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Isomorphisms of AC(σ) spaces

by

Ian Doust (Sydney) and Michael Leinert (Heidelberg)

Abstract. Analogues of the classical Banach–Stone theorem for spaces of continuous
functions are studied in the context of the spaces of absolutely continuous functions in-
troduced by Ashton and Doust. We show that if AC(σ1) is algebra isomorphic to AC(σ2)
then σ1 is homeomorphic to σ2. The converse however is false. In a positive direction
we show that the converse implication does hold if the sets σ1 and σ2 are confined to a
restricted collection of compact sets, such as the set of all simple polygons.

1. Introduction. In [3] Ashton and Doust defined the Banach algebra
AC(σ) consisting of ‘absolutely continuous’ functions with domain an arbi-
trary nonempty compact subset σ of C (or equivalently of R2). The motiva-
tion for their definition was to extend the spectral theory of well-bounded
operators to cover operators whose spectra need not be contained in the
real line. This led to the definition of an AC(σ) operator being a bounded
operator on a Banach space X which admits a bounded functional calculus
Ψ : AC(σ)→ B(X). Under some additional assumptions, the image of Ψ is
an algebra of operators which is isomorphic to AC(σ). Accordingly, one can
recover certain aspects of the theories of normal operators and of scalar-type
spectral operators, replacing algebras of continuous functions C(Ω) with al-
gebras of absolutely continuous functions. Quite naturally then, underlying
many of the open problems in this area are questions which ask for ana-
logues of the classical topological results about C(Ω) spaces. (Details of the
theory of AC(σ) operators can be found in [5].)

One of the most classical of these topological results is the Banach–
Stone theorem which says that two compact Hausdorff spaces Ω1 and Ω2

are homeomorphic if and only if the function algebras C(Ω1) and C(Ω2) are
linearly isometric. There have been many generalizations and extensions of
this result (see [11]). Work of Amir [1] shows that one may still deduce that
Ω1 and Ω2 are homeomorphic if one only assumes that C(Ω1) and C(Ω2)
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are (linearly) isomorphic with Banach–Mazur distance less than 2. Cohen [7]
has shown that the value 2 is sharp.

In a different direction, one might require that the spaces C(Ω1) and
C(Ω2) be isomorphic as algebras. In this case one may argue using the
maximal ideal spaces to get the same conclusion. In particular, as the next
result shows, if C(Ω1) and C(Ω2) are algebra isomorphic, then they are
isometrically isomorphic. This result was originally proved in [12]; a modern
treatment is given in [11].

Theorem 1.1 (Gelfand and Kolmogorov, 1939). Let Ω1 and Ω2 be com-
pact Hausdorff spaces. Then C(Ω1) and C(Ω2) are isomorphic as algebras if
and only if Ω1 and Ω2 are homeomorphic. Moreover, every algebra isomor-
phism j : C(Ω1)→ C(Ω2) is of the form j(f) = f ◦ h where h : Ω1 → Ω2 is
a homeomorphism.

The main issue that we shall address in this paper is the corresponding
relationship between the topological structure of the set σ and the algebraic
structure of AC(σ). In Section 2 we shall recall the definition and main prop-
erties of AC(σ) and then give a simple proof that if AC(σ1) and AC(σ2) are
algebra isomorphic, then σ1 and σ2 are homeomorphic. The converse of this
is false however. In Section 3 we show that the algebra of absolutely contin-
uous functions over the closed unit disk is not isomorphic to the algebra of
absolutely continuous functions over a square.

If, however, one restricts the class of sets in which σ may lie, one can
recover some sort of analogue of the Banach–Stone theorem. In Theorem 6.3
we show that if P1 and P2 are simple polygons, then AC(P1) is algebra
isomorphic to AC(P2). In Section 7 we extend this result to cover more
general sets based on polygons.

We note that different applications have led to quite a number of different
concepts of absolute continuity for functions of two or more variables. The
reader is cautioned that these concepts are generally distinct, and often, as is
the case here, impose particular conditions on the domains of the functions
considered. The definition of absolute continuity that is studied here was
developed to have specific properties which are appropriate for the intended
application to spectral theory, namely:

(1) it should apply to functions defined on the spectrum of a bounded
operator, that is, an arbitrary nonempty compact subset σ of the
plane;

(2) it should agree with the usual definition if σ is an interval in R;
(3) AC(σ) should contain all sufficiently well-behaved functions;
(4) if α, β ∈ C with α 6= 0, then the space AC(ασ + β) should be

isometrically isomorphic to AC(σ).
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The interested reader may consult [4], [9] and [6] for a sample of what is
known about the relationships between some of these definitions.

Notation. Suppose that A and B are Banach algebras. We shall write
A ' B to mean that A and B are isomorphic (as Banach algebras).

Throughout, we shall use the term polygon to refer to a simple polygon
including its interior. In particular, every such polygon is homeomorphic to
the closed unit disk.

2. Preliminaries. In this section we shall briefly outline the definition
of the spaces AC(σ). Here we follow [10] rather than the original definitions
given in [3]. Throughout, σ, σ1 and σ2 will denote nonempty compact subsets
of the plane. Although the original motivation for these definitions came
from considering functions defined on subsets of the complex plane, for this
paper it will be notationally easier to consider the domains of the functions
to be subsets of R2. We shall work throughout with algebras of complex-
valued functions.

Suppose that f : σ → C. Let S = [x0,x1, . . . ,xn] be a finite ordered list
of elements of σ, where, for the moment, we shall assume that n ≥ 1. Note
that the elements of such a list do not need to be distinct.

We define the curve variation of f on the set S to be

(2.1) cvar(f, S) =
n∑
i=1

|f(xi)− f(xi−1)|.

We shall also need to measure the ‘variation factor’ of the list S. Loosely
speaking, this is the greatest number of times that γS crosses any line in
the plane, where γS denotes the piecewise linear curve joining the points of
S in order. The following definition makes precise just what is meant by a
crossing.

Definition 2.1. Suppose that ` is a line in the plane. We say that
xi xi+1, the line segment joining xi to xi+1, is a crossing segment of S =
[x0,x1, . . . ,xn] on ` if one of the following holds:

(i) xi and xi+1 lie on (strictly) opposite sides of `.
(ii) i = 0 and xi ∈ `.
(iii) i > 0, xi ∈ ` and xi−1 6∈ `.
(iv) i = n− 1, xi 6∈ ` and xi+1 ∈ `.

In this case we shall write xi xi+1 ∈ X(S, `).

