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On the Lukacs property for free random variables

by

Kamil Szpojankowski (Warszawa)

Abstract. The Lukacs property of the free Poisson distribution is studied. We prove
that if free X and Y are free Poisson distributed with suitable parameters, then X+Y and
(X+Y)−1/2X(X+Y)−1/2 are free. As an auxiliary result we compute the joint cumulants
of X and X−1 for free Poisson distributed X. We also study the Lukacs property of the
free Gamma distribution.

1. Introduction. The celebrated Lukacs theorem [17] in the classical
probability theory gives a characterization of independent random variables
X and Y which have Gamma distributions G(a, p) and G(a, q) respectively,
by independence of V = X + Y and U = X

X+Y . By the Gamma distribution
G(a, p) we mean here a probability distribution given by the probability
density function

ap

Γ (p)
xp−1e−axI(0,∞)(x), a, p > 0.

This result was generalized in many directions. An important direction
was to relax the assumption of independence of U and V . The same char-
acterization holds true when instead of assuming independence, constancy
of the first and second conditional moment of U given by V is assumed; see
[5] or [14] for more general so called Laha–Lukacs regressions. One can also
consider other powers of U (see e.g. [28]).

It is easy to see that U defined as above has a Beta distribution of the
first kind βI(p, q), where by a Beta distribution we understand a probability
distribution with density

xp−1(1− x)q−1

β(p, q)
I(0,1)(x), p, q > 0.

Another way of generalizing the Lukacs theorem is by means of the so called
dual Lukacs regressions introduced in [4], where it is proved that if U and V
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are independent and such that the ith and jth conditional moments of Y =
V (1 − U) given X = UV are constant for (i, j) ∈ {(−1,−2), (−1, 1), (1, 2)}
then U has a Beta distribution and V has a Gamma distribution.

The Lukacs property was also studied in the context of random matrices,
where it turns out that this property characterizes the Wishart distribution
(see [9, 3, 6, 20, 21, 15, 16]).

In the present paper we study analogues of the Lukacs property in free
probability. Free probability and the notion of free independence of non-
commutative random variables were introduced by Voiculescu [25]. One of
the links between classical and free probability is the so called asymptotic
freeness, which roughly speaking says that large independent random ma-
trices under the state which is the expectation of a normalized trace are
close to free random variables (see [26, 22]). Another relation between these
two theories is given by Bercovici–Pata bijections (see [1]) between infinitely
divisible measures under classical and free convolution. Also an important
link is given in [22, 19] where it is proved that free cumulants can be de-
fined using the lattice of non-crossing partitions while classical cumulants
are defined using the lattice of all partitions.

It was also noticed in the literature that characterizations of indepen-
dent and free random variables are closely related. However, this relation-
ship is not completely understood. There are many examples of classi-
cal characterizations which have free counterparts. A basic example is the
Bernstein theorem [2] which characterizes the normal distribution by inde-
pendence of X + Y and X − Y for independent X and Y . Its free ana-
logue was proved in [18] and says that if X and Y are free then X + Y
and X − Y are free if and only if X and Y have a semicircular distribu-
tion.

The Lukacs theorem was also studied in free probability. It turns out that
in the context of characterizations the role of the Gamma distribution in free
probability is played by the Marchenko–Pastur distribution, also known as
the free Poisson distribution. In [7] the authors proved a free analogue of
Laha–Lukacs regressions, they described the family of free Meixner distri-
butions under some assumptions on the first two conditional moments of X
given X + Y; one of the cases of Laha–Lukacs regressions is a free analogue
of Lukacs regressions. Laha–Lukacs regressions and related characterizations
were also studied in [10, 11, 12]. Dual Lukacs regressions in free probability
were studied in our previous works [24, 23].

The Lukacs property in free probability is well studied, but there has
been a significant gap in the study of the free Lukacs property, namely
there has been no proof that for free X and Y free Poisson distributed, the
random variables
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U = (X + Y)−1/2X(X + Y)−1/2 and V = X + Y

are free. In Section 4 we give a proof of this fact.

We have to note that the closest result in this direction was proved in [8]
where the authors proved the asymptotic freeness of

U = (X + Y)−1/2X(X + Y)−1/2 and V = X + Y

for X,Y independent, complex Wishart distributed. Using results from [8],
in [24] a result in the opposite direction is proved: for U free Binomial dis-
tributed and V free Poisson distributed, the random variables X=V1/2UV1/2

and Y = V1/2(I− U)V1/2 are free.

Here we do not use the asymptotic freeness technique for the proof of
the free Lukacs property of the free Poisson distribution. Our approach is
based on a direct calculation of joint cumulants of U and V. The computation
involves the joint cumulants of X and X−1 for the free Poisson distributed X,
for which we find a closed formula. The form of these cumulants also leads
to some new characterizations of the free Poisson distribution.

