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THE SQUARE MODEL FOR RANDOM GROUPS

BY

TOMASZ ODRZYGÓŹDŹ (Warszawa)

Abstract. We introduce a new random group model called the square model : we
quotient a free group on n generators by a random set of relations, each of which is a
reduced word of length 4. We prove that, just as in the Gromov model, for densities > 1/2
a random group in the square model is trivial with overwhelming probability and for
densities < 1/2 a random group is hyperbolic with overwhelming probability. Moreover,
we show that for densities d < 1/3 a random group in the square model does not have
Property (T). Inspired by the results for the triangular model, we prove that for densi-
ties < 1/4 in the square model, a random group is free with overwhelming probability.
We also introduce abstract diagrams with fixed edges and prove a generalization of the
isoperimetric inequality.

1. Introduction. Each group can be obtained by quotienting a free
group by a normal subgroup generated by a set of relators. In [Gro93] Gro-
mov introduced the notion of a random finitely presented group on m ≥ 2
generators at density d ∈ (0, 1). The idea was to fix a set of m generators
and consider presentations with (2m− 1)dl relators, each of which is a ran-
dom reduced word of length l. Gromov investigated the properties of random
groups when l goes to infinity. We say that a property occurs in the Gromov
density model with overwhelming probability if the probability that a random
group has this property converges to 1 when l → ∞. Significant results of
this theory are the following: for densities > 1/2 a random group is triv-
ial with overwhelming probability [Oll05, Theorem 11]; for densities < 1/2
a random group is, with overwhelming probability, infinite, hyperbolic and
torsion-free [Oll05, Theorem 11]; for densities < 1/5 a random group does
not have Property (T) with overwhelming probability [OW11, Corollary 7.5].

One modification of Gromov’s idea is the triangular model: length of
relators in the presentation is always 3, but we let the number of generators
go to infinity. More precisely, for a fixed density d, we consider a presentation
on n generators with n3d relations, each of which is a random cyclically
reduced word of length 3. We say that some property occurs in the triangular
model with overwhelming probability if the probability that a random group
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has this property converges to 1 when n → ∞. This model was introduced
in [Żuk96] and further studied in [KK13]. The triangular model was a way
to prove that random groups in the Gromov density model for densities
> 1/3 have Property (T) with overwhelming probability [KK13, Theorem B],
[Żuk03].

We introduce a new random group model by considering a random set
of relations, each of which is a random cyclically reduced word of length 4.
The following notation will be used in the whole paper.

Consider the set An = {a1, . . . , an}, which we will treat as an alphabet.
Let Wn be the set of positive words of length 4 over An and W ′n be the set
of all cyclically reduced words of length 4 over An. Note that |Wn| = n4 and
|W ′n| = (2n− 1)4 up to a multiplicative constant. We will denote by Fn the
free group generated by the elements of An. By relators we will understand
words over generators and by relations equalities holding in the group.

Definition 1.1. For d ∈ (0, 1) let us choose randomly, with uniform
distribution, a subset Rn ⊂ Wn such that |Rn| = bn4dc. Quotienting Fn by
the normal closure of the set Rn, we obtain a random group in the positive
square model at density d.

Definition 1.2. We say that property P occurs in the positive square
model with overwhelming probability if the probability that a random group
has property P converges to 1 when n→∞.

The most important group properties which we consider are: being trivial,
being free, being hyperbolic and having Property (T). We prove, as in the
Gromov model, that for densities > 1/2 a random group in the positive
square model is trivial with overwhelming probability (Theorem 2.1), and
that for densities < 1/2 a random group is hyperbolic with overwhelming
probability (Corollary 3.8). Moreover, we show that for densities < 1/3 a
random group in the positive square model does not have Property (T)
(Theorem 5.1). Inspired by the results in the triangular model, we prove
that for densities < 1/4 in the positive square model a random group is free
with overwhelming probability (Theorem 4.1). We also introduce abstract
diagrams with fixed edges (Definition 3.9) and prove a generalization of the
isoperimetric inequality (Theorem 3.10).

In the Gromov density model the optimal density threshold for not having
Property (T) is not known. This model seems to be much harder to analyze
than the triangular model, where we know that for densities < 1/3 a random
group is free with overwhelming probability [Oll05, Proposition 30], and
for densities > 1/3 a random group has Property (T) with overwhelming
probability [KK13, Theorem A], [Żuk03].

In our model we expect to find the critical density threshold for having
Property (T) in further research. We also expect that for densities < 1/3 a
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random group in the square model can be cubulated (see [OW11] for dis-
cussion of cubulating random groups in the Gromov density model). The
advantage of the positive square model is that since the length of relators
is even, we can consider the hypergraphs in the presentation complex and
Cayley complex of the random group (Definition 4.3), which is not possible
in the triangular model. As we will see, hypergraphs are a useful tool to
investigate many group-theoretic and topological properties.

We have decided to consider as relators only positive words to avoid
technical annoyances, but we will show that all of our results remain true in
a model where we allow all cyclically reduced words. Firstly, we will define
the model:

Definition 1.3. For d ∈ (0, 1) let us choose randomly, with uniform
distribution, a subset Rn ⊂ W ′n such that |Rn| = b(2n− 1)4dc. Quotienting
Fn by the normal closure of the set Rn, we obtain a random group in the
square model at density d.

2. Triviality. Firstly we are going to investigate a case where there are
many relations. Inspired by the results in Gromov’s theory, we prove that
when density is greater than 1/2, random groups in positive square models
are as trivial as possible (with overwhelming probability). Let us determine
“how trivial” such a group can be.

Note that there is always an epimorphism of our group onto Z4 sending
all generators to a fixed generator of Z4. Therefore, a random group in the
positive square model cannot have order less than 4. Hence, by the trivial
group in the positive square model we will mean Z4.

Our goal in this section is to prove the following theorem:

Theorem 2.1. In the positive square model at density d > 1/2 a random
group is trivial (in the sense described above) with overwhelming probability.

Before providing the proof we need to introduce random graphs and recall
several facts about them.

Definition 2.2 (Erdős–Rényi random graph). G(n,m) is the graph ob-
tained by sampling uniformly from all graphs with n vertices and m edges.

Definition 2.3 (Gilbert random graph). G(n, p) is the random graph
obtained by starting with vertex set V = {1, . . . , n}, letting 0 ≤ p ≤ 1, and
connecting each pair of vertices by an edge with probability p.

In general, m and p are functions of n. We will say that a random graph
in the G(n, p) model has some property asymptotically almost surely if the
probability that this property occurs converges to 1 when n→∞.
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Remark 2.4 ([ER60]). There is a strong link between the two models.
First note that the expected number of edges in the G(n, p) model equals(
n
2

)
p. If P is any graph property which is monotone with respect to the sub-

graph ordering (meaning that if A is a subgraph of B and A satisfies P , then
so does B), then the statements “P holds in the Gilbert G(n, p) model with
overwhelming probability” and “P holds in the Erdős and Rényi G(n, b

(
n
2

)
pc)

model with overwhelming probability” are equivalent if pn2 →∞.
Graph properties which are monotone in the above sense and are relevant

for us are: being connected and having a cycle of odd length.

Gilbert’s model is much easier for calculations than Erdős–Rényi’s, so we
will prove two lemmas in Gilbert’s model.

Lemma 2.5. Let G be a random graph in the G(n, p) model, where p ≥
nδ−1 for some δ > 0. Then G is connected asymptotically almost surely.

More general statements about connectedness of random graphs can be
found for example in [Bol01, Theorem 7.3], but since we repeat the argument
in the proof of Lemma 2.6 we present here a simple proof of Lemma 2.5.