Definition 2.2. Let vf(S, `) denote the number of crossing segments
of S on `. The variation factor of S is defined to be

vf(S) = max
`

vf(S, `).
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Clearly 1 ≤ vf(S) ≤ n. For completeness, in the case that S = [x0] we
set cvar(f, [x0]) = 0 and let vf([x0], `) = 1 whenever x0 ∈ `.

Example 2.3. Consider the line ` and the list S = [xi]
8
i=0 as shown in

Figure 1. Let si = xi xi+1. Then the crossing segments for S on ` are s0
(rule (ii)), s2 (rule (i)), s4 (rule (iii)) and s7 (rule (iv)). The other segments
are not crossing segments of S on `. Thus vf(S, `) = 4.

x0

x1

x2

x3

x4 x5

x6

x7

x8 `

Fig. 1. Examples of crossing segments

The two-dimensional variation of a function f : σ → C is defined to be

(2.2) var(f, σ) = sup
S

cvar(f, S)

vf(S)
,

where the supremum is taken over all finite ordered lists of elements of σ.
The variation norm is

‖f‖BV (σ) = ‖f‖∞ + var(f, σ)

and the set of functions of bounded variation on σ is

BV (σ) = {f : σ → C : ‖f‖BV (σ) <∞}.

The space BV (σ) is a Banach algebra under pointwise operations [3, The-
orem 3.8]. If σ = [0, 1] then the above definition is equivalent to the more
classical one.

Let P2 denote the space of polynomials in two real variables of the form
p(x, y) =

∑
n,m cnmx

nym, and let P2(σ) denote the restrictions of elements
on P2 to σ. The algebra P2(σ) is always a subalgebra of BV (σ) [3, Corol-
lary 3.14].

Definition 2.4. The set of absolutely continuous functions on σ, de-
noted AC(σ), is the closure of P2(σ) in BV (σ).

The set AC(σ) forms a closed subalgebra of BV (σ) and hence is a Banach
algebra.

We shall say that f ∈ C1(σ) if there exists an open neighbourhood U
of σ and an extension F of f to U such that the partial derivatives of F
(of order one) are continuous on U . The space CTPP(σ) consists of those
functions f for which there is a triangulation of a neighbourhood U of σ
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and an extension of f to U which is continuous and piecewise planar on this
triangulation. It was shown in [10] that both C1(σ) and CTPP(σ) are dense
subsets of AC(σ).

Our first step is to show that if AC(σ1) and AC(σ2) are isomorphic as
algebras, then σ1 and σ2 must be homeomorphic. We note that one does not
need to assume that the isomorphism is continuous.

Lemma 2.5. Suppose that f ∈ AC(σ). Then the spectrum of f is σ(f) =
f(σ) and hence the spectral radius of f is r(f) = ‖f‖∞.

Proof. This is more or less immediate from [3, Corollary 3.9].

Theorem 2.6. Suppose that j : AC(σ1) → AC(σ2) is an algebra iso-
morphism. Then

(1) ‖f‖∞ = ‖j(f)‖∞ for all f ∈ AC(σ1),
(2) there exists a homeomorphism h : σ1 → σ2,
(3) j(f) = f ◦ h−1 for all f ∈ AC(σ1),
(4) j is continuous.

Proof. Since j preserves the identity element, it also preserves the spec-
trum of elements. Thus, by Lemma 2.5,

‖f‖∞ = r(f) = r(j(f)) = ‖j(f)‖∞
for all f ∈ AC(σ). Since AC(σ1) is dense in C(σ1), this implies that j
extends to an isometric isomorphism ̂ : C(σ1) → C(σ2) and hence, by the
Banach–Stone theorem, σ1 is homeomorphic to σ2. Indeed there exists a
homeomorphism h : σ1 → σ2 such that ̂(f) = f ◦ h−1 for all f ∈ C(σ1).
Restricting this to AC(σ1) gives part (3).

Suppose that fn → f in AC(σ1). Then certainly fn → f uniformly
and hence pointwise. Suppose that j(fn) → g in AC(σ2) (and hence also
pointwise). Then for all x ∈ σ2,

g(x) = lim
n
j(fn)(x) = lim

n
fn(h−1(x)) = f(h−1(x)) = j(f)(x)

and hence j(f) = g. Thus, by the Closed Graph Theorem, j is continuous.

It is easy to find homeomorphic sets σ1 and σ2 for which AC(σ1) and
AC(σ2) are algebra isomorphic, but not isometrically. If the isomorphism
preserves norms, then part (1) of the above theorem implies that it also
preserves variation.

Corollary 2.7. Suppose that j : AC(σ1) → AC(σ2) is an isometric
Banach algebra isomorphism. Then var(f, σ1) = var(j(f), σ2) for all f in
AC(σ1).
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Example 2.8. Let σ1 = {0, 1, 2} and σ2 = {0, 1, i}. Since σ1 ⊆ R,

‖f‖BV (σ1) = ‖f‖∞ + |f(1)− f(0)|+ |f(2)− f(1)|, f ∈ AC(σ1).

On the other hand, any function defined on σ2 can clearly be written in the
form f(x+iy) = g(y−x) for some function g of one real variable. Lemma 3.12
and Proposition 3.10 of [3] then imply that the norm for f ∈ AC(σ2) is given
by

‖f‖BV (σ2) = ‖f‖∞ + max
(
|f(1)− f(0)|, |f(i)− f(0)|, |f(i)− f(1)|

)
.

Any isomorphism must map idempotents to idempotents. However, it is
easy to see that while all idempotents in AC(σ2) have variation at most 1,
the algebra AC(σ1) contains the idempotent with f(0) = f(2) = 0 and
f(1) = 1 which has variation 2. Thus these algebras cannot be isometrically
isomorphic.

In the other direction, suppose that α : R2 → R2 is an invertible affine
transformation. It is clear from the definition of variation that ‖f‖BV (σ) =

‖f ◦ α−1‖BV (α(σ)). Since affine transformations preserve polynomials, it is
clear that AC(σ) is isometrically isomorphic to AC(α(σ)). (This is a very
small extension of [3, Theorem 4.1].) In Section 4 we shall extend this to
slightly more general transformations of the plane, at the expense of the
algebra isomorphism no longer being isometric.

3. The disk and the square. Let Q = [0, 1] × [0, 1] ⊆ R2 denote the
closed unit square and let D = {x ∈ R2 : ‖x‖ ≤ 1} denote the closed
unit disk. These sets are clearly homeomorphic. The aim of this section is
to show that AC(Q) 6' AC(D).

Theorem 3.1. AC(Q) and AC(D) are not isomorphic as algebras.

