On some dilation theorems for positive definite operator valued functions

by
Flavius Pater and Tudor Bînzar (Timişoara)

Abstract

The aim of this paper is to prove dilation theorems for operators from a linear complex space to its Z-anti-dual space. The main result is that a bounded positive definite function from a $*$-semigroup Γ into the space of all continuous linear maps from a topological vector space X to its Z-anti-dual can be dilated to a *-representation of Γ on a Z-Loynes space. There is also an algebraic counterpart of this result.

1. Introduction. It is well known that a function on a *-semigroup Γ into the C^{*}-algebra of all bounded linear operators on a given Hilbert space, that is positive definite, can be dilated to a $*$-representation of Γ on a larger Hilbert space (see the Principal Theorem of [SN]).

Probability theory on Banach spaces triggered the development of dilation theory of operator functions in non-Hilbert spaces [GW2]. The close connection between dilation theory and the theory of second order stochastic processes was exhibited in [W]. In 1976, J. Górniak and A. Weron GW1] proved an analogue of the Principal Theorem of Sz.-Nagy for functions with values in the space of all anti-linear bounded operators from a complex normed space to its topological dual. In the same paper, an algebraic version of this result was also given. Similar approaches and applications were presented in [GW2], It], LD, GL] and [K].

Another analogue of the above mentioned dilation theorem was given by R. M. Loynes [Lo1] for operators acting on a VH-space, along with many important results on the same issue [Lo2], Lo3]. Later on, Cobanjan and Weron [WW] proved that the space $\overline{\mathcal{L}}(B, \mathcal{H})$ endowed with the inner product $[\cdot, \cdot]$ is a Loynes space (for more examples see [IS] and [S]).

The results of $[\mathrm{CW}]$ are a variation of the original Aronszajn construction [A], considering the Aronszajn kernel $K:(S \times \mathcal{A}) \times(S \times \mathcal{A}) \rightarrow \mathcal{B}$, where

[^0]S is just a set and \mathcal{A} and \mathcal{B} are C^{*}-algebras, given by
$$
K\left((t, a),\left(s, a^{\prime}\right)\right)=\mathbb{K}(t, s)\left[a^{\prime} * a\right] .
$$

In 2005, D. Gaşpar and P. Gaşpar [GP] extended the reproducing kernel Hilbert space technique of A to more general structures such as Loynes spaces and \mathcal{D}_{2}-normal $\mathcal{B}(\mathcal{X})$-modules.

The results of our paper, partly announced in BPL, are also variations of the original Aronszajn construction in the case of a kernel $K:(X \times \Gamma) \times$ $(X \times \Gamma) \rightarrow Z$, where X is a linear space or a topological linear space, Γ is a *-semigroup and Z is an admissible space in the sense of Loynes. Our paper extends the fundamental theorem of Loynes [Lo1, Section 3, Theorem 3] to the case where the set of continuous linear operators in a Loynes Z-space is replaced by $\mathcal{C}\left(X, X_{Z}^{*}\right)$, the set of continuous linear maps from a topological space X to its Z-anti-dual. In the proof we use a version of the CauchySchwarz inequality for seminorms in a Loynes space, which is significantly different from the Loynes space case Lo1.

The main result of the article may be applied to the characterization of spectral bi-measures and to the stationary dilation of q-dimensional V-bounded processes (see \mathbb{T} and $[\mathbf{W}$).
2. Preliminaries. In this section we mention some notation and known notions and results from GP.

Recall first that a complete locally convex space Z is called admissible in the sense of Loynes if there exist a closed convex cone Z_{+}in Z with $Z_{+} \cap\left(-Z_{+}\right)=\{0\}$ and an involution "今" on Z (conjugate linear and idempotent) such that each element of Z_{+}is self-adjoint, the topology of Z is compatible with the partial order in Z induced by Z_{+}, and decreasing sequences in Z_{+}are convergent [Lo1, pp. 11].

In the following, Z will be an admissible space in the sense of Loynes.
It is known that the topology of Z can be defined by a sufficient and directed family, say \mathcal{P}_{Z}, of monotone Minkowski seminorms.

For any given set Λ, a function $K: \Lambda \times \Lambda \rightarrow Z$ is said to be a Z-valued kernel on Λ.

A Z-valued kernel on Λ will be called weakly positive definite [GP] if for each $n \in \mathbb{N}^{*},\left\{c_{1}, \ldots, c_{n}\right\} \subset \mathbb{C}$ and $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \Lambda$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \bar{c}_{j} K\left(\lambda_{i}, \lambda_{j}\right) \in Z_{+} \tag{1}
\end{equation*}
$$

A locally convex space \mathcal{H} is called a pre-Loynes Z-space if it is endowed with a Z-valued inner product (called Gramian)

$$
\mathcal{H} \times \mathcal{H} \ni(h, k) \mapsto[h, k] \in Z
$$

which has the properties
$[h, h] \geq 0, \quad[h, h]=0$ implies $h=0$,
$\left[h_{1}+h_{2}, h\right]=\left[h_{1}, h\right]+\left[h_{2}, h\right]$,
$\left(G_{3}\right)$
$[\lambda h, k]=\lambda[h, k]$,
$\left(G_{4}\right)$
$[h, k]^{\diamond}=[k, h]$,
for all $h, k, h_{1}, h_{2} \in \mathcal{H}$ and $\lambda \in \mathbb{C}$ (where the positivity in Z is considered) and the topology in \mathcal{H} is the weakest one for which the mapping $\mathcal{H} \ni h \mapsto$ $[h, h] \in Z$ is continuous.

If \mathcal{H} is complete in this topology, it will be called a Loynes Z-space [Lo1].
A pre-Loynes Z-space \mathcal{H} consisting of Z-valued functions on Λ admits a reproducing kernel or is a reproducing kernel pre-Loynes Z-space if there exists a Z-valued kernel K satisfying the conditions

$$
\begin{equation*}
K(\lambda, \cdot) \in \mathcal{H} \quad \text { for any } \lambda \in \Lambda \tag{IP}
\end{equation*}
$$

$$
\begin{equation*}
h(\lambda)=[h, K(\lambda, \cdot)] \quad \text { for all } \lambda \in \Lambda \text { and } h \in \mathcal{H} . \tag{RP}
\end{equation*}
$$

The kernel K is called a reproducing kernel for \mathcal{H}, and $(I P),(R P)$ are called the inclusion property and the reproducing property, respectively (see [GP]).

