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On some dilation theorems for positive definite operator
valued functions

by

Flavius Pater and Tudor B̂ınzar (Timişoara)

Abstract. The aim of this paper is to prove dilation theorems for operators from a
linear complex space to its Z-anti-dual space. The main result is that a bounded positive
definite function from a ∗-semigroup Γ into the space of all continuous linear maps from
a topological vector space X to its Z-anti-dual can be dilated to a ∗-representation of Γ
on a Z-Loynes space. There is also an algebraic counterpart of this result.

1. Introduction. It is well known that a function on a ∗-semigroup Γ
into the C∗-algebra of all bounded linear operators on a given Hilbert space,
that is positive definite, can be dilated to a ∗-representation of Γ on a larger
Hilbert space (see the Principal Theorem of [SN]).

Probability theory on Banach spaces triggered the development of dila-
tion theory of operator functions in non-Hilbert spaces [GW2]. The close
connection between dilation theory and the theory of second order stochas-
tic processes was exhibited in [W]. In 1976, J. Górniak and A. Weron [GW1]
proved an analogue of the Principal Theorem of Sz.-Nagy for functions with
values in the space of all anti-linear bounded operators from a complex
normed space to its topological dual. In the same paper, an algebraic ver-
sion of this result was also given. Similar approaches and applications were
presented in [GW2], [It], [L], [GL] and [K].

Another analogue of the above mentioned dilation theorem was given by
R. M. Loynes [Lo1] for operators acting on a VH-space, along with many
important results on the same issue [Lo2], [Lo3]. Later on, Cobanjan and
Weron [CW] proved that the space L(B,H) endowed with the inner product
[·, ·] is a Loynes space (for more examples see [Is] and [S]).

The results of [CW] are a variation of the original Aronszajn construc-
tion [A], considering the Aronszajn kernel K : (S×A)×(S×A)→ B, where
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S is just a set and A and B are C∗-algebras, given by

K((t, a), (s, a′)) = K(t, s)[a′ ∗ a].

In 2005, D. Gaşpar and P. Gaşpar [GP] extended the reproducing kernel
Hilbert space technique of [A] to more general structures such as Loynes
spaces and D2-normal B(X )-modules.

The results of our paper, partly announced in [BPL], are also variations
of the original Aronszajn construction in the case of a kernel K : (X ×Γ )×
(X×Γ )→ Z, where X is a linear space or a topological linear space, Γ is a
∗-semigroup and Z is an admissible space in the sense of Loynes. Our paper
extends the fundamental theorem of Loynes [Lo1, Section 3, Theorem 3] to
the case where the set of continuous linear operators in a Loynes Z-space is
replaced by C(X,X∗Z), the set of continuous linear maps from a topological
space X to its Z-anti-dual. In the proof we use a version of the Cauchy–
Schwarz inequality for seminorms in a Loynes space, which is significantly
different from the Loynes space case [Lo1].

The main result of the article may be applied to the characterization
of spectral bi-measures and to the stationary dilation of q-dimensional
V -bounded processes (see [T] and [W]).

2. Preliminaries. In this section we mention some notation and known
notions and results from [GP].

Recall first that a complete locally convex space Z is called admissible
in the sense of Loynes if there exist a closed convex cone Z+ in Z with
Z+ ∩ (−Z+) = {0} and an involution “♦” on Z (conjugate linear and idem-
potent) such that each element of Z+ is self-adjoint, the topology of Z is
compatible with the partial order in Z induced by Z+, and decreasing se-
quences in Z+ are convergent [Lo1, pp. 11].

In the following, Z will be an admissible space in the sense of Loynes.

It is known that the topology of Z can be defined by a sufficient and
directed family, say PZ , of monotone Minkowski seminorms.

For any given set Λ, a function K : Λ× Λ→ Z is said to be a Z-valued
kernel on Λ.