Proof. Suppose that j : AC(Q)→ AC(D) is an algebra isomorphism. By
Theorem 2.6, the map j is continuous and hence ‖j(f)‖AC(D)≤‖j‖ ‖f‖AC(Q)

for all f ∈ AC(Q).
Let h : Q → D be the homeomorphism associated with j. Then

h([0, 1]× {0}) is a closed arc on the unit circle ∂D.
Let n ∈ N be even. For 0 ≤ k ≤ n, let pk = h(k/n, 0). Now choose εn > 0

small enough so that, for every odd k, the εn-disk with centre pk does not
meet the line segment pk−1 pk+1.

Now let δn > 0 be chosen (using the uniform continuity of h) so that if
x,x′ ∈ Q with ‖x − x′‖ ≤ δn then ‖h(x) − h(x′)‖ < εn. Without loss we
may assume that δn ≤ 1.

For each odd k, let p̃k = h(k/n, δn) ∈ B(pk, εn). Let Sn = [p0, p̃1,p2,
p̃3, . . . , p̃n−1,pn] ⊆ D. It is easy to see that the points of Sn form the vertices
of a convex subset of D and so, in particular, vf(Sn) = 2.
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pk
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D

Fig. 2. The construction of p̃k in the proof of Theorem 3.1

Consider the map fn : Q→ R defined by fn(x, y) = min(y/δn, 1). Clearly
fn ∈ AC(Q) with ‖fn‖AC(Q) = 2. Define gn : D → R by gn = fn ◦ h−1 =
j(fn). Then gn(pk) = 0 for k even, and gn(p̃k) = 1 for k odd. Thus

‖gn‖AC(D) ≥ var(gn, D) ≥ cvar(gn, Sn)

vf(Sn)
=
n

2
.

But for all n, ‖gn‖AC(D) ≤ ‖j‖ ‖fn‖AC(Q) ≤ 2‖j‖ and hence we have a
contradiction.

As we shall now show, there are severe restrictions on the behaviour of
any algebra isomorphism which is associated with a C2 homeomorphism
from Q to another compact subset of the plane.

Lemma 3.2. Suppose that Ω ⊆ R2 is compact. Then a set ` ⊆ Ω is a
closed line segment if and only if it is closed, convex and can be disconnected
by the removal of a single point.

Proof. The forward implication is obvious.

Suppose now that the second condition holds. Let x ∈ ` denote a point
whose removal splits `\{x} into disjoint sets `1 and `2. Choose points y1 ∈ `1
and y2 ∈ `2. Then y1 y2 lies inside `, and must pass through x as `1 ∪ `2 is
not connected. Since y2 was an arbitrary element of `2, the line through y1

and x contains every element of `2—and similarly every element of `1 must
lie on the same line. Thus ` is a closed convex subset of a line, or in other
words, a line segment.

Recall that a set U is mid-point convex if 1
2(x + y) ∈ U for all x,y ∈ U .

Lemma 3.3. Suppose that Ω ⊆ R2 is compact and that ` = {x + λv :
0 ≤ λ ≤ 1} ⊆ Ω is a closed line segment. Let h : Ω → σ ⊆ R2 be a
homeomorphism. Then h(`) is a line segment if and only if it is mid-point
convex.

Proof. Again the forward implication is clear.
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Now suppose that h(`) is mid-point convex. Since h is a homeomorphism,
h(`) is closed and can be disconnected by a point. Since h(`) is closed and
mid-point convex, it is convex, and so the result follows from the previous
lemma.

Lemma 3.4. Suppose that σ ⊆ R2 and that h : Q → σ is a homeomor-
phism. For y ∈ [0, 1] let `y = [0, 1]×{y}. If h(`0) is not a line segment, then
there exists δ > 0 such that h(`y) is not a line segment for any y ∈ [0, δ].

Proof. As h(`0) is not a line segment we may choose x, x′ ∈ [0, 1] such
that v = 1

2(h(x, 0) + h(x′, 0)) is not an element of h(`0). Let ε = d(v, h(`0))
> 0. Now choose δ > 0 small enough so that if u,u′ ∈ Q with ‖u−u′‖ ≤ δ
then ‖h(u)− h(u′)‖ < ε/3.

Suppose that 0 ≤ y ≤ δ and that h(`y) is a line segment. Since h(`y)
is mid-point convex, there exists t ∈ [0, 1] such that h(t, y) = 1

2(h(x, y) +
h(x′, y)). But then

‖h(t, 0)− v‖ ≤ ‖h(t, 0)− h(t, y)‖+

∥∥∥∥h(t, y)− h(x, y) + h(x′, y)

2

∥∥∥∥
+

∥∥∥∥h(x, y) + h(x′, y)

2
− h(x, 0) + h(x′, 0)

2

∥∥∥∥
≤ ε

3
+ 0 +

ε

3
< ε,

contradicting d(v, h(`0)) = ε.

A consequence of this result is that if h : Q→ σ is a homeomorphism and
there exists a line segment ` ∈ Q such that h(`) is not a line segment, then
we may assume that both ` and h(`) lie in the interiors of their respective
sets.

Theorem 3.5. Suppose that ∅ 6= σ ⊆ R2 is compact and that j :
AC(Q) → AC(σ) is an algebra isomorphism with associated homeomor-
phism h : Q→ σ. If h is C2 then h maps line segments to line segments.

Proof. Suppose that there exist σ, j and h as above such that for some
line segment ` ⊆ Q, h(`) is not a line segment. We shall show that this leads
to a contradiction. In order to streamline the proof, a number of simplifica-
tions can be made.

By the above remark we can assume that ` lies in the interior of Q.
Since h is C2, h(`) has a tangent at each point and the curve can at least
locally be considered as the graph of a C2 function of a parametrization
of this tangent line. Since h(`) is not a line segment, one can choose an
invertible affine map β : R2 → R2 such that there is a subsegment `0 of `
such that
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• (β ◦ h)(`0) = {(s, t(s)) : 0 ≤ s ≤ 1}, and
• t′′(s) > 0 for 0 < s < 1.

Now choose an invertible affine map α : R2 → R2 such that

• α(`0) = [0, 1]× {0} ⊂ [0, 1]× [−1, 1] ⊆ int(α(Q)), and
• (β ◦ h ◦ α−1)([0, 1]× [0, 1]) lies above (β ◦ h)(`0).

We shall write h1 = β ◦ h ◦α−1 for the homeomorphism from α(Q) to β(σ),
and C for the curve (β ◦ h)(`0). (See Figure 3.)

