On some dilation theorems for positive definite operator valued functions

by

FLAVIUS PATER and TUDOR BÎNZAR (Timişoara)

Abstract. The aim of this paper is to prove dilation theorems for operators from a linear complex space to its Z-anti-dual space. The main result is that a bounded positive definite function from a *-semigroup Γ into the space of all continuous linear maps from a topological vector space X to its Z-anti-dual can be dilated to a *-representation of Γ on a Z-Loynes space. There is also an algebraic counterpart of this result.

1. Introduction. It is well known that a function on a *-semigroup Γ into the C^* -algebra of all bounded linear operators on a given Hilbert space, that is positive definite, can be dilated to a *-representation of Γ on a larger Hilbert space (see the Principal Theorem of [SN]).

Probability theory on Banach spaces triggered the development of dilation theory of operator functions in non-Hilbert spaces [GW2]. The close connection between dilation theory and the theory of second order stochastic processes was exhibited in [W]. In 1976, J. Górniak and A. Weron [GW1] proved an analogue of the Principal Theorem of Sz.-Nagy for functions with values in the space of all anti-linear bounded operators from a complex normed space to its topological dual. In the same paper, an algebraic version of this result was also given. Similar approaches and applications were presented in [GW2], [It], [L], [GL] and [K].

Another analogue of the above mentioned dilation theorem was given by R. M. Loynes [Lo1] for operators acting on a VH-space, along with many important results on the same issue [Lo2], [Lo3]. Later on, Cobanjan and Weron [CW] proved that the space $\overline{\mathcal{L}}(B, \mathcal{H})$ endowed with the inner product $[\cdot, \cdot]$ is a Loynes space (for more examples see [Is] and [S]).

The results of [CW] are a variation of the original Aronszajn construction [A], considering the Aronszajn kernel $K : (S \times A) \times (S \times A) \rightarrow B$, where

²⁰¹⁰ Mathematics Subject Classification: Primary 47A20; Secondary 47A56.

Key words and phrases: positive definiteness, Loynes spaces, dilation theorems.

S is just a set and \mathcal{A} and \mathcal{B} are C^{*}-algebras, given by

$$K((t,a),(s,a')) = \mathbb{K}(t,s)[a'*a].$$

In 2005, D. Gaşpar and P. Gaşpar [GP] extended the reproducing kernel Hilbert space technique of [A] to more general structures such as Loynes spaces and \mathcal{D}_2 -normal $\mathcal{B}(\mathcal{X})$ -modules.

The results of our paper, partly announced in [BPL], are also variations of the original Aronszajn construction in the case of a kernel $K : (X \times \Gamma) \times$ $(X \times \Gamma) \to Z$, where X is a linear space or a topological linear space, Γ is a *-semigroup and Z is an admissible space in the sense of Loynes. Our paper extends the fundamental theorem of Loynes [Lo1, Section 3, Theorem 3] to the case where the set of continuous linear operators in a Loynes Z-space is replaced by $\mathcal{C}(X, X_Z^*)$, the set of continuous linear maps from a topological space X to its Z-anti-dual. In the proof we use a version of the Cauchy– Schwarz inequality for seminorms in a Loynes space, which is significantly different from the Loynes space case [Lo1].

The main result of the article may be applied to the characterization of spectral bi-measures and to the stationary dilation of q-dimensional V-bounded processes (see [T] and [W]).

2. Preliminaries. In this section we mention some notation and known notions and results from [GP].

Recall first that a complete locally convex space Z is called *admissible* in the sense of Loynes if there exist a closed convex cone Z_+ in Z with $Z_+ \cap (-Z_+) = \{0\}$ and an involution " \diamond " on Z (conjugate linear and idempotent) such that each element of Z_+ is self-adjoint, the topology of Z is compatible with the partial order in Z induced by Z_+ , and decreasing sequences in Z_+ are convergent [Lo1, pp. 11].

In the following, Z will be an admissible space in the sense of Loynes.

It is known that the topology of Z can be defined by a sufficient and directed family, say \mathcal{P}_Z , of monotone Minkowski seminorms.

For any given set Λ , a function $K : \Lambda \times \Lambda \to Z$ is said to be a Z-valued kernel on Λ .

A Z-valued kernel on Λ will be called *weakly positive definite* [GP] if for each $n \in \mathbb{N}^*$, $\{c_1, \ldots, c_n\} \subset \mathbb{C}$ and $\{\lambda_1, \ldots, \lambda_n\} \subset \Lambda$, we have

(1)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i \bar{c}_j K(\lambda_i, \lambda_j) \in Z_+.$$

A locally convex space \mathcal{H} is called a *pre-Loynes Z-space* if it is endowed with a *Z*-valued inner product (called *Gramian*)

$$\mathcal{H} \times \mathcal{H} \ni (h,k) \mapsto [h,k] \in Z,$$

which has the properties

$$(G_1)$$
 $[h,h] \ge 0, [h,h] = 0$ implies $h = 0,$

$$(G_2) [h_1 + h_2, h] = [h_1, h] + [h_2, h],$$

$$(G_3) \qquad [\lambda h, k] = \lambda[h, k],$$

$$(G_4) [h,k]^{\Diamond} = [k,h],$$

for all $h, k, h_1, h_2 \in \mathcal{H}$ and $\lambda \in \mathbb{C}$ (where the positivity in Z is considered) and the topology in \mathcal{H} is the weakest one for which the mapping $\mathcal{H} \ni h \mapsto$ $[h, h] \in \mathbb{Z}$ is continuous.

If \mathcal{H} is complete in this topology, it will be called a *Loynes Z-space* [Lo1].