Proof. Denote by V the set of vertices of G. Note that disconnectedness
means that there exist two nonempty sets S, T ⊂ V such that S ∪ T = V ,
S ∩ T = ∅ and there is no edge between S and T . For a fixed S and T
the probability that there is no edge between S and T equals (1 − p)|S|·|T |.
Hence the probability Pd of disconnectedness can be estimated (as of now
we assume n > 2):

Pd ≤
n∑
l=1

(
n

l

)
(1− p)l(n−l).

The right hand side can be estimated as follows:

(1)
n∑
l=1

(
n

l

)
(1− p)l(n−l) ≤ 2

dn/2e∑
l=1

(
n

l

)
(1− p)l(n−l) ≤ 2

dn/2e∑
l=1

nl(1− p)lbn/2c.

From our assumption on p we know that

n(1− p)bn/2c ≤ n(1− nδ−1)n/2−1.
Let us denote zn = n(1 − nδ−1)n/2−1. Because zn > 0, instead of proving
that limn→∞ zn = 0 we can prove limn→∞ ln zn = −∞. It is well known that
|ln(1− x)| > x for x ∈ (0, 1). Hence, we estimate

ln zn = lnn+

(
n

2
− 1

)
ln

(
1− nδ

n

)
< lnn−

(
n

2
− 1

)
nδ

n
.

Therefore, limn→∞ ln zn = −∞. Thus the geometric series on the right hand
side of (1) converges to 0 as n→∞.
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Lemma 2.6. Let G be a random graph in the G(n, p) model, where p ≥
nδ−1 for some δ > 0. Then asymptotically almost surely there is a cycle of
odd length in G.

Proof. We will estimate the probability that our graph is connected and
has no cycle of odd length. First we will prove that if the graph is connected
and has no cycle of odd length then it is bipartite.

Let V be the set of vertices of G. Denote by T the spanning tree of G.
Such a tree exists by connectedness. Fix some vertex v ∈ V . Then we can
define

A = {u ∈ V : there is a path of odd length in T between u and v},
B = {u ∈ V : there is a path of even length in T between u and v}.
The sets A and B form a partition of V : A ∩B = ∅, A ∪B = V . Hence,

it is sufficient to show that the graph is connected and not bipartite.
The probability that there is no edge with both ends inA equals (1−p)(

|A|
2 ).

Thus the probability Pc that there is no cycle of odd length can be estimated
by

(2) Pc ≤
n−1∑
l=1

(
n

l

)
(1− p)(

n
l)(

n
n−l) ≤

n−1∑
l=1

nl(1− p)nl.

The summation is over all sets A and B. In the last inequality we have used
the fact that

(
n
l

)(
n
n−l
)
> nl. In the proof of Lemma 2.5 we have already

shown that the right hand side of (2) converges to 0 as n → ∞. This ends
the proof.

Remark 2.7. Let G be a connected graph that has a cycle of odd length.
Let x, y be vertices of G. Then there exists an edge path in G of even length
joining x and y.

Proof. Denote by γc the closed edge path in G of odd length. Let v be
the beginning vertex of γc. From connectedness of G there exist edge paths
γxv from x to v, and γvy from v to y. If |γxv ∪ γvy| is even, then γxv ∪ γvy is
the desired edge path joining x and y. If |γxv∪γvy| is odd, then γxv∪γc∪γvy
is as desired.

Now we are able to prove our main statement.

Proof of Theorem 2.1. Let Dn be the set of positive words of length 2
over An, i.e. Dn = {aiaj | i, j = 1, . . . , n}. The set of positive words of length
4 over An coincides with the set of positive words of length 2 over Dn.

Let R be the set of relators in the presentation of the random group, and
denote by R0 the set of elements of R of the form aiajaiaj for 1 ≤ i, j ≤ n.
Let Pk,n be the conditional probability that the group 〈An | R−R0〉 is trivial
under the condition that |R0| = k. We denote by P̃k,n the probability that
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|R0| = k. Then from the Bayes formula the probability that a random group
is trivial is greater than

(3)
n2∑
k=0

P̃k,nPk,n.

It can be easily seen that P0,n > P1,n > · · · > Pn2,n and
∑n2

k=0 P̃k,n = 1.
We will prove that Pn2,n → 1 when n → ∞, which will imply that (3)
converges to 1 when n→∞.

Let us assume that |R0| = n2. Consider the following graph G with the
set of vertices Dn: when the relator aiajakal belonging to R−R0 is drawn,
we add the edge in G connecting the vertices aiaj and akal. Thus G is a
random graph in the G(n2, bn4dc − n2) Erdős and Rényi model.

Let us consider a random graphG′ in theG
(
n2, 1/

(
n
2

)
(bn4dc−n2)

)
Gilbert

model. From Lemmas 2.5 and 2.6 we know that asymptotically almost surely
the graph G′ is connected and has a cycle of odd length. Hence, from Remark
2.4 asymptotically almost surely the graph G is connected and has a cycle
of odd length. Therefore, from Remark 2.7 asymptotically almost surely for
any two vertices of G there is a path of even length joining them.

An edge between the vertices aiaj and akal of G corresponds to the
relation aiaj = (akal)

−1 in our random group. An adjacent edge connecting
akal and atas implies that aiaj = atas. Therefore, by induction, if there is
a path of even length joining aiaj and akal then aiaj = akal. According
to the previous observations about G this means that with overwhelming
probability all words aiaj are equal. In particular, for any i, j, k we have
aiak = ajak, which implies that ai = aj . Therefore, all generators are equal.
This ends the proof.

2.1. Triviality in the square model. Note that in the square model
there is always an epimorphism of a random group onto Z2 sending all gen-
erators to the nontrivial element of Z2. Hence, by the trivial group in the
square model we will mean Z2.

Our goal is to prove the following

Theorem 2.8. In the square model at density d > 1/2 a random group
is trivial with overwhelming probability.

First we will prove

Lemma 2.9. Let Wn ⊂ W ′n be the set of positive words of length 4
over An. Let G = 〈An | Rn〉 be the random group in the square model at
density d. Then, for any d′ < d,

P(|Rn ∩Wn| > n4d
′
)→ 1 as n→∞.
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Proof. First we will prove that

(4) P
(
|Rn ∩ (W ′n −Wn)| > 16

17b(2n− 1)4dc
)
→ 0 as n→∞.

Drawing at random a set of relators can be treated as sampling without
replacement: we draw the first relator r1, then from the set W ′n − {r1} we
draw the next relator r2 and inductively in the kth step we draw rk from
W ′n − {r1, . . . , rk−1}. Thus, we obtain a sequence of b(2n − 1)4dc randomly
selected relators r1, . . . , rb(2n−1)4dc and we define Rn := {r1, . . . , rb(2n−1)4dc}.

For 1 ≤ i ≤ |Rn| we define a random variable Xi by setting Xi = 1 when
ri ∈ W ′n −Wn and 0 otherwise. Note that |W ′n −Wn|/|W ′n| < 15/16. Hence
for each 1 ≤ i ≤ |Rn| we have EXi < 15/16. Let S :=

∑|Rn|
i=1 Xi. By [Ser74,

Corollary 1.1] for µ = |Wn|/|W ′n|, a = 1, b = 1 and f∗ = 0 we obtain

P(S ≥ b(2n− 1)4dc(µ+ t)) < exp(−2b(2n− 1)4dct2).

Let t = 16/17− µ. Then

(5) P
(
S ≥ b(2n− 1)4dc1617

)
< exp(−2b(2n− 1)4dct2).