We also prove that if X is free Poisson distributed then X−1 belongs to the
free Gamma family defined in [7]. This observation together with knowledge
of the joint cumulants of X and X−1 allows us to answer the question raised
in [7], whether for free, positive, identically free Gamma distributed X and Y,
the random variables V = X + Y and U = (X + Y)−1X2(X + Y)−1 are free.
The answer turns out to be negative.

The paper is organized as follows. In Section 2 we give the basics of
free probability. Section 3 is devoted to finding the joint cumulants of X
and X−1 for a free Poisson distributed X. We also prove in that section
characterizations of the free Poisson distribution related to the formula for
the joint cumulants of X and X−1. In Section 4 we study the Lukacs property
for the free Poisson and free Gamma distributions.

2. Preliminaries. In this section we will give basic definitions and facts
necessary for understanding our results; for a more comprehensive introduc-
tion to free probability consult [19] or [27].

A non-commutative ∗-probability space is a pair (A, ϕ), where A is a uni-
tal algebra over C and ϕ : A → C is a linear functional satisfying φ(I) = 1,
where I is the unit of A, ϕ(X∗X) ≥ 0, and ϕ(X∗X) = 0 iff X = 0. If A is a
C∗-algebra then (A, ϕ) is called a C∗-probability space. Any element X of A
is called a (non-commutative) random variable.

The ∗-distribution µ of a self-adjoint element X ∈ A ⊂ B(H) is a proba-
bility measure µ on R such that

ϕ(Xr) =
�

R

trµ(dt) ∀r = 1, 2, . . . .
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Unital subalgebras Ai ⊂ A, i ∈ I, are said to be freely independent if
ϕ(X1, . . . ,Xk) = 0 for Xj ∈ Ai(j), where i(j) ∈ I, such that ϕ(Xj) = 0,
j = 1, . . . , k, where neighbouring elements are from different subalgebras,
that is, i(1) 6= i(2) 6= · · · 6= i(k − 1) 6= i(k). Similarly, random variables
X,Y ∈ A are free (freely independent) when the subalgebras generated by
(X, I) and (Y, I) are freely independent (here I denotes the identity operator).

Let χ = {B1, B2, . . .} be a partition of the set {1, . . . , k}. Then χ is
a crossing partition if there exist distinct blocks Br, Bs ∈ χ and numbers
i1, i2 ∈ Br, j1, j2 ∈ Bs such that i1 < j1 < i2 < j2. Otherwise χ is a
non-crossing partition. The set of all non-crossing partitions of {1, . . . , k} is
denoted by NC(k).

For any k = 1, 2, . . . , the (joint) cumulants of order k of non-com-
mutative random variables X1, . . . ,Xn are defined recursively as k-linear
maps Rk : Ak → C through the equations

ϕ(X1 . . .Xm) =
∑

χ∈NC(m)

∏
B∈χ
R|B|(Xi, i ∈ B)(2.1)

holding for any m = 1, 2, . . . , with |B| denoting the size of the block B.
Freeness can be characterized in terms of the behaviour of the cumulants

in the following way. Consider unital subalgebras (Ai)i∈I of an algebra A
in a non-commutative probability space (A, ϕ). The subalgebras (Ai)i∈I
are freely independent iff for any n = 2, 3, . . . and for any Xj ∈ Ai(j) with
i(j) ∈ I, j = 1, . . . , n, any n-cumulant satisfies

Rn(X1, . . . ,Xn) = 0

if there exists a pair k, l ∈ {1, . . . , n} such that i(k) 6= i(l).
For a non-commutative random variable X its r-transform is defined as

(2.2) rX(z) =

∞∑
n=0

Rn+1(X)zn,

where Rn(X) = Rn(X, . . . ,X). The r-transform of X uniquely determines
the distribution of X.

In particular we will need a result which states that joint cumulants of I
with any other non-commutative random variable vanish (see [19, Proposi-
tion 11.15]).

Proposition 2.1. Let (A, ϕ) be a non-commutative probability space,
and let X1, . . . ,Xn ∈ A, n ≥ 2. Then

Rn(X1, . . . ,Xn) = 0

whenever there exists k ∈ {1, . . . , n} such that Xk = I.
A non-commutative random variable X is said to be free Poisson dis-

tributed if it has Marchenko–Pastur (or free Poisson) distribution ν = ν(λ, α)
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defined by the formula

(2.3) ν = max{0, 1− λ}δ0 + λν̃,

where λ ≥ 0 and the measure ν̃ is absolutely continuous, supported on the
interval (α(1 −

√
λ)2, α(1 +

√
λ)2), α > 0, has the density (with respect to

the Lebesgue measure)

ν̃(dx) =
1

2παx

√
4λα2 − (x− α(1 + λ))2 dx.

The parameters λ and α are called the rate and the jump size, respectively.
It is easy to see that if X is free Poisson ν(λ, α) then Rn(X) = αnλ,

n = 1, 2, . . . . Therefore the r-transform of X has the form

rν(λ,α)(z) =
λα

1− αz
.