α(Q)

α(`0)

h1
β(σ)

1

C

Fig. 3. The homeomorphism h1 : α(Q) → β(σ) in the proof of Theorem 3.5.

The proof now mimics that of Theorem 3.1. Let n ∈ N be even. For
0 ≤ k ≤ n, let pk = (k/n, t(k/n)) and let xk ∈ [0, 1] denote the (unique)
number such that h1(xk, 0) = pk.

Choose εn small enough so that for all odd k, the ball B(pk, εn) lies be-
neath the line segment pk−1 pk+1. (This is of course possible by the convexity
of the function t.)

Now choose 0 < δn < 1 so that if x,y ∈ α(Q) with ‖x − x′‖ ≤ δn then
‖h1(x)− h1(x′)‖ < εn.

For each odd k, let p̃k = h1(xk, δ) ∈ B(pk, ε). Then p̃k lies above
the curve C but below the chord pk−1 pk+1. Let Sn = [p0, p̃1,p2, p̃3, . . . ,
p̃n−1,pn], so that as in the proof of Theorem 3.1, vf(Sn) = 2.

Consider the map fn : α(Q)→ R defined by

fn(x, y) =


1 if y ≥ δn,
y/δn if 0 ≤ y < δn,

0 if y < 0.

Clearly fn ∈ AC(α(Q)) with ‖fn‖AC(α(Q)) = 2. Again define gn : β(σ)→ R
by gn = fn ◦ h−11 to produce a function with ‖gn‖AC(β(σ)) ≥ n/2. But,
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noting the remarks at the end of Section 2 about the invariance of variation
norms under affine transformations, we see that for all n, ‖gn‖AC(β(σ)) ≤
‖j‖ ‖fn‖AC(α(Q)) ≤ 2‖j‖, which is the required contradiction.

Functions mapping line segments to line segments have been studied by
various authors. We refer the reader to [8] for further details. It is worth
noting that such maps need not be affine. For example,

h(x, y) = ((x+ 1)/(y + 1), 2y/(y + 1)),

which maps the unit square to the trapezoid with vertices (1, 0), (2, 0), (1, 1)
and (1/2, 1), is a nonaffine line-segment preserving function.

4. Half-plane-affine maps. Despite the results of the previous section
there are some positive statements that can be made about when AC(σ1)
and AC(σ2) are isomorphic. As we noted earlier, this is certainly the case
if σ2 is the image of σ1 under an affine homeomorphism. In this section we
weaken this condition on the homeomorphism mapping σ1 to σ2.

Definition 4.1. A half-plane splitting of R2 is a pair {H1, H2} of closed
half-planes whose union is R2 and which only intersect along their shared
boundary line.

Definition 4.2. An invertible map α : R2 → R2 is said to be a half-
plane-affine map if there exists a half-plane splitting {H1, H2} of R2 and
two affine maps α1, α2 : R2 → R2 such that α(x) = αj(x) whenever x ∈ Hj .
We shall write α = {α1, α2}H1,H2 .

Any half-plane-affine map is clearly continuous. The assumption of in-
vertibility ensures that {α(H1), α(H2)} is a half-plane splitting of R2. We
also have the following easy fact.

Lemma 4.3. The inverse of a half-plane-affine map is a half-plane-affine
map.

Suppose for the remainder of this section that α = {α1, α2}H1,H2 is a
half-plane-affine map.

We shall show below that for such maps BV (σ) ' BV (α(σ)). The main
point in proving this is showing that given any finite ordered list S of ele-
ments of σ, vf(S) is comparable to vf(α(S)). Heuristically, if the number of
times that the curve γS crosses a line ` is k, then γα(S) should cross either
α1(`) or α2(`) at least k/2 times. Proving this is a little delicate however
because if a segment si = xi xi+1 has at least one of its endpoints on the
line `, it is possible that si is a crossing segment on ` but α(xi)α(xi+1) is
not a crossing segment on either α1(`) or α2(`).
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Lemma 4.4. Let α : R2 → R2 be a half-plane affine map. Suppose
that S = [x0, . . . ,xn] is a finite ordered list of points in R2 and that Ŝ =
[v0, . . . ,vn] is the list of the images of these points under α. Then

1

2
vf(S) ≤ vf(Ŝ) ≤ 2 vf(S).

Proof. By the previous lemma it suffices to just prove the left-hand in-
equality.

Let k = vf(S) and fix a line ` such that vf(S, `) = k. For 0 ≤ i ≤ n− 1
let si = xi xi+1 and let ŝi = vi vi+1. Our aim is to find a correspondence
between crossing segments of S on ` and crossing segments of Ŝ on either
α1(`) or α2(`).

If ˆ̀= α(`) is also a line then si ∈ X(S, `) if and only if ŝi ∈ X(Ŝ, ˆ̀) and
so vf(Ŝ) ≥ vf(S), which certainly gives the required inequality. This occurs
in particular if ` is parallel to the boundary line between H1 and H2.

If ˆ̀ is not a line, then α1(`) and α2(`) do not coincide, and there
must exist a unique point w ∈ ` that lies on the shared boundary of H1

and H2.

Suppose that si ∈ X(S, `). If xi and xi+1 lie strictly on opposite sides

of `, then vi and vi+1 lie strictly on opposite sides of ˆ̀, and so ŝi is a crossing
segment for Ŝ for at least one of α1(`) or α2(`). The more difficult situation
is if one of the endpoints of si lies on `. Referring to Definition 2.1 we have
the following possibilities:

(i) i = 0 and xi ∈ `. Then v0 ∈ ˆ̀ and hence ŝ0 is a crossing segment of
Ŝ on at least one of α1(`) or α2(`).

(ii) i > 0, xi ∈ ` and xi−1 6∈ `. Note that in this case si−1 6∈ X(S, `).
Without loss of generality we may label the half-planes so that xi ∈ H1.
Now ŝi is a crossing segment of Ŝ on α1(`) except when vi−1 ∈ α1(`) (see
Figure 4). If vi−1 ∈ α1(`) then, as α1(`) and α2(`) do not coincide, xi−1 ∈ H2

and vi−1 6∈ α2(`). We must now distinguish the case when xi lies in the
interior of H1 and the case when xi lies in the boundary of H1.

xi+1

xi

xi−1

H1 H2

`

α

vi+1 vi

vi−1

α2(`)

α1(`)

α(H1) α(H2)

Fig. 4. Mapping of crossing segments in the proof of Lemma 4.4
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If xi = w then vi ∈ α2(`) so since vi−1 6∈ α2(`) we have ŝi ∈ X(Ŝ, α2(`)).
If xi 6= w, then (as in Figure 4) vi−1 and vi lie on opposite sides of α2(`)
and hence ŝi−1 ∈ X(Ŝ, α2(`)).