A pre-Loynes Z-space \mathcal{H} consisting of Z-valued functions on Λ admits a reproducing kernel or is a reproducing kernel pre-Loynes Z-space if there exists a Z-valued kernel K satisfying the conditions

(*IP*)
$$K(\lambda, \cdot) \in \mathcal{H}$$
 for any $\lambda \in \Lambda$,

$$(RP) h(\lambda) = [h, K(\lambda, \cdot)] for all \ \lambda \in \Lambda \text{ and } h \in \mathcal{H}.$$

The kernel K is called a *reproducing kernel* for \mathcal{H} , and (IP), (RP) are called the *inclusion property* and the *reproducing property*, respectively (see [GP]).

Now, let X and Y be complex linear spaces. Then $\mathcal{L}(X, Y)$ denotes the class of all linear operators from X to Y. For a complex linear space X, the algebraic Z-anti-dual X'_Z is the set of all anti-linear operators from X to Z. For an operator $A \in \mathcal{L}(X, F)$, where F is a pre-Loynes Z-space, its Z-algebraic adjoint operator $A' \in \mathcal{L}(F, X'_Z)$ is defined by

$$(A'f)(x) = [f, Ax]_F, \quad f \in F, x \in X,$$

where $[\cdot, \cdot]_F$ is the Gramian of F.

If F is a Loynes space and $A \in \mathcal{L}(F, F)$, then an operator $B \in \mathcal{L}(F, F)$ with the property

$$[Af_1, f_2]_F = [f_1, Bf_2]_F$$

is called the *adjoint* of A and will be denoted by A^* .

An operator $U \in \mathcal{L}(F_1, F_2)$, where F_1 , F_2 are pre-Loynes Z-spaces, is said to be *unitary* if $U(F_1) = F_2$ and

$$[Uf, Ug]_{F_2} = [f, g]_{F_1}$$

for all $f, g \in F_1$.

If X is a complex topological linear space, then its *topological Z-anti-dual* X_Z^* is the set of all continuous anti-linear operators from X to Z.

On X_Z^* the uniform convergence topology is considered, that is, a net $(T_\alpha)_{\alpha \in \mathcal{A}}$ of operators from X_Z^* converges uniformly to the null-operator 0 iff for any 0-neighborhood V in Z there exists $\alpha_0 \in \mathcal{A}$ such that, for each $\alpha \geq \alpha_0, T_\alpha x \in V$ for all $x \in X$.

If X and Y are topological linear spaces, we denote by $\mathcal{C}(X, Y)$ the space of all continuous linear operators from X to Y.

Let Γ be a *-semigroup, that is, a semigroup with unit e and involution "*" satisfying $e^* = e$, $s^{**} = s$, and $(st)^* = t^*s^*$ for all $s, t \in \Gamma$.

Following [GW1], let \mathcal{X} be the set of all functions $x = (x_s) : \Gamma \to X$ with finite support. A family $\{T_s\}_{s \in \Gamma}$ of functions from $\mathcal{L}(X, X'_Z)$ indexed by the *-semigroup Γ is called *positive definite* if

(2)
$$\sum_{s,t\in\Gamma} (T_{s^*t}x_t)(x_s) \ge 0$$

for all $(x_s)_{s\in\Gamma}\in\mathcal{X}$.

We recall a version of the classical Cauchy–Schwarz inequality, in terms of seminorms, in a pre-Loynes space.

If \mathcal{H} is a pre-Loynes Z-space and \mathcal{P}_Z is a sufficient directed set of monotone seminorms defining the topology of Z, then

$$p([h,k]) \le 2(p([h,h]))^{1/2}(p([k,k]))^{1/2}$$

for any $h, k \in \mathcal{H}$ and any $p \in \mathcal{P}_Z$.

3. A characterization of $\mathcal{L}(X, X'_Z)$ -valued positive definite families. The theorem below is an algebraic analogue of Górniak and Weron's result [GW1].

THEOREM 3.1. Let X be a complex linear space with algebraic Z-antidual space X'_Z . If $\{T_s\}_{s\in\Gamma} \subset \mathcal{L}(X,X'_Z)$ is a family indexed by a *-semigroup Γ satisfying

- (i) $(T_s x)(y) = (T_{s^*} y)(x)^{\Diamond}$ for all $x, y \in X$ and $s \in \Gamma$,
- (ii) $\{T_s\}_{s\in\Gamma}$ is positive definite,

then there exist a pre-Loynes Z-space F and a function $D: \Gamma \to \mathcal{L}(F, F)$ with the following properties:

$$(\bullet) D_e = I, D_{st} = D_s D_t, D_s^* = D_{s^*}, s, t \in \Gamma;$$

there exists an operator $A \in \mathcal{L}(X, F)$ such that

$$(\bullet \bullet) T_s = A' D_s A, s \in \Gamma;$$

and the space F is minimal in the sense that it is generated by elements of the form D_sAx for $x \in X$ and $s \in \Gamma$.

Moreover:

1°. The space F is uniquely determined up to unitary equivalence, i.e. if $T_s = A'_1 D^1_s A_1, s \in \Gamma$, where $D^1 : \Gamma \to \mathcal{L}(F_1, F_1)$ satisfies (•), F_1 is a minimal pre-Loynes Z-space and $A_1 \in \mathcal{L}(X, F_1)$, then there exists a unitary operator $U : F_1 \to F$ such that

$$A = UA_1, \quad UD_s^1 = D_s U, \quad s \in \Gamma.$$

2°. If $T_{s\alpha t} = T_{s\beta t} + T_{s\gamma t}$ for some fixed α, β, γ , and all s, t in Γ , then $D_{\alpha} = D_{\beta} + D_{\gamma}$.

Proof. The argument is like that used to prove Sz.-Nagy's original theorem [SN].

