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Multiple disjointness and invariant measures
on minimal distal flows

by

Juho Rautio (Oulu)

Abstract. We examine multiple disjointness of minimal flows, that is, we find con-
ditions under which the product of a collection of minimal flows is itself minimal. Our
main theorem states that, for a collection {Xi}i∈I of minimal flows with a common phase
group, assuming each flow satisfies certain structural and algebraic conditions, the product∏

i∈I Xi is minimal if and only if
∏

i∈I X
eq
i is minimal, where Xeq

i is the maximal equicon-
tinuous factor of Xi. Most importantly, this result holds when each Xi is distal. When the
phase group T is Z or R, we can apply this idea to construct large minimal distal prod-
uct flows with many ergodic measures. We determine the exact cardinality of (ergodic)
invariant measures on the universal minimal distal T -flow. Equivalently, we determine the
cardinality of (extreme) invariant means on D(T ), the space of distal functions on T . This
cardinality is 2c for both ergodic and invariant measures. The size of the quotient of D(T )
by a closed subspace with a unique invariant mean is found to be non-separable by using
the same techniques.

1. Introduction. The uniqueness of the normalised Haar measure on a
compact Hausdorff topological group implies that there is a unique invari-
ant mean on AP(T ), the space of almost periodic functions on a topological
group T . This invariant mean corresponds to the normalised Haar measure
on the Bohr compactification TAP of T , i.e., the universal topological group
compactification. The spaceWAP(T ) of weakly almost periodic functions on
T has likewise only one invariant mean or, equivalently, the universal semi-
topological semigroup compactification TWAP of T has a unique invariant
probability measure, and again it is essentially the Haar measure on TAP ,
which we can see as the unique minimal ideal in TWAP (see [3, Chapter 4,
Theorems 2.14 and 3.12] or [5, Corollary 2.5 and Theorem 2.26]). These
spaces are well-behaved from the perspective of invariant means.

At the other extreme, if T is an infinite, discrete, amenable group, then
there are 22

|T | invariant means on l∞(T ), where |T | is the cardinality of T
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(see [6]). More generally, if T is an amenable, locally compact, non-compact
group and if d denotes the smallest possible cardinality of a covering of T
by compact sets, then the space LC(T ) of left norm continuous functions
on T has 22d left invariant means [22]. The arguments involve counting the
minimal left ideals in TLC , the compactification associated with LC(T ). Re-
call that TLC is the universal semigroup compactification of T in the locally
compact case (see [3, Theorem 5.7, p. 173]). This line of research has been
pursued further by Filali, Pym and Salmi [14, 15], and analogous results
have been obtained in a Fourier algebra setting by Filali, Neufang and Mon-
fared [13].

The work at hand was motivated by the problem of determining the
cardinality of the set of (left) invariant means on D(T ), the space of distal
functions on T . This space can be used to construct the universal right topo-
logical group compactification of T [3, Theorem 6.5, p. 179], and it contains
AP(T ) but not necessarilyWAP(T ). The question can also be formulated as
follows: what is the cardinality of the set of invariant measures on the univer-
sal minimal distal flow with T as the phase group? We address this problem
in the cases T = Z and T = R, and we shall show that the cardinality
is as large as could be expected, namely 2c for both groups (Theorems 4.2
and 4.4). To be precise, we count the ergodic invariant measures on TD,
which are in essence the extreme invariant means on D(T ). As a by-product,
we see that each minimal left ideal in βZ or in RLC supports 2c invariant
measures (Corollary 4.5).

