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Estimates for vector-valued holomorphic functions and
Littlewood–Paley–Stein theory

by

Mark Veraar (Delft) and Lutz Weis (Karlsruhe)

Abstract. We consider generalized square function norms of holomorphic functions
with values in a Banach space. One of the main results is a characterization of embeddings
of the form

Lp(X) ⊆ γ(X) ⊆ Lq(X),

in terms of the type p and cotype q of the Banach space X. As an application we prove
Lp-estimates for vector-valued Littlewood–Paley–Stein g-functions and derive an embed-
ding result for real and complex interpolation spaces under type and cotype conditions.

1. Introduction. For a space X = Lr with r ∈ (1,∞) and a function
f : Ω → X, the usefulness of square functions

(1.1)
∥∥∥( �

Ω

|f(ω)|2 dµ(ω)
)1/2∥∥∥

X

and their estimates, are well-known in

• harmonic analysis (e.g. in the context of Littlewood–Paley theory and
g-functions [40]),
• in the theory of the holomorphic functional calculus (see e.g. [9, 29])
• in stochastic analysis (e.g. Burkholder–Davis–Gundy inequalities for

martingales and stochastic integrals [23]).

Motivated by the `-norm in the geometry of Banach spaces (see e.g. [13, 37]),
the paper [26], in an earlier version of 2002, introduced γ-norms as an
extension of the square functions (1.1) to the Banach space setting. Since
then γ-norms, similarly to their classical counterpart (1.1), have been very
useful in harmonic analysis, spectral theory and stochastic analysis of Banach
space valued function. They make it possible to extend Hilbert space results
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to the Banach space setting (see e.g. [3, 5, 6, 15, 16, 18, 19, 21, 22, 30, 32,
33, 35]).

In this paper we consider square functions of Banach space valued holo-
morphic functions which arise naturally in several areas of analysis. In
particular, in the evolution equation approach to partial differential equa-
tions one typically needs resolvents λ 7→ (λ − A)−1 on a sector or strip or
holomorphic semigroups z 7→ e−zA on a sector. Here A is an (unbounded)
operator on a Banach space X. General references on vector-valued holo-
morphic functions, functional calculus, and their use in evolution equations
are [1, 2, 17, 27].

It is easy to see that on bounded domains, for any integer k ≥ 0,∑k
j=1 ‖f (j)‖γ is equivalent to any of the Sobolev norms ‖f‖W `,p for any

integer ` ≥ 0 and p ∈ [1,∞] up to a slight deformation of the domain
(see Lemma 3.1). However, for unbounded domains such an equivalence
of γ-norms and Sobolev norms fails, as can already be seen in the scalar
case. We will show that certain embedding results still hold when the do-
main is a strip or a sector (see Lemmas 3.2 and 3.4). Our main result is a
characterization of an embedding result on a strip or sector S of the form
Lp(X) ↪→ γ(X) ↪→ Lq(X) in terms of the (Rademacher) type p and cotype
q of X (see Theorems 4.1 and 4.2).

As an application of the embedding result for holomorphic functions on
a sector, we consider vector-valued extensions of Lp-estimates for Little-
wood–Paley–Stein g-functions as introduced in [40] in the scalar case. First
of all we prove Lp-estimates for t 7→ f(tA)x, where f is a bounded holo-
morphic function on a sector and A has a bounded H∞-calculus, under
type and cotype assumptions. Secondly, we consider estimates for the ten-
sor extension of diffusion semigroups on Lr(Ω). Previous results in this
direction have been obtained in [43] for the Poisson semigroup and later
in [31] for more general diffusion semigroups. Our approach differs from
those works and is applicable to a larger class of diffusion operators and
g-functions.

As a further application we obtain an embedding result for real and
complex interpolation spaces in the case X1 ↪→ X0, X0 has type p and
cotype q and X1 = D(A), where A is a sectorial operator with a bounded
holomorphic calculus: for all θ ∈ (0, 1)

(X0, X1)θ,p ↪→ [X0, X1]θ ↪→ (X0, X1)θ,q,

Here (·, ·)θ,r denotes the real interpolation space with parameter r, and [·, ·]θ
the complex interpolation space. Of course this embedding always holds for
p = 1 and q = ∞. In [36] this was improved to exponents p ∈ (1, 2] and
q ∈ [2,∞) under Fourier type conditions on the Banach space, and this leads
to a different result than ours.
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2. Preliminaries. For details on γ-norms and γ-radonifying operators
we refer to the survey [32]. Below we repeat some of the definitions and
properties.

Let (S,Σ, µ) be a measure space, and (for convenience) assume that
L2(S) is separable and let (hn)n≥1 be an orthonormal basis for L2(S). Let
X be a (complex) Banach space. Let (Ω,A,P) be a probability space and let
(γn)n≥1 be a sequence of independent (complex) standard normal random
variables with values in R. We will identify a function f : S → X and the
operator If : L2(S)→ X given by

(2.1) Ifh =
�

S

f(s)h(s) ds

whenever this integral makes sense as a Bochner or Pettis integral (see [12]).
In particular, the integral makes sense if f is strongly measurable and for
all x∗ ∈ X∗, s 7→ 〈f(s), x∗〉 is in L2(S). Note that this identification is of a
similar nature to the one usually made between functions and distributions.

For a general T : L2(S)→ X we let

(2.2) ‖T‖γ(L2(S);X) =
∥∥∥∑
n≥1

γnThn

∥∥∥
L2(Ω;X)

whenever this series converges in L2(Ω;X). One can check that this def-
inition does not depend on the choice of the orthonormal basis (hn)n≥1.
Moreover,

‖T‖L(L2(S);X) ≤ ‖T‖γ(L2(S;X)).

The space of all T for which the series in (2.2) converges in L2(Ω;X) is
denoted by γ(L2(S);X). This can be shown to be a Banach space again.
For f : S → X as above we let ‖f‖γ(S;X) = ‖If‖γ(L2(S);X), where If is as in

(2.1). In particular, for f of the form f(s) =
∑N

n=1 hn(s)xn we find

‖f‖γ(S;X) =
∥∥∥ N∑
n=1

γnxn

∥∥∥
L2(Ω;X)

.

In particular, ‖s 7→ h(s)x‖γ(S;X) = ‖h‖L2(S)‖x‖ whenever h ∈ L2(S) and
x ∈ X.

The operators of γ(L2(S);X) satisfy the so-called ideal property. As a
consequence, one can extend many operations on L2(S) to γ(L2(S);X).

The following properties will be used frequently:

Facts 2.1.

(a) For f ∈γ(S;X) and x∗∈X∗, one has ‖〈f, x∗〉‖L2(S)≤‖f‖γ(S;X)‖x∗‖.
(b) For f ∈ γ(S;X) and g ∈ L∞(S), one has fg ∈ γ(S;X) and

‖gf‖γ(S;X) ≤ ‖g‖L∞(S)‖f‖γ(S;X).
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(c) If f ∈ γ(S;X) and S0 ⊂ S, then ‖f‖γ(S0;X) ≤ ‖f‖γ(S;X) and if
moreover f is supported in S0, then ‖f‖γ(S0;X) = ‖f‖γ(S;X).

(d) For f ∈ γ(R;X) and h ∈ R,

‖x 7→ f(x+ h)‖γ(R;X) = ‖f‖γ(R;X).

(e) For f ∈ γ(R;X) and a > 0,

‖x 7→ f(ax)‖γ(R;X) = a−1/2‖f‖γ(R;X).

(f) The Fourier transform

f̂(ξ) = F(f)(ξ) =
�

R

e−2πixξf(x) dx, ξ ∈ R,

satisfies ‖f̂‖γ(R;X) = ‖f‖γ(R;X).