Since µ < 15/16 we have t > 16/17 − 15/16 and the right hand side of
(5) converges to 0 as n → ∞. Observe that S = |Rn ∩ (W ′n −Wn)|, so the
proof of (4) is complete. Consequently,

(6) P
(
|Rn ∩Wn|) > 1

17b(2n− 1)4dc
)
−−−→
n→∞

1.

Since for sufficiently large n we have 1
17b(2n− 1)4dc > n4d

′ , the proof of
Lemma 2.9 is complete.

Proof of Theorem 2.8. Let G be a random group in the square model
at density d > 1/2. Choose any 1/2 < d′ < d. Lemma 2.9 guarantees that
there are at least n4d′ positive relators in the presentation of G. From the
proof of Theorem 2.1 we know that it is sufficient to show that all genera-
tors of G are equal. Moreover, with overwhelming probability, the random
set of relators at a positive density contains a word of the form aiajaka

−1
l ,

where 1 ≤ i, j, k, l ≤ n. Combining this with the fact that all generators are
equal gives a21 = e. Hence, G is generated by one element of order 2, thus it
is Z2.

3. Isoperimetric inequality. In this section we introduce van Kampen
diagrams, then prove the “isoperimetric inequality” and discuss its conse-
quences. As we will see, it implies (with overwhelming probability) freeness
of random groups for densities < 1/4 and hyperbolicity for densities < 1/2.

The van Kampen diagram represents in a geometric way how all equalities
holding in a group are derived from combinations of relators. The definitions
and notation below largely follow [LS77, Ch. V].
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Definition 3.1 (Van Kampen diagrams). Let G = 〈A | R〉 be a group
presentation where all r ∈ R are cyclically reduced words in the free group
F (A). We will denote this presentation by (†). The alphabet A and the set
R of defining relations are often assumed to be finite, which corresponds to a
finite group presentation, but this assumption is not necessary for the general
definition of a van Kampen diagram. Let R∗ be the symmetrized closure of R,
that is, R∗ is obtained from R by adding all cyclic permutations of elements
of R and of their inverses.

A van Kampen diagram over the presentation (†) is a planar finite cell
complex D together with a specific embedding D ⊆ R2 and the following
data, satisfying additional properties:

1. The complex D is connected and simply connected.
2. Each edge (1-cell) of D is given some orientation and is labelled by a

letter a ∈ A.
3. Some vertex (0-cell) which belongs to the topological boundary of D ⊆

R2 is specified as a base-vertex.
4. For each face (2-cell) of D and every vertex of the boundary cycle

of that face and for each of the two choices of direction (clockwise or
counter-clockwise) the label of the boundary cycle of the face read from
that vertex and in that direction is a freely reduced word in F (A) that
belongs to R∗.

A van Kampen diagram D is called nonreduced if there exists a reduction
pair in D, that is, a pair of distinct faces of D such that their boundary
cycles share a common edge and these boundary cycles, read starting from
that edge, clockwise for one of the faces and counter-clockwise for the other,
are equal as words in A ∪ A−1. If no such pair of faces exists, D is called
reduced.

An internal edge is an edge e such that Int(e) ⊂ Int(D). An internal
vertex is a vertex contained in Int(D).

By |∂D| we will denote the length of the boundary word of the diagram D,
and by |D| the number of faces of D.

The following two variations of the concept of the van Kampen diagram
will be needed in the proof of Theorem 4.5 in the next section.

Definition 3.2. If in Definition 3.1 we replace simple connectedness and
planarity conditions with the assumption that the diagram D is homeomor-
phic to an annulus or a Möbius strip, we get the definitions of an annular
diagram and a twisted diagram respectively.

An important theorem of van Kampen states that the boundary words
of van Kampen diagrams are exactly those words which are equal to the
identity element in the presentation.
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Lemma 3.3. If in the presentation 〈An | R〉 the set of relators R consists
of only positive words then for every van Kampen diagram D with respect to
this presentation each internal vertex of D has even valence.

Proof. Let v be a vertex of D and denote by e1, . . . , ek the consecutive
edges of D ending in v. For 1 ≤ i ≤ k let Fi be the face containing the edges
ei and ei+1 (where ek+1 = e1). Since the presentation consists of only positive
words, for 1 ≤ i ≤ k − 1 the faces Fi and Fi+1 have opposite orientations
and similarly Fk and F1 have opposite orientations. Therefore, the number
of faces must be even, which implies that k is an even number.

This lemma will be useful in the proof of Theorem 5.10. Now we can
prove the following theorem (inspired by [Oll05, Theorem 13]), which we
will call the “isoperimetric inequality in the positive square model”.

Theorem 3.4. For any ε > 0, in the positive square model at density
d < 1/2, with overwhelming probability, all reduced van Kampen diagrams
associated to the group presentation satisfy

|∂D| ≥ 4(1− 2d− ε)|D|.
Proving Theorem 3.4 we will be mimicking the proof of the analogous

theorem in Gromov’s model. There are only a few details that have to be
changed. Let us recall some definitions and propositions from “Proof of the
density one half theorem” in [Oll05].

An abstract diagram A is a van Kampen diagram in which we forget the
actual relators associated with the faces, but only remember: the geometry
of the diagram, which faces bear the same relator, the orientation, and the
starting points of the relators. More precisely, there is a numberN (called the
number of distinct abstract relators), an epimorphism from the set of faces
of A onto {1, . . . , N} (called the set of abstract relators) and for every given
face of A: one of its vertices (called the starting point) and the orientation
of that face.

An N -tuple (w1, . . . , wN ) of cyclically reduced words is said to fulfill
the abstract diagram A if there exists a van Kampen diagram D formed by
polygons bearing these words, such that after prescribing for each 1 ≤ i ≤ N
an abstract relator i to all faces bearing the word wi and also prescribing to
every face the starting point and the orientation of its labeling word and then
forgetting the actual relators, we obtain A. An abstract diagram is reduced
if no edge is adjacent to two faces bearing the same relator with opposite
orientations such that the edge is the kth edge of both faces for some k.
See [Oll05, p. 83] for details. The following proposition is inspired by [Oll05,
Proposition 58].

Proposition 3.5. Let R be a set of bndlc relators chosen randomly,
with uniform distribution, from the set of positive words of length l on n
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generators. Let D be a reduced abstract diagram and let ε > 0. Then either
|∂D| ≥ |D|l(1−2d−2ε) or the probability that there exists a tuple of relators
in R fulfilling D is less than n−εl.

We will present the proof of this proposition in a more general form in
Subsection 3.2. Now we will recall the theorem known as the “local-global
principle” or the “Gromov–Cartan–Hadamard theorem”. This principle has
many different formulations. The variant best suited to our context is [Oll05,
Theorem 60], which is a slight modification of [Oll07, Theorem 8].

Definition 3.6. For a van Kampen diagram D we define its area by

A(D) :=
∑

f face ofD

|∂f |,

where |∂f | is the length of the boundary path of the face f .

Theorem 3.7 (The “local-global principle”). Let G = 〈a1, . . . , an | R〉
be a finite group presentation and let l1 and l2 be the minimal and maximal
lengths of relators in R. Let C > 0. Choose ε > 0. Suppose that for some
K > 1050(l2/l1)

3ε−2C−3 any reduced van Kampen diagram D with A(D) ≤
Kl2 satisfies

|∂D| ≥ CA(D).

Then any reduced van Kampen diagram D satisfies

|∂D| ≥ (C − ε)A(D)

and in particular the group is hyperbolic.

3.1. Isoperimetric inequality in the positive square model. Now
we are able to prove Theorem 3.4. Our argument is very close to Ollivier’s.

