hölder’s inequality and the definition of Békollé–Bonami
weight, we obtain

|TI |p

|QI |p
≤ 1

|QI |p
( �

TI

ω(z) dV (z)
)( �

TI

ω−p
′/p(z) dV (z)

)p/p′
≤ 1

|QI |p
( �

TI

ω(z) dV (z)
)( �

QI

ω−p
′/p(z) dV (z)

)p/p′
≤ [ω]Bp

ω(TI)

ω(QI)
.

Thus ω(QI) ≤ [ω]Bp(|QI |/|TI |)pω(TI) w [ω]Bpω(TI).

We will also need the following lemma.

Lemma 2.2. Let 1 ≤ p, q < ∞ and suppose that ω is a weight and µ
a positive measure on H. Then the following assertions are equivalent:

(i) There exists a constant C1 > 0 such that for any interval I ⊂ R,

(2.1) |QI |−q/p
( 1

|QI |

�

QI

ω1−p′(z) dV (z)
)q/p′

µ(QI) ≤ C1

where (|QI |−1
	
QI
ω1−p′(z) dV (z))1/p

′
is understood as (infQI ω)−1

when p = 1.
(ii) There exists a constant C2 > 0 such that for any locally integrable

function f and any interval I ⊂ R,

(2.2)

(
1

|QI |

�

QI

|f(z)| dV (z)

)q
µ(QI) ≤ C2

( �

QI

|f(z)|pω(z) dV (z)
)q/p

.

Proof. That (ii)⇒(i) follows by testing (ii) with f(z) = χQI (z)ω
1−p′(z)

if p > 1. For p = 1, take f(z) = χS(z) where S is a subset of QI . One
obtains

µ(QI)

|QI |q
≤ C2

(
ω(S)

|S|

)q
.
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As this happens for any subset S of QI , it follows that for any z ∈ QI ,
µ(QI)

|QI |q
≤ C2(ω(z))q,

which implies (2.1) for p = 1.
Let us check that (i)⇒(ii). Applying Hölder’s inequality (in case p > 1)

to L, the left hand side of (2.2), we obtain

L ≤ |QI |−q
( �

QI

ω−p
′/p(z) dV (z)

)q/p′
µ(QI)

( �

QI

|f(z)|pω(z) dV (z)
)q/p

≤ C
( �

QI

|f(z)|pω(z) dV (z)
)q/p

.

For p = 1, we easily get

L ≤
(infQI ω)−q

|QI |q
( �

QI

|f(z)|ω(z) dV (z)
)q
µ(QI) ≤ C

( �

QI

|f(z)|ω(z) dV (z)
)q
.

Next, we consider the following system of dyadic grids:

Dβ := {2j([0, 1) +m+ (−1)jβ) : m, j ∈ Z} for β ∈ {0, 1/3}.
For more on this system and its applications, we refer to [APR, HP, LA,
LOPTT, PR]. When β = 0, we use the notation D = D0 that we call the
standard dyadic grid of R. When I is a dyadic interval, we denote by I−

and I+ its left half and its right half respectively. We make the following
observation which is surely known.

Lemma 2.3. Any interval I of R can be covered by at most two adjacent
dyadic intervals I1 and I2 in the same dyadic grid such that

|I| < |I1| = |I2| ≤ 2|I|.
Proof. Without loss of generality, we can suppose that I = [a, b). For

x ∈ R, we denote by [x] the unique integer such that [x] ≤ x < [x] + 1.
If I ∈ D, then there is nothing to say. If |I| = 1, then the dyadic interval
[k, k + 1), where k = [a], covers I.

Let us suppose in general that I is not dyadic. Let j be the unique integer
such that

(2.3) 2−j ≤ b− a = |I| < 2−j+1,

and define
Ea,b := {l ∈ Z : a < l2−j ≤ b}.