Now, let X and Y be complex linear spaces. Then $\mathcal{L}(X, Y)$ denotes the class of all linear operators from X to Y. For a complex linear space X, the algebraic Z-anti-dual X_{Z}^{\prime} is the set of all anti-linear operators from X to Z. For an operator $A \in \mathcal{L}(X, F)$, where F is a pre-Loynes Z-space, its Z-algebraic adjoint operator $A^{\prime} \in \mathcal{L}\left(F, X_{Z}^{\prime}\right)$ is defined by

$$
\left(A^{\prime} f\right)(x)=[f, A x]_{F}, \quad f \in F, x \in X
$$

where $[\cdot, \cdot]_{F}$ is the Gramian of F.
If F is a Loynes space and $A \in \mathcal{L}(F, F)$, then an operator $B \in \mathcal{L}(F, F)$ with the property

$$
\left[A f_{1}, f_{2}\right]_{F}=\left[f_{1}, B f_{2}\right]_{F}
$$

is called the adjoint of A and will be denoted by A^{*}.
An operator $U \in \mathcal{L}\left(F_{1}, F_{2}\right)$, where F_{1}, F_{2} are pre-Loynes Z-spaces, is said to be unitary if $U\left(F_{1}\right)=F_{2}$ and

$$
[U f, U g]_{F_{2}}=[f, g]_{F_{1}}
$$

for all $f, g \in F_{1}$.
If X is a complex topological linear space, then its topological Z-anti-dual X_{Z}^{*} is the set of all continuous anti-linear operators from X to Z.

On X_{Z}^{*} the uniform convergence topology is considered, that is, a net $\left(T_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of operators from X_{Z}^{*} converges uniformly to the null-operator 0 iff for any 0-neighborhood V in Z there exists $\alpha_{0} \in \mathcal{A}$ such that, for each $\alpha \geq \alpha_{0}, T_{\alpha} x \in V$ for all $x \in X$.

If X and Y are topological linear spaces, we denote by $\mathcal{C}(X, Y)$ the space of all continuous linear operators from X to Y.

Let Γ be a $*$-semigroup, that is, a semigroup with unit e and involution "*" satisfying $e^{*}=e, s^{* *}=s$, and $(s t)^{*}=t^{*} s^{*}$ for all $s, t \in \Gamma$.

Following [GW1, let \mathcal{X} be the set of all functions $x=\left(x_{s}\right): \Gamma \rightarrow X$ with finite support. A family $\left\{T_{s}\right\}_{s \in \Gamma}$ of functions from $\mathcal{L}\left(X, X_{Z}^{\prime}\right)$ indexed by the $*$-semigroup Γ is called positive definite if

$$
\begin{equation*}
\sum_{s, t \in \Gamma}\left(T_{s^{*} t} x_{t}\right)\left(x_{s}\right) \geq 0 \tag{2}
\end{equation*}
$$

for all $\left(x_{s}\right)_{s \in \Gamma} \in \mathcal{X}$.
We recall a version of the classical Cauchy-Schwarz inequality, in terms of seminorms, in a pre-Loynes space.

If \mathcal{H} is a pre-Loynes Z-space and \mathcal{P}_{Z} is a sufficient directed set of monotone seminorms defining the topology of Z, then

$$
p([h, k]) \leq 2(p([h, h]))^{1 / 2}(p([k, k]))^{1 / 2}
$$

for any $h, k \in \mathcal{H}$ and any $p \in \mathcal{P}_{Z}$.
3. A characterization of $\mathcal{L}\left(X, X_{Z}^{\prime}\right)$-valued positive definite families. The theorem below is an algebraic analogue of Górniak and Weron's result [GW1].

Theorem 3.1. Let X be a complex linear space with algebraic Z-antidual space X_{Z}^{\prime}. If $\left\{T_{s}\right\}_{s \in \Gamma} \subset \mathcal{L}\left(X, X_{Z}^{\prime}\right)$ is a family indexed by a*-semigroup Γ satisfying
(i) $\left(T_{s} x\right)(y)=\left(T_{s^{*}} y\right)(x)^{\diamond}$ for all $x, y \in X$ and $s \in \Gamma$,
(ii) $\left\{T_{s}\right\}_{s \in \Gamma}$ is positive definite,
then there exist a pre-Loynes Z-space F and a function $D: \Gamma \rightarrow \mathcal{L}(F, F)$ with the following properties:
(•) $\quad D_{e}=I, \quad D_{s t}=D_{s} D_{t}, \quad D_{s}^{*}=D_{s^{*}}, \quad s, t \in \Gamma ;$
there exists an operator $A \in \mathcal{L}(X, F)$ such that
(••) $\quad T_{s}=A^{\prime} D_{s} A, \quad s \in \Gamma$;
and the space F is minimal in the sense that it is generated by elements of the form $D_{s} A x$ for $x \in X$ and $s \in \Gamma$.

Moreover:
1°. The space F is uniquely determined up to unitary equivalence, i.e. if $T_{s}=A_{1}^{\prime} D_{s}^{1} A_{1}, s \in \Gamma$, where $D^{1}: \Gamma \rightarrow \mathcal{L}\left(F_{1}, F_{1}\right)$ satisfies $(\bullet), F_{1}$ is a minimal pre-Loynes Z-space and $A_{1} \in \mathcal{L}\left(X, F_{1}\right)$, then there exists a unitary operator $U: F_{1} \rightarrow F$ such that

$$
A=U A_{1}, \quad U D_{s}^{1}=D_{s} U, \quad s \in \Gamma .
$$

2°. If $T_{s \alpha t}=T_{s \beta t}+T_{s \gamma t}$ for some fixed α, β, γ, and all s, t in Γ, then $D_{\alpha}=D_{\beta}+D_{\gamma}$.
Proof. The argument is like that used to prove Sz.-Nagy's original theorem [SN].

Let $\Lambda=\Gamma \times X$. We define $K_{T}: \Lambda \times \Lambda \rightarrow Z$ by

$$
K_{T}(\lambda, \mu)=\left(T_{t^{*} s} x\right)(y)
$$

where $\lambda=(s, x), \mu=(t, y), s, t \in \Gamma, x, y \in X$.
First we will show that K_{T} is a weak Z-valued positive definite kernel. Indeed, let $c_{1}, \ldots, c_{n} \in \mathbb{C}, \lambda_{1}, \ldots, \lambda_{n} \in \Lambda, \lambda_{i}=\left(s_{i}, x_{i}\right), i=\overline{1, n}$. We have