Proof of Theorem 3.4. In our case all relators in the presentation have the
same length l = 4, so A(D) = 4|D|. In particular, the assumption A(D) ≤
Kl2 in the Theorem 3.7 becomes |D| ≤ K, i.e. we have to check diagrams
with at most K faces.

Choose any ε > 0. Set C = 1− 2d− 2ε and K = 1050ε−2(1− 2d− 2ε)−3.
Let n be the number of letters in the generating alphabet. Let N(K,n) be
the number of abstract reduced diagrams with at most K square faces. We
know from Proposition 3.5 that for any fixed reduced abstract diagram D
violating the inequality |∂D| ≥ 4(1 − 2d − 2ε)|D| the probability that it
appears as a van Kampen diagram of the presentation is ≤ n−4ε. So the
probability that there exists a reduced van Kampen diagram with at most
K faces and violating the inequality is ≤ N(K,n)n−4ε.

Observe that there are finitely many planar diagrams with at most K
square faces. There are also finitely many ways to decide which faces would
bear the same relator, and also finitely many ways to choose the starting
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point of each relator. Therefore, the values {N(K,n)}{n∈N} have a uniform
bound M (independent of n).

Hence, for fixed ε, limn→∞N(K,n)n−4ε = 0. Applying Theorem 3.7
(with our choice of C and ε) shows that all reduced van Kampen diagrams
D satisfy |∂D| ≥ 4(1− 2d− 3ε)|D| as needed.

Corollary 3.8. In the positive square model at density d < 1/2 a ran-
dom group is hyperbolic with overwhelming probability.

3.2. A generalization of the isoperimetric inequality. In this sec-
tion we consider a more general case where there are some fixed letters in
the diagrams. These considerations, and in particular Theorem 3.10, will be
used later in Section 5, in the proof of Theorem 5.10.

Definition 3.9. Let A be an abstract diagram. Let e1, . . . , eK be a set
of K distinct edges in A. We call them fixed edges (of A). Let ai1 , . . . , aiK
be a sequence of generators labeling the edges e1, . . . , eK successively and
according to the orientation of the face or faces containing ej . We call these
generators fixed letters (of A). We call such a diagram with some labellings on
edges an abstract diagram with K fixed edges (in the positive square model).

We say that a tuple of relators fulfills A if this tuple fulfills A as an
abstract diagram and this fulfilling is consistent with the labels on the fixed
edges. For k not larger than the number of distinct abstract relators in A
we say that a k-tuple (w1, . . . , wk) of words partially fulfills A if the edges of
A can be labelled with the generators in a way that all faces labelled by an
abstract relator 1 ≤ i ≤ k bear the word wi consistently with the prescribed
starting points, orientations and fixed letters.

Our goal is to prove the following statement.

Theorem 3.10. Let R be a set of bn4dc relators chosen randomly, with
uniform distribution, from the set of positive words of length 4 on n gener-
ators. Let A be an abstract diagram with K fixed edges and let ε > 0. Then
either |∂A|−2K ≥ |A|l(1−2d−ε) or the probability that there exists a tuple
of relators in R fulfilling A is < n−4ε.

Our proof is based on the proof of [Oll05, Proposition 58]. To prove our
theorem we need some more definitions. Let N be the number of distinct
abstract relators in A. For 1 ≤ i ≤ N let mi be the number of faces bearing
relator i. Up to reordering the relators we can suppose that m1 ≥ · · · ≥ mN .

For 1 ≤ i1, i2 ≤ N and 1 ≤ k1, k2 ≤ 4 we say that (i1, k1) > (i2, k2) if
i1 > i2 or i1 = i2 but k1 > k2. Let e be an edge of A adjacent to faces f1 and
f2 bearing relators i1 and i2, which is the k1th edge of f1 and the k2th edge
of f2. If e is not a fixed edge we say that e belongs to f1 if (i1, k1) > (i2, k2),
and e belongs to f2 if (i2, k2) > (i1, k1). If e is a fixed edge then we say that
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e belongs to both faces: f1 and f2. If e′ is a fixed edge which is adjacent to
a face f and e′ is a boundary edge, then we say that e′ belongs to f .

Note that since A is reduced, each internal edge which is not a fixed edge
belongs to some face: indeed, if (i1, k1) = (i2, k2) then either the correspond-
ing two faces have opposite orientation and then A is not reduced, or they
have the same orientation and the diagram is never fulfillable since a letter
would be its own inverse.

Let δ(f) be the number of edges belonging to the face f . Since each
internal edge which is not a fixed edge belongs to some face, we have

|∂A| − 2K = 4|A| − 2
∑

f face of A
δ(f).

For 1 ≤ i ≤ N let
κi = max

f face bearing relator i
δ(f).

Then

(7) |∂A| − 2K ≥ 4|A| − 2
∑

1≤i≤N
miκi.

Lemma 3.11. For 1 ≤ i ≤ N let pi be the probability that i randomly
chosen positive words w1, . . . , wi partially fulfill A and let p0 = 1. Then

(8)
pi
pi−1

≤ n−κi .

Proof. Suppose that i − 1 words w1, . . . , wi−1 partially fulfilling A are
given. Then successively choose the letters of the word wi so as to fulfill the
diagram. Let k ≤ 4 and suppose that the first k− 1 letters of wi are chosen.
Let f be the face realizing the maximum of κi and let e be the kth edge of f .

If e belongs to f , this means that there is another face f ′ meeting e which
bears relator i′ < i or bears i too, but u appears in f ′ as the k′th edge for
some k′ < k or e is a fixed edge. In all these cases the letter on the edge
e is imposed by some letter already chosen, so drawing it at random has
probability ≤ 1/n.

Combining all these observations we see that the probability that the
correct word wi is chosen at random is at most pi−1n−κi .

Proof of Theorem 3.10. Recall that N denotes the number of distinct
abstract relators in A. For 1 ≤ i ≤ N let Pi be the probability that there
exists an i-tuple of words partially fulfillingA in the random set of relators R.
We trivially have

(9) Pi ≤ |R|ipi = n4idpi,
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where pi are as in Lemma 3.11. Combining (7) and (8) we get

|∂A| − 2K ≥ 4|A|+ 2

N∑
i=1

mi(logn pi − logn pi−1)

= 4|A|+ 2
N−1∑
i=1

(mi −mi+1) logn pi + 2mN logn pN − 2m1 logn p0.

Now p0 = 1, so logn p0 = 0 and we have

|∂A| − 2K ≥ 4|A|+ 2
N−1∑
i=1

(mi −mi+1) logn pi + 2mN logn pN .

Using (9) and again the fact that mi+1 ≤ mi we obtain

|∂A|−2K ≥ 4|A|+2

N−1∑
i=1

(mi−mi+1)(logn Pi−4id)+2mN logn(PN −4Nd).

Observe that
∑N−1

i=1 (mi −mi+1)id+mNNd = d
∑N

i=1mi = d|A|. Hence

|∂A| − 2K ≥ 4|A|(1− 2d) + 2

N−1∑
i=1

(mi −mi+1) logn Pi + 2mN logn PN .

Setting P = mini Pi and using mi ≥ mi+1 we get

|∂A| − 2K ≥ 4|A|(1− 2d) + 2(logn P )

N−1∑
i=1

(mi −mi+1) + 2mN logn P

= 4|A|(1− 2d) + 2m1 logn P ≥ |A|(4(1− 2d) + 2 logn P ),

since m1 ≤ |A|. Of course a diagram is fulfillable if it is partially fulfillable
for any i ≤ N , and so

Prob(A is fullfillable by relators of R) ≤ P ≤ n
1
2
(
|∂A|−2K
|A| −4(1−2d))

,

which was to be proven.