Then Ea,b is not empty. To see this, observe that the interval J = [a2j , b2j)
has length 1 ≤ |J | < 2, and consequently J contains at least one integer.
Let

k0 := max{k : k ∈ Ea,b}.
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Then we necessarily have (k0 − 2)2−j ≤ a, since otherwise |I| = b − a >
k02
−j − a > 2−j+1 and this contradicts (2.3).

As from the definition of k0 we have b ≤ (k0 + 1)2−j , it follows that if
(k0 − 1)2−j ≤ a, then the union [(k0 − 1)2−j , k02

−j) ∪ [k02
−j , (k0 + 1)2−j)

covers I, and taking I1 and I2 such that I+1 = [(k0 − 1)2−j , k02
−j) and

I−2 = [k02
−j , (k0 + 1)2−j) we get the lemma. If (k0 − 1)2−j > a, then

I ⊂ I1 ∪ I2 where I1 = [(l0− 1)2−j+1, l02
−j+1), I2 = [l02

−j+1, (l0 + 1)2−j+1)
with k0 = 2l0 if k0 is even, and k0 = 2l0 + 1 otherwise.

3. Proof of the main results. Let us start with some observations.
Recall that the upper half of QI is TI = {x + iy ∈ H : x ∈ I and |I|/2 <
y < |I|}. It is clear that the family {TI}I∈D where D is a dyadic grid in R
provides a tiling of H.

Next we recall from [PR] that given an interval I ⊂ R, there is a dyadic
interval K ∈ Dβ for some β ∈ {0, 1/3} such that I ⊆ K and |K| ≤ 6|I|. It
follows in particular that |QK | ≤ 36|QI |. Also, proceeding as in the proof of
Lemma 2.1 one obtains ω(QK) . [ω]Bpω(QI). Therefore

1

ω(QI)

�

QI

|f(z)|ω(z) dV (z) ≤ C 1

ω(QK)

�

QK

|f(z)|ω(z) dV (z)

and consequently, for any locally integrable function f ,

(3.1) Mωf(z) ≤ C
∑

β∈{0,1/3}

Mβ
d,ωf(z), z ∈ H,

where Mβ
d,ω is defined as Mω but with the supremum taken only over dyadic

intervals of the dyadic grid Dβ. When ω ≡ 1, we use the notation Mβ
d , and

if moreover β = 0, we just write Md.

3.1. Proof of Theorem 1.1. First suppose that (1.4) holds and observe
that for any interval I ⊂ R, 1 ≤MωχQI (z) for any z ∈ QI . It follows that

(µ(QI))
1/q ≤

( �
H

(MωχQI (z))
q dµ(z)

)1/q
≤ C1‖χQI‖p,ω = (ω(QI))

1/p,

which implies that for any interval I ⊂ R,

µ(QI) ≤ C1 (ω(QI))
q/p .

That is, (1.5) holds.

To prove that (ii)⇒(i), by the observations made at the beginning of this
section it is enough to prove the following.

Lemma 3.1. Let 1 < p ≤ q <∞. Assume that ω is a weight in the class
Bp such that (1.5) holds. Then there is a positive constant C such that for
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any f ∈ Lpω(H) and any β ∈ {0, 1/3},

(3.2)
( �
H
|Mβ

d,ωf(z)|q dµ(z)
)1/q

≤ C‖f‖p,ω.

Proof. Let a ≥ 2. To each integer k we associate the set

Ωk := {z ∈ H : ak < Mβ
d,ωf(z) ≤ ak+1}.

We observe that Ωk ⊂
⋃∞
j=1QIk,j , where QIk,j (Ik,j ∈ Dβ) is a dyadic square

maximal (with respect to inclusion) such that

1

ω(QIk,j )

�

QIk,j

|f(z)|ω(z) dV (z) > ak.