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \bar{c}_{j} K_{T}\left(\lambda_{i}, \lambda_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \bar{c}_{j}\left(T_{s_{j}^{*} s_{i}} x_{i}\right)\left(x_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left(T_{s_{j}^{*} s_{i}} c_{i} x_{i}\right)\left(c_{j} x_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(T_{s_{j}^{*} s_{i}} k_{i}\right)\left(k_{j}\right) \geq 0
\end{aligned}
$$

from the positivity of T.
Next, define

$$
F=\left\{\sum_{l=1}^{n} c_{l} K_{T}\left(\lambda_{l}, \cdot\right): n \in \mathbb{N}^{*}, c_{l} \in \mathbb{C}, \lambda_{l} \in \Lambda, l=\overline{1, n}\right\}
$$

We will prove that F is a pre-Loynes Z-space with Gramian

$$
\left[f_{1}, f_{2}\right]_{F}=\sum_{j, l=1}^{n} c_{j}^{1} \bar{c}_{l}^{2} K_{T}\left(\lambda_{j}^{1}, \lambda_{l}^{2}\right)
$$

for $f_{1}=\sum_{j=1}^{n} c_{j}^{1} K_{T}\left(\lambda_{j}^{1}, \cdot\right), f_{2}=\sum_{l=1}^{n} c_{l}^{2} K_{T}\left(\lambda_{l}^{2}, \cdot\right)$.
Obviously F is a complex linear space with the usual operations.
The first part of $\left(G_{1}\right)$ follows from the fact that K_{T} is a weak Z-valued positive definite kernel and from the definition of $[\cdot, \cdot]_{F}$. Conditions $\left(G_{2}\right)$ and $\left(G_{3}\right)$ easily result from the definition of $[\cdot, \cdot]_{F}$. We prove $\left(G_{4}\right)$:

$$
\begin{aligned}
{\left[f_{2}, f_{1}\right]_{F}^{\diamond} } & =\left(\sum_{j, l=1}^{n} c_{l}^{2} \bar{c}_{j}^{1} K_{T}\left(\lambda_{l}^{2}, \lambda_{j}^{1}\right)\right)^{\diamond}=\sum_{j, l=1}^{n} c_{j}^{1} \bar{c}_{l}^{2}\left[\left(T_{s_{j}^{*} s_{l}} x_{l}\right)\left(x_{j}\right)\right]^{\diamond} \\
& =\sum_{j, l=1}^{n} c_{j}^{1} \bar{c}_{l}^{2}\left(T_{s_{l}^{*} s_{j}} x_{j}\right)\left(x_{l}\right)=\sum_{j, l=1}^{n} c_{j}^{1} \bar{c}_{l}^{2} K_{T}\left(\lambda_{j}^{1}, \lambda_{l}^{2}\right)=\left[f_{1}, f_{2}\right]_{F}
\end{aligned}
$$

Let \mathcal{P}_{Z} be a sufficient set of monotone seminorms that generates the topology in Z. We will verify that F has K_{T} as reproducing kernel. Condition $(I P)$ comes from the definition of the kernel. To show $(R P)$, let

$$
h=\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}, \cdot\right) \in F, \quad \lambda_{j} \in \Lambda, c_{j} \in \mathbb{C}, n \in \mathbb{N}^{*}
$$

Then

$$
\left[h, K_{T}(\lambda, \cdot)\right]_{F}=\left[\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}, \cdot\right), K_{T}(\lambda, \cdot)\right]_{F}=\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}, \lambda\right)=h(\lambda)
$$

We now prove the second part of $\left(G_{1}\right)$, using the reproducing property. Assume $[h, h]_{F}=0$. From

$$
p(h(\lambda)) \leq 2\left(p[h, h]_{F}\right)^{1 / 2} \cdot\left(p\left[K_{T}(\lambda, \cdot), K_{T}(\lambda, \cdot)\right]_{F}\right)^{1 / 2}, \quad \lambda \in \Lambda
$$

since \mathcal{P}_{Z} is a sufficient set of seminorms in Z, it follows that $h(\lambda)=0$ for all $\lambda \in \Lambda$, i.e. $h=0$.

We have shown so far that $[\cdot, \cdot]_{F}$ is a Gramian, so F is a pre-Loynes Z-space.

Define $A: X \rightarrow F$ by

$$
A x=K_{T}\left(\lambda_{x}, \cdot\right) \in F, \quad \lambda_{x}=(e, x) \in \Lambda
$$

Let $\mu=(t, y) \in \Lambda$. We prove that A is linear:

$$
\begin{aligned}
{\left[A\left(c_{1} x_{1}+c_{2} x_{2}\right)\right](\mu) } & =K_{T}\left(\lambda_{c_{1} x_{1}+c_{2} x_{2}}, \mu\right)=\left[T_{t^{*} e}\left(c_{1} x_{1}+c_{2} x_{2}\right)\right](y) \\
& =c_{1}\left(T_{t^{*} e} x_{1}\right)(y)+c_{2}\left(T_{t^{*} e} x_{2}\right)(y) \\
& =c_{1} K_{T}\left(\lambda_{x_{1}}, \mu\right)+c_{2} K_{T}\left(\lambda_{x_{2}}, \mu\right)=\left(c_{1} A x_{1}+c_{2} A x_{2}\right)(\mu)
\end{aligned}
$$

for all $c_{1}, c_{2} \in \mathbb{C}, x_{1}, x_{2} \in X$.
For the existence of A^{\prime}, let $k \in F$ and

$$
k=\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}, \cdot\right), \quad c_{j} \in \mathbb{C}, \lambda_{j}=\left(s_{j}, x_{j}\right) \in \Lambda, j=\overline{1, n}, n \in \mathbb{N}^{*}
$$

Let $x \in X$. We get

$$
\begin{aligned}
\left(A^{\prime} k\right)(x) & =[k, A x]_{F}=\left[\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}, \cdot\right), K_{T}\left(\lambda_{x}, \cdot\right)\right]_{F}=\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}, \lambda_{x}\right) \\
& =\sum_{j=1}^{n} c_{j}\left(T_{e^{*} s_{j}} x_{j}\right)(x)=\sum_{j=1}^{n} c_{j}\left(T_{s_{j}} x_{j}\right)(x)
\end{aligned}
$$