(g) For g ∈ L1(R) and f ∈ γ(R;X), one has g ∗ f ∈ γ(R;X) and

‖g ∗ f‖γ(R;X) ≤ ‖g‖L1(R)‖f‖γ(R;X).

Let I ⊂ R be a finite or infinite interval. If f ∈ γ(I;X) is such that
for every j ≤ k, the jth derivatives exist in the distributional sense and
f (j) ∈ γ(I;X), then we write f ∈ γk(I;X) and let

‖f‖γk(I;X) =

k∑
j=0

‖f (j)‖γ(I;X).

3. General results for holomorphic functions and γ-norms. We
start with a lemma for bounded domains.

Lemma 3.1. Let D ⊂ C be open and assume f : D → X is holomorphic.
Let D1, D2, D3 ⊆ D be open, bounded and such that D1 ⊆ D2 and D2 ⊆ D3.
Then for all p ∈ [1,∞] and all integers k, ` ≥ 0,

(3.1) ‖f‖W `,p(D1;X) . ‖f‖γk(D2;X) . ‖f‖W `,p(D3;X).

The constants in (3.1) are independent of f ; we will not explicitly write
this in the following.

Proof. To prove the second estimate in (3.1) it suffices to take ` = 0 and
p = 1. Note that we can cover D2 by finitely many balls contained in D3. By
a dilation and translation argument, we may assume that D2 = {z : |z| < 1}
and D3 = {z : |z| < 1 + 2ε} for some ε > 0.

By Cauchy’s formula we can write

f (n)(a) =
n!

2πi

�

{|z|=t}

f(z)

(z − a)n+1
dz, |a| < 1 + ε,
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where t ∈ [1 + ε, 1 + 2ε] is fixed. Therefore,

‖f (n)(0)‖ ≤ n!

2πtn+1

�

{|z|=t}

‖f(z)‖ |dz|.

Integrating over t ∈ [1 + ε, 1 + 2ε], we find

(3.2) ‖f (n)(0)‖ ≤ Cε
n!

(1 + ε)n
‖f‖L1(D3).

Writing f(z) =
∑∞

n=0
zn

n! f
(n)(0), by the triangle inequality and (3.2) we find

‖f (k)‖γ(D2;X) ≤
∞∑
n=k

‖zn−k‖L2(D2)

(n− k)!
‖f (n)(0)‖

≤ Cε‖f‖L1(D3)

∞∑
n=k

n!

(n− k)!
(1 + ε)−n = Cε,k‖f‖L1(D3).

To prove the first estimate in (3.1) it suffices to considerD1={z : |z| < 1}
and D2 = {z : |z| < 1 + 2ε} for some ε > 0. Let Aε = {1 + ε < |z| < 1 + 2ε}.
Using Cauchy’s formula again we find that for all |a| ≤ 1 and all x∗ ∈ X∗,

ε|〈f (k)(a), x∗〉| = k!

2π

1+2ε�

1+ε

�

{|z|=t}

|〈f(z), x∗〉|
|z − a|k+1

|dz| dt

≤ k!Cε
2π
‖〈f, x∗〉‖L2(D2) ≤ Ck,ε‖f‖γ(D2)‖x

∗‖.

Now the result follows by taking the supremum over all ‖x∗‖ ≤ 1.

Let the strip Sα be given by Sα = {z ∈ C : |Im(z)| < α}.

Lemma 3.2. Let f : Sα → X be holomorphic and let 0 ≤ a < b < α. Let

γ(f) =
∥∥∥∑
n∈Z

γnf(n)
∥∥∥
L2(Ω;X)

.

Then ∑
j∈{−1,1}

sup
s∈[0,1]

(γ(f(·+ s+ ija)) + γ(f ′(·+ s+ ija))) . ‖f‖γ(Sb;X)(3.3)

≤
∑

j∈{−1,1}

‖f(·+ ijb)‖γ(R;X)(3.4)

≤
∑

j∈{−1,1}

1�

0

γ(f ′(·+ s+ ijb)) ds+ γ(f(·+ ijb)),(3.5)

where the convergence of each of the right-hand sides implies the convergence
of the previous term.
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Proof. First assume f ∈ γ(Sb;X). Fix a radius 0 < r < min{1, b−a} and
s ∈ [0, 1], and consider the disjoint balls Bn = {z : |z−n−s− ia| ≤ r} ⊆ Sα
for n ∈ Z. Let φn = |Bn|−1/21Bn for n ∈ Z. Then (φn)n∈Z is an orthonormal
system in L2(Sb). By the mean value property (or via Cauchy’s formula)
one sees that

f(n+ s+ ia) =
1

|Bn|

�

Bn

f(z) |dz| = 1

rπ1/2
Ifφn.

It follows that for every s ∈ [0, 1] and j ∈ {−1, 1},

rπ1/2γ(f(·+ s+ ija)) =
∥∥∥∑
n∈Z

γnIfφn

∥∥∥
L2(Ω;X)

≤ ‖f‖γ(Sb;X).

This proves the first estimate for f . For f ′, we can use a similar argument.
Consider the disjoint annuli An = {z : r/2 < |z − n− s− ia| ≤ r} ⊆ Sα for
n ∈ Z. Let

ψn = c
1An

z − n− s− ia
for n ∈ Z with

c−1 =

∥∥∥∥z 7→ 1An
z − n− s− ia

∥∥∥∥
L2(Sb)

=

r�

r/2

2π�

0

|teix|−2t dx dt = 2π log(2).

Then (ψn)n∈Z is an orthonormal system in L2(Sb). Using Cauchy’s formula
one can check that

f ′(n+ s+ ia) =
1

|An|

�

An

f(z)

z − n− s− ia
|dz| = M · Ifψn,

where M = 1
c|An| = 4 log(2)

3πr2
. It follows that for every s ∈ [0, 1] and j ∈

{−1, 1},

M−1γ(f ′(·+ s+ ija)) =
∥∥∥∑
n∈Z

γnIfψn

∥∥∥
L2(Ω;X)

≤ ‖f‖γ(Sb;X).

This completes the proof of (3.3).

To prove (3.4) assume f(·+ ijb) ∈ γ(R;X) for j ∈ {−1, 1}. We will use
the Poisson formula for the strip (see [42, 1.10.3] and [38, Section 31] for the
Poisson formula for the strip Sα rotated by 90 degrees):

(3.6) g(x+ iy) = [k0y ∗ g(·+ ib)](x) + [k1y ∗ g(· − ib)](x), a.e. x ∈ R, |y| < α

if g : Sα → C is holomorphic on Sα and L2-integrable on {z ∈ C : Im(z)

= ±b}. The kernels kjy : R→ R are positive and satisfy

‖k0y‖L1(R) + ‖k1y‖L1(R) =
�

R

(k0y(t) + k1y(t)) dt = 1
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for −b < y < b. As a consequence the mappings Kj : L2(R) → L2(Sb)

given by Kjg(x + iy) = kjy ∗ g(x) are bounded of norm ≤ 1 and (see [26,
Proposition 4.4]) extend to Kj : γ(L2(R);X)→ γ(L2(Sb);X) of norm ≤ 1;
moreover, (3.6) holds with g replaced by f . Therefore,

‖f‖γ(Sb;X) ≤ ‖K0f(·+ ib)‖γ(Sb;X) + ‖K1f(· − ib)‖γ(Sb;X)

≤ ‖f(·+ ib)‖γ(R;X) + ‖f(· − ib)‖γ(R;X),

and the required estimate (3.4) follows.

Finally, to prove (3.5) we use the simple fact that for every t ∈ R we can
write

f(t± ib) =
∑
n∈Z

1[n,n+1)(t)f(n± ib) +

1�

0

∑
n∈Z

1[n+s,n+1)(t)f
′(n+ s± ib) ds.