A Z-valued kernel on Λ will be called weakly positive definite [GP] if for
each n ∈ N∗, {c1, . . . , cn} ⊂ C and {λ1, . . . , λn} ⊂ Λ, we have

(1)
n∑
i=1

n∑
j=1

cic̄jK(λi, λj) ∈ Z+.

A locally convex space H is called a pre-Loynes Z-space if it is endowed
with a Z-valued inner product (called Gramian)

H×H 3 (h, k) 7→ [h, k] ∈ Z,
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which has the properties

[h, h] ≥ 0, [h, h] = 0 implies h = 0,(G1)

[h1 + h2, h] = [h1, h] + [h2, h],(G2)

[λh, k] = λ[h, k],(G3)

[h, k]♦ = [k, h],(G4)

for all h, k, h1, h2 ∈ H and λ ∈ C (where the positivity in Z is considered)
and the topology in H is the weakest one for which the mapping H 3 h 7→
[h, h] ∈ Z is continuous.

If H is complete in this topology, it will be called a Loynes Z-space [Lo1].

A pre-Loynes Z-space H consisting of Z-valued functions on Λ admits
a reproducing kernel or is a reproducing kernel pre-Loynes Z-space if there
exists a Z-valued kernel K satisfying the conditions

K(λ, ·) ∈ H for any λ ∈ Λ,(IP)

h(λ) = [h,K(λ, ·)] for all λ ∈ Λ and h ∈ H.(RP)

The kernel K is called a reproducing kernel for H, and (IP), (RP) are called
the inclusion property and the reproducing property, respectively (see [GP]).

Now, let X and Y be complex linear spaces. Then L(X,Y ) denotes the
class of all linear operators from X to Y . For a complex linear space X,
the algebraic Z-anti-dual X ′Z is the set of all anti-linear operators from X
to Z. For an operator A ∈ L(X,F ), where F is a pre-Loynes Z-space, its
Z-algebraic adjoint operator A′ ∈ L(F,X ′Z) is defined by

(A′f)(x) = [f,Ax]F , f ∈ F, x ∈ X,
where [·, ·]F is the Gramian of F .

If F is a Loynes space and A ∈ L(F, F ), then an operator B ∈ L(F, F )
with the property

[Af1, f2]F = [f1, Bf2]F

is called the adjoint of A and will be denoted by A∗.

An operator U ∈ L(F1, F2), where F1, F2 are pre-Loynes Z-spaces, is
said to be unitary if U(F1) = F2 and

[Uf,Ug]F2 = [f, g]F1

for all f, g ∈ F1.

If X is a complex topological linear space, then its topological Z-anti-dual
X∗Z is the set of all continuous anti-linear operators from X to Z.

On X∗Z the uniform convergence topology is considered, that is, a net
(Tα)α∈A of operators from X∗Z converges uniformly to the null-operator 0
iff for any 0-neighborhood V in Z there exists α0 ∈ A such that, for each
α ≥ α0, Tαx ∈ V for all x ∈ X.
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If X and Y are topological linear spaces, we denote by C(X,Y ) the space
of all continuous linear operators from X to Y .

Let Γ be a ∗-semigroup, that is, a semigroup with unit e and involution
“∗” satisfying e∗ = e, s∗∗ = s, and (st)∗ = t∗s∗ for all s, t ∈ Γ .

Following [GW1], let X be the set of all functions x = (xs) : Γ → X
with finite support. A family {Ts}s∈Γ of functions from L(X,X ′Z) indexed
by the ∗-semigroup Γ is called positive definite if

(2)
∑
s,t∈Γ

(Ts∗txt)(xs) ≥ 0

for all (xs)s∈Γ ∈ X .
We recall a version of the classical Cauchy–Schwarz inequality, in terms

of seminorms, in a pre-Loynes space.
If H is a pre-Loynes Z-space and PZ is a sufficient directed set of mono-

tone seminorms defining the topology of Z, then

p([h, k]) ≤ 2(p([h, h]))1/2(p([k, k]))1/2

for any h, k ∈ H and any p ∈ PZ .