It follows from Lemma 2.1 that

L :=
�

H
(Mβ

d,ωf(z))q dµ(z) =
∑
k

�

Ωk

(Mβ
d,ωf(z))q dµ(z)

≤ aq
∑
k

akqµ(Ωk) ≤ aq
∑
k,j

akqµ(QIk,j )

≤ aq
∑
k,j

(
1

ω(QIk,j )

�

QIk,j

|f(z)|ω(z) dV (z)

)q
µ(QIk,j )

. aq
∑
k,j

(
1

ω(QIk,j )

�

QIk,j

|f(z)|ω(z) dV (z)

)q
(ω(QIk,j ))

q/p

. aq
(∑
k,j

(
1

ω(QIk,j )

�

QIk,j

|f(z)|ω(z) dV (z)

)p
ω(QIk,j )

)q/p

. aq
(∑
k,j

(
1

ω(QIk,j )

�

QIk,j

|f(z)|ω(z) dV (z)

)p
[ω]Bpω(TIk,j )

)q/p

.

(∑
k,j

�

TIk,j

(
1

ω(QIk,j )

�

QIk,j

|f(z)|ω(z) dV (z)

)p
ω(w) dV (w)

)q/p

.
(∑
k,j

�

TIk,j

(Md,ωf(w))pω(w) dV (w)
)q/p

.
( �
H
|f(z)|pω(z) dV (z)

)q/p
.

The proof of Lemma 3.1, and hence of Theorem 1.1, is complete.

Taking dµ(z) = σ(z)dV (z) where σ is a weight, we obtain the following
result.

Corollary 3.2. Let 1 < p ≤ q <∞, and let ω, σ be two weights on H.
Assume that ω ∈ Bp. Then the following assertions are equivalent:
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(i) There exists a constant C1 > 0 such that for any f ∈ Lpω(H),

(3.3)
( �
H
|Mωf(z)|qσ(z) dV (z)

)1/q
≤ C1‖f‖p,ω.

(ii) There is a finite constant C2 > 0 such that for any interval I ⊂ R,

(3.4) |QI |1/q−1/p
(

1

|QI |

�

QI

ω1−p′(z) dV (z)

)1/p′( 1

|QI |

�

QI

σ(z) dV (z)

)1/q
≤ C2.

3.2. Proof of Theorem 1.2. Let us start with the following lemma.

Lemma 3.3. Let 1 ≤ q < p <∞, and let ω be a weight in the class Bp.
Assume that µ is a positive measure on H such that the function Kµ defined
by (1.6) belongs to Lsω(H), s=p/(p− q). Then (3.2) holds for any f ∈Lpω(H).

Proof. We proceed as in the proof of Lemma 3.1, using the same nota-
tion. For β ∈ {0, 1/3}, we define

Kβ
d,µ(z) := sup

I∈Dβ , z∈QI

µ(QI)

ω(QI)
.

Then Kβ
d,µ(z) ≤ Kµ(z) for any z ∈ H. Using Hölder’s inequality and Lem-

ma 2.1, we obtain

L :=
�

H
(Mβ

d,ωf(z))q dµ(z) =
∑
k

�

Ωk

(Mβ
d,ωf(z))q dµ(z)

≤ aq
∑
k

akqµ(Ωk) ≤ aq
∑
k,j

akqµ(QIk,j )

≤ aq
∑
k,j

(
1

ω(QIk,j )

�

QIk,j

|f(z)|ω(z) dV (z)

)q
µ(QIk,j )

= aq
∑
k,j

(
1

ω(QIk,j )

�

QIk,j

|f(z)|ω(z) dV (z)

)q µ(QIk,j )

ω(QIk,j )
ω(QIk,j ) ≤ A

q/pB1/s

where

A =
∑
k,j

(
1

ω(QIk,j )

�

QIk,j

|f(z)|ω(z) dV (z)

)p
ω(QIk,j ),

B =
∑
k,j

(
µ(QIk,j )

ω(QIk,j )

)s
ω(QIk,j ).
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From the proof of Lemma 3.1, we already know how to estimate A. Let us
estimate B:

B .
∑
k,j

(
µ(QIk,j )

ω(QIk,j )

)s
ω(TIk,j ) .