Now taking γ-norms with respect to t ∈ R on both sides we find

‖f(· ± b)‖γ(R;X) ≤
∥∥∥∑
n∈Z

1[n,n+1)(t)f(n± ib)
∥∥∥
γ(R,dt;X)

+

1�

0

∥∥∥∑
n∈Z

1[n+s,n+1)(t)f
′(n+ s± ib)

∥∥∥
γ(R,dt;X)

ds

= γ(f(· ± ib)) +

1�

0

(1− s)1/2γ(f ′(·+ s± ib)) ds,

from which the required result follows.

Lemma 3.3. Let −∞ < a < b <∞.

(1) If f ∈W 1,1(a, b;X), then f ∈ γ(a, b;X) and

‖f‖γ(a,b;X) ≤ (b− a)−1/2‖f(b)‖+ (b− a)1/2
b�

a

‖f ′(t)‖ dt.

(2) If f ∈ γ(a, b;X) and f ′ ∈ γ(a, b;X), then f ∈ C([a, b];X)) and

sup
t∈[a,b]

‖f(t)‖ ≤ (b− a)−1/2‖f‖γ(a,b;X) + (b− a)1/2‖f ′‖γ(a,b;X).

Proof. The estimate (1) follows from [26, Example 4.6] (see also [32,
Proposition 13.9]).

To prove (2) note that for a ≤ s < t ≤ b, f(t) = f(s) +
	t
s f
′(r) dr =

f(s) + If ′1[s,t]. Multiplying by 1(a,b)(s) and integrating over s we find that

f(t)(b− a) = If (1[a,b]) +

b�

a

If ′1[s,t] ds.
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Therefore,

‖f(t)‖ ≤ (b− a)−1/2‖f‖γ(a,b;X) + (b− a)1/2‖f ′‖γ(a,b;X).

Let X1 and X2 be vector spaces with norms ‖ · ‖X1 and ‖ · ‖X2 which
embed in a Hausdorff topological vector space V . If we write ‖x‖X1 . ‖x‖X2 ,
this means that x ∈ X2 implies x ∈ X1 and the stated estimate holds true.

Lemma 3.4. Assume f : Sα → X is holomorphic and 0 ≤ a < b < c <
d < α. Let Y = γ(R;X) or Y = Lp(R;X) with p ∈ [1,∞]. Then for any
integer k ≥ 1,

sup
s∈[−a,a]

‖f(·+ is)‖Y .
b�

−b
‖f(·+ is)‖Y ds(3.7)

.
k∑
j=0

‖f (j)(·+ is)‖γ((−b,b),ds;Y )(3.8)

. sup
s∈[−b,b]

k+1∑
j=0

‖f (j)(·+ is)‖Y(3.9)

. sup
s∈[−c,c]

‖f(·+ is)‖Y(3.10)

.
∑

j∈{−1,1}

‖f(·+ ijd)‖Y .(3.11)

As a consequence of this result all the norms in Lemma 3.2 are connected
to the above expressions as well.

Proof of Lemma 3.4. We first prove (3.10). Assume

C := sup
s∈[−c,c]

‖f(·+ is)‖Y <∞

and let Rc = {x + iy : x ∈ [−1, 1], y ∈ [−c, c]}. We can define F : Rc → Y
by F (x+ iy)(t) = f(x+ t+ iy). We claim this function is holomorphic. By
[2, Theorem A.7] it suffices to show that F is bounded and z 7→ 〈F (z), g〉 is
holomorphic for all g ∈ G, where G ⊆ Y ∗ separates the points of Y . Indeed,
F is bounded since for each x+ iy ∈ Rc, by translation invariance,

‖F (x+ iy)‖Y = ‖f(·+ x+ iy)‖Y = ‖f(·+ iy)‖Y ≤ C.
Now let

G = {1I ⊗ x∗ : I ⊆ R is a bounded interval, x∗ ∈ X∗}.
Then G separates the points of Y . Moreover,

〈F (x+ iy),1I ⊗ x∗〉 =
�

I

〈f(x+ iy + t), x∗〉 dt,
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and the latter is holomorphic since it is the uniform limit of a sequence of
holomorphic functions given by Riemann sums. Now the claim follows and
moreover ‖F‖L∞(Rc;Y ) ≤ C.

From the claim and Lemma 3.1 we find that for all integers ` ≥ 0, we
have F ∈W `,∞(Rb;Y ) and for all x+ iy ∈ Rb,

‖f (j)(x+ iy)‖Y = ‖f (j)(·+ x+ iy)‖Y = ‖F (j)(x+ iy)‖Y
. ‖F‖L∞(Rc;Y ) ≤ C,

and (3.10) follows.
The estimates (3.8) and (3.9) are immediate from Lemma 3.3.
Finally, we prove (3.7) and (3.11) by using a Poisson transformation

argument. As in the proof of Lemma 3.2 one sees that for all θ ∈ (−b, b) \
[−a, a] and all (t, s) ∈ R× [−a, a] we can write

(3.12) f(t+ is) = [k0s ∗ f(·+ iθ)](t) + [k1s ∗ f(· − iθ)](t),
and hence

‖f(·+ is)‖Y ≤ ‖f(·+ iθ)‖Y + ‖f(· − iθ)‖Y .
Now integration over θ ∈ (a, b) gives (3.7).

Estimate (3.11) can be proved in the same way if one takes θ = d and
s ∈ [−c, c].

4. Embedding results for holomorphic functions and type and
cotype. Recall that the strip Sα is given by Sα = {z ∈ C : |Im(z)| < α}.
We also define the sector Σσ by

Σσ = {z ∈ C \ {0} : |arg(z)| < σ}.

4.1. Type and cotype. In the next results we characterize the type
and cotype of a Banach space X by embedding results for holomorphic
functions on a strip and sector, respectively. For more details on type and
cotype we refer to [11].

Let (εn)n≥1 be an i.i.d. sequence with P(εn = 1) = P(εn = −1) = 1/2.
A space X is said to have type p if there exists a constant τ ≥ 0 such that
for all x1, . . . , xN in X we have(

E
∥∥∥ N∑
n=1

εnxn

∥∥∥p)1/p ≤ τ( N∑
n=1

‖xn‖p
)1/p

.

A space X is said to have cotype q if there exists a constant c ≥ 0 such that
for all x1, . . . , xN in X we have( N∑

n=1

‖xn‖q
)1/q

≤ c
(
E
∥∥∥ N∑
n=1

εnxn

∥∥∥q)1/q,
with the obvious modification for q =∞. Recall that:
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• Every space X has type 1 and cotype ∞.
• If p1 > p2, then type p1 implies type p2.
• If q1 < q2, then cotype q1 implies type q2.
• Hilbert spaces have type 2 and cotype 2.
• X = Lr for 1 ≤ r <∞ has type r ∧ 2 and cotype r ∨ 2.

4.2. Statement of the main results. In the next results we character-
ize type p and cotype q in terms of an embedding for holomorphic functions
on both the strip and sector.

Theorem 4.1 (Characterization of type). Let X be a Banach space and
p ∈ [1, 2]. Let 0 ≤ a < b < α < π. The following are equivalent:

(1) X has type p.
(2) For all holomorphic functions f : Sα → X,∑

j∈{−1,1}

‖f(t+ ija)‖γ(R,dt;X) .
∑

j∈{−1,1}

( �

R

‖f(t+ ijb)‖p dt
)1/p

whenever the right-hand side is finite.
(3) For all holomorphic functions f : Σα → X,∑

j∈{−1,1}

‖f(eijat)‖γ(R+,dt/t;X) .
∑

j∈{−1,1}

(∞�
0

‖f(eijbt)‖p dt
t

)1/p

whenever the right-hand side is finite.