3. A characterization of L(X,X ′Z)-valued positive definite fam-
ilies. The theorem below is an algebraic analogue of Górniak and Weron’s
result [GW1].

Theorem 3.1. Let X be a complex linear space with algebraic Z-anti-
dual space X ′Z . If {Ts}s∈Γ ⊂ L(X,X ′Z) is a family indexed by a ∗-semigroup
Γ satisfying

(i) (Tsx)(y) = (Ts∗y)(x)♦ for all x, y ∈ X and s ∈ Γ ,
(ii) {Ts}s∈Γ is positive definite,

then there exist a pre-Loynes Z-space F and a function D : Γ → L(F, F )
with the following properties:

(•) De = I, Dst = DsDt, D∗s = Ds∗ , s, t ∈ Γ ;

there exists an operator A ∈ L(X,F ) such that

(••) Ts = A′DsA, s ∈ Γ ;

and the space F is minimal in the sense that it is generated by elements of
the form DsAx for x ∈ X and s ∈ Γ .

Moreover:

1◦. The space F is uniquely determined up to unitary equivalence, i.e. if
Ts = A′1D

1
sA1, s ∈ Γ , where D1 : Γ → L(F1, F1) satisfies (•), F1 is

a minimal pre-Loynes Z-space and A1 ∈ L(X,F1), then there exists
a unitary operator U : F1 → F such that

A = UA1, UD1
s = DsU, s ∈ Γ.
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2◦. If Tsαt = Tsβt + Tsγt for some fixed α, β, γ, and all s, t in Γ , then
Dα = Dβ +Dγ.

Proof. The argument is like that used to prove Sz.-Nagy’s original the-
orem [SN].

Let Λ = Γ ×X. We define KT : Λ× Λ→ Z by

KT (λ, µ) = (Tt∗sx)(y)

where λ = (s, x), µ = (t, y), s, t ∈ Γ , x, y ∈ X.
First we will show that KT is a weak Z-valued positive definite kernel.

Indeed, let c1, . . . , cn ∈ C, λ1, . . . , λn ∈ Λ, λi = (si, xi), i = 1, n. We have
n∑
i=1

n∑
j=1

cic̄jKT (λi, λj) =

n∑
i=1

n∑
j=1

cic̄j(Ts∗j sixi)(xj)

=
n∑
i=1

n∑
j=1

(Ts∗j sicixi)(cjxj) =
n∑
i=1

n∑
j=1

(Ts∗j siki)(kj) ≥ 0

from the positivity of T .
Next, define

F =
{ n∑
l=1

clKT (λl, ·) : n ∈ N∗, cl ∈ C, λl ∈ Λ, l = 1, n
}
.

We will prove that F is a pre-Loynes Z-space with Gramian

[f1, f2]F =

n∑
j,l=1

c1j c̄
2
lKT (λ1j , λ

2
l )

for f1 =
∑n

j=1 c
1
jKT (λ1j , ·), f2 =

∑n
l=1 c

2
lKT (λ2l , ·).

Obviously F is a complex linear space with the usual operations.
The first part of (G1) follows from the fact that KT is a weak Z-valued

positive definite kernel and from the definition of [·, ·]F . Conditions (G2) and
(G3) easily result from the definition of [·, ·]F . We prove (G4):

[f2, f1]
♦
F =

( n∑
j,l=1

c2l c̄
1
jKT (λ2l , λ

1
j )
)♦

=

n∑
j,l=1

c1j c̄
2
l [(Ts∗j slxl)(xj)]

♦

=

n∑
j,l=1

c1j c̄
2
l (Ts∗l sjxj)(xl) =

n∑
j,l=1

c1j c̄
2
lKT (λ1j , λ

2
l ) = [f1, f2]F .