Let $\Lambda = \Gamma \times X$. We define $K_T : \Lambda \times \Lambda \to Z$ by

$$K_T(\lambda,\mu) = (T_{t^*s}x)(y)$$

where $\lambda = (s, x), \ \mu = (t, y), \ s, t \in \Gamma, \ x, y \in X.$

First we will show that K_T is a weak Z-valued positive definite kernel. Indeed, let $c_1, \ldots, c_n \in \mathbb{C}, \lambda_1, \ldots, \lambda_n \in \Lambda, \lambda_i = (s_i, x_i), i = \overline{1, n}$. We have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i \bar{c}_j K_T(\lambda_i, \lambda_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i \bar{c}_j (T_{s_j^* s_i} x_i)(x_j)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (T_{s_j^* s_i} c_i x_i)(c_j x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} (T_{s_j^* s_i} k_i)(k_j) \ge 0$$

from the positivity of T.

Next, define

$$F = \left\{ \sum_{l=1}^{n} c_l K_T(\lambda_l, \cdot) : n \in \mathbb{N}^*, \, c_l \in \mathbb{C}, \, \lambda_l \in \Lambda, \, l = \overline{1, n} \right\}.$$

We will prove that F is a pre-Loynes Z-space with Gramian

$$[f_1, f_2]_F = \sum_{j,l=1}^n c_j^1 \bar{c}_l^2 K_T(\lambda_j^1, \lambda_l^2)$$

for $f_1 = \sum_{j=1}^n c_j^1 K_T(\lambda_j^1, \cdot), f_2 = \sum_{l=1}^n c_l^2 K_T(\lambda_l^2, \cdot).$

Obviously \vec{F} is a complex linear space with the usual operations.

The first part of (G_1) follows from the fact that K_T is a weak Z-valued positive definite kernel and from the definition of $[\cdot, \cdot]_F$. Conditions (G_2) and (G_3) easily result from the definition of $[\cdot, \cdot]_F$. We prove (G_4) :

$$[f_2, f_1]_F^{\Diamond} = \left(\sum_{j,l=1}^n c_l^2 \bar{c}_j^1 K_T(\lambda_l^2, \lambda_j^1)\right)^{\Diamond} = \sum_{j,l=1}^n c_j^1 \bar{c}_l^2 [(T_{s_j^* s_l} x_l)(x_j)]^{\Diamond}$$
$$= \sum_{j,l=1}^n c_j^1 \bar{c}_l^2 (T_{s_l^* s_j} x_j)(x_l) = \sum_{j,l=1}^n c_j^1 \bar{c}_l^2 K_T(\lambda_j^1, \lambda_l^2) = [f_1, f_2]_F.$$

Let \mathcal{P}_Z be a sufficient set of monotone seminorms that generates the topology in Z. We will verify that F has K_T as reproducing kernel. Condition (IP) comes from the definition of the kernel. To show (RP), let

$$h = \sum_{j=1}^{n} c_j K_T(\lambda_j, \cdot) \in F, \quad \lambda_j \in \Lambda, \, c_j \in \mathbb{C}, \, n \in \mathbb{N}^*.$$

Then

$$[h, K_T(\lambda, \cdot)]_F = \left[\sum_{j=1}^n c_j K_T(\lambda_j, \cdot), K_T(\lambda, \cdot)\right]_F = \sum_{j=1}^n c_j K_T(\lambda_j, \lambda) = h(\lambda).$$

We now prove the second part of (G_1) , using the reproducing property. Assume $[h, h]_F = 0$. From

$$p(h(\lambda)) \le 2(p[h,h]_F)^{1/2} \cdot (p[K_T(\lambda,\cdot),K_T(\lambda,\cdot)]_F)^{1/2}, \quad \lambda \in \Lambda,$$

since \mathcal{P}_Z is a sufficient set of seminorms in Z, it follows that $h(\lambda) = 0$ for all $\lambda \in \Lambda$, i.e. h = 0.

We have shown so far that $[\cdot, \cdot]_F$ is a Gramian, so F is a pre-Loynes Z-space.

Define $A: X \to F$ by

$$Ax = K_T(\lambda_x, \cdot) \in F, \quad \lambda_x = (e, x) \in \Lambda.$$

Let $\mu = (t, y) \in \Lambda$. We prove that A is linear:

$$[A(c_1x_1 + c_2x_2)](\mu) = K_T(\lambda_{c_1x_1 + c_2x_2}, \mu) = [T_{t^*e}(c_1x_1 + c_2x_2)](y)$$

= $c_1(T_{t^*e}x_1)(y) + c_2(T_{t^*e}x_2)(y)$
= $c_1K_T(\lambda_{x_1}, \mu) + c_2K_T(\lambda_{x_2}, \mu) = (c_1Ax_1 + c_2Ax_2)(\mu)$

for all $c_1, c_2 \in \mathbb{C}, x_1, x_2 \in X$.

For the existence of A', let $k \in F$ and

$$k = \sum_{j=1}^{n} c_j K_T(\lambda_j, \cdot), \quad c_j \in \mathbb{C}, \, \lambda_j = (s_j, x_j) \in \Lambda, \, j = \overline{1, n}, n \in \mathbb{N}^*.$$

Let $x \in X$. We get

$$(A'k)(x) = [k, Ax]_F = \left[\sum_{j=1}^n c_j K_T(\lambda_j, \cdot), K_T(\lambda_x, \cdot)\right]_F = \sum_{j=1}^n c_j K_T(\lambda_j, \lambda_x)$$
$$= \sum_{j=1}^n c_j (T_{e^*s_j} x_j)(x) = \sum_{j=1}^n c_j (T_{s_j} x_j)(x).$$

Therefore $A'k = \sum_{j=1}^{n} c_j T_{s_j} x_j$.