Theorem 4.2 (Characterization of cotype). Let X be a Banach space
and q ∈ [2,∞]. Let 0 ≤ a < b < α < π. The following are equivalent:

(1) X has cotype q ∈ [2,∞].
(2) For all holomorphic functions f : Sα → X,∑

j∈{−1,1}

( �

R

‖f(t+ ija)‖q dt
)1/q

.
∑

j∈{−1,1}

‖f(t+ ijb)‖γ(R,dt;X)

whenever the right-hand side is finite.
(3) For all holomorphic functions f : Σα → X,∑

j∈{−1,1}

(∞�
0

‖f(eijat)‖q dt
t

)1/q

.
∑

j∈{−1,1}

‖f(eijbt)‖γ(R+,dt/t;X)

whenever the right-hand side is finite.

Remark 4.3. (i) In both results the condition α < π is not needed
in the strip case. This is clear from the proofs below, but also follows by
substituting z 7→ Kz for a suitable K > 0.
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(ii) In case X has type 2 the embedding L2(T ;X) ↪→ γ(T ;X) holds
for any measure space (T, T , µ). The reverse embedding in the cotype 2
situation also holds (see [32, Theorem 11.6]).

(iii) By Lemma 3.2 for γ-norms and a similar version for Lp-norms, (2)
in Theorem 4.1 can be replaced by

‖f‖γ(Sa;X) . ‖f‖Lp(Sb;X).

Similarly (2) of Theorem 4.2 can be replaced by an analogous norm estimate.
See Remark 4.4 for an alternative formulation of the norm estimate on the
sector.

(iv) As a consequence of Theorems 4.1 and 4.2 and Kwapień’s result
(see [28]), the γ-norm on a strip Sa can be estimated from above and below
by the L2-norm on a slightly larger and smaller strip, respectively, if and
only if X is isomorphic to a Hilbert space. The same holds for sectors.

4.3. Proofs of the main results

Proof of Theorem 4.1, (1)⇒(2). Assume X has type p. Let a < b′ < b.
By the type p assumption, we have

γ(f) .p,X

(∑
n∈Z
‖f(n)‖p

)1/p
.

Therefore, by Lemma 3.2 we find that for every r ∈ [0, 1],∑
j∈{−1,1}

‖f(·+ ija)‖γ(R+;X) =
∑

j∈{−1,1}

‖f(·+ r + ija)‖γ(R+;X)

.
∑

j∈{−1,1}

1�

0

(∑
n∈Z
‖f ′(t+ n+ r + ijb′)‖p

)1/p
dt

+
∑

j∈{−1,1}

(∑
n∈Z
‖f(r + n+ ijb′)‖p

)1/p
.

Taking pth powers and integrating over all r ∈ [0, 1] we find∑
j∈{−1,1}

‖f(·+ ija)‖γ(R+;X) .
∑

j∈{−1,1}

(
‖f ′(·+ ijb′)‖Y + ‖f(·+ ijb′)‖

)
Y
,

where Y = Lp(R;X). By Lemma 3.4,∑
j∈{−1,1}

(
‖f ′(·+ ijb′)‖Y + ‖f(·+ ijb′)‖Y

)
.

∑
j∈{−1,1}

‖f(·+ ijb)‖Y

which completes the proof of (1).
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Proof of Theorem 4.2, (1)⇒(2). Assume X has cotype q. Let a < b. Fix
t ∈ [0, 1]. First assume q <∞. By the cotype q condition and Lemma 3.2,∑

j∈{−1,1}

(∑
n∈Z
‖f(t+ ija)‖q

)1/q
.

∑
j∈{−1,1}

γ(f(·+ t+ ija))

.
∑

j∈{−1,1}

‖f(·+ ijb)‖γ(R;X).

Taking qth powers and integrating over all t ∈ [0, 1] yields the required
result. If q = ∞ one should replace the `q-sum on the left-hand side by a
supremum over all n.

Proof of (2)⇔(3) for Theorems 4.1 and 4.2. The map z 7→ ez is a
holomorphic bijection from the strip Sα onto the sector Σα. Note that for
the substitution s = et one has dt = ds/s, which gives the additional division
by t in (3) in both cases.

Remark 4.4. (i) Arguing as in the above proof of (2)⇔(3), one can use
Remark 4.3 to see that (3) of Theorem 4.1 can be replaced by

‖f‖γ(Σa;X) . ‖f‖Lp(Σb;X),

and a similar assertion holds for (3) of Theorem 4.2.
(ii) By the same type of argument as in the proof of (2)⇔(3) one can

create discrete norms (dyadic) for holomorphic functions on sectors. Indeed,
if f is defined on a sector Σα we can apply Lemmas 3.2 and 3.4 to g given
by g(z) = f(2z) on the strip Sβ with β = log(2)−1α.

Proof of Theorem 4.1, (2)⇒(1). Step 1. Before we start the proof we
introduce special functions φn and state some of their properties. Let (cn)n≥1
be a strictly increasing sequence such that cn/(2π) ∈ N. Let φn : C→ C be
given by φn(z) = sinc(2πz − cn) for n ∈ N, where sinc(z) = sin(z)/z. Then
φn has the following properties:

• For every t ∈ R,

|φn(t+ ijb)| = |sin(2πt− cn + ijb)|
(|2πt− cn|2 + |b|2)1/2

.

• For every t ∈ R,

cosh(b)|sin(2πt− cn)|
(|t− cn|2 + |b|2)1/2

≤ |φn(t+ ijb)| ≤ 2 cosh(b)

(|2πt− cn|2 + |b|2)1/2
.(4.1)

• For every t ∈ R,

φn(t+ ijb) = F(x 7→ eicnx+jbx1(−1,1))(t).

In particular, setting b = 0 we see that the functions (2−1/2φn)n≥1
form an orthonormal system in L2(−1, 1).
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Step 2. To derive type p it suffices to consider p ∈ (1, 2]. Let cn = 3π2n

for n ∈ N. To prove (1) note that by Lemma 3.4, the assumption implies
that for all f as in (2),

‖f‖γ(R;X) .
∑

j∈{−1,1}

( �

R

‖f(t+ ijb)‖p dt
)1/p

.

Fix x1, . . . , xN ∈ X. Letting f(t) =
∑N

n=1 φn(t)xn, by the orthogonality of
the φn’s we find

‖f‖γ(R;X) = 21/2
∥∥∥ N∑
n=1

γnxn

∥∥∥
L2(Ω;X)

.(4.2)

It now suffices to show that ‖f(·+ ijb)‖pLp(R;X) .
∑N

n=1 ‖xn‖p. In the proof

we use the following estimate for scalars t := (tn)Nn=1 and s := (sn)Nn=1:

(4.3)

∞∑
n=1

|sntn| ≤ ‖s‖`p‖t‖`p′ ≤ ‖s‖`p‖t‖`p ,

where the last estimate holds as p′ ≥ p.
Let an = 2n, so that cn is the midpoint of [2πan, 2πan+1] for 1 ≤ n ≤ N .

We now split the Lp-norm of f(·+ ijb) as

‖f(·+ ijb)‖pLp(−∞,a1;X) + ‖f(·+ ijb)‖pLp(aN+1,∞;X)

+
N∑
m=1

‖f(·+ ijb)‖pLp(am,am+1;X).