Proposition 3.5 follows as a special case of Theorem 3.10 when there are
no fixed letters.

3.3. Isoperimetric inequality in the square model. In this section
we are going to prove that all previous results remain true in the square
model. We start with

Definition 3.12. If in Definition 3.9 we replace the assumption that
fixed edges are labelled by generators with the assumption that fixed edges
are labelled by generators and their inverses, we obtain the definition of an
abstract diagram with K fixed edges (in the square model).
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Theorem 3.13. Let R be a set of b(2n−1)4dc relators chosen randomly,
with uniform distribution, from the set of cyclically reduced words of length 4
on n generators. Let A be an abstract diagram with K fixed edges and let
ε > 0. Then either |∂A|−2K ≥ |A|4(1−2d− ε) or the probability that there
exists a tuple of relators in R fulfilling A is < (2n− 1)−4ε.

Actually the proof of this theorem goes in complete analogy to the proof
of Theorem 3.10. Again, let N be the number of distinct abstract relators
in A, and for 1 ≤ i ≤ N letmi be the number of faces bearing relator i. Up to
reordering the abstract relators we can assume that m1 ≥ · · · ≥ mN . Again,
let δ(f) be the number of edges belonging to the face f , and for 1 ≤ i ≤ N
we define

κi = max
f face bearing relator i

δ(f).

Then we have (as in the previous section)

(10) |∂A| − 2K ≥ 4|A| − 2
∑

1≤i≤N
miκi.

Lemma 3.14. For 1 ≤ i ≤ N let pi be the probability that i randomly
chosen cyclically reduced words w1, . . . , wi partially fulfill A and let p0 = 1.
Then

(11)
pi
pi−1

≤ (2n− 1)−κi .

Proof. To prove this lemma one has to change only one thing in the proof
of Lemma 3.11: replace n with 2n− 1.

Proof of Theorem 3.13. For 1 ≤ i ≤ N let Pi be the probability that
there exists an i-tuple of words partially fulfilling A in the random set of
relators. We have (analogously to (9)):

(12) Pi ≤ |R|ipi ≤ (2n− 1)dlpi.

Repeating the reasoning in the proof of Theorem 3.10 but replacing n
with 2n− 1 we obtain

Prob(A is fullfillable by relators of R) ≤ (2n− 1)
1
2
(
|∂A|−2K
|A| −4(1−2d))

,

which was to be proven.

Now we can prove the isoperimetric inequality for the square model:

Theorem 3.15. For any ε > 0, in the square model at density d < 1/2
with overwhelming probability all reduced van Kampen diagrams associated
to the group presentation satisfy

|∂D| ≥ 4(1− 2d− ε)|D|.
Proof. The proof is completely analogous to the proof of Theorem 3.4:

the only change is that we have to use Theorem 3.13 (for K = 0) instead



THE SQUARE MODEL FOR RANDOM GROUPS 241

of Proposition 3.5, to find that for any fixed reduced abstract diagram D
violating the inequality |∂D| ≥ 4(1 − 2d − 2ε)|D| the probability that it
appears as a van Kampen diagram of the presentation is ≤ (2n − 1)−4ε,
which is < n−4ε.

Corollary 3.16. In the square model at density d < 1/2 a random
group is hyperbolic with overwhelming probability.

4. Freeness. In this section we are going to consider the case where
density of relations is small. Our goal is to prove the following statement:

Theorem 4.1 (Freeness theorem). In the positive square model at den-
sity d < 1/4 a random group is free with overwhelming probability.

To prove this theorem we will introduce several geometric objects:

Definition 4.2. A square complex is a metric polyhedral complex in
which each cell is isometric to the Euclidean square [−1/2, 1/2]2 and the
gluing maps are isometries.

Observe that we allow gluing a cell to itself and gluing two cells several
times along distinct pairs of faces. Notice that van Kampen diagrams in the
positive square model are square complexes.

Now we will introduce a useful tool in geometric group theory: hyper-
graphs. The following definitions are taken from [OW11, Definition 2.1].

Definition 4.3. Let X be a connected square complex. We define a
graph Γ as follows: The set of vertices of Γ is the set of 1-cells of X. There
is an edge in Γ between two vertices if there is some 2-cell R of X such that
the vertices correspond to opposite 1-cells in the boundary of R (if there are
several such 2-cells, we put as many edges in Γ ). The 2-cell R is the 2-cell
of X containing the edge.

There is a natural map ϕ from Γ to X, which sends each vertex of Γ
to the midpoint of the corresponding 1-cell of X and each edge of Γ to a
segment joining two opposite points in the 2-cell R. Note that the images of
two edges contained in the same 2-cell R always intersect, so that in general
ϕ is not an embedding.

A hypergraph in X is a connected component of Γ . The 1-cells of X
through which a hypergraph passes are dual to it. The hypergraph Λ embeds
if ϕ is an embedding from Λ to X, that is, if no two distinct edges of Λ are
mapped to the same 2-cell of X.

The carrier of Λ is a subspace of X equal to the union of all open 1-cells
and open 2-cells of X intersected by Λ. Note that X − (carrier of Λ) is a
subcomplex of X, homotopically equivalent to X − Λ.

The hypergraph segment in X is a finite path in a hypergraph immersed
into X.
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In the next definition we give one of the typical ways to construct a
topological space X such that π1(X) = G for a given finitely generated
group G.

Definition 4.4 (Presentation complex). Let G = 〈An | R〉 be a group
generated by n elements. Consider a bouquet of n circles labelled with el-
ements of An. For every relator r ∈ R there is a polygon with as many
edges as letters in r, which is glued to the bouquet in the following way:
the edge labelled by a ∈ An is glued to the circle with label a respecting
the orientation. For a random group in the square or positive square model
this construction results in a square complex, which we call the presentation
complex.

There is a natural map from any van Kampen diagram to the presentation
complex of G. One of the main steps in our proof of Theorem 4.1 is the
following statement:

Theorem 4.5. In the positive square model at density d < 1/4, with
overwhelming probability, all hypergraphs in the presentation complex are
embedded trees.

Proof. Denote the presentation complex of a random group by X. We
will estimate the probability P of drawing the set Rn of relators for which
the statement does not hold, i.e. there exists a hypergraph in X which is not
an embedded tree.

Hence, assume that such a hypergraph Λ exists. The image of Λ under the
natural map is not a tree, so Λ contains a circuit (an edge path (e1, . . . , ek)
in Λ such that images of e1 and ek intersect in X). Without loss of generality
we can assume that k is the minimal possible length of a circuit. For i in
{1, . . . , k}, let Fi be the 2-cell of X containing the edge ei. We have chosen
the circuit of minimal length, so F1 = Fk and Fi 6= Fj for i < j, except
where i = 1, j = k.

Let D be a diagram consisting of the faces F1, . . . , Fk glued in the fol-
lowing way: for 1 ≤ i ≤ k − 1 the faces Fi and Fi+1 are glued along 1-cells
which contain the common vertex of ei and ei+1. It can be easily seen that
D is either an annular diagram, a twisted diagram (as introduced in Defi-
nition 3.2) or a van Kampen diagram, where the latter corresponds to the
case k = 1. We will estimate the probability Pk of drawing the set of relators
which allows one to construct a diagram with k faces and exactly 3k edges,
and consisting of distinct relators (D has these properties).

Let E be the abstract diagram obtained from D. There are n3k k-tuples
of relators fulfilling E. Denote by L the set of these k-tuples. To fulfill
E one of the elements α ∈ L must be a subset of the set Rn of words
drawn.
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For α ∈ L let Pα be the probability of drawing the set Rn which con-
tains α. Then

Pα =

(
n4−k
bn4dc−k

)(
n4

bn4dc
) .