We define a representation $D: \Gamma \to \mathcal{L}(F, F)$ by $D(s) = D_s$ with

$$D_s\left(\sum_{j=1}^n c_j K_T(\lambda_j, \cdot)\right) = \sum_{j=1}^n c_j K_T(\lambda_j^s, \cdot), \quad s \in \Gamma,$$

where $\lambda_j = (s_j, x_j) \in \Lambda$, and $\lambda_j^s = (ss_j, x_j)$.

It is obvious that $D_s \in \mathcal{L}(F, F)$. Set $k_{\nu} = \sum_{j=1}^n c_j^{\nu} K_T(\lambda_j^{\nu}, \cdot), \ \lambda_j^{\nu} = (s_j^{\nu}, x_j^{\nu}), \ \nu = \overline{1, 2}, \ j = \overline{1, n}, \ n \in \mathbb{N}^*$. We obtain

114

Dilation theorems for operator valued functions

$$[D_{s}k_{1},k_{2}]_{F} = \left[\sum_{j=1}^{n} c_{j}^{1}K_{T}((\lambda_{j}^{1})^{s},\cdot),\sum_{l=1}^{n} c_{l}^{2}K_{T}(\lambda_{l}^{2},\cdot)\right]_{F}$$

$$= \sum_{j,l=1}^{n} c_{j}^{1}\bar{c}_{l}^{2}K_{T}((\lambda_{j}^{1})^{s},\lambda_{l}^{2}) = \sum_{j,l=1}^{n} c_{j}^{1}\bar{c}_{l}^{2}(T_{(s_{l}^{2})^{*}ss_{j}^{1}}x_{j}^{1})(x_{l}^{2})$$

$$= \sum_{j,l=1}^{n} c_{j}^{1}\bar{c}_{l}^{2}K_{T}(\lambda_{j}^{1},(\lambda_{l}^{2})^{s^{*}}) = [k_{1},k_{2}^{*}]_{F}$$

where $k_2^* = \sum_{l=1}^n c_l^2 K_T((\lambda_l^2)^{s^*}, \cdot)$. This implies that $D_s^* k_2 = k_2^* = D_{s^*} k_2$. In the same manner, setting s = e, we obtain $D_e = I$.

Let once again $k = \sum_{j=1}^{n} c_j K_T(\lambda_j, \cdot) \in F$, $c_j \in \mathbb{C}$, $\lambda_j = (s_j, x_j) \in \Lambda$, $j = \overline{1, n}, n \in \mathbb{N}^*, \mu = (t, y) \in \Lambda$. For $s, t \in \Gamma$, we have

$$(D_s D_t)(k) = D_s \left(\sum_{j=1}^n c_j K_T(\lambda_j^t, \cdot)\right) = \sum_{j=1}^n c_j K_T(\lambda_j^{st}, \cdot) = D_{st}(k)$$

Thus $D_{st} = D_s D_t$ for all $s, t \in \Gamma$.

We prove $(\bullet \bullet)$:

$$(A'D_sA)(x) = A'D_sK_T(\lambda_x, \cdot) = A'K_T(\lambda_x^s, \cdot) = T_sx.$$

Since

(3)
$$\sum_{j=1}^{n} c_j K_T(\lambda_j, \cdot) = \sum_{j=1}^{n} c_j K_T(\lambda_{x_j}^{s_j}, \cdot) = \sum_{j=1}^{n} c_j D_{s_j} A_{x_j}$$

the minimality condition is verified.

For 1° , let

$$D: \Gamma \to \mathcal{L}(F, F)$$
 and $D^1: \Gamma \to \mathcal{L}(F_1, F_1)$

satisfy condition (•), and let $A \in \mathcal{L}(X, F)$ and $A_1 \in \mathcal{L}(X, F_1)$ be such that

$$A'D_sA = T_s = A_1'D_s^1A_1,$$

where the linear Z-valued spaces F, F_1 are minimal, i.e. F and F_1 are generated by elements of the form D_sAx and $D_s^1A_1x$ respectively. If $f_1 \in F_1$, then $f_1 = \sum_{j=1}^n c_j D_{s_j}^1 A_1 x_j$ and we set

(4)
$$Uf_1 = \sum_{j=1}^n c_j D_{s_j} A x_j.$$

Thus $U \in \mathcal{L}(F_1, F)$ and $U(F_1) = F$.

Taking $g_1 = \sum_{l=1}^n d_l D_{t_l} A_1 y_l \in F_1$, $\mu_l = (t_l, y_l) \in \Lambda$ and using (3) and the properties of D, we obtain

$$\begin{split} [Uf_1, Ug_1]_F &= \left[\sum_{j=1}^n c_j D_{s_j} A x_j, \sum_{l=1}^n d_l D_{t_l} A y_l\right]_F \\ &= \left[\sum_{j=1}^n c_j K_T(\lambda_j, \cdot), \sum_{l=1}^n d_l K_T(\mu_l, \cdot)\right]_F \\ &= \sum_{j,l=1}^n c_j \bar{d}_l K_T(\lambda_j, \mu_l) = \sum_{j,l=1}^n c_j \bar{d}_l (T_{t_l^* s_j} x_j)(y_l) \\ &= \sum_{j,l=1}^n c_j \bar{d}_l (A_1' D_{t_l^* s_j}^1 A_1 x_j)(y_l) = \sum_{j,l=1}^n c_j \bar{d}_l [D_{t_l^* s_j}^1 A_1 x_j, A_1 y_l]_{F_1} \\ &= \sum_{j,l=1}^n c_j \bar{d}_l \left[(D_{t_l}^1)^* D_{s_j}^1 A_1 x_j, A_1 y_l \right]_{F_1} \\ &= \left[\sum_{j=1}^n c_j D_{s_j}^1 A_1 x_j, \sum_{l=1}^n d_l D_{t_l}^1 A_1 y_l \right]_{F_1} = [f_1, g_1]_{F_1}. \end{split}$$