To finish the proof we estimate each of the three terms separately. Since
‖x+ y‖p ≤ 2p−1(‖x‖p + ‖y‖p), for 1 ≤ m ≤ N we can write

‖f(·+ ijb)‖pLp(am,am+1;X)

.
am+1�

am

[
‖xm‖p|φm(t+ ijb)|p +

(∑
n6=m
‖xn‖|φn(t+ ijb)|

)p]
dt

(i)

. ‖xm‖p +

am+1�

am

∑
n 6=m
‖xn‖p ·

∑
n6=m
|φn(t+ ijb)|p dt

= ‖xm‖p +
∑
n6=m
‖xn‖p ·

∑
n6=m

am+1�

am

|φn(t+ ijb)|p dt,

where we have used supm
	
R |φm(t + ijb)|p dt < ∞ and (4.3) in (i). For the



86 M. Veraar and L. Weis

terms 1 ≤ n ≤ m− 1 we can use (4.1) in order to get

(4.4)

m−1∑
n=1

am+1�

am

|φn(t+ ijb)|p dt . (m− 1)2m

(|2πam − cm−1|2 + |b|2)p/2

.
(m− 1)2m

|2m+1 − 3 · 2m−1|p
. (m− 1)2−m(p−1).

For the terms with n ≥ m+ 1, we have

N∑
n=m+1

am+1�

am

|φn(t+ ijb)|p dt .
N∑

n=m+1

2m

(|cn − 2πam+1|2 + |b|2)p/2
(4.5)

.
∞∑

n=m+1

2−m(p−1)

|3 · 2n−m−1 − 2|p
. 2−m(p−1).

As the right-hand sides of (4.4) and (4.5) are summable in m we conclude
that

N∑
m=1

‖f(·+ ijb)‖pLp(am,am+1;X) .
N∑
m=1

(
‖xm‖p + 2−m(p−1)

∑
n6=m
‖xn‖p

)

.
N∑
m=1

‖xm‖p.

Next we estimate the Lp-norm on (−∞, a1). To do so, note that again
by (4.3) and (4.1),

‖f(·+ ijb)‖pLp(−∞,a1;X) ≤
a1�

−∞

N∑
n=1

‖xn‖p ·
N∑
n=1

|φn(t+ ijb)|p dt

≤
N∑
n=1

‖xn‖p ·
N∑
n=1

a1�

−∞
|φn(t+ ijb)|p dt

.
N∑
n=1

‖xn‖p ·
N∑
n=1

a1�

−∞

1

|cn − 2πt|p
dt

.
N∑
n=1

‖xn‖p ·
N∑
n=1

1

|3 · 2n − 2|p−1
.

N∑
n=1

‖xn‖p

since p > 1. The estimate for the Lp-norm on (aN+1,∞) is proved similarly.

Proof of Theorem 4.2, (2)⇒(1). Let φn be as in Step 1 of the previous
proof, but this time with cn = 3πrn, where r > 2 is an even integer which
is fixed for the moment. By Lemma 3.4, the assumption implies that for all
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f as in (2), ( �

R

‖f(t)‖q dt
)1/q

.
∑

j∈{−1,1}

‖f(t+ ijb)‖γ(R,dt;X).

Let f(t) =
∑N

n=1 φn(t)xn. As the Fourier transform is an isometry on

γ(R;X) and f̂ has support on [−1, 1], the ideal property yields

‖f(·+ ijb)‖γ(R;X) = ‖Ff(·+ ijb)‖γ(R;X) = ‖ejbxf̂(x)‖γ(R;X)

≤ eb‖f̂‖γ(−1,1;X) = 21/2eb
∥∥∥ N∑
n=1

γnxn

∥∥∥
L2(Ω;X)

,

where we have used fact that (2−1/2φ̂n)Nn=1 is an orthonormal system. Let
an = rn, so that cn is in the interval [2πan, 4πan] for 1 ≤ n ≤ N . Clearly,
we may estimate

‖f‖qLq(R;X) ≥
N−1∑
m=1

2am�

am

‖f(t)‖q dt.

Now since ‖x+ y‖q ≥
∣∣‖x‖ − ‖y‖∣∣q ≥ 21−q‖x‖q − ‖y‖q, we find

2am�

am

‖f(t)‖q dt ≥
2am�

am

(
21−q‖xm‖q|φm(t)|q −

∥∥∥∑
n6=m

xnφn(t)
∥∥∥q) dt.

Note that to obtain a lower estimate of the latter, we have to be careful
with the minus sign. Clearly,

2am�

am

21−q‖xm‖q|φm(t)|q dt ≥ 21−q‖xm‖q
1�

−1

|sin(2πt)|q

|2πt|q
dt ≥ Cq‖xm‖q,

and the latter does not depend on r. By Hölder’s inequality,

2am�

am

(∑
n6=m
‖xn‖ |φn(t)|

)q
dt ≤

2am�

am

∑
n6=m
‖xn‖q

(∑
n6=m
|φn(t)|q′

)q−1
dt

≤
∑
n6=m
‖xn‖q

2am�

am

(∑
n6=m
|φn(t)|q′

)q−1
dt.

By convexity the latter integral can be estimated by

2q−2
2am�

am

(m−1∑
n=1

|φn(t)|q′
)q−1

dt+ 2q−2
2am�

am

(∑
n>m

|φn(t)|q′
)q−1

dt.
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The first term is estimated by using (4.1) and the worst case times (m−1)q−1:

2am�

am

(m−1∑
n=1

|φn(t)|q′
)q−1

dt ≤ Cq,b
2am�

am

(m− 1)q−1
1

|2πt− cm−1|q
dt

≤ Cq,b(m− 1)q−1
rm

|π(2rm − 3rm−1)|q

=
Cq,b
πq

(m− 1)q−1r−m(q−1) 1

|2− 3/r|q
=: T1,m(r),

where Cq,b = 2q coshq(b). The second term can be estimated as

2am�

am

(∑
n>m

|φn(t)|q′
)q−1

dt ≤ Cq,b
2am�

am

( ∞∑
k=1

1

|cm+k − 2πt|q′
)q−1

dt

≤ Cq,brmr−mq
( ∞∑
k=1

1

|2πrk − 4π|q′
)q−1

=: T2,m(r).

Therefore, summing over 1 ≤ m ≤ N yields

‖f‖qLq(R;X) ≥
(
Cq − 2q−2

∑
m≥1

(T1,m(r) + T2,m(r))
) N∑
m=1

‖xm‖q.

The latter series converges and moreover by the dominated convergence
theorem

∑
m≥1(T1,m(r) + T2,m(r)) → 0 as r → ∞. Now by letting r → ∞

and combining all estimates it follows that∥∥∥ N∑
n=1

γnxn

∥∥∥
L2(Ω;X)

≤ C
( N∑
m=1

‖xm‖q
)1/q

.

Remark 4.5. The proofs in the previous sections are all based on the
mean value property. Therefore, it should be possible to extend all results to
the setting of harmonic functions f : D → X where D ⊂ Rd. For the appli-
cations we have in mind, one needs estimates for holomorphic functions f ,
and therefore we only consider this setting.

4.4. An alternative method. In Theorems 4.1 and 4.2 we have seen
an embedding result for γ-norms and Lp-norms of holomorphic functions un-
der the assumption that X has cotype q. Embeddings of this type for func-
tions which are not necessarily holomorphic, but in suitable Sobolev spaces,
have been obtained in [25]. Below we give a simple proof of W 1,p(R;X) ↪→
γ(R;X) and γ1(R;X) ↪→ Lq(R) under the assumption that X has type p
and cotype q. Combining the above result with Lemma 3.4 yields another
proof of the implications (1)⇒(2) in Theorems 4.1 and 4.2.

Proposition 4.6. Let X be a Banach space, p ∈ [1, 2] and q ∈ [2,∞].
Then:
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(1) The space X has type p if and only if there is a constant C such that
for every u ∈W 1,p(R;X),

‖u‖γ(R;X) ≤ C‖u‖Lp(R;X) + ‖u′‖Lp(R;X).