Assume that X has a free Poisson distribution with λ > 1; note that
in this case X is invertible since its spectrum does not contain 0. One can
easily find that the probability density function of the distribution of X−1
is given by

(2.4) fX−1(x)

=
(λ− 1)

√
4λ

α2(λ−1)4 −
(
x− λ+1

α(λ−1)2
)2

2πx2
I( 1

α(1+
√
λ)2

, 1

α(1−
√
λ)2

)(x).

The random variable Y defined by Y = α(λ − 1)3/2X−1 − (λ − 1)1/2I has
the standardized free Gamma law µ2a,a2 defined in [7], where a = 1/

√
λ− 1.

To see that one can compare the probability density function of Y and the
probability density function of the standardized free Gamma distribution
[7, p. 62]. The cumulants of the standardized free Gamma law are (see [7,
Remark 5.7]) R1(µ2a,a2) = 0, Rk(µ2a,a2) = Ck−1a

k−2 for k ≥ 2, where
Ck, k ≥ 1, are the Catalan numbers. By multilinearity of cumulants we see
that the cumulants of X−1 are equal to

Rk(X−1) = Ck−1
1

αk(λ− 1)2k−1
, k ≥ 1.(2.5)

The Catalan numbers are defined by

Ck =
1

k + 1

(
2k

k

)
, k ≥ 0.(2.6)

They can also be equivalently defined by recurrence: C0 = 1 and

Ck =
k∑
i=1

Ci−1Ck−i.(2.7)

One can easily prove the following lemma.
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Lemma 2.2. Let (A, ϕ) be a ∗-probability space. If ϕ is tracial, then for
any n ∈ N,

Rn(X1, . . . ,Xn) = Rn(Xn,X1, . . . ,Xn−1).
In the next lemma we denote by σn the partition of {1, . . . , n} which

consists of n− 1 blocks of the form {(1, 2), (3), . . . , (n)}, so the first and the
second elements are in the same block, and all other elements are singletons,
and by 1n the partition {(1, . . . , n)}. The following lemma is [19, Theorem
11.12] rewritten for the partition σn.

Lemma 2.3. Let (A, ϕ) be a ∗-probability space, and X1, . . . ,Xn ∈ A.
Then

(2.8) Rn(X1 · X2,X3, . . . ,Xn+1)

=
∑

π∈NC(n+1):π∨σn+1=1n+1

Rπ(X1,X2, . . . ,Xn+1).

It can be rewritten as

(2.9) Rn(X1 · X2,X3, . . . ,Xn+1)

=
n−1∑
i=1

Ri(X2,X3, . . . ,Xi+1)Rn+1−i(X1,Xi+2, . . . ,Xn+1)

+Rn(X2, . . . ,Xn+1)R1(X1)

+Rn+1(X1,X2, . . . ,Xn+1).

3. Joint cumulants of X and X−1. In this section we will find the
joint cumulants of X and X−1 for an invertible, free Poisson distributed
non-commutative random variable X. This result will be the main tool in the
proof of the Lukacs property for the free Poisson distribution in Section 4.
Additionally we will also prove two characterizations of the free Poisson
distribution related to the formula for the joint cumulants of X and X−1.

Proposition 3.1. Let X have free Poisson distribution with λ > 1, and
α = 1. If m ≥ 1 then

Ri1+···+im+m(X−1,X, . . . ,X︸ ︷︷ ︸
i1

,X−1,X, . . . ,X︸ ︷︷ ︸
i2

,X−1, . . . ,X−1,X, . . . ,X︸ ︷︷ ︸
im

)(3.1)

=

{
0 if ∃k ∈ {1, . . . ,m}, ik > 1,

(−1)i1+···+imRm(X−1) if ∀k ∈ {1, . . . ,m}, ik ≤ 1.

Proof. Let n be the length of cumulant, i.e. for the above cumulant,
n = i1 + · · · + im + m. We will argue by induction on n. For a cumulant
of length 1 the assertion is clear. Since the inductive step will work for
cumulants of length greater than or equal to 3, we have to check whether



Lukacs property for free random variables 61

the assertion holds true for cumulants of length 2. For R2(X−1,X−1) the
assertion is obviously true. It is enough to check whether R2(X−1,X) =
−R1(X−1). By Lemma 2.3 we obtain

1 = R1(I) = R1(X−1X) = R2(X−1,X) +R1(X−1)R1(X)

= R2(X−1,X) +
λ

λ− 1
.

From the above equation we see that

R2(X−1,X) = − 1

λ− 1
= −R1(X−1).

Assume that the assertion holds true for l ≤ n− 1. Note that by Lemma
2.2 the joint cumulant of X and X−1 can be transformed to the form where
the first two variables are X−1,X. This is impossible only in the case when
only X−1 appears in the cumulant. In that case the assertion is obviously
true.

We will consider two cases.