Thus, while only one of si−1 and si is a crossing segment of S on `, at
least one of ŝi−1 and ŝi is a crossing segment of Ŝ on either α1(`) or α2(`).

(iii) i = n− 1, xi 6∈ ` and xi+1 ∈ `. Again we may assume that xn ∈ H1

and hence that vn ∈ α1(`). If vn−1 6∈ α1(`) then clearly ŝn−1 ∈ X(Ŝ, α1(`)).
On the other hand, if vn−1 ∈ α1(`) then one may argue as in (ii) that
ŝn−1 ∈ X(Ŝ, α2(`)). As before then, ŝn−1 is a crossing segment of Ŝ on at
least one of α1(`) or α2(`).

Let k1 and k2 be the number of crossing segments of Ŝ on α1(`) and
α2(`) respectively. Then the above discussion shows that k1 + k2 ≥ k. It
follows therefore that vf(Ŝ) ≥ k/2 as required.

Theorem 4.5. Let α : R2 → R2 be a half-plane affine map. Suppose
that σ1 is a nonempty compact subset of R2 and that σ2 = α(σ1). Then
BV (σ1) ' BV (σ2) and AC(σ1) ' AC(σ2).

Proof. Suppose that α = {α1, α2}H1,H2 and that `0 is the boundary line

between H1 and H2. For f ∈ BV (σ1) let f̂ : σ2 → R be defined by

f̂(α(x)) = f(x), x ∈ σ1.

The first step is to show that f̂ ∈ BV (σ2).
By the previous lemma

cvar(f̂ , Ŝ)

vf(Ŝ)
≤ 2

cvar(f, S)

vf(S)
≤ 2 var(f, σ1).

Taking the supremum over all such finite lists Ŝ shows that

‖f̂‖BV (σ2) ≤ 2‖f‖BV (σ1)

and in particular that f̂ ∈ BV (σ2). Let j : BV (σ1) → BV (σ2) be defined

by j(f) = f̂ . It is clear that j is a continuous algebra homomorphism.
Lemma 4.3 can now be used to deduce that j is also onto and hence that j
is a Banach algebra isomorphism.

Suppose that g ∈ CTPP(σ1). Then j(g) will also be planar on polygonal
regions (on a neighbourhood) of σ2. Indeed, j is a bijection from CTPP(σ1)
to CTPP(σ2) and hence j is also a bijection between the closures of these
sets, AC(σ1) and AC(σ2).

As the example below shows, the factor of 2 in the above proof is neces-
sary.

Example 4.6. Suppose that σ1 is the nonconvex quadrilateral with ver-
tices at (1, 0), (0, 4), (−1, 0) and (0, 2). Note that σ1 is the image of the
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closed unit square under a half-plane-affine map. Theorem 4.5 then implies
that AC(Q) ' AC(σ1).

Define

f(x, y) = max(1− y, 0), (x, y) ∈ σ1.
Then, as f only varies in the y direction, it is clear that ‖f‖∞ = 1, that
var(f, σ1) = 1 and hence that ‖f‖BV (σ1) = 2. Now write f = f1 + f2 where
f1(x, y) = f(x, y)χ[−1,0](x) and f2(x, y) = f(x, y)χ[0,1](x). Note that both
f1 and f2 are in CTPP(σ1) ⊆ AC(σ1) and that these functions have disjoint
supports.

Suppose now that j : AC(σ1) → AC(Q) is a Banach algebra isomor-
phism, with associated homeomorphism h : σ1 → Q. Let g1 = j(f1),
g2 = j(f2) and g = j(f). Using Theorem 2.6(1), we can choose points
z1, z2 ∈ Q such that gk(z`) = δk`. Let γ denote the line segment joining z1

and z2. Then h−1(γ) is a continuous curve in σ1 which necessarily passes
through some point (0, y) ∈ σ1. Let w = h(0, y) be the corresponding point
on γ. Then g(w) = g1(w) + g2(w) = f1(0, y) + f2(0, y) = 0. But this implies
that cvar(g, γ) ≥ 2 and hence var(g, σ2) ≥ 2. By Corollary 2.7 we see that j
cannot be isometric. In particular, this example shows that the factor of 2
that appears in the proof of Theorem 4.5 is necessary.

Remark 4.7. A simple adjustment to the above example, replacing the
vertex (0, 2) with the point (0, 0), shows that if T is a closed triangular region
in R2, then AC(T ) ' AC(Q). Thus isomorphism class does not distinguish
between the number of vertices in polygonal regions. We shall come back to
this issue later in the paper.

5. Locally piecewise affine maps. The results of the previous section
can be extended to cover homeomorphisms of the plane made up from more
than two affine maps.

Let α : R2 → R2 be an invertible affine map, and let C be a convex n-gon.
Then α(C) is also a convex n-gon. Denote the sides of C by s1, . . . , sn. Sup-
pose that x0 ∈ int(C). The point x0 determines a triangulation T1, . . . , Tn
of C, where Tj is the (closed) triangle with side sj and vertex x0. A point

y0 ∈ int(α(C)) determines a similar triangulation T̂1, . . . , T̂n of α(C), where
the numbering is such that α(sj) ⊆ T̂j . The following fact is then clear.

Lemma 5.1. With the notation as above, there is a unique map h :
R2 → R2 such that

(1) h(x) = α(x) for x 6∈ int(C),
(2) h maps Tj onto T̂j for 1 ≤ j ≤ n,
(3) αj = h|Tj is affine for 1 ≤ j ≤ n,
(4) h(x0) = y0.
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We shall say that h is the locally piecewise affine map determined by
(C,α,x0,y0).

x0

C

h

y0

α(C)

Fig. 5. The locally piecewise affine map h determined by (C,α,x0,y0)

It is clear that h is necessarily continuous and invertible. Indeed, the
following result is straightforward.

Lemma 5.2. Let h be the locally piecewise affine map determined by
(C,α,x0,y0). Then h−1 is the locally piecewise affine map determined by
(h(C), α−1,y0,x0).

In the last section we shall repeatedly use the following special case of
Lemma 5.1 applied with α = id, the identity mapping on R2.