Let PZ be a sufficient set of monotone seminorms that generates the
topology in Z. We will verify that F hasKT as reproducing kernel. Condition
(IP) comes from the definition of the kernel. To show (RP), let

h =

n∑
j=1

cjKT (λj , ·) ∈ F, λj ∈ Λ, cj ∈ C, n ∈ N∗.
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Then

[h,KT (λ, ·)]F =
[ n∑
j=1

cjKT (λj , ·),KT (λ, ·)
]
F

=
n∑
j=1

cjKT (λj , λ) = h(λ).

We now prove the second part of (G1), using the reproducing property.
Assume [h, h]F = 0. From

p(h(λ)) ≤ 2(p[h, h]F )1/2 · (p[KT (λ, ·),KT (λ, ·)]F )1/2, λ ∈ Λ,

since PZ is a sufficient set of seminorms in Z, it follows that h(λ) = 0 for
all λ ∈ Λ, i.e. h = 0.

We have shown so far that [·, ·]F is a Gramian, so F is a pre-Loynes
Z-space.

Define A : X → F by

Ax = KT (λx, ·) ∈ F, λx = (e, x) ∈ Λ.

Let µ = (t, y) ∈ Λ. We prove that A is linear:

[A(c1x1 + c2x2)](µ) = KT (λc1x1+c2x2 , µ) = [Tt∗e(c1x1 + c2x2)](y)

= c1(Tt∗ex1)(y) + c2(Tt∗ex2)(y)

= c1KT (λx1 , µ) + c2KT (λx2 , µ) = (c1Ax1 + c2Ax2)(µ)

for all c1, c2 ∈ C, x1, x2 ∈ X.

For the existence of A′, let k ∈ F and

k =
n∑
j=1

cjKT (λj , ·), cj ∈ C, λj = (sj , xj) ∈ Λ, j = 1, n, n ∈ N∗.

Let x ∈ X. We get

(A′k)(x) = [k,Ax]F =
[ n∑
j=1

cjKT (λj , ·),KT (λx, ·)
]
F

=

n∑
j=1

cjKT (λj , λx)

=

n∑
j=1

cj(Te∗sjxj)(x) =

n∑
j=1

cj(Tsjxj)(x).

Therefore A′k =
∑n

j=1 cjTsjxj .

We define a representation D : Γ → L(F, F ) by D(s) = Ds with

Ds

( n∑
j=1

cjKT (λj , ·)
)

=
n∑
j=1

cjKT (λsj , ·), s ∈ Γ,

where λj = (sj , xj) ∈ Λ, and λsj = (ssj , xj).

It is obvious that Ds∈L(F, F ). Set kν =
∑n

j=1 c
ν
jKT (λνj , ·), λνj =(sνj , x

ν
j ),

ν = 1, 2, j = 1, n, n ∈ N∗. We obtain
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[Dsk1, k2]F =
[ n∑
j=1

c1jKT ((λ1j )
s, ·),

n∑
l=1

c2lKT (λ2l , ·)
]
F

=
n∑

j,l=1

c1j c̄
2
lKT ((λ1j )

s, λ2l ) =
n∑

j,l=1

c1j c̄
2
l (T(s2l )∗ss

1
j
x1j )(x

2
l )

=
n∑

j,l=1

c1j c̄
2
lKT (λ1j , (λ

2
l )
s∗) = [k1, k

∗
2]F

where k∗2 =
∑n

l=1 c
2
lKT ((λ2l )

s∗ , ·). This implies that D∗sk2 = k∗2 = Ds∗k2. In
the same manner, setting s = e, we obtain De = I.

Let once again k =
∑n

j=1 cjKT (λj , ·) ∈ F , cj ∈ C, λj = (sj , xj) ∈ Λ,

j = 1, n, n ∈ N∗, µ = (t, y) ∈ Λ. For s, t ∈ Γ , we have

(DsDt)(k) = Ds

( n∑
j=1

cjKT (λtj , ·)
)

=
n∑
j=1

cjKT (λstj , ·) = Dst(k).