Hence U is unitary. Moreover, by (4),

$$UA_1x = U(D_e^1A_1x) = D_eAx = Ax, \quad x \in X,$$

and

$$UD_{s}^{1}f_{1} = UD_{s}^{1}\left(\sum_{j=1}^{n} c_{j}D_{s_{j}}^{1}A_{1}x_{j}\right) = U\left(\sum_{j=1}^{n} c_{j}D_{ss_{j}}^{1}A_{1}x_{j}\right)$$
$$= \sum_{j=1}^{n} c_{j}D_{ss_{j}}Ax_{j} = D_{s}\left(\sum_{j=1}^{n} c_{j}D_{s_{j}}Ax_{j}\right) = D_{s}Uf_{1}, \quad f_{1} \in F_{1}.$$

In order to show 2°, suppose that $T_{s\alpha t} = T_{s\beta t} + T_{s\gamma t}$ for some $\alpha, \beta, \gamma \in \Gamma$ fixed and for all $s, t \in \Gamma$. Take $k \in F$, $k = \sum_{j=1}^{n} c_j K_T(\lambda_j, \cdot), \lambda_j = (s_j, x_j), j = \overline{1, n}$ and $\mu = (t, y) \in \Lambda$. We have

$$\begin{split} [(D_{\beta} + D_{\gamma})(k)](\mu) &= (D_{\beta}k + D_{\gamma}k)(\mu) = \sum_{j=1}^{n} c_{j}[K_{T}(\lambda_{j}^{\beta}, \mu) + K_{T}(\lambda_{j}^{\gamma}, \mu)] \\ &= \sum_{j=1}^{n} c_{j}(T_{t^{*}\beta s_{j}}x_{j})(y) + \sum_{j=1}^{n} c_{j}(T_{t^{*}\gamma s_{j}}x_{j})(y) \\ &= \sum_{j=1}^{n} c_{j}(T_{t^{*}\alpha s_{j}}x_{j})(y) = \sum_{j=1}^{n} c_{j}K_{T}(\lambda_{j}^{\alpha}, \mu) = (D_{\alpha}k)(\mu). \end{split}$$

Thus 2° is verified and the proof of Theorem 3.1 is complete. \blacksquare

The converse of Theorem 3.1 is also valid.

THEOREM 3.2. Let Γ be a *-semigroup, let X be a complex linear space and let Z be an admissible space in Loynes sense. If there exist a linear Z-valued space F, a function $D: \Gamma \to \mathcal{L}(F, F)$ which satisfies (•) and an operator $A \in \mathcal{L}(X, F)$ such that $T_s = A'D_sA$, $s \in \Gamma$, then the family $\{T_s\}_{s \in \Gamma}$ has properties (i) and (ii) from Theorem 3.1.

Proof. Let $x, y \in X$ and $s \in \Gamma$. Using the definition of A' and the third of relations (\bullet) , we have

$$(T_{s^*}y)(x)^{\Diamond} = (A'D_{s^*}Ay)(x)^{\Diamond} = [D_{s^*}Ay, Ax]_F^{\Diamond} = [Ay, D_sAx]_F^{\Diamond} = [D_sAx, Ay]_F = (A'D_sAx)(y) = (T_sx)(y),$$

proving (i).

Now let $(x_s)_{s\in\Gamma}\in\mathcal{X}$. Using the second and the third of relations (\bullet) , we obtain

$$\sum_{s,t\in\Gamma} (T_{s^*t}x_t)(x_s) = \sum_{s,t\in\Gamma} (A'D_{s^*t}Ax_t)(x_s) = \sum_{s,t\in\Gamma} (A'D_s^*D_tAx_t)(x_s)$$
$$= \sum_{s,t\in\Gamma} [D_s^*D_tAx_t, Ax_s]_F = \sum_{s,t\in\Gamma} [D_tAx_t, D_sAx_s]_F$$
$$= \left[\sum_{t\in\Gamma} D_tAx_t, \sum_{t\in\Gamma} D_tAx_t\right]_F \ge 0,$$

whence (ii) holds. \blacksquare

REMARK 3.3. In the particular case when $Z = \mathbb{C}$, one obtains Górniak and Weron's result [GW1, Theorem 1].

4. A topological characterization of positive definite $C(X, X_Z^*)$ valued families. As an analogue of the Sz.-Nagy dilation theorem [SN], we give a topological version of Theorem 3.1 under some boundedness conditions.

Let (X, τ) be a linear topological space with topological Z-anti-dual X_Z^* , and $\{T_s\}_{s\in\Gamma} \subset \mathcal{C}(X, X_Z^*)$ be a family of functions indexed by a *-semigroup Γ .

DEFINITION 4.1. Consider the following properties of the family $\{T_s\}_{s\in\Gamma}$: (iii)₁ for every $u \in \Gamma$ there exists $c_u \ge 0$ such that

$$\sum_{s,t\in\Gamma} (T_{s^*u^*ut}x_t)(x_s) \le c_u \sum_{s,t\in\Gamma} (T_{s^*t}x_t)(x_s)$$

for each $(x_s)_{s\in\Gamma}\in\mathcal{X}$;

(iii)₂ for every
$$u \in \Gamma$$
 and $p \in \mathcal{P}_Z$ there exists $c_{p,u} \ge 0$ such that

$$p\Big[\sum_{s,t\in\Gamma} (T_{s^*u^*ut}x_t)(x_s)\Big] \le c_{p,u}p\Big[\sum_{s,t\in\Gamma} (T_{s^*t}x_t)(x_s)\Big]$$

for each $(x_s)_{s\in\Gamma}\in\mathcal{X}$;

