Analytic sets in the theory of commutative semigroups

by

ROBERT KAUFMAN (Urbana, IL)

Abstract. A problem about representations of countable, commutative semigroups leads to an analytic non-Borel set.

1. Introduction. A semicharacter of a commutative semigroup H is a multiplicative map from H to the closed unit disk in the complex plane. The set H^{\wedge} of all semicharacters of H is a compact Hausdorff space in the product topology, metrizable when H is countable. H^{\wedge} provides a representation of the complex homomorphisms of a certain commutative Banach algebra introduced by Hewitt and Zuckerman [HZ] and is the basis of extensive analysis based on this algebra; unlike [HZ] we include the identically 0 map.

The theory of semicharacters diverges from the theory of characters of commutative groups in the question of extensions to larger semigroups. Let H_1 be a subsemigroup (ssg) of H; then $R(H, H_1)$ denotes the set of restrictions to H_1 of the set H^{\wedge} . A perfectly rational test for $R(H, H_1)$ was found in [R]: an element ϕ of H_1^{\wedge} belongs to $R(H, H_1)$ if and only if $|\phi(a)| \leq |\phi(b)|$ for every pair $a, b \in H_1$ of elements such that b divides a in H, i.e. a = b + h, where h belongs to H. Clearly $R(H, H_1)$ is a closed subset of H_1^{\wedge} .

Matters are much less transparent for the class H^{\wedge}_{*} of semicharacters of H omitting the value 0 and the class $R_{*}(H, H_{1})$ of their restrictions to H_{1} . A solution was proposed in [H] (which contains references to several earlier works).

Henceforth we suppose that H is countable, whence H_*^{\wedge} is a G_{δ} in H^{\wedge} , and therefore a Polish space. If $R_*(H, H_1)$ admitted a characterization analogous to the theorem of Ross, it is plausible that it would be a Borel set. It is clearly an analytic set (see [Ku, Chap. 39] and [Ke, Chap. III]), and that is sometimes the correct measure of its complexity. This is our main theorem.

²⁰¹⁰ Mathematics Subject Classification: Primary 43A65; Secondary 03E15. Key words and phrases: semicharacter, analytic set.

R. Kaufman

2. Main theorems. Before stating it we define a certain countable semigroup H and ssg H_1 . Let G be the free abelian group with basis $(w_1, w_2, w_3, \ldots), E_1 = (w_1, w_3, w_5, \ldots), E_2 = (w_2, w_4, w_6, \ldots); H_1$ the ssg generated by E_1, H_2 that generated by E_2 . Let ψ be a map of E_1 onto the set H_2 and finally let H be the ssg generated by the set

$$S = E_1 \cup E_2 \cup \{\psi(v) - v : v \in E_1\}.$$

THEOREM 2.1. Let A be an analytic set in a Polish space X. Then there is a continuous map θ of X into H_1^{\wedge} such that $\theta^{-1}(R_*(H, H_1)) = A$.

Theorem 2.1 can be summarized by the statement that $R_*(H, H_1)$ is a complete analytic set in H_1^{\wedge} . In Theorem 2.1 the 'reduction' of A is effected by a continuous (not merely Borel) map θ . A few extra lines would yield an embedding of X.

The proof of Theorem 2.1 is circuitous. First we state an analogue of Theorem 2.1, containing no reference to restrictions; then we show that this theorem is 'encoded' in Theorem 2.1 through our construction of H, and finally we prove the intermediate result, using mostly tools from convexity.

Let K be the set of maps of H_2 into [0, 1]. Let M be the set of elements g in K such that $0 < |\phi| \le g$ for some semicharacter ϕ of H_2 . (M is the set of majorants). Then K is a Polish space and M is analytic.

THEOREM 2.2. M is a complete analytic set in K.

Encoding. To explain how this theorem is encoded in the main theorem we associate to each element g of K a semicharacter γ of H_1 by the formula $\gamma = g \circ \psi$, that is,

$$\gamma(w_m) = g \circ \psi(w_m), \quad m = 1, 3, 5, \dots$$

This defines a semicharacter of H_1 and thus an embedding of K into H_1^{\wedge} . Suppose first that γ belongs to $R_*(H, H_1)$ so there is a semicharacter ϕ extending γ to H, and moreover $|\phi| > 0$ everywhere. For each v in E_1 , v divides $\psi(v)$ in H, whence $|\phi \circ \psi(v)| \leq |\phi(v)| = |g \circ \psi(v)|$. Since the range of ψ is all of H_2 , we obtain $|\phi| \leq g$ and g is a majorant. To prove the reverse implication, suppose that g is a majorant, that is, $0 < |\phi| \leq g$, where ϕ is a semicharacter of H_2 . To define an extension γ of ϕ to all of H, we keep the same values on H_2 , define γ on H_1 by the formula $\gamma(v) = \phi \circ \psi(v)$, and then define γ on the last part of S by algebra. Then $0 < |\gamma| \leq 1$ on all of S, and so on H. We observe that when $g \circ \psi$ is everywhere positive, then the semicharacter shares this property.

The next step is to focus on a certain closed subset K_0 of K, namely the set of submultiplicative maps, that is,

$$g(x+y) \le g(x)g(y)$$
 for all $x, y \in H_2$.