Case 1. We will prove that a cumulant in which there is at least one pair
of neighbouring X’s is zero. We may assume that the last (reading from the
left) pair of neighbouring X’s is at positions k, k+ 1, where k = 2, . . . , n− 1.
We will prove that

Rn
(
X−1,X, . . . , X,X︸︷︷︸

k,k+1

, . . .
)

= 0.

From Proposition 2.1 we get

0 = Rn−1(I, . . . ,X,X, . . .) = Rn−1(X−1X, . . . ,X,X, . . .)
= Rn−1(Y1 · Y2,Y3, . . . ,Yn).

Now we expand the right hand side using Lemma 2.3:

0 =
n−2∑
i=1

Ri(Y2,Y3, . . . ,Yi+1)Rn−i(Y1,Yi+2, . . . ,Yn)

+Rn−1(Y2, . . . ,Yn)R1(Y1) +Rn(Y1, . . . ,Yn).

Note that for i ≤ k − 2, the cumulant Rn−i(Y1,Yi+2, . . . ,Yn) contains
Y1 = X−1, Yk = X, Yk+1 = X, so by the inductive assumption it is zero.

It remains to prove that

(3.2) Rn(Y1,Y2,Y3, . . . ,Yn)

= −
n−2∑
i=k−1

Ri(Y2,Y3, . . . ,Yi+1)Rn−i(Y1,Yi+2, . . . ,Yn)

−Rn−1(Y2, . . . ,Yn)R1(Y1) = 0.

We will consider two subcases:
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Subcase a: There is j ∈ {3, . . . , k − 1} such that Yj = X−1. Then the
cumulant Ri(Y2,Y3, . . . ,Yi+1) for i = k−1 contains Y2 = X, Yj = X−1 and
Yk = X. So by Lemma 2.2 and the inductive assumption this cumulant is
zero. For i ∈ {k, k+1, . . . , n−1} the cumulant Ri(Y2,Y3, . . . ,Yi+1) contains
Yj = X−1, Yk = X, Yk+1 = X, so by the inductive assumption it is zero,
which completes the proof in Subcase a.

Subcase b: For all j ∈ {3, . . . , k − 1} we have Yj = X. If n > k + 1
(which means that the last pair of neighbouring X’s is not at positions
n− 1, n) then we have Yk+2 = X−1, otherwise the chosen pair of X’s would
not be the last pair of neighbouring X’s. Hence for i ≥ k + 1 the cumulant
Ri(Y2,Y3, . . . ,Yi+1) contains Yk = X, Yk+1 = X and Yk+2 = X−1, so by
the inductive assumption and Lemma 2.2 it is zero.

It remains to prove that in the case n > k + 1 we have

Rn(Y1,Y2,Y3, . . . ,Yn)

= −
k∑

i=k−1
Ri(Y2,Y3, . . . ,Yi+1)Rn−i(Y1,Yi+2, . . . ,Yn) = 0,

and in the case n = k + 1,

Rn(Y1,Y2,Y3, . . . ,Yn) = −Rn−2(Y2,Y3, . . . ,Yn−1)R2(Y1,Yn)

−Rn−1(Y2, . . . ,Yn)R1(Y1) = 0.

Both cases can be proved similarly. For all j ∈ {2, . . . , k + 1} we have
Yj = X and by assumption X has a free Poisson distribution with parameters
(λ, 1), so cumulants of X are constant, which means Rk−1(Y2,Y3, . . . ,Yk) =
Rk(Y2,Y3, . . . ,Yk+1). Moreover note that Y1 = X−1, Yk+1 = X, and at posi-
tions k+1, . . . , n there are no neighbouring X’s, so by the inductive assump-
tion Rn−k+1(Y1,Yk+1, . . . ,Yn) = −Rn−k(Y1,Yk+2, . . . ,Yn) (for n = k + 1
the right hand side equals −R1(X−1)). Hence the above sum is zero, which
completes the proof in Case 1.

Case 2. We now handle the case when there are no neighbouring X’s
in the cumulant (of course there might be neighbouring X−1’s). Without
loss of generality we may assume that apart from position 2, X appears
in the cumulant exactly k ≤ bn/2c − 1 times, at positions i1, . . . , ik where
4 ≤ i1 < · · · < ik ≤ n, and for all j ∈ {1, . . . , k − 1} we have ij+1 − ij > 1.

Taking into account formula (2.5) which gives cumulants of X−1, we have
to prove that

Rn(X−1,X,X−1, . . .) =
(−1)k+1

(λ− 1)2(n−k−1)−1
Cn−k−2.

For i ∈ {1, . . . , n} we denote by Yi the variable at the ith position. We
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proceed similarly to the previous case:

0 = Rn−1(I,X−1 . . . , ) = Rn−1(X−1X,X−1 . . . , ) = Rn−1(Y1Y2, . . . ,Yn)

= Rn(Y1,Y2, . . . ,Yn) +R1(Y2)Rn−1(Y1,Y3, . . . ,Yn)

+
n−2∑
i=2

Ri(Y2,Y3, . . . ,Yi+1)Rn−i(Y1,Yi+2,Yi+3, . . . ,Yn)

+Rn−1(Y2, . . . ,Yn)R1(Y1).