∑
k,j

�

TIk,j

(
µ(QIk,j )

ω(QIk,j )

)s
ω(z) dV (z)

.
∑
k,j

�

TIk,j

(Kβ
d,µ(z))sω(z) dV (z) .

�

H
(Kβ

d,µ(z))sω(z) dV (z)

= C‖Kβ
d,µ‖

s
s,ω <∞.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. Sufficiency follows from Lemma 3.3 and the ob-
servations made at the beginning of this section. Let us prove necessity. For
this we make the following observations: first, (1.4) implies that there exists
a constant C > 0 such that for any f ∈ Lpω(H),

(3.5)
�

H
(Mβ

d,ωf(z))q dµ(z) ≤ C‖f‖qp,ω.

We recall that

Kβ
d,µ(z) := sup

I∈Dβ , z∈QI

µ(QI)

ω(QI)
.

It is easy to see that there is a constant C > 0 such that for any z ∈ H,

Kµ(z) ≤ C
∑

β∈{0,1/3}

Kβ
d,µ(z).

Thus to prove that Kµ ∈ Lsω(H) if (1.4) holds, it is enough to prove that

(3.5) implies Kβ
d,µ ∈ L

s
ω(H).

Fix β ∈ {0, 1/3}. For z ∈ H, we write Qz = QIz (Iz ∈ Dβ) for the
smallest Carleson box containing z, and consider the weighted box kernel

Kβ
d,ω(z0, z) :=

1

ω(Qz0)
χQz0 (z).

For f a locally integrable function, we define

Kβ
d,ωf(z0) =

�

H
Kβ
d,ω(z0, z)f(z)ω(z) dV (z) =

1

ω(Qz0)

�

Qz0

f(z)ω(z) dV (z).

Finally, we define a function gβ on H by

gβ(z) :=
�

H
Kβ
d,ω(ξ, z) dµ(ξ) =

�

H

χQξ(z)

ω(Qξ)
dµ(ξ).
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For any (dyadic) Carleson box QI , I ∈ Dβ, writing Q for QI we obtain

1

ω(Q)

�

Q

gβ(z)ω(z) dV (z) =
1

ω(Q)

�

Q

( �
H
Kβ
d,ω(w, z) dµ(w)

)
ω(z) dV (z)

=
�

H

�

H

1

ω(Q)

χQw(z)χQ(z)

ω(Qw)
ω(z) dV (z) dµ(w)

≥
�

Q

1

ω(Q)

�

H

χQw∩Q(z)

ω(Qw)
ω(z) dV (z) dµ(w)

≥ 1

ω(Q)

�

Q

dµ(w) =
µ(Q)

ω(Q)
.

Thus for any z ∈ H,

Mβ
d,ωgβ(z) & sup

I∈Dβ , z∈QI

µ(QI)

ω(QI)
:= Kβ

d,µ(z).

Hence if the function gβ belongs to Lsω(H), then

‖Kβ
d,µ‖s,ω . ‖Mβ

d,ωgβ‖s,ω . ‖gβ‖s,ω <∞.

To finish the proof, we only need to check that gβ ∈ Lsω(H) whenever (3.5)
holds.

Let us start from the following inequality between Kβ
d,ωf and Mβ

d,ωf . Fix
z0 in H. For any ξ ∈ Qz0 , we have

|Kβ
d,ωf(z0)| :=

∣∣∣∣ 1

ω(Qz0)

�

Qz0

f(z)ω(z) dV (z)

∣∣∣∣ ≤Mβ
d,ωf(ξ).

Thus

(3.6) |Kβ
d,ωf(z)|1/q ≤Mβ

d,ω((Mβ
d,ωf)1/q)(z) for any z ∈ H.