Hence

(13) Pα =
bn4dc(bn4dc − 1) . . . (bn4dc − k + 1)

n4(n4 − 1) . . . (n4 − k + 1)
<
nk4d

n4k
.

We have Pk ≤ n3kPα. To estimate the probability of the existence of a
hypergraph that is not an embedded tree, we sum Pk over all possible k:

(14) P =

n4∑
k=1

Pk ≤
n4∑
k=1

n3k
nk4d

n4k
<

∞∑
k=1

n(4d−1)k <
1

1− n4d−1
− 1.

We have assumed that d < 1/4, so the right hand side of (14) converges to
0 when n→∞.

Let us recall one of the applications of the HNN extension construction:

Theorem 4.6 ([SW79, Proposition 1.2]). Let V be a Hausdorff topolog-
ical space and let Y1, Y2 ⊂ V be two disjoint, simply-connected and path-
connected subsets such that there is a homeomorphism f : Y1 → Y2. By V ∗f
we denote the topological space V/∼, where y ∼ f(y) for all y ∈ Y1. Then
π1(V ∗f ) = π1(V ) ∗ Z.

Now we are ready to prove the freeness theorem.

Proof of Theorem 4.1. From Theorem 4.5 we know that with overwhelm-
ing probability all hypergraphs in the presentation complex X are embedded
trees. Let us take an arbitrary hypergraph Λ. Let H be the carrier of Λ.

Let us consider the complex X − Λ (by A we denote the completion of
the complex A in the path metric). Note that X − Λ − (X − Λ) consists
of two isometric copies of Λ, denoted Λ1 and Λ2. Let φ : Λ1 → Λ2 be
the homeomorphism between Λ1 and Λ2 induced by the identity of Λ. The
space X − Λ is homotopically equivalent to X − Λ and X − H. Moreover,
(X − Λ)∗φ is equal to the complex X. Hence π1(X) = π1((X − Λ)∗φ), and
since X − Λ is connected and Λ1, Λ2 are disjoint subspaces of it, by Theorem
4.6 we obtain π1(X) = π1(X −H) ∗ Z.

We now perform the same procedure for the subcomplex X1 := X −H.
Note that X1 is connected, and its hypergraphs are subgraphs of the hy-
pergraphs of X, so they are also embedded trees. We choose an arbitrary
hypergraph in X1 and remove its carrier from X1, obtaining a smaller com-
plex X2. By Theorem 4.6, we have π1(X) = π1(X1) ∗ Z = π1(X2) ∗ Z ∗ Z.

We now inductively repeat this procedure. Note that the presentation
complex is finite and each time we remove at least one cell, so this process
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must stop after a finite number m of steps. Let Xm be the subcomplex
obtained after m steps. Then there are no hypergraphs in Xm. But the only
square complex with no hypergraphs is the square complex consisting of one
vertex, which has the trivial fundamental group. Therefore

π1(X) = π1(Xm) ∗ Z ∗ · · · ∗ Z︸ ︷︷ ︸
m

= Z ∗ · · · ∗ Z︸ ︷︷ ︸
m

.

Hence π1(X) is a free group with overwhelming probability.

4.1. Freeness in the square model. First, we will prove the following

Theorem 4.7. In the square model at density d < 1/4, with overwhelm-
ing probability, all hypergraphs in the presentation complex are embedded
trees.

Proof. As in the proof of Theorem 4.5, we only need to prove that, with
overwhelming probability, there are no diagrams with k faces and exactly
3k edges in the presentation complex for any k. Let E be such an abstract
diagram with the minimal number of faces. We will estimate the probability
Pk of drawing a set of relators such that E can be fulfilled. There are at most
(2n)k−1(2n− 1)2k−1(2n− 2)2 k-tuples of relators fulfilling E. Note that for
any δ1 this number is smaller than (2n − 1)(3+δ1)k for sufficiently large n.
Denote by L the set of these k-tuples. To fulfill E, one of the k-tuples α ∈ L
must be a subset of the set Rn of words drawn.

For α ∈ L let Pα be the probability of drawing a set Rn which contains α.
Then

Pα =

( |W ′n|−k
b(2n−1)4dc−k

)
( |W ′n|
b(2n−1)4dc

) .

Hence

Pα =
(b(2n− 1)4dc)(b(2n− 1)4dc − 1) . . . (b(2n− 1)4dc − k)

|W ′n|(|W ′n| − 1) . . . (|W ′n| − k)
(15)

<
(2n− 1)k4d

|W ′n|k
.

Note that |W ′n| ≥ 2n(2n− 1)2(2n− 2), which, for any δ2 > 0, is greater
than (2n − 1)4−δ2 for a sufficiently large n. Therefore, we can estimate the
right hand side of (15) by (2n−1)(4d−4+δ2)k. As in the proof of Theorem 4.5,
we estimate the sum of Pk over all possible k:

(16) P =

|W ′n|∑
k=1

Pk <
∞∑
k=1

(2n− 1)(4d−1+δ1+δ2)k <
1

1− (2n− 1)4d−1+δ1+δ2
.

We assumed d < 1/4, so we can choose δ1, δ2 > 0 such that 4d−1+δ1+δ2
< 0. Then the right hand side of (16) converges to 0 as n→∞.
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Theorem 4.8 (Freeness theorem in the square model). In the square
model at density d < 1/4, a random group is free with overwhelming proba-
bility.

Proof. The proof is identical to the proof of Theorem 4.1 with the only
change that we use Theorem 4.7 instead of Theorem 4.5.

5. Groups without Property (T). In this section our goal is to prove
the following statement.

Theorem 5.1. In the positive square model at density d < 1/3, with
overwhelming probability a random group does not have Property (T).

We refer the reader to [BdlHV08] for the definition and discussion of
Property (T). For our purpose we only need the following criterion:

Theorem 5.2 ([NR98]). If a group G has a subgroup H with the number
of relative ends at least 2 then G does not have Property (T).

We will be mimicking the proof of the analogous theorem for Gromov’s
model which states that for densities < 1/5 a random group in the Gromov
density model does not have Property (T) with overwhelming probability
[OW11].

Until the end of Subsection 5.3 let G be a random group in the positive
square model and X̃ its Cayley complex, that is, the universal cover of the
presentation complex.

5.1. Hypergraphs in the Cayley complex are embedded trees.
First, let us recall

Definition 5.3. The universal cover of the presentation complex of a
group (introduced in Definition 4.4) we call the Cayley complex of that group.
Note that the Cayley complex of a random group in the square or positive
square model is a square complex. We will denote by X̃ the Cayley complex
of a random group (in both models).

Lemma 5.4. In the positive square model for densities < 1/3, hypergraphs
in the Cayley complex of a random group are embedded trees.

To prove the lemma we need a notion of a collared diagram which was
introduced by Ollivier and Wise to investigate hypergraphs in the Gromov
model.

Definition 5.5. We say that a reduced van Kampen diagram D is a
collared diagram if there is a vertex v in the boundary such that for any
other boundary vertex there is exactly one internal edge which ends in this
vertex. Moreover, we assume that v is the end of at most two internal edges.
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Let us denote this set of internal edges by L. Let λ ⊂ D be the hypergraph
segment consisting of all edges dual to the elements of L.

If there is exactly one internal edge ending in v we say that a diagram is
cornerless. In this case it can be easily seen that λ is a circuit.

If the diagram is collared and not cornerless then λ is not a loop, but
there is a 2-cell called a corner which contains two edges of λ.