Note that Y2 = X and Yj = X for j ∈ {i1, . . . , ik}. Since in the initial
cumulant there were no neighbouring X’s, and by the inductive assumption,
we find that all terms of the above sum with i+1 ∈ {i1, . . . , ik} are zero, and
similarly Rn−1(Y2, . . . ,Yn)R1(Y1) is zero when Yn = X. All other terms are
non-zero.

Note that k + 1 variables from among Y1, . . . ,Yn are equal to X, and
n− k − 1 are equal to X−1.

From the above remarks and the inductive assumption we get

0 = Rn(Y1,Y2, . . . ,Yn) + (−1)kR1(X)Rn−k−1(X−1)

+

n−k−2∑
i=1

(−1)k+1Ri(X−1)Rn−k−1−i(X−1)

= Rn(Y1,Y2, . . . ,Yn) +
(−1)kλ

(λ− 1)2(n−k−1)−1
Cn−k−2

+
n−k−2∑
i=1

(−1)k+1 Ci−1Cn−k−i−2
(λ− 1)2i−1+2(n−k−1−i)−1

= Rn(Y1,Y2, . . . ,Yn) +
(−1)kλ

(λ− 1)2(n−k−1)−1
Cn−k−2

+
(−1)k+1

(λ− 1)2(n−k−1)−2

n−k−2∑
i=1

Ci−1Cn−k−2−i

= Rn(Y1,Y2, . . . ,Yn) +
(−1)kλ

(λ− 1)2(n−k−1)−1
Cn−k−2

+
(−1)k+1

(λ− 1)2(n−k−1)−2
Cn−k−2

= Rn(Y1,Y2, . . . ,Yn) +
(−1)k

(λ− 1)2(n−k−1)−1
Cn−k−2.

In the penultimate equality we have used the recurrence (2.7) for Catalan
numbers.
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From the above equation we see that

Rn(Y1,Y2, . . . ,Yn) =
(−1)k+1

(λ− 1)2(n−k−1)−1
Cn−k−2,

which completes the proof of the lemma.

The following remarks give characterizations of an invertible, free Poisson
distributed random variable in the language of the joint cumulants of X
and X−1.

Remark 3.2. If X is invertible and such that for n ≥ 1 we have

Rn+1(X,X−1,X−1, . . . ,X−1) = −Rn(X−1),(3.3)

then

Rn(X−1) =
1

(R1(X)− 1)2n−1
Cn−1 for n ≥ 1.

In particular X−1 has a free Gamma distribution and X has a free Poisson
distribution.

Proof. We will prove the remark inductively. Using the asumption and
Lemma 2.3 we obtain

1 = R1(I) = R1(XX−1) = R1(X)R(X−1) +R2(X,X−1)
= R(X−1)(R1(X)− 1),

hence

R1(X−1) =
1

R1(X)− 1
.

Assume that the remark holds true for k ≤ n − 1. Using consecutively
Lemma 2.3, the assumption, the inductive assumption and the recurrence
(2.7) for the Catalan numbers, we obtain

0 = Rn(XX−1,X−1, . . . ,X−1)
= Rn+1(X,X−1, . . . ,X−1) +R1(X)Rn(X−1)

+
n−1∑
i=1

Ri(X−1)Rn+1−i(X,X−1, . . . ,X−1)

= (R1(X)− 1)Rn(X−1)−
n−1∑
i=1

Ri(X−1)Rn−i(X−1)

= (R1(X)− 1)Rn(X−1)− 1

(R1(X)− 1)2n−2

n−1∑
i=1

Ci−1Cn−1−i

= (R1(X)− 1)Rn(X−1)− 1

(R1(X)− 1)2n−2
Cn−1,

which means that Rn(X−1) = 1
(R1(X)−1)2n−1Cn−1.
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Remark 3.3. Let X be an invertible random variable such that for all
n ≥ 3,

Rn(X−1,X, . . . ,X︸ ︷︷ ︸
n

) = 0.(3.4)

Then X has a free Poisson distribution with parameters

λ =
R1(X−1)R1(X)

R1(X−1)R1(X)− 1
and α =

R1(X−1)R1(X)− 1

R1(X−1)
.

Proof. Lemma 3.3 from [23] implies that

C(z) =
∞∑
n=1

Rn(X−1,X, . . . ,X︸ ︷︷ ︸
n

)zn−1 =
R1(X−1) + z

1 + zr(z)
,(3.5)

where r is the r-transform of X.

The assumption (3.4) means that C(z) = R1(X−1) +R2(X−1,X)z; com-
bining this with (3.5) we obtain

R1(X−1) + z

1 + zr(z)
= R1(X−1) +R2(X−1,X)z.

This gives

r(z) =
1−R2(X−1,X)

R1(X−1) +R2(X−1,X)z
.