Thus Dst = DsDt for all s, t ∈ Γ .

We prove (••):

(A′DsA)(x) = A′DsKT (λx, ·) = A′KT (λsx, ·) = Tsx.

Since

(3)
n∑
j=1

cjKT (λj , ·) =
n∑
j=1

cjKT (λ
sj
xj , ·) =

n∑
j=1

cjDsjAxj ,

the minimality condition is verified.

For 1◦, let

D : Γ → L(F, F ) and D1 : Γ → L(F1, F1)

satisfy condition (•), and let A ∈ L(X,F ) and A1 ∈ L(X,F1) be such that

A′DsA = Ts = A′1D
1
sA1,

where the linear Z-valued spaces F , F1 are minimal, i.e. F and F1 are
generated by elements of the form DsAx and D1

sA1x respectively. If f1 ∈ F1,
then f1 =

∑n
j=1 cjD

1
sjA1xj and we set

(4) Uf1 =

n∑
j=1

cjDsjAxj .

Thus U ∈ L(F1, F ) and U(F1) = F .

Taking g1 =
∑n

l=1 dlDtlA1yl ∈ F1, µl = (tl, yl) ∈ Λ and using (3) and
the properties of D, we obtain
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[Uf1, Ug1]F =
[ n∑
j=1

cjDsjAxj ,

n∑
l=1

dlDtlAyl

]
F

=
[ n∑
j=1

cjKT (λj , ·),
n∑
l=1

dlKT (µl, ·)
]
F

=

n∑
j,l=1

cj d̄lKT (λj , µl) =

n∑
j,l=1

cj d̄l(Tt∗l sjxj)(yl)

=

n∑
j,l=1

cj d̄l(A
′
1D

1
t∗l sj

A1xj)(yl) =

n∑
j,l=1

cj d̄l[D
1
t∗l sj

A1xj , A1yl]F1

=
n∑

j,l=1

cj d̄l
[
(D1

tl
)∗D1

sjA1xj , A1yl
]
F1

=
[ n∑
j=1

cjD
1
sjA1xj ,

n∑
l=1

dlD
1
tl
A1yl

]
F1

= [f1, g1]F1 .

Hence U is unitary. Moreover, by (4),

UA1x = U(D1
eA1x) = DeAx = Ax, x ∈ X,

and

UD1
sf1 = UD1

s

( n∑
j=1

cjD
1
sjA1xj

)
= U

( n∑
j=1

cjD
1
ssjA1xj

)
=

n∑
j=1

cjDssjAxj = Ds

( n∑
j=1

cjDsjAxj

)
= DsUf1, f1 ∈ F1.

In order to show 2◦, suppose that Tsαt = Tsβt+Tsγt for some α, β, γ ∈ Γ
fixed and for all s, t ∈ Γ . Take k ∈ F , k =

∑n
j=1 cjKT (λj , ·), λj = (sj , xj),

j = 1, n and µ = (t, y) ∈ Λ. We have

[(Dβ +Dγ)(k)](µ) = (Dβk +Dγk)(µ) =

n∑
j=1

cj [KT (λβj , µ) +KT (λγj , µ)]

=

n∑
j=1

cj(Tt∗βsjxj)(y) +

n∑
j=1

cj(Tt∗γsjxj)(y)

=
n∑
j=1

cj(Tt∗αsjxj)(y) =
n∑
j=1

cjKT (λαj , µ) = (Dαk)(µ).

Thus 2◦ is verified and the proof of Theorem 3.1 is complete.

The converse of Theorem 3.1 is also valid.
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Theorem 3.2. Let Γ be a ∗-semigroup, let X be a complex linear space
and let Z be an admissible space in Loynes sense. If there exist a linear
Z-valued space F , a function D : Γ → L(F, F ) which satisfies (•) and an
operator A ∈ L(X,F ) such that Ts = A′DsA, s ∈ Γ , then the family {Ts}s∈Γ
has properties (i) and (ii) from Theorem 3.1.