(iii)₃ for any $u \in \Gamma$ there exists $c_u \ge 0$ such that

$$p\Big[\sum_{s,t\in\Gamma} (T_{s^*u^*ut}x_t)(x_s)\Big] \le c_u p\Big[\sum_{s,t\in\Gamma} (T_{s^*t}x_t)(x_s)\Big]$$

for every $p \in \mathcal{P}_Z$ and $(x_s)_{s \in \Gamma} \in \mathcal{X}$;

(iii)₄ for any $u \in \Gamma$ and $p \in \mathcal{P}_Z$ there exist $c_{u,p} \ge 0$ and $q_{u,p} \in \mathcal{P}_Z$ such that

$$p\Big[\sum_{s,t\in\Gamma} (T_{s^*u^*ut}x_t)(x_s)\Big] \le c_{u,p}q_{u,p}\Big[\sum_{s,t\in\Gamma} (T_{s^*t}x_t)(x_s)\Big]$$

for each $(x_s)_{s\in\Gamma}\in\mathcal{X}$.

We say that a function $D : \Gamma \to \mathcal{C}(\mathcal{H}, \mathcal{H})$ is a *representation* of the *-semigroup Γ in the Loynes space \mathcal{H} if D satisfies (•).

THEOREM 4.2. If the family $\{T_s\}_{s\in\Gamma}$ satisfies conditions (i) and (ii) from Theorem 3.1 and property (iii)₁, then there exist a Loynes Z-space \mathcal{H} , a representation D of the *-semigroup Γ in \mathcal{H} and an operator $A \in \mathcal{C}(X, \mathcal{H})$ such that for any $s \in \Gamma$, $T_s = A^*D_sA$ and there exists $c_s \geq 0$ such that

$$(4.1) [D_s k, D_s k]_{\mathcal{H}} \le c_s [k, k]_{\mathcal{H}}$$

for all $k \in \mathcal{H}$.

Also, if $\{u_{\alpha}\}_{\alpha \in \mathcal{A}}$ is a net in Γ with $\sup_{\alpha \in \mathcal{A}} c_{u_{\alpha}} < \infty$ and $(T_{su_{\alpha}t})_{\alpha \in \mathcal{A}}$ converges to T_{sut} for any $s, t \in \Gamma$ in the weak topology of $\mathcal{C}(X, X_Z^*)$, then $(D_{u_{\alpha}})_{\alpha \in \mathcal{A}}$ converges to D_u in the weak topology of $\mathcal{C}(\mathcal{H}, \mathcal{H})$.

Proof. From Theorem 3.1, there exist a pre-Loynes space $F, A \in \mathcal{L}(X, F)$ and $D: \Gamma \to \mathcal{L}(F, F)$ such that

$$T_s = A' D_s A.$$

Now, let \mathcal{H} be the completion of the pre-Loynes Z-space F which admits K_T as a reproducing kernel. We also mention that the Gramian on F can be extended on \mathcal{H} . Evaluating $[Ax, Ax]_F$ we get

$$[Ax, Ax]_F = [K_T(\lambda_x, \cdot), K_T(\lambda_x, \cdot)]_F = K_T(\lambda_x, \lambda_x) = (T_e x)(x)$$

for all $x \in X$ and $\lambda_x = (e, x)$.

In order to verify the continuity of A, consider a net $\{x_{\alpha}\}_{\alpha \in \mathcal{A}} \subset X$ with $x_{\alpha} \xrightarrow{X}_{\alpha \in \mathcal{A}} 0$. Now let V be a 0-neighborhood in Z. Since T_e is continuous, we have $T_e x_{\alpha} \xrightarrow{\mathcal{C}(X, X_Z^*)}_{\alpha \in \mathcal{A}} 0$, that is, there exists $\alpha_0 \in \mathcal{A}$ such that for any $\alpha \geq \alpha_0$, $(T_e x_{\alpha})(x) \in V$ for all $x \in X$. Thus $(T_e x_{\alpha})(x_{\alpha}) \in V$ for all $\alpha \geq \alpha_0$, whence $(T_e x_{\alpha})(x_{\alpha}) \xrightarrow{Z}_{\alpha \in \mathcal{A}} 0$. Hence $[Ax_{\alpha}, Ax_{\alpha}]_F \xrightarrow{F}_{\alpha \in \mathcal{A}} 0$. Equivalently, $p([Ax_{\alpha}, Ax_{\alpha}]) \xrightarrow{\alpha \in \mathcal{A}} 0$ for all $p \in \mathcal{P}_Z$. Using the Cauchy–Schwarz inequality

$$p([Ax_{\alpha}, y]_F) \le 2p([Ax_{\alpha}, Ax_{\alpha}]_F)^{1/2}p([y, y]_F)^{1/2},$$

for all $p \in \mathcal{P}_Z$ and $y \in F$, we deduce that $p([Ax_\alpha, y]_F) \to 0$, which implies $Ax_\alpha \xrightarrow{F} 0$, so A is continuous.

By evaluating $[D_s k, D_s k]_F$ for $s \in \Gamma$ and $k \in F$, we have

$$\begin{split} [D_s k, D_s k]_F &= \left[\sum_{j=1}^n c_j K_T((\lambda_j)^s, \cdot), \sum_{l=1}^n c_l K_T((\lambda_l)^s, \cdot)\right]_F \\ &= \sum_{l=1}^n \sum_{j=1}^n c_j \overline{c_l} K_T((\lambda_j)^s, (\lambda_l)^s) = \sum_{l,j=1}^n c_j \overline{c_l} (T_{(ss_l)^*(ss_j)} x_j)(x_l) \\ &= \sum_{l,j=1}^n c_j \overline{c_l} (T_{s_l^* s^* ss_j} x_j)(x_l), \end{split}$$

and

$$[k,k]_F = \sum_{l,j=1}^n c_j \overline{c_l}(\lambda_j,\lambda_l) = \sum_{l,j=1}^n c_j \overline{c_l}(T_{s_l^* s_j} x_j)(x_l)$$

where $k = \sum_{j=1}^{n} c_j K_T(\lambda_j, \cdot)$ and

$$\lambda_j = (s_j, x_j), \quad \lambda_l = (s_l, x_l), \quad (\lambda_j)^s = (ss_j, x_j), \quad (\lambda_l)^s = (ss_l, x_l).$$