For orientation, observe first that there must be more than one invari-
ant measure on ZD by Furstenberg’s [16] construction of a minimal, distal,
non-uniquely ergodic system, since any invariant measure on a minimal dis-
tal system can be lifted to an invariant measure on the universal system ZD.
The space of all invariant measures on any system is convex, so the cardi-
nality we are after is at least c, and on the other hand, the cardinality of the
set of invariant measures on the universal point-transitive system, i.e., the
Stone–Čech compactification βZ, sets an upper bound of 2c. The latter can
be obtained by counting the (mutually disjoint) minimal left ideals of βZ,
each of which supports at least one invariant measure [22]. This method
is unsuitable in the distal case because ZD is a group. In order to find 2c

invariant measures on ZD, it is necessary to construct a single minimal dis-
tal system with this cardinality of the set of invariant measures. Note that
Furstenberg’s example provides only a continuum of invariant measures, as
it is defined on a metric space. However, taking an uncountable product of
systems of this type leads to the desired conclusion: on each constituent sys-
tem of the product, we can choose an invariant measure independently of
the others, thus obtaining 2c distinct invariant product measures. The only
problem that remains is to ensure that the product system is minimal, and
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to this end we need to study ‘multiple disjointness’, generalising the usual
notion of disjointness of two minimal flows to arbitrary collections. This is
carried out in Section 3, and the results we obtain are perhaps interesting in
themselves. The main one is Theorem 3.6, according to which the product
of a collection of well-behaved minimal flows (e.g. minimal distal flows) is
minimal if and only if the product of the corresponding maximal equicontin-
uous factors is minimal. This is derived from a similar result in the context
of two flows in [10]. We also touch upon multiple disjointness for minimal
equicontinuous flows with abelian phase group (Theorem 3.5), and we show
how to construct an uncountable collection of minimal metric PI flows with
phase group R for which the product flow is minimal (Theorem 3.7).

The last section covers the arguments sketched above in detail for Z
and also for R. As a related phenomenon, the disjointness techniques and
non-uniquely ergodic constructions are applied to show that, for any closed
subspace V of D(T ) with a single invariant mean, at least when T = Z or
T = R, the quotient D(T )/V is non-separable. Results of this type have been
obtained for other pairs of function spaces frequently encountered in abstract
harmonic analysis (see for example the papers of Chou [7] and Bouziad and
Filali [4]). The recent work of Filali and Galindo [12] contains a historical
overview of the research in this area.

2. Preliminaries. The reader is assumed to be familiar with semigroup
compactifications and the associated m-admissible function algebras. We
follow [3] in notation and terminology regarding this topic. In addition, the
reader should be acquainted with topological dynamics, especially the alge-
braic aspects of flows on compact spaces. For background material on this
subject, see [1], [8] and, to a lesser extent, [3]. We recall the essential concepts
as well as some of the more specialised aspects of topological dynamics.

All topological spaces are assumed to be Hausdorff. We denote by B(X)
the C∗-algebra of bounded, complex-valued functions on a set X with supre-
mum norm. If X is a topological space, then C(X) ⊆ B(X) is the subspace
of continuous functions. If π : X → Y is a mapping between two sets, we
define an adjoint mapping π∗ : B(Y ) → B(X) by π∗f = f ◦ π, f ∈ B(Y ).
The weak∗ compact, convex set of all means on a subspace F ⊆ B(X) is
M(F), and if F is an algebra, then the set of multiplicative means on F
is denoted by MM (F). The Stone–Čech compactification of a topological
space X is then βX = MM (C(X)), and X is mapped inside βX by the
evaluation ε : X → βX, that is, for x ∈ X, we define ε(x) : C(X) → C by
ε(x)(f) = f(x), f ∈ C(X).

When S is a semigroup, the left and right translations by s ∈ S are de-
noted by λs and ρs. We define corresponding operators on B(S) by Ls = λ∗s
and Rs = ρ∗s. If S is equipped with a topology, it is right topological if all
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right translations are continuous. A semigroup compactification of a topo-
logical group T is a pair (φ,X), where X is a right topological semigroup
and φ : T → X is a continuous homomorphism such that φ(T ) is dense in
X and contained in the topological centre Λ(X) of all elements x ∈ X for
which λx : X → X is continuous. We shall usually speak of the space X as
the semigroup compactification, or just compactification, unless specifying
the homomorphism φ is essential in the context. All semigroup compacti-
fications of T can be realised as pairs (ε,MM (F)), where F ⊆ C(X) is an
m-admissible subalgebra, meaning that F is a left and right translation in-
variant C∗-subalgebra containing the constants such that Tµf(t) = µ(Ltf),
t ∈ T , defines a member of F for any µ ∈ MM (F) and f ∈ F . Here
we use the evaluation ε in the sense that the domain of ε(t) is F for any
t ∈ T , so ε : T → MM (F) has the adjoint ε∗ : C(MM (F)) → C(T ), which is
an isometric ∗-homomorphism. The left introversion operators Tµ : F → F ,
µ ∈ MM (F), define a right topological semigroup structure by µν = µ ◦ Tν ,
µ, ν ∈ MM (F).