Therefore $A^{\prime} k=\sum_{j=1}^{n} c_{j} T_{s_{j}} x_{j}$.
We define a representation $D: \Gamma \rightarrow \mathcal{L}(F, F)$ by $D(s)=D_{s}$ with

$$
D_{s}\left(\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}, \cdot\right)\right)=\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}^{s}, \cdot\right), \quad s \in \Gamma
$$

where $\lambda_{j}=\left(s_{j}, x_{j}\right) \in \Lambda$, and $\lambda_{j}^{s}=\left(s s_{j}, x_{j}\right)$.
It is obvious that $D_{s} \in \mathcal{L}(F, F)$. Set $k_{\nu}=\sum_{j=1}^{n} c_{j}^{\nu} K_{T}\left(\lambda_{j}^{\nu}, \cdot\right), \lambda_{j}^{\nu}=\left(s_{j}^{\nu}, x_{j}^{\nu}\right)$, $\nu=\overline{1,2}, j=\overline{1, n}, n \in \mathbb{N}^{*}$. We obtain

$$
\begin{aligned}
{\left[D_{s} k_{1}, k_{2}\right]_{F} } & =\left[\sum_{j=1}^{n} c_{j}^{1} K_{T}\left(\left(\lambda_{j}^{1}\right)^{s}, \cdot\right), \sum_{l=1}^{n} c_{l}^{2} K_{T}\left(\lambda_{l}^{2}, \cdot\right)\right]_{F} \\
& =\sum_{j, l=1}^{n} c_{j}^{1} \bar{c}_{l}^{2} K_{T}\left(\left(\lambda_{j}^{1}\right)^{s}, \lambda_{l}^{2}\right)=\sum_{j, l=1}^{n} c_{j}^{1} c_{l}^{2}\left(T_{\left(s_{l}^{2}\right)^{*} s s_{j}^{1}} x_{j}^{1}\right)\left(x_{l}^{2}\right) \\
& =\sum_{j, l=1}^{n} c_{j}^{1} \bar{c}_{l}^{2} K_{T}\left(\lambda_{j}^{1},\left(\lambda_{l}^{2}\right)^{s^{*}}\right)=\left[k_{1}, k_{2}^{*}\right]_{F}
\end{aligned}
$$

where $k_{2}^{*}=\sum_{l=1}^{n} c_{l}^{2} K_{T}\left(\left(\lambda_{l}^{2}\right)^{s^{*}}, \cdot\right)$. This implies that $D_{s}^{*} k_{2}=k_{2}^{*}=D_{s^{*}} k_{2}$. In the same manner, setting $s=e$, we obtain $D_{e}=I$.

Let once again $k=\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}, \cdot\right) \in F, c_{j} \in \mathbb{C}, \lambda_{j}=\left(s_{j}, x_{j}\right) \in \Lambda$, $j=\overline{1, n}, n \in \mathbb{N}^{*}, \mu=(t, y) \in \Lambda$. For $s, t \in \Gamma$, we have

$$
\left(D_{s} D_{t}\right)(k)=D_{s}\left(\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}^{t}, \cdot\right)\right)=\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}^{s t}, \cdot\right)=D_{s t}(k)
$$

Thus $D_{s t}=D_{s} D_{t}$ for all $s, t \in \Gamma$.
We prove (\bullet •):

$$
\left(A^{\prime} D_{s} A\right)(x)=A^{\prime} D_{s} K_{T}\left(\lambda_{x}, \cdot\right)=A^{\prime} K_{T}\left(\lambda_{x}^{s}, \cdot\right)=T_{s} x
$$

Since

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}, \cdot\right)=\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{x_{j}}^{s_{j}}, \cdot\right)=\sum_{j=1}^{n} c_{j} D_{s_{j}} A x_{j}, \tag{3}
\end{equation*}
$$

the minimality condition is verified.
For 1°, let

$$
D: \Gamma \rightarrow \mathcal{L}(F, F) \quad \text { and } \quad D^{1}: \Gamma \rightarrow \mathcal{L}\left(F_{1}, F_{1}\right)
$$

satisfy condition (\bullet), and let $A \in \mathcal{L}(X, F)$ and $A_{1} \in \mathcal{L}\left(X, F_{1}\right)$ be such that

$$
A^{\prime} D_{s} A=T_{s}=A_{1}^{\prime} D_{s}^{1} A_{1}
$$

where the linear Z-valued spaces F, F_{1} are minimal, i.e. F and F_{1} are generated by elements of the form $D_{s} A x$ and $D_{s}^{1} A_{1} x$ respectively. If $f_{1} \in F_{1}$, then $f_{1}=\sum_{j=1}^{n} c_{j} D_{s_{j}}^{1} A_{1} x_{j}$ and we set

$$
\begin{equation*}
U f_{1}=\sum_{j=1}^{n} c_{j} D_{s_{j}} A x_{j} . \tag{4}
\end{equation*}
$$

Thus $U \in \mathcal{L}\left(F_{1}, F\right)$ and $U\left(F_{1}\right)=F$.
Taking $g_{1}=\sum_{l=1}^{n} d_{l} D_{t_{l}} A_{1} y_{l} \in F_{1}, \mu_{l}=\left(t_{l}, y_{l}\right) \in \Lambda$ and using (3) and the properties of D, we obtain

$$
\begin{aligned}
{\left[U f_{1}, U g_{1}\right]_{F} } & =\left[\sum_{j=1}^{n} c_{j} D_{s_{j}} A x_{j}, \sum_{l=1}^{n} d_{l} D_{t_{l}} A y_{l}\right]_{F} \\
& =\left[\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}, \cdot\right), \sum_{l=1}^{n} d_{l} K_{T}\left(\mu_{l}, \cdot\right)\right]_{F} \\
& =\sum_{j, l=1}^{n} c_{j} \bar{d}_{l} K_{T}\left(\lambda_{j}, \mu_{l}\right)=\sum_{j, l=1}^{n} c_{j} \bar{d}_{l}\left(T_{t_{l}^{*} s_{j}} x_{j}\right)\left(y_{l}\right) \\
& =\sum_{j, l=1}^{n} c_{j} \bar{d}_{l}\left(A_{1}^{\prime} D_{t_{l}^{*} s_{j}}^{1} A_{1} x_{j}\right)\left(y_{l}\right)=\sum_{j, l=1}^{n} c_{j} \bar{d}_{l}\left[D_{t_{l}^{*} s_{j}}^{1} A_{1} x_{j}, A_{1} y_{l}\right]_{F_{1}} \\
& =\sum_{j, l=1}^{n} c_{j} \bar{d}_{l}\left[\left(D_{t_{l}}^{1}\right)^{*} D_{s_{j}}^{1} A_{1} x_{j}, A_{1} y_{l}\right]_{F_{1}} \\
& =\left[\sum_{j=1}^{n} c_{j} D_{s_{j}}^{1} A_{1} x_{j}, \sum_{l=1}^{n} d_{l} D_{t_{l}}^{1} A_{1} y_{l}\right]_{F_{1}}=\left[f_{1}, g_{1}\right]_{F_{1}}
\end{aligned}
$$