Under the boundedness hypothesis $(iii)_1$ we obtain

 $[D_u k, D_u k]_F \le c_u [k, k]_F.$

So, for each $u \in \Gamma$, D_u is a bounded operator on F, and consequently we may extend it (following the same technique as in the last part of the proof of [Lo1, Theorem 3]) to a bounded linear operator D_s from \mathcal{H} into \mathcal{H} , whence D is a representation of Γ in \mathcal{H} . Now, if $T_{su_{\alpha}t} \to T_{sut}$ in the weak topology of $\mathcal{C}(X, X_Z^*)$, that is, $(T_{su_{\alpha}t}x)(x') \xrightarrow[\alpha \in \mathcal{A}]{} (T_{sut}x)(x')$ for all $x, x' \in X$ and all $s, t \in \Gamma$, then for $f, f' \in F$, we have

$$\begin{split} [D_{u_{\alpha}}f,f']_{F} &= \left[\sum_{j=1}^{n} c_{j}^{1} K_{T}((\lambda_{j}^{1})^{u_{\alpha}},\cdot), \sum_{l=1}^{n} c_{l}^{2} K_{T}(\lambda_{l}^{2},\cdot)\right]_{F} \\ &= \sum_{l,j=1}^{n} c_{j}^{1} \overline{c_{l}^{2}} K_{T}((\lambda_{j}^{1})^{u_{\alpha}},\lambda_{l}^{2}) = \sum_{l,j=1}^{n} c_{j}^{1} \overline{c_{l}^{2}} (T_{(s_{l})^{*} u_{\alpha} t_{j}} x_{j})(x_{l}'), \end{split}$$

which for $\alpha \in \mathcal{A}$ converges to

$$\sum_{l,j=1}^{n} c_j^1 \overline{c_l^2} (T_{(s_l)^* u t_j} x_j)(x_l') = [D_u f, f']_F$$

As F is dense in \mathcal{H} , we have $[D_{u_{\alpha}}k, D_{u_{\alpha}}k]_{\mathcal{H}} \leq c_{u_{\alpha}}[k, k]_{\mathcal{H}}$ and $\sup_{\alpha \in \mathcal{A}} c_{u_{\alpha}} < \infty$, implying that $\{D_{u_{\alpha}}k\}_{\alpha \in \mathcal{A}}$ is bounded for each $k \in \mathcal{H}$.

We now prove that $D_{u_{\alpha}}$ converges to D_u in the weak operator topology of \mathcal{H} , the completion of F. Take $f, f' \in F$ such that $[D_{u_{\alpha}}f, f'] \to [D_uf, f']$. Suppose that g and g' are fixed elements of \mathcal{H} and that $g = f + \delta, g' = f' + \delta',$ δ and δ' being chosen in a suitable neighborhood of the origin (possible since F is dense in \mathcal{H}). Denote $R_{\alpha} = D_{u_{\alpha}} - D_u$. We obtain

$$p([R_{\alpha}g,g'] - [R_{\alpha}f,f']) \le p([R_{\alpha}g,\delta']) + p([R_{\alpha}\delta,g']) + p([R_{\alpha}\delta,\delta'])$$

for any $p \in \mathcal{P}_Z$. Since δ and δ' can be chosen sufficiently small to make each of the three terms on the right-hand side small uniformly in α (by a standard reasoning), we conclude that D_{u_α} converges to D_u in the weak operator topology of $\mathcal{C}(\mathcal{H}, \mathcal{H})$.

REMARK 4.3. If in Theorem 4.2, instead of (iii)₁, the family $\{T_s\}_{s\in\Gamma}$ satisfies property (iii)₂ from Definition 4.1, then for all $s\in\Gamma$ and all $p\in\mathcal{P}_Z$ there exists $c_{p,s}\geq 0$ such that

$$p([D_sk, D_sk]_{\mathcal{H}}) \le c_{p,s}p([k, k]_{\mathcal{H}})$$

for any $k \in \mathcal{H}$.

Also, if $\{u_{\alpha}\}_{\alpha \in \mathcal{A}}$ is a net in Γ with $\sup_{\alpha \in \mathcal{A}} c_{p,u_{\alpha}} < \infty$ for all $p \in \mathcal{P}_Z$, and $(T_{su_{\alpha}t})_{\alpha \in \mathcal{A}}$ converges to T_{sut} for any $s, t \in \Gamma$ in the weak topology of $\mathcal{C}(X, X_Z^*)$, then $(D_{u_{\alpha}})_{\alpha \in \mathcal{A}}$ converges to D_u in the weak topology of $\mathcal{C}(\mathcal{H}, \mathcal{H})$.

REMARK 4.4. If in Theorem 4.2, instead of (iii)₁, the family $\{T_s\}_{s\in\Gamma}$ satisfies (iii)₃, then for all $s\in\Gamma$ there exists $c_s>0$ such that

$$p([D_sk, D_sk]_{\mathcal{H}}) \le c_s p([k, k]_{\mathcal{H}})$$

for any $p \in \mathcal{P}_Z$ and any $k \in \mathcal{H}$.