Taking into account that R2(X−1,X) = 1−R1(X−1)R1(X), we deduce that
the above function is the r-transform of the free Poisson distribution with
the stated parameters.

4. The Lukacs property in free probability. Before we start the
proof of the Lukacs theorem, we need to introduce the so called Kreweras
complement of a non-crossing partition and a useful formula for computing
cumulants of products of free random variables. The following definition and
theorem can be found in [19, Def. 9.21, Thm. 14.4] (see also [13]).

Definition 4.1. Let π be a partition of {1, . . . , n}. Consider the set
{1, 1, 2, 2, . . . , n, n}. The Kreweras complement of the partition π, denoted
by K(π), is the biggest partition σ ∈ NC(1, . . . , n) such that π ∪ σ ∈
NC(1, 1, 2, 2, . . . , n, n).

For example if π = {(1, 2), (3, 4)}, then K(π) = {(1), (2, 4), (3)}. The
partitions π and K(π) are illustrated below.

s s s s s s s s
1 1 2 2 3 3 4 4

s s s s
1 2 3 4
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Theorem 4.2. Let {X1, . . . ,Xn} and {Y1, . . . ,Yn} be free. Then

Rn(X1Y1, . . . ,XnYn) =
∑

π∈NC(n)

Rπ(X1, . . . ,Xn)RK(π)(Y1, . . . ,Yn).(4.1)

Now we are ready to prove the following theorem, which is the main
result of the paper.

Main Theorem 4.3. Let (A, ϕ) be a C∗-probability space and ϕ be a
faithful, tracial state. Let X,Y ∈ A be free and free Poisson distributed with
parameters (λ, α) and (κ, α) respectively, where λ+κ > 1. Then the random
variables U = (X + Y)−1/2X(X + Y)−1/2 and V = X + Y are free.

Proof. First we note that it is sufficient to prove that mixed cumulants
of U,V vanish. Since α is a multiplicative constant and the cumulants are
multilinear, we can assume that α = 1.

First we will prove the theorem under the additional assumption that X
is invertible, which means that λ > 1. In this case we can equivalently prove
freeness of U−1 = (X + Y)1/2X−1(X + Y)1/2 and V. Since ϕ is tracial, any
moment ϕ(P (U−1,V)), where P (x, y) is a non-commutative polynomial in
variables x and y, can be rewritten as ϕ(P (W,V)), where W = X−1(X+Y).
From this and the definition of free cumulants we deduce that vanishing
of joint cumulants of U−1 = (X + Y)1/2X−1(X + Y)1/2 and V = X + Y is
equivalent to vanishing of mixed cumulants of X−1(X + Y) = I + X−1Y and
X+Y. Since any joint cumulant containing I and any other random variable
is zero, to prove the theorem (in the case λ > 1) it is sufficient to prove that

all mixed cumulants of the random variables Ũ = X−1Y and V = X + Y
vanish.

Fix n ≥ 2 and some mixed cumulant of length n of the random variables
Ũ,V. By Lemma 2.2 we can change the order of variables in the cumulant so
as to have Ũ at the first position. Without loss of generality we may assume
that in this cumulant, V appears k < n times, at positions (after the change
of the order) 1 ≤ j1 < · · · < jk ≤ n,

(4.2) Rn
(
Ũ, . . . , V︸︷︷︸

j1

, . . . , V︸︷︷︸
jk

, . . .
)

=
∑

Zj1 ,...,Zjk∈{X,Y}

Rn(Ũ, . . . ,Zj1 , . . . ,Zjk , . . .)

In the first step of the proof we will find the terms of the above sum which are
equal to 0. Note that if we write the variables X and Y as XI, IY respectively,
then we can apply Theorem 4.2.

Consider now a cumulant of the form Rn(. . . ,XI, IY, . . .). Expanding it
according to Theorem 4.2 we see that either X and I are in the same block
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of the partition π, or I and Y are in the same block of the partition K(π).
In both cases the cumulant is zero by Proposition 2.1.

Fix now l ≥ 2 and consider a cumulant of length n > l+1 which contains
X−1Y and a sequence of random variables consisting of l neighbouring X’s
and maybe other sequences of XI, IY,X−1Y. From the previous considera-
tions, to be non-zero this cumulant must be of the form

Rn
(
. . . , XI︸︷︷︸

11

, . . . , XI︸︷︷︸
ll

,X−1Y︸ ︷︷ ︸
l+1l+1

, . . .
)
.

Again we will expand this cumulant according to Theorem 4.2. Since a
joint cumulant of I and any other random variable equals 0, if the elements
1, . . . , l are not singletons in the partition K(π) then the above cumulant
is zero. Assume now that all 1, . . . , l are singletons in K(π). Then in the
partition π positions 1, . . . , l + 1 are in the same block, hence one of the
cumulants related to π contains at least two neighbouring X’s and X−1, so
by Proposition 3.1 it is zero.