Hence U is unitary. Moreover, by (4),

$$
U A_{1} x=U\left(D_{e}^{1} A_{1} x\right)=D_{e} A x=A x, \quad x \in X
$$

and

$$
\begin{aligned}
U D_{s}^{1} f_{1} & =U D_{s}^{1}\left(\sum_{j=1}^{n} c_{j} D_{s_{j}}^{1} A_{1} x_{j}\right)=U\left(\sum_{j=1}^{n} c_{j} D_{s s_{j}}^{1} A_{1} x_{j}\right) \\
& =\sum_{j=1}^{n} c_{j} D_{s s_{j}} A x_{j}=D_{s}\left(\sum_{j=1}^{n} c_{j} D_{s_{j}} A x_{j}\right)=D_{s} U f_{1}, \quad f_{1} \in F_{1}
\end{aligned}
$$

In order to show 2°, suppose that $T_{s \alpha t}=T_{s \beta t}+T_{s \gamma t}$ for some $\alpha, \beta, \gamma \in \Gamma$ fixed and for all $s, t \in \Gamma$. Take $k \in F, k=\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}, \cdot\right), \lambda_{j}=\left(s_{j}, x_{j}\right)$, $j=\overline{1, n}$ and $\mu=(t, y) \in \Lambda$. We have

$$
\begin{aligned}
{\left[\left(D_{\beta}+D_{\gamma}\right)(k)\right](\mu) } & =\left(D_{\beta} k+D_{\gamma} k\right)(\mu)=\sum_{j=1}^{n} c_{j}\left[K_{T}\left(\lambda_{j}^{\beta}, \mu\right)+K_{T}\left(\lambda_{j}^{\gamma}, \mu\right)\right] \\
& =\sum_{j=1}^{n} c_{j}\left(T_{t^{*} \beta s_{j}} x_{j}\right)(y)+\sum_{j=1}^{n} c_{j}\left(T_{t^{*} \gamma s_{j}} x_{j}\right)(y) \\
& =\sum_{j=1}^{n} c_{j}\left(T_{t^{*} \alpha s_{j}} x_{j}\right)(y)=\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}^{\alpha}, \mu\right)=\left(D_{\alpha} k\right)(\mu)
\end{aligned}
$$

Thus 2° is verified and the proof of Theorem 3.1 is complete.
The converse of Theorem 3.1 is also valid.

Theorem 3.2. Let Γ be a *-semigroup, let X be a complex linear space and let Z be an admissible space in Loynes sense. If there exist a linear Z-valued space F, a function $D: \Gamma \rightarrow \mathcal{L}(F, F)$ which satisfies (\bullet) and an operator $A \in \mathcal{L}(X, F)$ such that $T_{s}=A^{\prime} D_{s} A, s \in \Gamma$, then the family $\left\{T_{s}\right\}_{s \in \Gamma}$ has properties (i) and (ii) from Theorem 3.1.

Proof. Let $x, y \in X$ and $s \in \Gamma$. Using the definition of A^{\prime} and the third of relations (\bullet), we have

$$
\begin{aligned}
\left(T_{s^{*}} y\right)(x)^{\diamond} & =\left(A^{\prime} D_{s^{*}} A y\right)(x)^{\diamond}=\left[D_{s^{*}} A y, A x\right]_{F}^{\diamond}=\left[A y, D_{s} A x\right]_{F}^{\diamond} \\
& =\left[D_{s} A x, A y\right]_{F}=\left(A^{\prime} D_{s} A x\right)(y)=\left(T_{s} x\right)(y),
\end{aligned}
$$

proving (i).
Now let $\left(x_{s}\right)_{s \in \Gamma} \in \mathcal{X}$. Using the second and the third of relations ((\bullet), we obtain

$$
\begin{aligned}
\sum_{s, t \in \Gamma}\left(T_{s^{*} t} x_{t}\right)\left(x_{s}\right) & =\sum_{s, t \in \Gamma}\left(A^{\prime} D_{s^{*} t} A x_{t}\right)\left(x_{s}\right)=\sum_{s, t \in \Gamma}\left(A^{\prime} D_{s}^{*} D_{t} A x_{t}\right)\left(x_{s}\right) \\
& =\sum_{s, t \in \Gamma}\left[D_{s}^{*} D_{t} A x_{t}, A x_{s}\right]_{F}=\sum_{s, t \in \Gamma}\left[D_{t} A x_{t}, D_{s} A x_{s}\right]_{F} \\
& =\left[\sum_{t \in \Gamma} D_{t} A x_{t}, \sum_{t \in \Gamma} D_{t} A x_{t}\right]_{F} \geq 0
\end{aligned}
$$

whence (ii) holds.
Remark 3.3. In the particular case when $Z=\mathbb{C}$, one obtains Górniak and Weron's result [GW1, Theorem 1].
4. A topological characterization of positive definite $\mathcal{C}\left(X, X_{Z}^{*}\right)$ valued families. As an analogue of the Sz.-Nagy dilation theorem [SN], we give a topological version of Theorem 3.1 under some boundedness conditions.

Let (X, τ) be a linear topological space with topological Z-anti-dual X_{Z}^{*}, and $\left\{T_{s}\right\}_{s \in \Gamma} \subset \mathcal{C}\left(X, X_{Z}^{*}\right)$ be a family of functions indexed by a $*$-semigroup Γ.

Definition 4.1. Consider the following properties of the family $\left\{T_{s}\right\}_{s \in \Gamma}$:
(iii) ${ }_{1}$ for every $u \in \Gamma$ there exists $c_{u} \geq 0$ such that

$$
\sum_{s, t \in \Gamma}\left(T_{s^{*} u^{*} u t} x_{t}\right)\left(x_{s}\right) \leq c_{u} \sum_{s, t \in \Gamma}\left(T_{s^{*} t} x_{t}\right)\left(x_{s}\right)
$$

for each $\left(x_{s}\right)_{s \in \Gamma} \in \mathcal{X}$;
(iii) ${ }_{2}$ for every $u \in \Gamma$ and $p \in \mathcal{P}_{Z}$ there exists $c_{p, u} \geq 0$ such that

$$
p\left[\sum_{s, t \in \Gamma}\left(T_{s^{*} u^{*} u t} x_{t}\right)\left(x_{s}\right)\right] \leq c_{p, u} p\left[\sum_{s, t \in \Gamma}\left(T_{s^{*} t} x_{t}\right)\left(x_{s}\right)\right]
$$

for each $\left(x_{s}\right)_{s \in \Gamma} \in \mathcal{X}$;
(iii) $)_{3}$ for any $u \in \Gamma$ there exists $c_{u} \geq 0$ such that

$$
p\left[\sum_{s, t \in \Gamma}\left(T_{s^{*} u^{*} u t} x_{t}\right)\left(x_{s}\right)\right] \leq c_{u} p\left[\sum_{s, t \in \Gamma}\left(T_{s^{*} t} x_{t}\right)\left(x_{s}\right)\right]
$$