(2) The space X has cotype q if and only if there is a constant C such
that for every u ∈ γ1(R;X),

‖u‖Lq(R;X) ≤ C‖u‖γ(R;X) + ‖u′‖γ(R;X).

The main ingredient in the proof is a simple randomization lemma taken
from [25, Lemma 2.2].

Lemma 4.7. Let X be a Banach space with type p and cotype q ∈ [2,∞).
Let (S,Σ, µ) be a measure space.

(1) Let (Sn)n≥1 be a sequence of disjoint sets in Σ. Then for every f in
γ(S;X), (∑

n≥1
‖f‖qγ(Sn;X)

)1/q
≤ Cq,X‖f‖γ(S;X).

(2) Let (Sn)n≥1 be a sequence of disjoint sets in Σ such that
⋃
n≥1 Sn

= S. If f ∈ γ(Sn;X) for each n ≥ 1 and (
∑

n≥1 ‖f‖
p
γ(Sn;X))

1/p <∞,

then f ∈ γ(S;X) and

‖f‖γ(S;X) ≤ Cp,X
(∑
n≥1
‖f‖pγ(Sn;X)

)1/p
<∞.

Proof of Proposition 4.6. (2) Assume X has cotype q ∈ [2,∞). Let u ∈
γ1(R+;X). By writing u as the integral of its derivative one sees that u has
a continuous version (see [34]). Let ϕ : R→ R be given by ϕ(x) = 1− x for
x ∈ [0, 1] and ϕ(x) = 0 for x > 1. For each t ∈ R, we can write

u(t) =

t+1�

t

ϕ(x− t)u′(x) dx+

t+1�

t

ϕ′(x− t)u(x) dx.(4.6)

Since ‖ϕ‖L2(0,1) ≤ 1 and ‖ϕ′‖L2(0,1) ≤ 1, we find

‖u(t)‖ ≤ ‖u′‖γ(t,t+1;X) + ‖u‖γ(t,t+1;X).

Taking qth powers on both sides and integrating over t ∈ R, we find that

‖u‖Lq(R;X) ≤
∥∥t 7→ ‖u′‖γ(t,t+1;X)

∥∥
Lq(R;X)

+
∥∥t 7→ ‖u‖γ(t,t+1;X)

∥∥
Lq(R;X)

.
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By Lemma 4.7 with In = (2n, 2n+ 2) and Jn = (2n+ 1, 2n+ 3) for n ∈ Z,

∥∥t 7→ ‖u‖γ(t,t+1;X)

∥∥
Lq(R;X)

≤
(∑
j∈Z

j+1�

j

‖u‖qγ(t,t+1;X) dt
)1/q

≤
( ∞∑
j=0

‖u‖qγ(j,j+2;X)

)1/q
≤
( ∞∑
n∈Z
‖u‖qγ(In;X)

)1/q
+
( ∞∑
n=0

‖u‖qγ(Jn;X)

)1/q
≤ 2Cq,x‖u‖qγ(R;X).

Since the term u′ can be estimated in exactly the same way, we find

‖u‖Lq(R+;X) ≤ 4Cq,x‖u‖γ1(R+;X).(4.7)

To prove the converse, it suffices to apply ‖u‖Lq(R+;X) ≤ C‖u‖γ1(R+;X)

to the function u =
∑n

j=1 ϕjxj , where ϕ : R→ R is given by ϕ(x) = 1−2|x|
for x ∈ [−1/2, 1/2] and zero otherwise, and ϕj(t) = ϕ(t− j).

(1) First assume X has type p. Taking γ-norms for t ∈ (j, j + 1) in (4.6)
we find

‖u‖γ(j,j+1;X) ≤
j+2�

j

(‖ϕ‖L2(t,t+1)‖u′(x)‖+ ‖ϕ′‖L2(t,t+1)‖u(x)‖
)
dx

. ‖u‖W 1,1(j,j+1;X) + ‖u‖W 1,1(j+1,j+2;X).

Taking pth powers, summing over all j ∈ Z, and applying Lemma 4.7, we
find

‖u‖γ(R;X) ≤ Cp,X
(∑
j∈Z
‖u‖p

W 1,1(j,j+1;X)

)1/p
≤ ‖u‖W 1,p(R;X).(4.8)

To see that the embedding implies type p, one can take u =
∑n

j=1 ϕjxj ,
where ϕj is as before.

5. Applications. In this section we present two applications of The-
orems 4.1 and 4.2. Before doing so we briefly introduce the so-called H∞-
calculus of a sectorial operator A.

5.1. Preliminaries on H∞-calculus. For details on the H∞-calculus
we refer the reader to [17, 27]. We repeat the part of the theory which we
need below.

Let σ ∈ (0, π). A linear operator (A,D(A)) on X is called sectorial of
type σ if D(A) is dense in X, A is injective and has dense range, σ(A) ⊆ Σσ,
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and for all σ′ ∈ (σ, π) the set{
z(z −A)−1 : z ∈ C \ {0}, |arg(z)| > σ′

}
is uniformly bounded.

Recall that H∞(Σσ) stands for the space of bounded holomorphic func-
tions on Σσ. Examples of operators with an H∞-calculus include most differ-
ential operators on Lp-spaces with p ∈ (1,∞). Below the H∞-calculus of A
will be applied through square function estimates. Recall that v ∈ H∞0 (Σσ)
if it is in H∞(Σσ) and there exists an ε > 0 such that

|v(z)| ≤ |z|ε

1 + |z|2ε
for z ∈ Σσ.

For a sectorial operator A of angle < σ and v ∈ H∞0 (Σσ), we can define
v(tA) using the Dunford calculus. The operator A is said to have a bounded
H∞-calculus of angle σ if

‖v(A)x‖ ≤ C‖v‖∞‖x‖

for all such v, where C is independent of v.

Assume that A has a bounded H∞-calculus of angle σ. Suppose that
v ∈ H∞0 (Σσ) is nonzero. Then

(5.1) ‖x‖ ≤ C‖t 7→ v(tA)x‖γ(R+,dt/t;X),

where x ∈ X is such that the right-hand side is finite. Furthermore,

(5.2) ‖t 7→ v(tA)x‖γ(R+,dt/t;X) ≤ C‖x‖, x ∈ X,

provided X has finite cotype. Moreover, if the above estimates hold for some
nonzero v ∈ H∞0 (Σσ) with A replaced by e±φiA for some φ > 0 and all x
in a dense subspace of X, then one can also deduce that A has a bounded
H∞-calculus. Proofs of these results can be found in [15] and [26, Section 7].

5.2. Littlewood–Paley–Stein g-functions. In [40] continuous Little-
wood–Paley estimates have been introduced which are now usually referred
to as Littlewood–Paley–Stein g-functions. In [43] one-sided Lp-estimates for
these g-functions are studied in a Banach space setting for the Poisson semi-
group, and in [31] for more general diffusion semigroups. It turns out that
such Lp-estimates are equivalent to martingale type and cotype of the un-
derlying Banach space. For similar results in the Laguerre setting we refer
to [7].

In [18], [22] and [26] the continuous square functions from [40] are gener-
alized to the Banach space valued situation in different ways using γ-norms
(see also [5, 6]).

Below we will combine Theorems 4.1 and 4.2 and (5.1) and (5.2) to
obtain Lp-estimates for certain classes of diffusion operators. This leads to
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a different approach to the estimates obtained in [31] and it is applicable to
a wider class of operators.

We start with the following general Littlewood–Paley–Stein inequality.