Moreover, there is a natural combinatorial map ϕ : D → X̃ such that the
image ϕ(λ) is a hypergraph segment in X̃ (as in Definition 4.3). For such λ
we say that D is collared by the segment ϕ(λ). The definition is illustrated
in Figure 1.

Fig. 1. Collared diagrams. The segment λ is drawn with a thick line.

In [OW11, Definition 3.11] Ollivier and Wise defined diagrams collared by
hypergraphs and paths for an arbitrary length l of relators. Their definition
coincides with ours for l = 4, the number of collaring hypergraphs equal to 1
and the number of collaring paths equal to 0. The following theorem shows
the relationship between collared diagrams and hypergraphs:

Theorem 5.6 ([OW11, Theorem 3.5]). Let Λ be some hypergraph in X̃.
The following conditions are equivalent:

(i) Λ is an embedded tree.
(ii) There is no collared diagram collared by a segment of Λ.
Proof of Lemma 5.4. Assume on the contrary that there is a hypergraph

which is not an embedded tree. From Theorem 5.6 we know that there is a
diagram D collared by some segment λ. Let k = |∂D|. For ε < 2(1/3 − d)
by Theorem 3.4 (isoperimetric inequality) we have
(17) k = |∂D| ≥ 4|D|(1− 2d− ε) > 4

3 |D|.
We have two possibilities: either D is cornerless or not. In the first case,

|D| ≥ k. By (17) we know that with overwhelming probability all collared
cornerless diagrams satisfy
(18) k > 4

3k,

which is a contradiction. Therefore, with overwhelming probability there are
no such diagrams.
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Now suppose D is not cornerless. Then |D| ≥ k − 1. We have two pos-
sibilities: |D| ≥ k or |D| = k − 1. If |D| ≥ k we again obtain (18), which is
a contradiction. Therefore, with overwhelming probability there are no such
diagrams. The only remaining case is where |∂D| = k and |D| = k−1. Again
we use (17) to obtain

k > 4
3(k − 1),

impossible for k > 3. So we only have to exclude the diagram |D| = 2,
|∂D| = 3. But there are no diagrams with odd boundary length.

Lemma 5.7 ([OW11, Lemma 2.3]). Suppose a hypergraph Λ is an embed-
ded tree in X̃. Then X̃ − Λ consists of two connected components.

5.2. Pair of hypergraphs which intersect in a single point. We
now introduce a new type of diagram:

Definition 5.8 (Diagram collared by two segments). LetD be a reduced
van Kampen diagram and let x1, . . . , xn be all the vertices on its boundary
in that order. Suppose that for some 2 ≤ i ≤ n − 2 the following holds: for
every k ∈ {2, . . . , i− 1} ∪ {i+1, . . . , n} there is exactly one internal edge ek
ending in xk. Moreover, we assume that for v ∈ {x1, xi} there are exactly 0
or 2 internal edges ending in v.

It can be easily seen that there are two hypergraph segments λ1, λ2 in
D such that for k ∈ {2, . . . , i − 1} the edges ek are dual to λ1, and for
k ∈ {i + 1, . . . , n} the edges ek are dual to λ2. There are exactly two cells
containing edges of both segments λ1, λ2, called corners. There is a natural
combinatorial map ϕ : D → X̃ such that ϕ(λ1) and ϕ(λ2) are hypergraph
segments in X̃. In that case we say that D is collared by the segments ϕ(λ1)
and ϕ(λ2).

Fig. 2. Diagram collared by two segments. The segments are drawn with a solid thick line
and the corners are highlighted in dark gray.

Our definition coincides with the one given by Ollivier and Wise [OW11,
Definition 3.11] for the length of relators equal 4, the number of collaring
segments equals 2 and the number of collaring paths is 0.
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Lemma 5.9 ([OW11, Lemma 3.12]). Let Λ1 and Λ2 be two distinct hy-
pergraphs in X̃ that are embedded trees. There is more than one point in
Λ1 ∩Λ2 if and only if there exists a reduced diagram E collared by segments
of Λ1 and Λ2. Moreover, if Λ1 and Λ2 cross at a 2-cell C, we can choose E
so that C is one of its corners.

Theorem 5.10. With overwhelming probability, in the positive square
model, there exists a pair of hypergraphs Λ1, Λ2 in X̃ such that Λ1 and Λ2

intersect only in one point.

Proof. Suppose Λ, Λ′ are hypergraphs intersecting at least in two points.
Assume that Λ and Λ′ cross at a 2-cell C. From Theorem 5.9 we know that
there exists a diagram E collared by segments λ ⊂ Λ and λ′ ⊂ Λ′ such that
C is its corner. Note that |∂E| = |λ| + |λ′| and |E| ≥ |λ| + |λ′| − 2. By
Theorem 3.4 (isoperimetric inequality), with overwhelming probability,

(19) |λ|+ |λ′| = |∂E| ≥ 4
3 |E| ≥

4
3(|λ|+ |λ

′| − 2),

which is equivalent to |λ| + |λ′| < 8, which implies |∂E| ≤ 6. Moreover,
|E| ≥ |∂E| − 2. Therefore, all possibilities which do not violate (19) are:
|E| = 4, |∂E| = 6 and |E| = 2, |∂E| = 4. There are only three 2-collared
diagrams satisfying (19) (see Figure 3).

Fig. 3. Diagrams collared by two segments. The segments are drawn with a solid thick
line and the corners are highlighted in dark gray.

According to Lemma 3.3 the diagram c cannot be fulfilled by positive
relators. Therefore, we are left only with potential cases: a and b.

For each 2-cell O ∈ X̃ consider two hypergraphs passing through O.
Assume, contrary to our conclusion, that any two such hypergraphs have
at least two intersection points. According to our previous discussion this
means that for each relator r in the presentation there is a van Kampen
diagram E of the form a or b (see Figure 3) such that its corner bears r.

The probability that no two hypergraphs in X̃ intersect in one point is
not larger than the probability that the two hypergraphs passing through
any 2-cell O in X̃ corresponding to the first relator r appearing in Rn do not
intersect in a singe point.

We can draw relators in two steps: in the first step we draw one relator
r and in the second step we draw bn4dc − 1 remaining relators from the set
Wn−{r}. This way of drawing the presentation gives us a specific relator r.
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We will show that with overwhelming probability the relator r is not borne
by a corner in any van Kampen diagram of the shape a or b.

The probability that there exists a van Kampen diagram of type a or b
such that one of its corners bears r is the same as the probability that one
of the abstract diagrams in Figure 4 (where x, y are two consecutive edges
of r) can be fulfilled by a tuple from a random set of relators.

Fig. 4. Diagrams with fixed letters. x and y are two consecutive letters of r.

Note that with overwhelming probability the relator r consists of four
distinct letters (in fact this probability equals n(n− 1)(n− 2)(n− 3)/n4).

To fulfill E we can use r and other relators. Observe that since with
overwhelming probability, r consists of different letters and it is a positive
word, the two faces bearing r cannot be adjacent (such a pair of faces would
give a reduction pair).

Hence, the diagram a′ can be fulfilled only by a relator different from r.
Let Pa′ be the probability of fulfilling a′. Observe that a′ is an abstract
diagram with two fixed letters and one face. Moreover, note that |∂a′|−2·2 <
4
3 |a
′|, so from Theorem 3.10 (used for l = 4) the probability of fulfilling a′ is

less than n−4ε for any ε < 2(1/3− d). Let us fix some ε < 2(1/3− d).
According to the previous observation about faces bearing r, there can

be at most two faces bearing r in b in order to fulfill the diagram. Hence,
there can be at most one face bearing r in b′.