Proof. Let x, y ∈ X and s ∈ Γ . Using the definition of A′ and the third
of relations (•), we have

(Ts∗y)(x)♦ = (A′Ds∗Ay)(x)♦ = [Ds∗Ay,Ax]♦F = [Ay,DsAx]♦F
= [DsAx,Ay]F = (A′DsAx)(y) = (Tsx)(y),

proving (i).
Now let (xs)s∈Γ ∈ X . Using the second and the third of relations (•), we

obtain∑
s,t∈Γ

(Ts∗txt)(xs) =
∑
s,t∈Γ

(A′Ds∗tAxt)(xs) =
∑
s,t∈Γ

(A′D∗sDtAxt)(xs)

=
∑
s,t∈Γ

[D∗sDtAxt, Axs]F =
∑
s,t∈Γ

[DtAxt, DsAxs]F

=
[∑
t∈Γ

DtAxt,
∑
t∈Γ

DtAxt

]
F
≥ 0,

whence (ii) holds.

Remark 3.3. In the particular case when Z = C, one obtains Górniak
and Weron’s result [GW1, Theorem 1].

4. A topological characterization of positive definite C(X,X∗Z)-
valued families. As an analogue of the Sz.-Nagy dilation theorem [SN],
we give a topological version of Theorem 3.1 under some boundedness con-
ditions.

Let (X, τ) be a linear topological space with topological Z-anti-dual X∗Z ,
and {Ts}s∈Γ ⊂ C(X,X∗Z) be a family of functions indexed by a ∗-semi-
group Γ .

Definition 4.1. Consider the following properties of the family {Ts}s∈Γ :

(iii)1 for every u ∈ Γ there exists cu ≥ 0 such that∑
s,t∈Γ

(Ts∗u∗utxt)(xs) ≤ cu
∑
s,t∈Γ

(Ts∗txt)(xs)

for each (xs)s∈Γ ∈ X ;
(iii)2 for every u ∈ Γ and p ∈ PZ there exists cp,u ≥ 0 such that

p
[∑
s,t∈Γ

(Ts∗u∗utxt)(xs)
]
≤ cp,up

[∑
s,t∈Γ

(Ts∗txt)(xs)
]

for each (xs)s∈Γ ∈ X ;
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(iii)3 for any u ∈ Γ there exists cu ≥ 0 such that

p
[∑
s,t∈Γ

(Ts∗u∗utxt)(xs)
]
≤ cup

[∑
s,t∈Γ

(Ts∗txt)(xs)
]

for every p ∈ PZ and (xs)s∈Γ ∈ X ;
(iii)4 for any u ∈ Γ and p ∈ PZ there exist cu,p ≥ 0 and qu,p ∈ PZ such

that

p
[∑
s,t∈Γ

(Ts∗u∗utxt)(xs)
]
≤ cu,pqu,p

[ ∑
s,t∈Γ

(Ts∗txt)(xs)
]

for each (xs)s∈Γ ∈ X .

We say that a function D : Γ → C(H,H) is a representation of the
∗-semigroup Γ in the Loynes space H if D satisfies (•).

Theorem 4.2. If the family {Ts}s∈Γ satisfies conditions (i) and (ii) from
Theorem 3.1 and property (iii)1, then there exist a Loynes Z-space H, a
representation D of the ∗-semigroup Γ in H and an operator A ∈ C(X,H)
such that for any s ∈ Γ , Ts = A∗DsA and there exists cs ≥ 0 such that

(4.1) [Dsk,Dsk]H ≤ cs[k, k]H

for all k ∈ H.
Also, if {uα}α∈A is a net in Γ with supα∈A cuα < ∞ and (Tsuαt)α∈A

converges to Tsut for any s, t ∈ Γ in the weak topology of C(X,X∗Z), then
(Duα)α∈A converges to Du in the weak topology of C(H,H).