for every $p \in \mathcal{P}_{Z}$ and $\left(x_{s}\right)_{s \in \Gamma} \in \mathcal{X}$;
(iii) $)_{4}$ for any $u \in \Gamma$ and $p \in \mathcal{P}_{Z}$ there exist $c_{u, p} \geq 0$ and $q_{u, p} \in \mathcal{P}_{Z}$ such that

$$
p\left[\sum_{s, t \in \Gamma}\left(T_{s^{*} u^{*} u t} x_{t}\right)\left(x_{s}\right)\right] \leq c_{u, p} q_{u, p}\left[\sum_{s, t \in \Gamma}\left(T_{s^{*} t} x_{t}\right)\left(x_{s}\right)\right]
$$

for each $\left(x_{s}\right)_{s \in \Gamma} \in \mathcal{X}$.
We say that a function $D: \Gamma \rightarrow \mathcal{C}(\mathcal{H}, \mathcal{H})$ is a representation of the *-semigroup Γ in the Loynes space \mathcal{H} if D satisfies (\bullet).

ThEOREM 4.2. If the family $\left\{T_{s}\right\}_{s \in \Gamma}$ satisfies conditions (i) and (ii) from Theorem 3.1 and property (iii) ${ }_{1}$, then there exist a Loynes Z-space \mathcal{H}, a representation D of the $*$-semigroup Γ in \mathcal{H} and an operator $A \in \mathcal{C}(X, \mathcal{H})$ such that for any $s \in \Gamma, T_{s}=A^{*} D_{s} A$ and there exists $c_{s} \geq 0$ such that

$$
\begin{equation*}
\left[D_{s} k, D_{s} k\right]_{\mathcal{H}} \leq c_{s}[k, k]_{\mathcal{H}} \tag{4.1}
\end{equation*}
$$

for all $k \in \mathcal{H}$.
Also, if $\left\{u_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is a net in Γ with $\sup _{\alpha \in \mathcal{A}} c_{u_{\alpha}}<\infty$ and $\left(T_{s u_{\alpha} t}\right)_{\alpha \in \mathcal{A}}$ converges to $T_{\text {sut }}$ for any $s, t \in \Gamma$ in the weak topology of $\mathcal{C}\left(X, X_{Z}^{*}\right)$, then $\left(D_{u_{\alpha}}\right)_{\alpha \in \mathcal{A}}$ converges to D_{u} in the weak topology of $\mathcal{C}(\mathcal{H}, \mathcal{H})$.

Proof. From Theorem 3.1, there exist a pre-Loynes space $F, A \in \mathcal{L}(X, F)$ and $D: \Gamma \rightarrow \mathcal{L}(F, F)$ such that

$$
T_{s}=A^{\prime} D_{s} A
$$

Now, let \mathcal{H} be the completion of the pre-Loynes Z-space F which admits K_{T} as a reproducing kernel. We also mention that the Gramian on F can be extended on \mathcal{H}. Evaluating $[A x, A x]_{F}$ we get

$$
[A x, A x]_{F}=\left[K_{T}\left(\lambda_{x}, \cdot\right), K_{T}\left(\lambda_{x}, \cdot\right)\right]_{F}=K_{T}\left(\lambda_{x}, \lambda_{x}\right)=\left(T_{e} x\right)(x)
$$

for all $x \in X$ and $\lambda_{x}=(e, x)$.
In order to verify the continuity of A, consider a net $\left\{x_{\alpha}\right\}_{\alpha \in \mathcal{A}} \subset X$ with $x_{\alpha} \xrightarrow[\alpha \in \mathcal{A}]{X} 0$. Now let V be a 0-neighborhood in Z. Since T_{e} is continuous, we have $T_{e} x_{\alpha} \xrightarrow[\alpha \in \mathcal{A}]{\mathcal{C}\left(X, X_{Z}^{*}\right)} 0$, that is, there exists $\alpha_{0} \in \mathcal{A}$ such that for any $\alpha \geq \alpha_{0},\left(T_{e} x_{\alpha}\right)(x) \in V$ for all $x \in X$. Thus $\left(T_{e} x_{\alpha}\right)\left(x_{\alpha}\right) \in V$ for all $\alpha \geq \alpha_{0}$, whence $\left(T_{e} x_{\alpha}\right)\left(x_{\alpha}\right) \xrightarrow[\alpha \in \mathcal{A}]{Z} 0$. Hence $\left[A x_{\alpha}, A x_{\alpha}\right]_{F} \xrightarrow[\alpha \in \mathcal{A}]{F} 0$. Equivalently, $p\left(\left[A x_{\alpha}, A x_{\alpha}\right]\right) \underset{\alpha \in \mathcal{A}}{\longrightarrow} 0$ for all $p \in \mathcal{P}_{Z}$. Using the Cauchy-Schwarz inequality

$$
p\left(\left[A x_{\alpha}, y\right]_{F}\right) \leq 2 p\left(\left[A x_{\alpha}, A x_{\alpha}\right]_{F}\right)^{1 / 2} p\left([y, y]_{F}\right)^{1 / 2}
$$

for all $p \in \mathcal{P}_{Z}$ and $y \in F$, we deduce that $p\left(\left[A x_{\alpha}, y\right]_{F}\right) \rightarrow 0$, which implies $A x_{\alpha} \xrightarrow{F} 0$, so A is continuous.

By evaluating $\left[D_{s} k, D_{s} k\right]_{F}$ for $s \in \Gamma$ and $k \in F$, we have

$$
\begin{aligned}
{\left[D_{s} k, D_{s} k\right]_{F} } & =\left[\sum_{j=1}^{n} c_{j} K_{T}\left(\left(\lambda_{j}\right)^{s}, \cdot\right), \sum_{l=1}^{n} c_{l} K_{T}\left(\left(\lambda_{l}\right)^{s}, \cdot\right)\right]_{F} \\
& =\sum_{l=1}^{n} \sum_{j=1}^{n} c_{j} \bar{c}_{l} K_{T}\left(\left(\lambda_{j}\right)^{s},\left(\lambda_{l}\right)^{s}\right)=\sum_{l, j=1}^{n} c_{j} \bar{c}_{l}\left(T_{\left(s s_{l}\right)^{*}\left(s s_{j}\right)} x_{j}\right)\left(x_{l}\right) \\
& =\sum_{l, j=1}^{n} c_{j} \bar{c}_{l}\left(T_{s_{l}^{*} s^{*} s s_{j}} x_{j}\right)\left(x_{l}\right),
\end{aligned}
$$

and

$$
[k, k]_{F}=\sum_{l, j=1}^{n} c_{j} \bar{c}_{l}\left(\lambda_{j}, \lambda_{l}\right)=\sum_{l, j=1}^{n} c_{j} \bar{c}_{l}\left(T_{s_{l}^{*} s_{j}} x_{j}\right)\left(x_{l}\right),
$$

where $k=\sum_{j=1}^{n} c_{j} K_{T}\left(\lambda_{j}, \cdot\right)$ and

$$
\lambda_{j}=\left(s_{j}, x_{j}\right), \quad \lambda_{l}=\left(s_{l}, x_{l}\right), \quad\left(\lambda_{j}\right)^{s}=\left(s s_{j}, x_{j}\right), \quad\left(\lambda_{l}\right)^{s}=\left(s s_{l}, x_{l}\right) .
$$