Now, for any f ∈ L
p/q
ω (H), using (3.5), (3.6) and the boundedness of the

maximal function, we obtain∣∣∣ �
H
gβ(z)f(z)ω(z) dV (z)

∣∣∣ =
∣∣∣ �
H

( �
H
Kβ
d,ω(ξ, z) dµ(ξ)

)
f(z)ω(z) dV (z)

∣∣∣
=
∣∣∣ �
H

( �
H
Kβ
d,ω(ξ, z)f(z)ω(z) dV (z)

)
dµ(ξ)

∣∣∣
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=
∣∣∣ �
H
Kβ
d,µf(ξ) dµ(ξ)

∣∣∣ ≤ �

H
|Kβ

d,µf(ξ)| dµ(ξ)

=
�

H
(|Kβ

d,µf(ξ)|1/q)q dµ(ξ) ≤ C
�

H
(Mβ

d,ω((Mβ
d,ωf)1/q)(ξ))q dµ(ξ)

≤ C
( �
H

(Mβ
d,ωf(z))p/qω(z) dV (z)

)q/p
≤ C

( �
H
|f(z)|p/qω(z) dV (z)

)q/p
.

Thus there is a constant C > 0 such that

‖gβ‖s,ω := sup
f∈Lp/qω (H), ‖f‖p/q,ω≤1

∣∣∣ �
H
gβ(z)f(z)ω(z) dV (z)

∣∣∣ ≤ C.
The proof of Theorem 1.2 is complete.

3.3. Proof of Theorem 1.3. We start from the following lemma which
tells us that it will suffice to restrict to level sets involving the dyadic max-
imal function.

Lemma 3.4. Let f be a locally integrable function. Then for any λ > 0,

(3.7) {z ∈ H : Mf(z) > λ} ⊂ {z ∈ D : Mdf(z) > λ/68}.
Proof. Set

A := {z ∈ H : Mf(z) > λ}, B := {z ∈ H : Mdf(z) > λ/68}.
Recall that there is a family {QIj}j∈N0 of maximal (with respect to inclusion)
dyadic Carleson boxes (i.e. Ij ∈ D) such that

4λ

68
≥ 1

|QIj |

�

QIj

|f | dV >
λ

68

so that B =
⋃
j∈N0

QIj .
Let z ∈ A and suppose that z /∈ B. We know that there is an interval I

(not necessarily dyadic) such that z ∈ QI and

(3.8)
1

|QI |

�

QI

|f | dV > λ.

Recall from Lemma 2.3 that I can be covered by at most two adjacent dyadic
intervals J1 and J2 (in this order) such that |I| < |J1| = |J2| ≤ 2|I| so that
QI ⊂ QJ1 ∪QJ2 . Of course, z belongs to one and only one of the associated
boxes QJ1 and QJ2 . Suppose z ∈ QJ1 . Then necessarily QJ1 is not contained
in B, since if so then z would belong to B, contrary to our hypothesis. Thus
QJ1 ∩ B = ∅ or QJ1 ⊃ QIj for some j, and in both cases, because of the
maximality of the Ijs, we deduce that

1

|QJ1 |

�

QJ1

|f | dV ≤ λ

68
.
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For the other interval J2, we have the following possibilities:

J2 = Ij for some j,

J2 ⊂ Ij for some j,

J2 ⊃ Ij for some j,

J2 ∩B = ∅.
If J2 ⊃ Ij for some j or J2 ∩ B = ∅, then because of the maximality of
the Ijs,

1

|QJ2 |

�

QJ2

|f | dV ≤ λ

68
.

If J2 = Ij for some j, then, of course,

1

|QJ2 |

�

QJ2

|f | dV ≤ 4λ

68
.