Proposition 5.1. Assume X has type p ∈ [1, 2] and cotype q ∈ [2,∞]
and assume that A is sectorial and has a bounded H∞-calculus of angle < φ.
Fix a nonzero f ∈ H∞0 (Σφ). Then for all x ∈ X,

(5.3) ‖t 7→ f(tA)x‖Lq(R+,dt/t;X) . ‖x‖ . ‖t 7→ f(tA)x‖Lp(R+,dt/t;X),

where the second estimate holds whenever the right-hand side is finite.

Proof. If q = ∞, then it suffices to note that ‖f(tA)x‖ ≤ C‖x‖. Next
assume q < ∞. By (5.2) we find ‖t 7→ f(tA)x‖γ(R+,dt/t;X) ≤ ‖x‖. Thus the
first estimate in (5.3) follows from Theorem 4.2(3) with a = 0.

For the second estimate in (5.3) we use a duality argument. Define g ∈
H∞0 (Σσ) by

g(z) = c f(z) with c =

(∞�
0

|f(t)|2 dt
t

)−1
.

Then
∞�

0

f(t)g(t)
dt

t
= 1.

Choose x ∈ X such that the right-hand side of (5.3) is finite and let x∗ ∈
R(A∗)∩D(A∗). Note that A∗ has a bounded H∞-calculus on R(A∗) ∩D(A∗)
(see [27, Appendix A]). Now by an approximation argument (see [17, The-
orem 5.2.6]) one can show that

〈x, x∗〉 =

∞�

0

〈f(tA)x, g(tA)∗x∗〉 dt
t
.

By Hölder’s inequality and the fact that X∗ has cotype p′ (see [11, Propo-
sition 11.10]) we find

|〈x, x∗〉| ≤ ‖t 7→ f(tA)x‖Lp(R+,dt/t;X)‖t 7→ g(tA∗)x∗‖Lp′ (R+,dt/t;X∗)
.

. ‖t 7→ g(tA)x‖Lp(R+,dt/t;X)‖x∗‖,
where in the last step we have applied the result we have already proved in
the cotype case. The required estimate now follows since R(A∗) ∩D(A∗) is
dense in X∗.

Let r ∈ (1,∞) and let (Ω,Σ, µ) be a σ-finite measure space. An operator
A on Lr(Ω) will be called a diffusion operator if it is a sectorial operator of
angle < π/2 and has the following properties:

(1) For every t ≥ 0 and x ∈ Lr(Ω) with f ≥ 0, e−tAx ≥ 0.
(2) For all t ≥ 0, ‖e−tA‖ ≤ 1.
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Now fix a Banach space X. By positivity each operator e−tA has a tensor ex-
tension to a bounded operator T(t) on Lr(Ω;X) (see [14, Theorem V.1.12]),
and in this way T is a strongly continuous semigroup on Lr(Ω;X). Let A
be the generator of T.

For details on UMD spaces we refer to [8, 20, 39].

Theorem 5.2. Let X be a UMD space with type p ∈ [1, 2] and cotype
q ∈ [2,∞]. Let A be a diffusion operator on Lr(Ω) with r ∈ (1,∞) fixed and
let A be its extension to Lr(Ω;X) as above. Choose a nonzero f ∈ H∞0 (Σφ)
with φ > π/2. Then for all x ∈ Lr(Ω;X),

‖t 7→ f(tA)x‖Lr(Ω;Lq(R+,dt/t;X)) . ‖x‖Lr(Ω;X)

. ‖t 7→ f(tA)x‖Lr(Ω;Lp(R+,dt/t;X)).

Proof. By the first part of the proof of [26, Theorem 9.3], A has a
bounded H∞-calculus for every angle σ > π/2. Now fix x ∈ Lr(Ω;X).
Then the function z 7→ f(zA)x is a holomorphic function on a sector Σε
and by [33, Proposition 2.6] and (5.2),

‖t 7→ f(tA)x‖Lr(Ω;γ(R+,dt/t;X))

hr ‖t 7→ f(tA)x‖γ(R+,dt/t;Lr(Ω;X)) . ‖x‖Lr(Ω;X).

By [10, Theorem 1.1] there exists a strongly measurable function ζ :
Ω × Σε → X such that ζ(·, z) = f(zA)x almost everywhere and for every
ω ∈ Ø, z 7→ ζ(ω, z) is holomorphic. Hence applying Theorem 4.2 pointwise
in ω ∈ Ø we find that

‖t 7→ f(tA)x‖Lr(Ω;Lq(R+,dt/t;X))

= ‖ζ‖Lr(Ω;Lq(R+,dt/t;X)) . ‖ζ‖Lr(Ω;γ(R+,dt/t;X))

= ‖t 7→ f(tA)x‖Lr(Ω;γ(R+,dt/t;X)) . ‖x‖Lr(Ω;X).

For the other estimate one can argue similarly to the proof of Propo-
sition 5.1. Indeed, note that every UMD space is reflexive and thus has
the Radon–Nikodym property, and the dual of Lr(Ω;Lp(R+, dt/t;X)) is
Lr
′
(Ω;Lq

′
(R+, dt/t;X

∗)) (see [12, Theorem IV.1] or [20]). Moreover, X∗

has cotype p′ and we can consider A∗ on Lr
′
(Ω;X∗). As before A∗ has an

H∞-calculus when restricted to the closure of D(A∗) ∩R(A∗).

Remark 5.3. Assume the conditions of Theorem 5.2 are satisfied. One
could apply Proposition 5.1 directly to A defined on the space Lr(Ω;X).
As this space has type r ∧ p and cotype r ∨ q, this would yield

‖t 7→ f(tA)x‖Lq∨r(R+,dt/t;Lr(Ω;X))

. ‖x‖Lr(Ω;X) . ‖t 7→ f(tA)x‖Lp∧r(R+,dt/t;Lr(Ω;X)).

However, by Minkowski’s inequality one sees that this estimate is a conse-
quence of Theorem 5.2 as well.
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As an immediate consequence we obtain a Littlewood–Paley–Stein esti-
mate for the subordinated semigroups of A. Recall that A is sectorial of any
angle > π/2. Therefore, for α ∈ (0, 1), Aα is sectorial of any angle < πα/2.
Let Tα(t) = e−tA

α
for t ≥ 0. Note that for α = 1/2 and t ≥ 0,

T 1
2
(t)x =

1

π

∞�

0

e−u√
u
T

(
t

4u

)
x dt

is the abstract Poisson semigroup (see [31] and [17, Example 3.4.6]) associ-
ated to A. Define

gα(z) = zαe−z
α
.

Then gα is in H∞0 (Σφ) for every φ < π/(2α). Moreover, gα(tA)x =

tα d
dtTα(t)x. Thus Theorem 5.2 implies the following:

Corollary 5.4. Under the assumptions of Theorem 5.2, let α ∈ (0, 1).
Then for every x ∈ Lr(Ω;X),

‖t 7→ gα(tA)x‖Lr(Ω;Lq(R+,dt/t;X))

. ‖x‖Lr(Ω;X) . ‖t 7→ gα(tA)x‖Lr(Ω;Lp(R+,dt/t;X)).

Remark 5.5. (i) The above estimate for α = 1/2 was proved for mar-
tingale type p cotype q spaces in [31] under the additional conditions that
A is selfadjoint and T (t) is a contraction on Lr(Ω) for all r ∈ [1,∞] and
T (t)1 = 1 for every t ≥ 0.

(ii) Under the additional assumption that X is a complex interpolation
space of a Hilbert space and a UMD Banach space, one can prove the as-
sertion of Theorem 5.2 for every f ∈ H∞0 (Σφ), where φ < π/2 depends on
X and A (see [18, Theorem 9.7] and [26, Theorem 9.3]).