Proof. From Theorem 3.1, there exist a pre-Loynes space F , A ∈ L(X,F )
and D : Γ → L(F, F ) such that

Ts = A′DsA.

Now, let H be the completion of the pre-Loynes Z-space F which admits
KT as a reproducing kernel. We also mention that the Gramian on F can
be extended on H. Evaluating [Ax,Ax]F we get

[Ax,Ax]F = [KT (λx, ·),KT (λx, ·)]F = KT (λx, λx) = (Tex)(x)

for all x ∈ X and λx = (e, x).
In order to verify the continuity of A, consider a net {xα}α∈A ⊂ X with

xα
X−−−→
α∈A

0. Now let V be a 0-neighborhood in Z. Since Te is continuous,

we have Texα
C(X,X∗

Z)−−−−−→
α∈A

0, that is, there exists α0 ∈ A such that for any

α≥ α0, (Texα)(x) ∈ V for all x ∈ X. Thus (Texα)(xα) ∈ V for all α≥ α0,

whence (Texα)(xα)
Z−−−→

α∈A
0. Hence [Axα, Axα]F

F−−−→
α∈A

0. Equivalently,

p([Axα, Axα]) −−−→
α∈A

0 for all p ∈ PZ . Using the Cauchy–Schwarz inequality

p([Axα, y]F ) ≤ 2p([Axα, Axα]F )1/2p([y, y]F )1/2,
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for all p ∈ PZ and y ∈ F , we deduce that p([Axα, y]F ) −→ 0, which implies

Axα
F−→ 0, so A is continuous.

By evaluating [Dsk,Dsk]F for s ∈ Γ and k ∈ F , we have

[Dsk,Dsk]F =
[ n∑
j=1

cjKT ((λj)
s, ·),

n∑
l=1

clKT ((λl)
s, ·)
]
F

=
n∑
l=1

n∑
j=1

cjclKT ((λj)
s, (λl)

s) =
n∑

l,j=1

cjcl(T(ssl)∗(ssj)xj)(xl)

=

n∑
l,j=1

cjcl(Ts∗l s∗ssjxj)(xl),

and

[k, k]F =
n∑

l,j=1

cjcl(λj , λl) =
n∑

l,j=1

cjcl(Ts∗l sjxj)(xl),

where k =
∑n

j=1 cjKT (λj , ·) and

λj = (sj , xj), λl = (sl, xl), (λj)
s = (ssj , xj), (λl)

s = (ssl, xl).

Under the boundedness hypothesis (iii)1 we obtain

[Duk,Duk]F ≤ cu[k, k]F .

So, for each u ∈ Γ , Du is a bounded operator on F , and consequently we
may extend it (following the same technique as in the last part of the proof
of [Lo1, Theorem 3]) to a bounded linear operator Ds fromH intoH, whence
D is a representation of Γ in H. Now, if Tsuαt → Tsut in the weak topology
of C(X,X∗Z), that is, (Tsuαtx)(x′) −−−→

α∈A
(Tsutx)(x′) for all x, x′ ∈ X and all

s, t ∈ Γ , then for f, f ′ ∈ F , we have

[Duαf, f
′]F =

[ n∑
j=1

c1jKT ((λ1j )
uα , ·),

n∑
l=1

c2lKT (λ2l , ·)
]
F

=

n∑
l,j=1

c1jc
2
lKT ((λ1j )

uα , λ2l ) =

n∑
l,j=1

c1jc
2
l (T(sl)∗uαtjxj)(x

′
l),

which for α ∈ A converges to

n∑
l,j=1

c1jc
2
l (T(sl)∗utjxj)(x

′
l) = [Duf, f

′]F .

As F is dense inH, we have [Duαk,Duαk]H≤cuα [k, k]H and supα∈A cuα<∞,
implying that {Duαk}α∈A is bounded for each k ∈ H.
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We now prove that Duα converges to Du in the weak operator topology
of H, the completion of F . Take f, f ′ ∈ F such that [Duαf, f

′]→ [Duf, f
′].