When F is a subset of K_0 , then $\sup F$ is the pointwise supremum of F; of course $\sup F$ belongs to K_0 . In the next result, we use only the fact that H_2 is countable and commutative.

LEMMA 2.3. Let F be a closed subset of K_0 , and suppose that sup F is a majorant. Then some element of F is everywhere positive on H_2 .

Proof. Taking absolute values of semicharacters, we may assume that they take values in [0, 1]. Moreover, applying log allows us to switch to subadditive and additive maps taking values in $[-\infty, 0]$. Let (h_m) be an enumeration of H_2 , (a_m) a sequence of positive numbers such that $\sum a_m^{-1} \leq 1$, and λ an additive map of H_2 into $(-\infty, 0]$ such that $\lambda \leq \sup F$. We now show that F contains an element g such that $a_m\lambda(h_m) \leq g(h_m)$ for each m. Let r be a natural number; we will find an approximate solution over the elements h_1, \ldots, h_r . The set V of elements at which λ takes the value 0 requires special care.

Let N be a positive integer, and define integers n_1, \ldots, n_r by the formula

$$n_m = \begin{cases} [-Na_m^{-1}\lambda(h_m)^{-1}] & \text{if } \lambda(h_m) < 0, \\ N^2 & \text{if } h_m \in V. \end{cases}$$

We can take N so large that all $n_m \ge 1$. Let $y = n_1h_1 + \cdots + n_rh_r$, so that $\lambda(y) > -N$. Then g(y) > -N for some g in F. Since g is subadditive, for each m we have

$$n_m g(h_m) \ge g(n_m h_m) \ge g(y) > -N,$$

whence $g(h_m) > -N/n_m$. Making $N \to \infty$, we obtain an element \tilde{g} of F such that $\tilde{g}(h_m) \ge a_m \lambda(h_m)$ for $m = 1, \ldots, r$. As $r \to \infty$, we obtain the element sought.

REMARK 2.4. With the aid of a theorem of Hahn–Banach type for commutative semigroups [Ka] this can be strengthened: some element of F is already a majorant. We observe that this lemma is closely related to Beppo Levi's theorem in real analysis; the countability of H seems to be necessary.

Proof of Theorem 2.2. The set A is the projection of a G_{δ} set V in $X \times I$, and V in turn is the intersection of a decreasing sequence V_n of open sets in $X \times I$. (Here I = [0, 1], but the interval could be replaced by any uncountable compact metric space.) For each positive integer n, we define a continuous map u_n on $X \times I$, taking values in $[-\infty, 0]$, with finite values on V_n and $-\infty$ on its complement. We define now a continuous map of $X \times I$ to the set of additive maps on H_2 by the formula

$$\lambda(x,t;h) = \sum e_n u_n(x,t),$$

where $h = \sum e_n w_{2n}$, $x \in X$, $t \in I$. Here we specify that the sum extends over coefficients $e_n > 0$. Taking a little care with the last point, we see that

R. Kaufman

this defines a continuous map of $X \times I$ into the set of additive maps. Then we define

$$\theta(x;h) = \sup\{\lambda(x,t;h) \colon t \in I\}.$$

As the interval I is compact, this is continuous on X, and for each fixed x, there is a closed set F of K_0 , as in Lemma 2.3. When $x \in A$, there is some t such that $u_n(x,t) > -\infty$ for each n, whence $\theta(x)$ is a majorant. Conversely, if $\theta(x)$ is a majorant, then for some t, each function u_n must be finite at (x, t), i.e., $x \in A$. Since the supremum $\theta(x)$ depends continuously on x, this shows that the set of majorants is a complete analytic set.

A slight change in the definition of the sets V_n yields an interesting improvement of Theorem 2.1. Adding the set $X \times (0, 1/n)$ to V_n , we do not change the intersection V. But now the map θ takes its values in semicharacters of H_1 that are never 0.

Acknowledgements. We thank the referee for numerous improvements and corrections in the text.

References

- [HZ] E. Hewitt and H. S. Zuckerman, The l₁-algebra of a commutative semigroup, Trans. Amer. Math. Soc. 83 (1956), 70–97.
- [H]P. Hill, A solution to the nonvanishing semicharacter extension problem, Proc. Amer. Math. Soc. 17 (1966), 1178–1182.
- [Ka] R. Kaufman, Extension of functionals and inequalities on an abelian semi-group, Proc. Amer. Math. Soc. 17 (1966), 83-85.
- A. S. Kechris, *Classical Descriptive Set Theory*, Grad. Texts in Math. 156, Springer, [Ke] New York, 1995.
- [Ku] K. Kuratowski, Topology. Vol. I, Academic Press, New York, 1966.
- K. A. Ross, A note on extending semicharacters on semigroups, Proc. Amer. Math. [R]Soc. 10 (1959), 579–583.

Robert Kaufman Department of Mathematics University of Illinois at Urbana-Champaign 1409 W. Green St. Urbana, IL 61801, U.S.A. E-mail: rpkaufma@math.uiuc.edu

> Received December 10, 2013 Revised version October 24, 2014

(7880)