(iii) If A is not injective, then one can still prove results such as Theorem
5.2 and Corollary 5.4. Indeed, the reflexive space Lr(Ω;X) is a direct sum
of the kernel of A and R(A) (see [27, Appendix A]) and the restriction of A
to R(A) satisfies the required conditions. The estimates of Theorem 5.2 and
Corollary 5.4 will now hold with ‖x‖Lr(Ω;X) replaced by ‖x − Px‖Lr(Ω;X),
where P is the projection onto the kernel of A.

5.3. Embedding of interpolation spaces. In this final section we
consider embeddings of the form

(X0, X1)θ,p ↪→ [X0, X1]θ ↪→ (X0, X1)θ,q,(5.4)

where 1 ≤ p ≤ q ≤ ∞ and θ ∈ (0, 1). Here (·, ·)θ,r denotes the real interpo-
lation space with parameter r, and [·, ·]θ denotes the complex interpolation
space. We refer to [4] and [42] for a detailed treatment of the subject. The
embedding (5.4) always holds for p = 1 and q = ∞ (see [42]). Under the
assumption that Xj has Fourier type pj ∈ [1, 2] for j = 0, 1, in [36] Peetre



Estimates for vector-valued holomorphic functions 95

has improved the embedding (5.4) to p ∈ [1, 2] satisfying 1−θ
p0

+ θ
p1

= 1
p and

q = p′ (see also [20]).

Recall the following facts:

• Every space has Fourier type 1.
• A Hilbert space has Fourier type 2.
• Fourier type p implies Fourier type q if 1 ≤ q ≤ p ≤ 2.
• Lr has Fourier type min{r, r′}.
• Fourier type p implies type p and cotype p′.

The result of Peetre is optimal in the sense that one cannot take a better
value of p and q in general. We will improve Peetre’s result in the case
X1 = D(A), where A is a certain sectorial operator on X.

Recall that for θ∈(0, 1) and p∈ [1,∞] an equivalent norm on (X,D(A))θ,p
is given by (see [42, Theorem 1.14.3])

(5.5) ‖x‖(X,D(A))θ,p h ‖x‖+ ‖t 7→ t−θw(tA)‖Lp(R+,dt/t;X),

where w(z) = z(1+z)−1. If A is invertible then the term ‖x‖ can be omitted
from the above expressions.

Theorem 5.6. Let X be a Banach space with type p ∈ [1, 2] and cotype
q ∈ [2,∞]. Assume A has a bounded H∞-calculus of some angle σ ∈ (0, π).
Then for all θ ∈ (0, 1),

(X,D(A))θ,p ↪→ D(Aθ) ↪→ (X,D(A))θ,q,

(X,D(A))θ,p ↪→ [X,D(A)]θ ↪→ (X,D(A))θ,q.

If A has a bounded H∞-calculus it also has bounded imaginary powers,
and therefore D(Aθ) = [X,D(A)]θ (see [17, 6.6.9] and [42, 1.15.3]). Theorem
5.6 proves (5.4) under type and cotype assumptions, which in this special
but important case improves the result of Peetre (see Example 5.7).

We now turn to the proof of Theorem 5.6. Replacing A by A + 1 if
necessary, we may assume A is invertible and ‖(λ− A)−1‖ ≤ M(1 + |λ|)−1
for all λ /∈ Σσ. This does not influence the interpolation spaces and fractional
domain spaces.

Proof of Theorem 5.6. As we already noticed that D(Aθ) = [X,D(A)]θ,
it suffices to prove the embedding for D(Aθ). We first make a general obser-
vation. Let x ∈ D(A). Let v(z) = z1−θ(1+z)−1. Then v(zA)y = z−θw(zA)x,
where y = Aθx and w(z) = z(1 + z)−1 is as before. Observe that for
r ∈ [1,∞), (5.5) yields

‖v(tA)y‖Lr(R+,dt/t;X) h ‖x‖DA(θ,r).
To prove the assertion of the theorem it suffices to consider q < ∞, since
for q =∞ the result is a special case of [42, 1.15.2]. In the remaining cases,
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by density it suffices to show ‖x‖DA(θ,q) . ‖y‖ ≤ ‖x‖DA(θ,p) for x ∈ D(A)

and y = Aθx (see [42, 1.6.2 and 1.15]).
Combining the above observation with Proposition 5.1 we find

‖x‖DA(θ,q) h ‖v(tA)y‖Lq(R+,dt/t;X) . ‖y‖ . ‖v(tA)y‖Lp(R+,dt/t;X)

h ‖x‖DA(θ,p).
As an illustration we apply Theorem 5.6 to the case of Sobolev spaces and

compare the embedding obtained with the result one would get if Fourier
type was used instead.

Example 5.7. Let X = Lr(Rd) with r ∈ (1,∞) and A = ∆ with D(A)
= W 2,r(Rd). Then A has a bounded H∞-calculus. Fix θ ∈ (0, 1). It follows
from [42, 2.4.2] that D(Aθ) = [X,D(A)]θ = Hr,2θ(Rd) and (X,D(A))θ,p =
B2θ
r,p(Rd).

(i) In the case r ∈ [2,∞), X has type 2 and cotype r, and Theorem 5.6
yields

(5.6) B2θ
r,2(Rd) ↪→ Hr,2θ(Rd) ↪→ B2θ

r,r(Rd).
It is known that the microscopic coefficients 2 and r cannot be improved.

(ii) In the case r ∈ (1, 2], X has type r and cotype 2, and Theorem 5.6
yields

(5.7) B2θ
r,r(Rd) ↪→ Hr,2θ(Rd) ↪→ B2θ

r,2(Rd).
Also in this case it is known that the microscopic parameters r and 2 cannot
be improved.

If instead one uses Fourier type, one only obtains B2θ
r,r′(R

d) ↪→ Hr,2θ(Rd)
on the left-hand side of (5.6) and Hr,2θ(Rd) ↪→ B2θ

r,r′(R
d) on the right-hand

side of (5.7).

The results of this section lead to the following natural question:

Problem 5.8. Given an interpolation couple (X0, X1) and p ∈ (1, 2]
and q ∈ [2,∞). Prove or disprove the following:

(i) If X0 and X1 both have type p ∈ (1, 2], then

(X0, X1)θ,p ↪→ [X0, X1]θ.

(ii) If X0 and X1 both have cotype q ∈ [2,∞), then

[X0, X1]θ ↪→ (X0, X1)θ,q.

More generally, one can ask about the same result if instead Xj has type
pj and 1

p = 1−θ
p0

+ θ
p1

(and similarly in the cotype case).

Remark 5.9. Replacing the complex interpolation method (see [24, 41])
by the so-called Rademacher interpolation method 〈·, ·〉θ, one can prove the
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embedding in Problem 5.8 if Xj has type pj and cotype qj and

1− θ
p0

+
θ

p1
=

1

p
and

1− θ
q0

+
θ

q1
=

1

q
.

The Rademacher interpolation method differs from the complex method
in general. Indeed, for an almost R-sectorial operator A it is known that
if D(Aθ) = 〈X,D(A)〉θ and X is B-convex (nontrivial type), then A has
an H∞-calculus (see [24, Corollary 7.7]). Since there exists an almost R-
sectorial operator A on Lp(R) with bounded imaginary powers but without
a bounded H∞-calculus (see [27, Example 10.17]), it follows that for this
operator

〈X,D(A)〉θ 6= D(Aθ) = [X,D(A)]θ,

where the last identity follows from [42, 1.15.3].

On the other hand, if A has an H∞-calculus, the Rademacher interpo-
lation and complex method indeed coincide (see [24, Theorem 7.4]), and
therefore Theorem 5.6 can alternatively be derived from [41, Theorem 6.1].
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