Suppose that g and g′ are fixed elements ofH and that g = f+δ, g′ = f ′+δ′,
δ and δ′ being chosen in a suitable neighborhood of the origin (possible since
F is dense in H). Denote Rα = Duα −Du. We obtain

p([Rαg, g
′]− [Rαf, f

′]) ≤ p([Rαg, δ′]) + p([Rαδ, g
′]) + p([Rαδ, δ

′])

for any p ∈ PZ . Since δ and δ′ can be chosen sufficiently small to make
each of the three terms on the right-hand side small uniformly in α (by a
standard reasoning), we conclude that Duα converges to Du in the weak
operator topology of C(H,H).

Remark 4.3. If in Theorem 4.2, instead of (iii)1, the family {Ts}s∈Γ
satisfies property (iii)2 from Definition 4.1, then for all s ∈ Γ and all p ∈ PZ
there exists cp,s ≥ 0 such that

p([Dsk,Dsk]H) ≤ cp,sp([k, k]H)

for any k ∈ H.

Also, if {uα}α∈A is a net in Γ with supα∈A cp,uα < ∞ for all p ∈ PZ ,
and (Tsuαt)α∈A converges to Tsut for any s, t ∈ Γ in the weak topology of
C(X,X∗Z), then (Duα)α∈A converges to Du in the weak topology of C(H,H).

Remark 4.4. If in Theorem 4.2, instead of (iii)1, the family {Ts}s∈Γ
satisfies (iii)3, then for all s ∈ Γ there exists cs > 0 such that

p([Dsk,Dsk]H) ≤ csp([k, k]H)

for any p ∈ PZ and any k ∈ H.

Also, if {uα}α∈A is a net in Γ with supα∈A cuα < ∞, and (Tsuαt)α∈A
converges to Tsut for any s, t ∈ Γ in the weak topology of C(X,X∗Z), then
(Duα)α∈A converges to Du in the weak topology of C(H,H).

Remark 4.5. If in Theorem 4.2, instead of (iii)1, the family {Ts}s∈Γ
satisfies (iii)4, then for all s ∈ Γ and all p ∈ PZ there exist cs,p ≥ 0 and
qs,p ∈ PZ such that

p([Dsk,Dsk]H) ≤ cs,pqs,p([k, k]H)

for any k ∈ H.

Also, if {uα}α∈A is a net in Γ with the property that there exists p0 ∈ PZ
such that supα∈A cp,uα <∞ and quα,p(z) ≤ p0(z) for all z ∈ Z and p ∈ PZ ,
and (Tsuαt)α∈A converges to Tsut for any s, t ∈ Γ in the weak topology of
C(X,X∗Z), then (Duα)α∈A converges to Du in the weak topology of C(H,H).

One can prove these remarks by standard evaluations similar to those in
the proof of Theorem 4.2.
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Remark 4.6. If X = K is a Hilbert space and Te = I, then Theorem 4.2
will lead to the classical Sz.-Nagy dilation theorem. Precisely, A is an “in-
jection” of K in the space H which contains it, and “A∗” is an orthogonal
projection of H onto K. Consequently, Tξ = ProjK Dξ.

Remark 4.7. If in Theorem 4.2 we replace X with a normed space with
topological dual X∗, we obtain Theorem 2 from [GW2].

References

[A] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950),
337–404.

[BPL] T. B̂ınzar, F. Pater and L. D. Lemle, Some extensions of a B. Sz.-Nagy type
theorem with application in the stochastic processes, in: Numerical Analysis and
Applied Mathematics (Rethymno, Crete, 2009), AIP Conf. Proc. 1168, Amer. Inst.
Phys., 2009, 201–204.

[CW] S. A. Cobanjan and A. Weron, Banach space valued stationary processes and their
linear predictions, Dissertationes Math. 125 (1975), 45 pp.
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