Let Pb′ be the probability of fulfilling b′ without using the relator r.
The diagram b′ is an abstract diagram with two fixed letters and satisfies
|∂b′| − 2 · 2 < 4

3 |b
′|, so again using Theorem 3.10 we find that Pb′ ≤ n−4ε.

Now we will estimate the probability Pb′′ of fulfilling b using the relator
r twice. The only face in b′ which can bear r is the right bottom face. We
can therefore consider a diagram b′′ where we remove this face and label the
new boundary edges with three consecutive letters of r (see Figure 5).

Fig. 5. Diagram with five fixed edges: x, y and s, t, u are two tuples of consecutive letters
of r.
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Observe that |∂b′′| − 2 · 5 < 4
3 |b
′′|, so from Theorem 3.10 (used for l = 4)

the probability of fulfilling b′′ is less than n−4ε.
For a fixed relator r there are eight possible pairs x, y and also eight

possible triples s, t, u. Hence, we can estimate the probability Pr that r is a
corner of a 2-collared diagram:

Pr < 8(Pa′ + Pb′ + 8Pb′′) < 80n−4ε.

Therefore, with overwhelming probability, the two hypergraphs passing
through any 2-cell O in X̃ corresponding to the first relator r appearing
in Rn intersect in a single point, which ends the proof.

Lemma 5.11. In the positive square model, at density d > 1/4, all hy-
pergraphs are leafless trees.

Proof. Note that a hypergraph can have a leaf only if there exists a
generator which appears in exactly one relator. Consider a fixed generator a.
The number of positive words of length 4 containing a equals (n4−(n−1)4),
so (n4 − (n − 1)4)

( (n−1)4
bn4dc−1

)
is the number of presentations where exactly

one relator contains a. Hence the probability that a appears in exactly one
relator equals

p =
(n4 − (n− 1)4)

( (n−1)4
bn4dc−1

)(
n4

bn4dc
) .

Since d < 1, for n large enough we have
(
n4

bn4dc
)
≥
(

n4

bn4dc−1
)
, so we esti-

mate:

p ≤ (n4 − (n− 1)4)

( (n−1)4
bn4dc−1

)(
n4

bn4dc−1
) .

We continue the estimation:( (n−1)4
bn4dc−1

)(
n4

bn4dc−1
) =

(n− 1)4((n− 1)4 − 1) . . . ((n− 1)4 − bn4dc)
n4(n4 − 1) . . . (n4 − bn4dc)

<

(
n− 1

n

)4(bn4dc−1)
.

The probability that there exists a generator that is contained in exactly
one relator is bounded by np. Set zn = n(n4 − (n− 1)4 + 1)

(
n−1
n

)4(bn4dc−1).
Note that pn < zn, so it suffices to show that limn→∞ ln zn = −∞. Note that
zn < 2n5

(
n−1
n

)4(bn4dc−1). From the fact that |ln(1 − x)| > x for x ∈ (0, 1),
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we can estimate

ln zn < ln 2 + 5 lnn+ 4(bn4dc − 1) ln

(
n− 1

n

)
(20)

< ln 2 + 5 lnn− 4(bn4dc − 1)
1

n
.

Since d > 1/4 the right hand side of (20) converges to −∞ as n→∞.

5.3. For densities d < 1/3 a random group in the positive square
model does not have Property (T).

Definition 5.12. For a hypergraph Λ in X̃ the orientation preserving
stabilizer Stab+(Λ) is the index ≤ 2 subgroup of Stab(Λ) that also stabilizes
each of the two components of X̃ − Λ.

We now recall the following

Lemma 5.13 ([OW11, Lemma 7.2]). Suppose that a group G acts co-
compactly and freely on X̃, and the system of hypergraphs in X̃ is locally
finite and cocompact (meaning that the hypergraphs in X̃/G are compact
and finitely many). Suppose that two distinct leafless hypergraphs Λ1 and
Λ2, which are embedded trees, intersect in a single point.

Then for i = 1, 2 the group Hi = Stab+(Λi) is a subgroup of G with
relative number of ends e(G,Hi) = 2.

Theorem 5.14. In the positive square model at density 1/4 < d < 1/3,
with overwhelming probability a random group G has a subgroup H which
is free, quasiconvex and such that the relative number of ends e(G,H) is at
least 2. In particular with overwhelming probability G does not have Prop-
erty (T).

Proof. By Lemma 5.4 we know that with overwhelming probability hy-
pergraphs in X̃ are embedded trees.

The presentation complex X of G is finite since our group is finitely
presented, so G acts cocompactly on X̃ and the system of hypergraphs is lo-
cally finite and cocompact. By Theorem 5.10 we know that with overwhelm-
ing probability there is a pair of hypergraphs which intersect in exactly one
point, and by Lemma 5.11 with overwhelming probability all hypergraphs
are leafless trees.

Hence, by Lemma 5.13 with overwhelming probability there is a subgroup
H in G such that the relative number of ends e(G,H) is at least 2.

Finally using Theorem 5.2 we conclude that G does not have Prop-
erty (T).

To prove Theorem 5.1 we need the following
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Lemma 5.15. Suppose that for some density d ∈ (0, 1) a random group
in the positive square model does not have Property (T) with overwhelm-
ing probability. Then for any 0 < d′ < d a random group in the positive
square model at density d′ does not have Property (T) with overwhelming
probability.

Proof. Denote by Rn,d a random set of n4d positive relators of length 4.
Let ϕ(Rn,d) be the restriction of the set Rn,d to the first n4d′ relators. It
can be easily seen that ϕ(Rn,d) is a random set of n4d′ relators with the
uniform distribution. Therefore a random group in the positive square model
at density d′ is a group with presentation 〈An | ϕ(Rn,d)〉.

Now, note that Property (T) is preserved by epimorphisms, meaning that
the image of a group with Property (T) has Property (T) as well. Hence,
removing relations from the presentation of a group without Property (T)
results in a group without Property (T). Therefore, the probability that a
group with presentation 〈An | ϕ(Rn,d)〉 does not have Property (T) is not
smaller than the probability that a group with presentation 〈An | Rn,d〉 does
not have Property (T). From our assumption we know that the latter tends
to 1 as n→∞.

Theorem 5.1 follows from Theorem 5.14 combined with Lemma 5.15.

5.4. Groups without Property (T) in the square model. We
proved in Section 3.3 that the isoperimetric inequality holds in the square
model. Some of the lemmas and theorems proved earlier in this section can
be generalized to the square model.

Lemma 5.16. In the square model for densities < 1/3, hypergraphs in
the Cayley complex of a random group are embedded trees.

Proof. The proof is identical to the proof of Lemma 5.4.

Lemma 5.17. In the square model at density d > 1/4 all hypergraphs in
the Cayley complex of a random group are leafless trees.

Proof. The proof is analogous to the proof of Lemma 5.11.

Theorem 5.18. With overwhelming probability, in the square model at
density 1/4 < d < 1/3 there exists a pair of hypergraphs Λ1, Λ2 in the Cayley
complex of a random group such that Λ1 and Λ2 intersect in one point.

Proof. The proof is analogous to the proof of Theorem 5.10.

Lemma 5.19. Suppose that for some density d ∈ (0, 1) a random group in
the square model does not have Property (T) with overwhelming probability.
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Then for any 0 < d′ < d a random group in the square model at density d′
does not have Property (T) with overwhelming probability.

Proof. The proof is analogous to the proof of Lemma 5.15.
Combining Theorem 5.18 with Lemma 5.17, by Lemma 5.13, Theorem

5.2 and Lemma 5.19 we obtain the following:
Theorem 5.20. In the square model at density d < 1/3 a random group

does not have Property (T) with overwhelming probability.
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