Under the boundedness hypothesis (iii) $)_{1}$ we obtain

$$
\left[D_{u} k, D_{u} k\right]_{F} \leq c_{u}[k, k]_{F} .
$$

So, for each $u \in \Gamma, D_{u}$ is a bounded operator on F, and consequently we may extend it (following the same technique as in the last part of the proof of [Lo1, Theorem 3]) to a bounded linear operator D_{s} from \mathcal{H} into \mathcal{H}, whence D is a representation of Γ in \mathcal{H}. Now, if $T_{s u_{\alpha} t} \rightarrow T_{\text {sut }}$ in the weak topology of $\mathcal{C}\left(X, X_{Z}^{*}\right)$, that is, $\left(T_{\text {su }}^{\alpha} t \mid x\right)\left(x^{\prime}\right) \underset{\alpha \in \mathcal{A}}{\longrightarrow}\left(T_{\text {sut }} x\right)\left(x^{\prime}\right)$ for all $x, x^{\prime} \in X$ and all $s, t \in \Gamma$, then for $f, f^{\prime} \in F$, we have

$$
\begin{aligned}
{\left[D_{u_{\alpha}} f, f^{\prime}\right]_{F} } & =\left[\sum_{j=1}^{n} c_{j}^{1} K_{T}\left(\left(\lambda_{j}^{1}\right)^{u_{\alpha}}, \cdot\right), \sum_{l=1}^{n} c_{l}^{2} K_{T}\left(\lambda_{l}^{2}, \cdot\right)\right]_{F} \\
& =\sum_{l, j=1}^{n} c_{j}^{1} \bar{c}_{l}^{2} K_{T}\left(\left(\lambda_{j}^{1}\right)^{u_{\alpha}}, \lambda_{l}^{2}\right)=\sum_{l, j=1}^{n} c_{j}^{1} \bar{c}_{l}^{2}\left(T_{\left(s_{l}\right)^{*} u_{\alpha} t_{j}} x_{j}\right)\left(x_{l}^{\prime}\right),
\end{aligned}
$$

which for $\alpha \in \mathcal{A}$ converges to

$$
\sum_{l, j=1}^{n} c_{j}^{1} \overline{c_{l}^{2}}\left(T_{\left(s_{l}\right)^{*} u t_{j}} x_{j}\right)\left(x_{l}^{\prime}\right)=\left[D_{u} f, f^{\prime}\right]_{F}
$$

As F is dense in \mathcal{H}, we have $\left[D_{u_{\alpha}} k, D_{u_{\alpha}} k\right]_{\mathcal{H}} \leq c_{u_{\alpha}}[k, k]_{\mathcal{H}}$ and $\sup _{\alpha \in \mathcal{A}} c_{u_{\alpha}}<\infty$, implying that $\left\{D_{u_{\alpha}} k\right\}_{\alpha \in \mathcal{A}}$ is bounded for each $k \in \mathcal{H}$.

We now prove that $D_{u_{\alpha}}$ converges to D_{u} in the weak operator topology of \mathcal{H}, the completion of F. Take $f, f^{\prime} \in F$ such that $\left[D_{u_{\alpha}} f, f^{\prime}\right] \rightarrow\left[D_{u} f, f^{\prime}\right]$. Suppose that g and g^{\prime} are fixed elements of \mathcal{H} and that $g=f+\delta, g^{\prime}=f^{\prime}+\delta^{\prime}$, δ and δ^{\prime} being chosen in a suitable neighborhood of the origin (possible since F is dense in \mathcal{H}). Denote $R_{\alpha}=D_{u_{\alpha}}-D_{u}$. We obtain

$$
p\left(\left[R_{\alpha} g, g^{\prime}\right]-\left[R_{\alpha} f, f^{\prime}\right]\right) \leq p\left(\left[R_{\alpha} g, \delta^{\prime}\right]\right)+p\left(\left[R_{\alpha} \delta, g^{\prime}\right]\right)+p\left(\left[R_{\alpha} \delta, \delta^{\prime}\right]\right)
$$

for any $p \in \mathcal{P}_{Z}$. Since δ and δ^{\prime} can be chosen sufficiently small to make each of the three terms on the right-hand side small uniformly in α (by a standard reasoning), we conclude that $D_{u_{\alpha}}$ converges to D_{u} in the weak operator topology of $\mathcal{C}(\mathcal{H}, \mathcal{H})$.

Remark 4.3. If in Theorem 4.2, instead of (iii) $)_{1}$, the family $\left\{T_{s}\right\}_{s \in \Gamma}$ satisfies property (iii) from Definition 4.1, then for all $s \in \Gamma$ and all $p \in \mathcal{P}_{Z}$ there exists $c_{p, s} \geq 0$ such that

$$
p\left(\left[D_{s} k, D_{s} k\right]_{\mathcal{H}}\right) \leq c_{p, s} p\left([k, k]_{\mathcal{H}}\right)
$$

for any $k \in \mathcal{H}$.
Also, if $\left\{u_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is a net in Γ with $\sup _{\alpha \in \mathcal{A}} c_{p, u_{\alpha}}<\infty$ for all $p \in \mathcal{P}_{Z}$, and $\left(T_{s u_{\alpha} t}\right)_{\alpha \in \mathcal{A}}$ converges to $T_{\text {sut }}$ for any $s, t \in \Gamma$ in the weak topology of $\mathcal{C}\left(X, X_{Z}^{*}\right)$, then $\left(D_{u_{\alpha}}\right)_{\alpha \in \mathcal{A}}$ converges to D_{u} in the weak topology of $\mathcal{C}(\mathcal{H}, \mathcal{H})$.