It remains to consider the case where J2 ⊂ Ij for some j. If J2 ⊂ Ij , then
we can have

J2 = I−j , J2 ⊂ I−j or J2 ⊆ I+j ,

where I−j and I+j denote the left and right halves of Ij respectively. If J2 ⊂ I−j
or J2 ⊆ I+j , then J1∩ Ij 6= ∅, and this necessarily implies that J1 ⊂ Ij . Thus
z ∈ QJ1 ⊂ QIj ⊂ B, contrary to hypothesis. Hence the only possible case is

J2 = I−j , which leads to the estimate

1

|QJ2 |

�

QJ2

|f | dV ≤ 4

|QIj |

�

QIj

|f | dV ≤ 16λ

68
.

Thus from all the above analysis, we obtain

1

|QI |

�

QI

|f | dV =
1

|QI |

( �

QI∩QJ1

|f | dV +
�

QI∩QJ2

|f | dV
)

≤ |QJ1 |
|QI |

(
1

|QJ1 |

�

QJ1

|f | dV +
1

|QJ2 |

�

QJ2

|f | dV
)

≤ 4

(
λ

68
+

16λ

68

)
= λ,

which clearly contradicts (3.8).

Proof of Theorem 1.3. Note that by Lemma 2.2, we have (b)⇔(c). Let
us prove that (a)⇔(c).

Let f be a locally integrable function and I an interval. Fix λ such that

0 < λ <
1

|QI |

�

QI

|f | dV.
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Then QI ⊂ {z ∈ H : M(χQIf) > λ)}. It follows from (1.7) that

µ(QI) ≤
C

λq

( �

QI

|f(z)|pω(z) dV (z)
)q/p

.

As this happens for all λ > 0, we see in particular that

µ(QI)

(
1

|QI |

�

QI

|f | dV (z)

)q
≤ C

( �

QI

|f(z)|pω(z) dV (z)
)q/p

.

Next suppose that (1.9) holds. We observe by Lemma 3.4 that to obtain
(1.7), we only have to prove

(3.9) µ

({
z ∈ D : Mdf(z) >

λ

68

})
≤ C

λq
‖f‖qp,ω.

We recall that {
z ∈ H : Mdf(z) >

λ

68

}
=
⋃
j∈N0

QIj

where the Ijs are maximal dyadic intervals with respect to inclusion and
such that

1

|QIj |

�

QIj

|f | dV >
λ

68
.

Our hypothesis implies in particular that

µ(QIj ) ≤ C
( |QIj |	

QIj
|f | dV

)q( �

QIj

|f |pω dV
)q/p

.

Thus

µ

({
z ∈ H : Mdf(z) >

λ

68

})
=
∑
j

µ(QIj ) ≤
∑
j

( |QIj |	
QIj
|f | dV

)q( �

QIj

|f |pω dV
)q/p

≤
(

68

λ

)q∑
j

( �

QIj

|f |pω dV
)q/p

≤
(

68

λ

)q(∑
j

�

QIj

|f |pω dV
)q/p

≤
(

68

λ

)q( �
H
|f(z)|pω(z) dV (z)

)q/p
=

(
68

λ

)q
‖f‖qp,ω.

The proof of Theorem 1.3 is complete.

Taking dµ(z) = σ(z)dV (z), we obtain the following result.

Corollary 3.5. Let 1 ≤ p ≤ q <∞, and let ω, σ be two weights on H.
Then the following assertions are equivalent:
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(a) There is a constant C1 > 0 such that for any f ∈ Lpω(H) and any
λ > 0,

σ ({z ∈ H : Mf(z) > λ}) ≤ C1

λq

( �
H
|f(z)|pω(z) dV (z)

)q/p
.

(b) There is a constant C2 > 0 such that for any interval I ⊂ R,

|QI |1/q−1/p
(

1

|QI |

�

QI

ω1−p′(z) dV (z)

)1/p′( 1

|QI |

�

QI

σ(z) dV (z)

)1/q

≤ C2

where (|QI |−1
	
QI
ω1−p′(z) dV (z))1/p

′
is understood as (infQI ω)−1

when p = 1.
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