Lemma 5.3. Suppose that T and T̂ are two triangles in R2 with vertices
a, b, c and â, b, c respectively. Suppose that Q is a convex quadrilateral in
R2 which contains T and T̂ and which has bc as one side. Then the locally
piecewise affine map determined by (Q, id,a, â) maps T onto T̂ and fixes all
points outside of Q.

a

âb

c

T

Q
h

a

âb

c

T̂

Q

Fig. 6. A locally piecewise affine map moving T to T̂

Our first aim is to show that for any locally piecewise affine map h,
AC(σ) ' AC(h(σ)).
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Lemma 5.4. Suppose that h is a locally piecewise affine map determined
by (α,C,x0,y0) where C is a convex n-gon. Let S = [w0,w1, . . . ,wm] be a
list of elements in R2 and let Ŝ = [h(w0), h(w1), . . . , h(wm)]. Then

1

cn
vf(S) ≤ vf(Ŝ) ≤ cn vf(S)

for some positive constant cn which is independent of S.

Proof. By the previous lemma it suffices to prove either one of the in-
equalities. For notational simplicity, we shall write si = wiwi+1 for 0 ≤ i ≤
m− 1, and vi = h(wi) for 0 ≤ i ≤ m.

Let T1, . . . , Tn denote the subsets of the plane defined at the start of this
section, and let T0 = R2 \ int(C).

Suppose then that vf(S) = k and that ` is a line such that vf(S, `) =
vf(S).

At least one of the regions T0, . . . , Tn has at least k1 = dk/(n+ 1)e
crossing segments of S on ` with at least one of their endpoints in that region.
Suppose that this region is Tr. Let K denote the set of indices i such that
si ∈ X(S, `) and si has at least one endpoint in Tr. Our aim is to show that
each of these crossing segments corresponds to a crossing segment of Ŝ on one
of a finite number of lines. This will require a careful consideration of cases.

Let

δ = min{d(vi, h(Tr)) : 0 ≤ i ≤ n and vi 6∈ Tr}.
We take the minimum of the empty set to be zero.

Suppose first that 1 ≤ r ≤ n. Then h(Tr) is a triangle. Choose a tri-
angle T̂ with sides parallel to those of h(Tr), which contains h(Tr) in its
interior, and such that if v ∈ T̂ then d(v, h(Tr)) < δ/2. Let `1, `2 and `3
denote the three lines forming the sides of T̂ (see Figure 7). From this con-

`1

`3

`2

`0

T̂

h(Tr)

Fig. 7. The construction of `0, `1, `2 and `3
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struction, every segment ŝi with i ∈ K either lies entirely inside h(Tr), or is
a crossing segment for Ŝ on at least one of the lines `1, `2 or `3.

Let `0 denote the line which is the image of ` under αr (considered as
extended to the whole plane).

Suppose then that i ∈ K, and that both wi and wi+1 lie in Tr. Referring
to Definition 2.1 there are four possibilities:

(i) wi and wi+1 lie on strictly opposite sides of `. In this case vi and
vi+1 lie on strictly opposite sides of `0 and so ŝi ∈ X(Ŝ, `0).

(ii) i = 0 and wi ∈ `. Clearly then vi ∈ `0 and so ŝi ∈ X(Ŝ, `0).
(iii) i > 0, wi ∈ ` and wi−1 6∈ `. In this case si−1 6∈ X(S, `) and either

(a) wi−1 ∈ Tr, in which case vi ∈ `0 and vi−1 6∈ `0 and hence
ŝi ∈ X(Ŝ, `0); or

(b) wi−1 6∈ Tr, in which case ŝi need not be in X(Ŝ, `0) since vi−1
might lie on `0; however, ŝi−1 must be a crossing segment for Ŝ
on one of the boundary lines `1, `2 or `3.

(iv) i = m− 1, wi 6∈ ` and wi+1 ∈ `. Again ŝi ∈ X(Ŝ, `0).

Suppose next that i ∈ K and that one of wi and wi+1 does not lie in Tr.
As noted above, in this case ŝi ∈ X(Ŝ, `j) for some j = 1, 2, 3.

At this stage we have shown that if 1 ≤ r ≤ n, then there are at least
k1 segments of Ŝ which are crossing segments for at least one of the lines `j
with 0 ≤ j ≤ 4. Thus, for at least one of these values of j, vf(Ŝ, `j) ≥ dk1/4e.

The remaining case is where r = 0 and so Tr is not a triangle. The proof
in this case is almost identical except that now one must work with

(1) lines `1, . . . , `n chosen close to the boundary of h(T0) so that all
the endpoints vi which are not in T0 lie inside the smaller n-gon
determined by these lines, and

(2) the line `0 = α(`) (see Figure 8).

`0 = α(`)
h(T0)

`1

`2`5

`3 `4

Fig. 8. Choosing `0, . . . , `n when r = 0 (and n = 5)
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Every segment ŝi = vi vi+1 with only one endpoint in T0 lies in X(Ŝ, `j) for
at least one j with 1 ≤ j ≤ n.

Following the proof above one can then show that there are (at least)
k1 segments of Ŝ which are crossing segments for at least one of the lines `j
where 0 ≤ j ≤ n, and hence vf(Ŝ, `j) ≥ dk1/(n+ 1)e for at least one value
of j in this range.

In either case then

vf(Ŝ) ≥
⌈

k1
n+ 1

⌉
=

⌈
d vf(S)/(n+ 1) e

n+ 1

⌉
≥ vf(S)

(n+ 1)2
.

The above proof of course shows that cn ≤ (n + 1)2. Heuristically we
expect that cn = n+ 1 but we are unable to prove this.

Theorem 5.5. Suppose that σ is a nonempty compact subset of the
plane, and that h is a locally piecewise affine map. Then BV (σ) ' BV (h(σ))
and AC(σ) ' AC(h(σ))

Proof. For f ∈ BV (σ), let f̂ : h(σ)→ C be defined by f̂(h(x)) = f(x).
Suppose that f ∈ BV (σ) and that Ŝ = [v0, . . . ,vm] is a list of points in h(σ).
Let S = [w0, . . . ,wm] ⊂ σ denote the list of preimages of the points in Ŝ.
Then, with the notation of Lemma 5.4,

cvar(f̂ , Ŝ)

vf(Ŝ)
=

cvar(f, S)

vf(Ŝ)
≤ Cn

cvar(f, S)

vf(S)
≤ Cn var(f, σ).

Thus, f̂ is of bounded variation with ‖f̂‖BV (h(σ)) ≤ (1 + Cn)‖f‖BV (σ). It

follows using Lemma 5.2 that the map j : f 7→ f̂ is a bounded isomorphism
from BV (σ) onto BV (h(σ)).

It is clear that j maps CTPP(σ) onto CTPP(h(σ)) and hence that j
provides an isomorphism from AC(σ) onto AC(h(σ)).