REMARK 4.4. If in Theorem 4.2, instead of (iii) $)_{1}$, the family $\left\{T_{s}\right\}_{s \in \Gamma}$ satisfies (iii) ${ }_{3}$, then for all $s \in \Gamma$ there exists $c_{s}>0$ such that

$$
p\left(\left[D_{s} k, D_{s} k\right]_{\mathcal{H}}\right) \leq c_{s} p\left([k, k]_{\mathcal{H}}\right)
$$

for any $p \in \mathcal{P}_{Z}$ and any $k \in \mathcal{H}$.
Also, if $\left\{u_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is a net in Γ with $\sup _{\alpha \in \mathcal{A}} c_{u_{\alpha}}<\infty$, and $\left(T_{s u_{\alpha} t}\right)_{\alpha \in \mathcal{A}}$ converges to $T_{\text {sut }}$ for any $s, t \in \Gamma$ in the weak topology of $\mathcal{C}\left(X, X_{Z}^{*}\right)$, then $\left(D_{u_{\alpha}}\right)_{\alpha \in \mathcal{A}}$ converges to D_{u} in the weak topology of $\mathcal{C}(\mathcal{H}, \mathcal{H})$.

REmark 4.5. If in Theorem 4.2, instead of (iii) ${ }_{1}$, the family $\left\{T_{s}\right\}_{s \in \Gamma}$ satisfies (iii) $)_{4}$, then for all $s \in \Gamma$ and all $p \in \mathcal{P}_{Z}$ there exist $c_{s, p} \geq 0$ and $q_{s, p} \in \mathcal{P}_{Z}$ such that

$$
p\left(\left[D_{s} k, D_{s} k\right]_{\mathcal{H}}\right) \leq c_{s, p} q_{s, p}\left([k, k]_{\mathcal{H}}\right)
$$

for any $k \in \mathcal{H}$.
Also, if $\left\{u_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is a net in Γ with the property that there exists $p_{0} \in \mathcal{P}_{Z}$ such that $\sup _{\alpha \in \mathcal{A}} c_{p, u_{\alpha}}<\infty$ and $q_{u_{\alpha, p}}(z) \leq p_{0}(z)$ for all $z \in Z$ and $p \in \mathcal{P}_{Z}$, and $\left(T_{s u_{\alpha} t}\right)_{\alpha \in \mathcal{A}}$ converges to $T_{\text {sut }}$ for any $s, t \in \Gamma$ in the weak topology of $\mathcal{C}\left(X, X_{Z}^{*}\right)$, then $\left(D_{u_{\alpha}}\right)_{\alpha \in \mathcal{A}}$ converges to D_{u} in the weak topology of $\mathcal{C}(\mathcal{H}, \mathcal{H})$.

One can prove these remarks by standard evaluations similar to those in the proof of Theorem 4.2.

Remark 4.6. If $X=\mathcal{K}$ is a Hilbert space and $T_{e}=I$, then Theorem4.2 will lead to the classical Sz.-Nagy dilation theorem. Precisely, A is an "injection" of \mathcal{K} in the space \mathcal{H} which contains it, and " A " is an orthogonal projection of \mathcal{H} onto \mathcal{K}. Consequently, $T_{\xi}=\operatorname{Proj}_{K} D_{\xi}$.

Remark 4.7. If in Theorem 4.2 we replace X with a normed space with topological dual X^{*}, we obtain Theorem 2 from GW2].

References

[A] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.
[BPL] T. Bînzar, F. Pater and L. D. Lemle, Some extensions of a B. Sz.-Nagy type theorem with application in the stochastic processes, in: Numerical Analysis and Applied Mathematics (Rethymno, Crete, 2009), AIP Conf. Proc. 1168, Amer. Inst. Phys., 2009, 201-204.
[CW] S. A. Cobanjan and A. Weron, Banach space valued stationary processes and their linear predictions, Dissertationes Math. 125 (1975), 45 pp.
[GP] D. Gasppar and P. Gaspar, Reproducing kernel Hilbert $\mathcal{B}(\mathcal{X})$-modules, An. Univ. Vest Timişoara Ser. Mat.-Inform. 43 (2005), 47-71.
[GL] D. Gaşpar, P. Gaşpar and N. Lupa, Dilations on locally Hilbert spaces, in: Topics in Mathematics, Computer Science and Philosophy, A Festschrift for Wolfgang W. Breckner, Presa Universitara Clujeană, Cluj-Napoca, 2008, 107-122.
[GW1] J. Górniak and A. Weron, An analogue of Sz.-Nagy's dilation theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 867-872.
[GW2] J. Górniak and A. Weron, Aronszajn-Kolmogorov type theorems for positive definite kernels in locally convex spaces, Studia Math. 69 (1981), 235-246.
[Is] V. I. Istrăţescu, Inner Product Structures: Theory and Applications, Reidel, Dordrecht, 1987.
[It] S. Itoh, Reproducing kernels over C^{*}-algebras and their applications, Bull. Kyushu Inst. Tech. 37 (1990), 1-20.
[K] Y. Kakihara, Multidimensional Second Order Stochastic Processes, World Sci., Singapore, 1997.
[L] L. D. Lemle, On some approximation theorems for power q-bounded operators on locally convex vector spaces, Scientific World J. 2014, art. ID 513162, 5 pp.
[Lo1] R. M. Loynes, On generalized positive-definite functions, Proc. London Math. Soc. 15 (1965), 373-384.
[Lo2] R. M. Loynes, On a generalization of second-order stationarity, Proc. London Math. Soc. 15 (1965), 385-398.
[Lo3] R. M. Loynes, Linear operators in VH-spaces, Trans. Amer. Math. Soc. 116 (1965), 167-180.
[S] P. P. Saworotnow, Linear spaces with H^{*}-algebra-valued inner product, Trans. Amer. Math. Soc. 262 (1980), 53-549.
[SN] B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond this space, appendix to: F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1960.
[T] B. Truong-Van, Une généralisation du théorème de Kolmogorov-Aronszajn. Processus V-bornés q-dimensionnels: domaine spectral - q-dilatations stationnaires, Ann. Inst. H. Poincaré Sect. B 17 (1981), 31-49.
[W] A. Weron, Second-order stochastic processes and the dilation theory in Banach spaces, Ann. Inst. H. Poincaré Sect. B 16 (1980), 29-38.

Flavius Pater, Tudor Bînzar
Department of Mathematics
Politehnica University of Timişoara
300006 Timişoara, Romania
E-mail: flavius.pater@upt.ro
tudor.binzar@upt.ro

Received October 20, 2014 Revised version September 12, 2015

[^0]: 2010 Mathematics Subject Classification: Primary 47A20; Secondary 47A56.
 Key words and phrases: positive definiteness, Loynes spaces, dilation theorems.