From the above remarks we conclude that the only non-zero cumulants
in the sum (4.2) are the ones which consist only of Y and X−1Y or the ones
that contain X at position j ∈ {2, . . . , n− 1} (after using Lemma 2.2); then
X−1Y is at position j + 1, and X cannot be at position j − 1.

Recall that in equation (4.2) the variable X−1Y appears n−k times. Some
of X−1Y may have as left neighbour another X−1Y; we may assume that
m ≤ n− k of them do not have X−1Y as left neighbour. The above remarks
imply that if Zj does not have X−1Y as right neighbour, then Zj = Y,
otherwise the cumulant is zero. This means that X can appear only at m
positions which are the left neighbours of X−1Y. So we can rewrite the right
hand side of (4.2) as

(4.3) ∑
Zi1

,...,Zim∈{XI,IY}

Rn(X−1Y, IY, . . . , IY,Zi1 ,X
−1Y, IY, . . . , IY,Zij ,X

−1Y, . . . , IY,Zim).

Fix one term of the above sum. Without loss of generality we can assume
that j elements of {Zi1 , . . . ,Zim} are equal to XI. We expand this term
according to Theorem 4.2:

(4.4) Rn(X−1Y, . . . ,Zi1 ,X−1Y, . . . ,Zij ,X
−1Y, . . . ,Zim)

=
∑

π∈NC(n)

Rπ(X−1, . . .)RK(π)(Y, . . .).

Note that if Zij = XI then ij is a singleton in K(π) or this cumulant
vanishes by Lemma 2.1. From this we see that ij and ij+1 are in the same
block of the partition π, which means that the number indicating the po-
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sition of X is in the same block with the number indicating the position
of X−1. Moreover, by the previous steps, in the cumulant under study there
are no neighbouring X’s.

Similarly if in the fixed term of the sum (4.4) Zij = IY, then in π the
element ij is a singleton or this cumulant is zero.

The above remarks lead to the conclusion that the partitions π for which
the right hand side of (4.4) is not zero can be identified with the partitions
on n − k elements given by the positions of X−1. The other elements are
singletons or are in the same block with one of elements indicating the
position of X−1. The mapping defined below formalizes this observation.

Recall that X−1Y appears n− k times in the cumulant on the left hand
side of (4.4), so in Rπ(X−1, . . .) the variable X−1 also appears n− k times.
Let us denote the positions of X−1Y by l1, . . . , ln−k.

For any partition π ∈ NC(n) we define π̃ ∈ NC(n − k) by restriction of
π to the numbers l1, . . . , ln−k. This means that s, t ∈ {1, . . . , n − k} are in
the same block of π̃ if and only of ls and lt are in the same block of π.

Let A = {π ∈ NC(n) : Rπ(X−1, . . .) 6= 0 and RK(π)(Y, . . .) 6= 0}. From
the previous remarks it follows that the mapping π 7→ π̃ is a bijection
between A and NC(n− k). We will prove that

(4.5)
∑
π∈A
Rπ(X−1, . . .)RK(π)(Y, . . .)

=
∑

π̃∈NC(n−k)

(−1)jRπ̃(X−1, . . . ,X−1︸ ︷︷ ︸
n−k

)RK(π̃)(Y, . . . ,Y︸ ︷︷ ︸
n−k

).

If π ∈ A and in Rπ(X−1, . . .) the variable X appears j times then from
Proposition 3.1 we get

Rπ(X−1, . . .) = (−1)jRπ̃(X−1, . . . ,X−1︸ ︷︷ ︸
n−k

).

Recall that in the sum (4.3) some of Zj ’s were fixed to be IY. From
this we infer that after applying Lemma 2.2 every maximal sequence of
neighbouring IY’s has X−1Y as left neighbour. In particular if on the left
hand side of (4.3) there is a sequence of l neighbouring IY’s then it must be
of the form

Rn
(
. . . ,X−1Y, IY, . . . , IY︸ ︷︷ ︸

l

, . . .
)
.

It is clear that for π ∈ A the numbers indicating the positions of I from IY
are singletons; it follows that in K(π) the positions of Y from IY are in the
same block with some Y coming from the neighbouring X−1Y; this implies
that the number of blocks in K(π) is equal to the number of blocks of K(π̃).
Since Y has a free Poisson distribution with α = 1, the cumulants of Y
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are constant. This means that RK(π)(Y, . . .) depends only on the number of
blocks in K(π), showing that

RK(π)(Y, . . .) = RK(π̃)(Y, . . . ,Y︸ ︷︷ ︸
n−k

).

This proves equation (4.5).
Let us return to the sum (4.2). We can rewrite it by summing over

possible appearances of XI, which gives
m∑
j=0

∑
π̃∈NC(n−k)

(
m

j

)
(−1)jRπ̃(X−1, . . . ,X−1)RK(π̃)(Y, . . . ,Y).

After changing the order of summation we obtain∑
π̃∈NC(n−k)

Rπ̃(X−1, . . . ,X−1)RK(π̃)(Y, . . . ,Y)

m∑
j=0

(
m

j

)
(−1)j = 0,

which completes the proof in the case λ > 1 and κ > 0.
Assume now that λ+ κ > 1 and α > 0.
Note that equation (2.1) defines the cumulants recursively by moments.