6. Polygons and ears. The main result from this section is that given
any two simple polygons P1 and P2 we have AC(P1) ' AC(P2). The proof
requires a nice fact from computational geometry called the ‘Two Ears The-
orem’, which was proven by Meisters [13].

Given a, b ∈ R2 we shall let ab
◦

denote the ‘open’ line segment between
a and b, that is,

ab
◦

= {λa + (1− λ)b : 0 < λ < 1}.

Let v be a vertex of a polygon P and suppose that a, b are the neigh-
bouring vertices to v. We say that v is an ear of P if ab

◦
lies entirely in the

interior of P .
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Theorem 6.1 (Two Ears Theorem). Every simple polygon with more
than three vertices has at least two ears.

A simple consequence of the Two Ears Theorem is that it is possible to
triangulate any polygon. That is, given any polygon P , one may construct
a finite family {Tn} of ‘disjoint’ triangles whose vertices are all vertices of
P and whose union equals P .

Lemma 6.2. Suppose that v is an ear of a polygon P . Let T = 4avb
denote the triangle formed by the two sides of P which meet at v and the
corresponding diagonal ab. Then there exists a convex quadrilateral Q with
vertices a, u, b and w such that

(1) T \ {a, b} ⊆ int(Q),
(2) au◦ and bu

◦
lie in the complement of P ,

(3) aw◦ and bw
◦

lie in the interior of P .

u

v

a
b

wP

T

Q

Fig. 9. Lemma 6.2

Proof. We begin by triangulating P using the standard algorithm of
removing one ear at a time. We may clearly start by dealing with the ear
at v and so T is one of the triangles in our triangulation. The diagonal ab
must form an edge of two of the triangles, namely T and another which we
shall denote by T1. One can choose w to be any interior point of T1 and
this will clearly have property (3). Let m denote the midpoint of ab and
let ` denote the median of T that passes through v and m. As we shall see
below, if we demand that w also lies on ` then this will ensure that the
quadrilateral Q is convex. (See Figure 10.)

Finding a suitable point u is slightly more delicate. For small t > 0,
u(t) = (1 + t)v − tw lies in the complement of P . If au(t)

◦
or bu(t)

◦
does

not lie in the complement of P then it must be the case that some vertices
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T

T1

a

v

b

`

m

w

Fig. 10. Construction of w

of P lie in the interior of the quadrilateral avbu(t) or on one of the boundary
lines au(t) or bu(t). Since there can be only finitely many such vertices,
by choosing t0 > 0 sufficiently small we can ensure that u = u(t0) satisfies
condition (2).

Property (1) is clear so it remains to check convexity. By the construc-
tion, the two diagonals of Q will meet at m and clearly m ∈ ab

◦
and

m ∈ uw◦. But by [15, Theorem 6.7.9] a quadrilateral is convex if and only
if the diagonals meet at a point in the interior of these diagonals, and hence
Q is convex.

Theorem 6.3. Suppose that P1 and P2 are simple polygons. ThenAC(P1)
' AC(P2).

Proof. We shall use induction to prove that the statement

S(n) : if P is any simple n-gon and T is a triangle, then AC(P ) ' AC(T )

holds for all n ≥ 3.
The statement is true for n = 3 since one can find an affine map between

any two triangles. Suppose then that n > 3 and that the S(m) is true for all
m with 3 ≤ m < n. Let P be an n-gon with vertices v1, . . . ,vn. By the Two
Ears Theorem, there exists an ear vj . Let Tvj be the triangle with vertices
at vj−1, vj and vj+1.

Using Lemma 6.2 fix a convex quadrilateral Q with vertices at vj−1 and
vj+1 and two additional points u,w chosen so that Tvj \ {vj−1,vj+1} lies
in the interior of Q and so that vj−1w

◦ and vj+1w
◦ lie in the interior of P .

As Q is convex, the point vj and the midpoint m of vj−1 vj+1 are both
interior points of Q.

Let α denote the identity map on R2, and let h denote the unique locally
piecewise affine map determined by (Q,α,vj ,m). This map sends vj−1 vj to
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vj

vj−1

vj+1

u

m

w

P

Q

h h(vj)

h(vj−1)

h(vj+1)

h(u)

h(m)

h(w)

h(P )

h(Q)

Fig. 11. The action of h

vj−1m and vj vj+1 to mvj+1 (see Figure 11). All the other edges of P lie
in the complement of Q and are therefore fixed. Hence the image of P under
h is an m-gon for some m < n. By Theorem 5.5, AC(P ) ' AC(h(P )). But
by the induction hypothesis, AC(h(P )) ' AC(T ) for any triangle T and so
the proof is complete.

7. Polygonal regions with holes. The results of the last section have
a natural extension to a wider class of regions. Let P be a simple polygon
in the plane. A set W is a window in P if it is the interior of a polygon
P ′ where P ′ lies in the interior of P . We shall say that a compact set σ
is a polygonal region of genus n if there exists a simple polygon P with n
nonoverlapping windows W1, . . . ,Wn such that

σ = P \ (W1 ∪ · · · ∪Wn),

and we shall write G(σ) = n for the genus of σ.

Fig. 12. A polygonal region of genus 3
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If σ1 and σ are two polygonal regions of differing genus, then these
sets are not homeomorphic and hence AC(σ1) 6' AC(σ2). In this section
we shall show that within this class of sets, the isomorphism class of the
corresponding function algebras is completely determined by their genus.
This is achieved by showing that there is always a finite sequence of locally
piecewise affine maps whose composition sends σ1 to σ, and then applying
Theorem 5.5. One of the main tools in doing this is to show that via such
maps, one may ‘move’ triangular windows anywhere within any rectangle
that contains no other windows.

Lemma 7.1. Suppose that R is a rectangle and that T = 4abc and T ′ =
4a′b′c′ are two triangles in the interior of R. Then there is a continuous
bijection h : R2 → R2 such that

(1) h can be written as a composition of finitely many locally piecewise
affine maps,

(2) h(x) = x for all x 6∈ R,
(3) h(R) = R,
(4) h(T ) = T ′.

Proof. Choose ε > 0 such that no point of T or T ′ lies within distance 2ε
of the boundary of R. We shall call the four interior points of R which lie at
distance ε along the diagonals from the vertices ofR, the ε-corner points ofR.
Fix any three of these ε-corner points and let T0 denote the triangle with
these points as vertices. We shall show that there is a function h satisfying
(1)–(3) and such that h(T ) = T0. The same proof of course would construct
a corresponding map sending T ′ to T0. Since the inverse of a locally piecewise
affine map is also locally piecewise affine, this produces a finite sequence of
locally piecewise affine maps which has properties (1)–(4).