Also, if $\{u_{\alpha}\}_{\alpha \in \mathcal{A}}$ is a net in Γ with $\sup_{\alpha \in \mathcal{A}} c_{u_{\alpha}} < \infty$, and $(T_{su_{\alpha}t})_{\alpha \in \mathcal{A}}$ converges to T_{sut} for any $s, t \in \Gamma$ in the weak topology of $\mathcal{C}(X, X_Z^*)$, then $(D_{u_{\alpha}})_{\alpha \in \mathcal{A}}$ converges to D_u in the weak topology of $\mathcal{C}(\mathcal{H}, \mathcal{H})$.

REMARK 4.5. If in Theorem 4.2, instead of (iii)₁, the family $\{T_s\}_{s\in\Gamma}$ satisfies (iii)₄, then for all $s \in \Gamma$ and all $p \in \mathcal{P}_Z$ there exist $c_{s,p} \geq 0$ and $q_{s,p} \in \mathcal{P}_Z$ such that

$$p([D_sk, D_sk]_{\mathcal{H}}) \le c_{s,p}q_{s,p}([k, k]_{\mathcal{H}})$$

for any $k \in \mathcal{H}$.

Also, if $\{u_{\alpha}\}_{\alpha \in \mathcal{A}}$ is a net in Γ with the property that there exists $p_0 \in \mathcal{P}_Z$ such that $\sup_{\alpha \in \mathcal{A}} c_{p,u_{\alpha}} < \infty$ and $q_{u_{\alpha,p}}(z) \leq p_0(z)$ for all $z \in Z$ and $p \in \mathcal{P}_Z$, and $(T_{su_{\alpha}t})_{\alpha \in \mathcal{A}}$ converges to T_{sut} for any $s, t \in \Gamma$ in the weak topology of $\mathcal{C}(X, X_Z^*)$, then $(D_{u_{\alpha}})_{\alpha \in \mathcal{A}}$ converges to D_u in the weak topology of $\mathcal{C}(\mathcal{H}, \mathcal{H})$.

One can prove these remarks by standard evaluations similar to those in the proof of Theorem 4.2. REMARK 4.6. If $X = \mathcal{K}$ is a Hilbert space and $T_e = I$, then Theorem 4.2 will lead to the classical Sz.-Nagy dilation theorem. Precisely, A is an "injection" of \mathcal{K} in the space \mathcal{H} which contains it, and " A^* " is an orthogonal projection of \mathcal{H} onto \mathcal{K} . Consequently, $T_{\xi} = \operatorname{Proj}_K D_{\xi}$.

REMARK 4.7. If in Theorem 4.2 we replace X with a normed space with topological dual X^* , we obtain Theorem 2 from [GW2].

References

- [A] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.
- [BPL] T. Bînzar, F. Pater and L. D. Lemle, Some extensions of a B. Sz.-Nagy type theorem with application in the stochastic processes, in: Numerical Analysis and Applied Mathematics (Rethymno, Crete, 2009), AIP Conf. Proc. 1168, Amer. Inst. Phys., 2009, 201–204.
- [CW] S. A. Cobanjan and A. Weron, Banach space valued stationary processes and their linear predictions, Dissertationes Math. 125 (1975), 45 pp.
- [GP] D. Gaşpar and P. Gaşpar, *Reproducing kernel Hilbert* $\mathcal{B}(\mathcal{X})$ -modules, An. Univ. Vest Timişoara Ser. Mat.-Inform. 43 (2005), 47–71.
- [GL] D. Gaşpar, P. Gaşpar and N. Lupa, *Dilations on locally Hilbert spaces*, in: Topics in Mathematics, Computer Science and Philosophy, A Festschrift for Wolfgang W. Breckner, Presa Universitara Clujeană, Cluj-Napoca, 2008, 107–122.
- [GW1] J. Górniak and A. Weron, An analogue of Sz.-Nagy's dilation theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 867–872.
- [GW2] J. Górniak and A. Weron, Aronszajn-Kolmogorov type theorems for positive definite kernels in locally convex spaces, Studia Math. 69 (1981), 235–246.
- [Is] V. I. Istrăţescu, Inner Product Structures: Theory and Applications, Reidel, Dordrecht, 1987.
- [It] S. Itoh, Reproducing kernels over C*-algebras and their applications, Bull. Kyushu Inst. Tech. 37 (1990), 1–20.
- [K] Y. Kakihara, Multidimensional Second Order Stochastic Processes, World Sci., Singapore, 1997.
- [L] L. D. Lemle, On some approximation theorems for power q-bounded operators on locally convex vector spaces, Scientific World J. 2014, art. ID 513162, 5 pp.
- [Lo1] R. M. Loynes, On generalized positive-definite functions, Proc. London Math. Soc. 15 (1965), 373–384.
- [Lo2] R. M. Loynes, On a generalization of second-order stationarity, Proc. London Math. Soc. 15 (1965), 385–398.
- [Lo3] R. M. Loynes, Linear operators in VH-spaces, Trans. Amer. Math. Soc. 116 (1965), 167–180.
- P. P. Saworotnow, Linear spaces with H^{*}-algebra-valued inner product, Trans. Amer. Math. Soc. 262 (1980), 53–549.
- [SN] B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond this space, appendix to: F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1960.
- B. Truong-Van, Une généralisation du théorème de Kolmogorov-Aronszajn. Processus V-bornés q-dimensionnels: domaine spectral q-dilatations stationnaires, Ann. Inst. H. Poincaré Sect. B 17 (1981), 31–49.

[W] A. Weron, Second-order stochastic processes and the dilation theory in Banach spaces, Ann. Inst. H. Poincaré Sect. B 16 (1980), 29–38.

Flavius Pater, Tudor Bînzar Department of Mathematics Politehnica University of Timişoara 300006 Timişoara, Romania E-mail: flavius.pater@upt.ro tudor.binzar@upt.ro

> Received October 20, 2014 Revised version September 12, 2015 (8108)

122