Any moment of the random variables V and U can be expressed as a moment
of X + Y, X, (X + Y)−1 by traciality of ϕ. Since X + Y has a free Poisson
distribution with parameters (λ + κ, α), and λ + κ > 1, the support of the
distribution of X+Y is [α(1−

√
λ+ κ)2, α(1 +

√
λ+ κ)2]. As pointed out at

the beginning of the proof, it is sufficient to prove freeness of U and V for
some fixed α; then freeness for other values of α follows from multilinearity
of free cumulants. We fix α > 0 such that the support of the distribution of
the random variable I− (X+Y) is contained in (−1, 1). Since the support of
a random variable is equal to the spectrum, and the spectral norm is equal
to the norm, we have ‖I−(X+Y)‖ < 1 and (X+Y)−1 =

∑∞
n=0(I−(X+Y))n.

This means that any joint moment of X+Y, X, (X+Y)−1 can be expressed
as a series of moments of X+Y and X. Moreover by freeness of X and Y, any
joint moment of X+Y and X is a polynomial of moments of X and moments
of Y. Taking into account that moments of a free Poisson distribution with
parameters (λ, α) are the same polynomials in λ, α for λ ≤ 1 and for λ > 1,
we conclude that the cumulants of U and V are power series of λ, α, κ, so
they are the same analytic function of λ, κ for λ ≤ 1 and for λ > 1. This
completes the proof.

Recall that Proposition 3.1 gives the joint cumulants of X and X−1,
where X has a free Poisson distribution. As shown for a positive X with
a free Poisson distribution, X−1 has a free Gamma distribution with den-
sity (2.4). Thus we can also use Proposition 3.1 (with the roles of X and
X−1 interchanged) to prove the following result.
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Proposition 4.4. Let X and Y be free and identically distributed. As-
sume that the distribution of X is free Gamma. Then the pair X + Y,
(X + Y)−1X2(X + Y)−1 of random variables is not free.

Remark 4.5. The above proposition gives a negative answer to the ques-
tion stated in [7, after Proposition 3.6]. Moreover, the above result, together
with [7, Proposition 3.6], implies that there is no pair of free, identically
distributed random variables such that X + Y and (X + Y)−1X2(X + Y)−1

are free.

Proof of Proposition 4.4. As in the proof of Theorem 4.3, we can equiv-
alently prove that the pair X+Y, (X+Y)X−2(X+Y) is not free. Note that
we have (X + Y)X−2(X + Y) = (I + YX−1)(I + X−1Y). We will prove that
R2((I + YX−1)(I + X−1Y),X + Y) 6= 0.

From Lemma 2.3 we can write

R2((I + YX−1)(I + X−1Y),X + Y) = R3(I + YX−1, I + X−1Y,X + Y)

+R2(I + YX−1,X + Y)R1(I + X−1Y)

+R2(I + X−1Y,X + Y)R1(I + YX−1).
Lemma 2.1 implies

R3(I + YX−1, I + X−1Y,X + Y) = R3(YX−1,X−1Y,X)

+R3(YX−1,X−1Y,Y).

Using Lemma 2.3 we get

R3(YX−1,X−1Y,X) = R4(Y,X−1,X−1Y,X)

+R1(X−1)R3(Y,X−1Y,X)

+R2(Y,X)R2(X−1,X−1Y)

+R1(Y)R3(X−1,X−1Y,X).

We can use Lemma 2.3 once again and by freeness of X and Y we obtain

R3(YX−1,X−1Y,X) = R2
1(Y)R3(X−1,X−1,X).

By Lemma 3.1 (with the roles of X and X−1 interchanged) we get

R3(YX−1,X−1Y,X) = 0.

Similarly

R3(YX−1,X−1Y,Y) = R3(Y)R1(X−1)2

+R3(Y)R2(X−1,X−1)
+R1(Y)R2(X−1,X−1)R2(Y)

+R2(Y)R2(X−1,X−1)R1(Y)

=
2λ2

(λ− 1)5
+

2λ

(λ− 1)5
+

λ

(λ− 1)4
+

λ

(λ− 1)4

=
4λ2

(λ− 1)5
,
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which gives

R3(I + YX−1, I + X−1Y,X + Y) =
4λ2

(λ− 1)5
.

One can also check that

R2(I + X−1Y,X + Y)R1(I + YX−1) = R2(I + YX−1,X + Y)R1(I + X−1Y)

= (R2(YX−1,X) +R2(YX−1,Y))(1 +R1(X−1)R1(Y))

= (−R1(Y)R1(X) +R1(X1)R2(Y))
(
1 +R1(X−1)R1(Y)

)
=

2λ− 1

(λ− 1)4
.

So the cumulant R2((I + YX−1)(I + X−1Y),X + Y) is not zero.
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