The line through b and c splits R into two convex polygons. Let P denote
the polygon which contains a. At least one of the vertices of P , say v1, is a
vertex of R not lying on the line through b and c.

Let a1 be the ε-corner point of R near v1. Using the triangulations of P
generated by a and by a1, and applying Lemma 5.1, we produce a locally
piecewise affine map h1 which is the identity outside of P , and which maps
a to a1. Indeed, as T lies entirely in a region on which h1 is affine, h1 maps
T to the triangle 4a1bc (see Figure 13).

Consider now the quadrilateral Q with vertices at a1 and the three ver-
tices of R other than v1. Note that the position of a1 ensures that Q is
convex, and hence that the line through a1 and c splits Q into two convex
polygons. Let P1 denote the polygon containing b. One of the vertices of Q
adjacent to a1 (which is therefore also a vertex of R) must lie in P1. Denote
this vertex by v2 and let b1 be the ε-corner point of R near v2. (Note that b1
must lie in P1.) Applying Lemma 5.1 again we produce a locally piecewise
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b

c
a

v1

P
h1

b

c

v1

a1

Fig. 13. Moving the first vertex in Lemma 7.1

affine map h2 which is the identity outside of Q and which maps 4a1bc
onto 4a1b1c.

Finally, consider the convex quadrilateral Q1 with vertices a1, b1 and the
two remaining vertices of R. Let c1 be the ε-corner point of R near one of
these remaining vertices of R. Noting that c and c1 are both in the interior
of Q1 we can find a locally piecewise affine map h3 which is the identity
outside of Q1 and which maps 4a1b1c onto 4a1b1c1.

The vertices of this final triangle are all ε-corner points. With one or two
further applications of locally piecewise affine maps we can arrange that the
image of T under this composition of maps is T0.

Theorem 7.2. Suppose that σ1 and σ2 are polygonal regions of genus
n1 and n2. Then AC(σ1) ' AC(σ2) if and only if n1 = n2.

Proof. As noted above, it only remains to show the ‘if’ part of the the-
orem. Fix a genus n. Let τ denote the polygonal region of genus n,

τ = T \ (T1 ∪ · · · ∪ Tn),

where T is the triangle with vertices at (0,−1), (1, 0) and (0, 1) and, for
k = 1, . . . , n, the window Tn is the triangle with vertices at(

3k − 2

3n
, 0

)
,

(
3k − 1

3n
, 0

)
and

(
2k − 1

2n
,

1

3n

)
.

We shall proceed by showing that if σ is any polygonal region of genus n,
then AC(σ) ' AC(τ).

Suppose then that

σ = P \ (W1 ∪ · · · ∪Wn).

The image of σ under any locally piecewise affine map is also a polygonal
region of genus n, and as before, the isomorphism class of the correspond-
ing AC function space is preserved under such maps. By applying a finite
sequence of locally piecewise affine maps as in the proof of Theorem 6.3 we
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may reduce the number of vertices in P to 3. Note that the effect of these
maps might be to increase the number of vertices in some of the windows.
By applying a suitable affine map then, we see that AC(σ) ' AC(σ′) where

σ′ = T \ (V1 ∪ · · · ∪ Vn),

and where V1, . . . , Vn are windows in T .
The same algorithm can now be used to reduce the windows V1, . . . , Vn

to triangles. Specifically, suppose that V is a window in T with at least four
vertices v1, . . . ,vk. By the Two Ears Theorem we can choose an ear vj in V .
Since σ′ can be triangulated, the proof of Theorem 6.2 allows us to choose
a convex quadrilateral Q containing the triangular region vj−1 vjvj+1 but
not intersecting any of the other windows of σ′. Applying a suitable locally
piecewise affine map h which fixes the complement of Q and maps vj to the
midpoint of vj−1 vj+1 we reduce the number of vertices in V while leaving
all the other windows unchanged. (See Figure 14.)

vj

V

Q
h

h(vj)

h(V )

h(Q)

Fig. 14. Reducing the number of edges in a window

It just remains to prove that if

σ′ = T \ (V1 ∪ · · · ∪ Vn)

where each window is a triangle, then we can apply a finite sequence of lo-
cally piecewise affine maps to move the triangles {Vk} to the corresponding
triangles {Tk} in the description of our standard set τ . Our main tool is
Lemma 7.1 which allows us to move a triangle anywhere within the inte-
rior of a rectangular region while leaving everything outside the rectangle
undisturbed. Although in concrete examples it is easy to efficiently move
the triangles to their final position, for completeness we shall now give a
general algorithm showing that this is always possible.

Note that it follows from Lemma 5.3 that one may always move a vertex
of a triangle to any point in the interior of that triangle, or, by applying two
such moves, shrink any triangle towards one of its vertices.
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We shall use the lexicographical ordering of points in the plane to choose
the smallest vertex (xk, yk) for each of the triangles Vk.

The steps in the algorithm are as follows.

(1) Label the triangles so that x1 ≤ · · · ≤ xn.
(2) Starting from the right, shrink as many triangles (toward one vertex

say) as is necessary to ensure that the x-coordinates of the smallest
vertex of each of the triangles are distinct.

(3) Starting from the left, shrink each triangle towards its smallest ver-
tex. If the triangles are shrunk to a sufficiently small size then the
projections of these triangles onto the x-axis will form disjoint in-
tervals [ak, bk]. Indeed, after sufficient shrinking the triangles will sit
within the interiors of disjoint rectangles Rk as in Figure 15.

R1 R2

R3

Fig. 15. Steps in the algorithm to map σ′ to τ : (2) making the smallest vertices distinct;
(3) shrinking the triangles so they have disjoint projections on the x-axis

(4) Applying Lemma 7.1 use a sequence of locally piecewise affine maps
to move the kth triangle (within rectangle Rk) to one with vertices
at (ak, 0), (bk, 0) and (ak, ek) where ek is chosen small enough so that
this triangle sits in Rk.

(5) It remains to move the triangles to the correct positions to form the
standard configuration τ . Choose δ < min(a1, 1/(3n)). Starting from
the left, move each triangle in turn (using Lemma 7.1) so that it has
vertices(

δ(3k − 1)

3n
, 0

)
,

(
δ(3k − 2)

3n
, 0

)
and

(
δ(2k − 1)

2n
,

1

3n

)
.

(6) Now starting from the right, one can move the kth triangle to the
standard triangle Tk.

Since we have only applied a finite sequence of locally piecewise affine maps,
AC(σ′) ' AC(τ), and this completes the proof.
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