For a topological group T , the space of left norm continuous functions
on T is denoted by LC(T ), which is also the m-admissible subalgebra of
C(T ) consisting of all functions that are uniformly continuous with respect
to the right uniform structure on T . The corresponding compactification of
T is TLC = MM (LC(T )). It is universal with respect to the joint continuity
property, i.e., if (φ,X) is any semigroup compactification of T such that the
mapping (t, x) 7→ φ(t)x : T ×X → X is jointly continuous, then (φ,X) is a
factor of (ε, TLC), or equivalently φ∗C(X) ⊆ LC(T ). Note that LC(T ) is iso-
metrically ∗-isomorphic to C(TLC). The adjoint of the evaluation ε : T → TLC

provides the canonical isomorphism.
By a flow or a T -flow we mean a triple (T,X, σ) consisting of a topolog-

ical group T (phase group), a compact space (phase space) and a continuous
action σ : T × X → X. The action σ is usually omitted from notation (so
σ(t, x) = tx and (T,X, σ) = (T,X)), and we shall often refer to the flow by
its phase space alone. A dynamical system or simply a system is a Z-flow
written as a pair (X, t), where X is the phase space and t : X → X is the
homeomorphism tx = 1x, x ∈ X. We say that a flow (T, Y ) is a subflow
of (T,X) if Y ⊆ X is a non-empty, closed, T -invariant set. If {Xi}i∈I is a
collection of T -flows, then the product flow X =

∏
i∈I Xi is a T -flow with

the action defined by (tx)i = txi, t ∈ T , x ∈ X, i ∈ I.
A continuous, surjective, T -equivariant mapping π : X → Y between

T -flows is a homomorphism, and then Y is said to be a factor of X. Such a
mapping π induces a relation R(π) on X ×X defined as the set of all pairs
(x, x′) satisfying π(x) = π(x′). It is a factor relation, i.e., a closed equivalence
relation that is invariant as a subset of the product flow (T,X×X). All factor
relations onX arise in this manner; if R is a factor relation, then the quotient
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space X/R is a compact Hausdorff space on which T acts in a natural way
so that the quotient map becomes a homomorphism. An isomorphism is an
injective homomorphism.

A point x ∈ X in a T -flow is transitive if its orbit Tx is dense. The flow X
is minimal if it does not contain proper subflows or, equivalently, if all points
are transitive. An ambit or a T -ambit is a pair (X,x), where X is a T -flow
and the base point x ∈ X is transitive. For any T -ambit (X,x), there is a
corresponding left translation invariant C∗-subalgebra of LC(T ) that con-
tains the constants, namely φxC(X), where the operator φx : C(X)→ LC(T )
is defined by φxf(t) = f(tx) for f ∈ C(X) and t ∈ T . This operator is
an isometric ∗-homomorphism. The space φxC(X) characterises (X,x) up
to ambit isomorphism (an isomorphism of flows that maps base point to
base point), i.e., two ambits are isomorphic if and only if the corresponding
subspaces of LC(T ) coincide. Also, if F ⊆ LC(T ) is a left translation invari-
ant C∗-subalgebra with the constants, then F = φxC(X) for some T -ambit
(X,x). Note that all semigroup compactifications of a topological group T
with the joint continuity property can be regarded as ambits; the most nat-
ural choice for a base point is the identity element. Another common way
to construct T -ambits is to select a function f ∈ LC(T ) and to define the
phase space as Xf = {Tµf | µ ∈ TLC} with the topology of pointwise con-
vergence, so T acts on Xf by right translations, and the base point is f . See
[8, Chapter 4, Section 5] for more information on these matters (note also
that LC(T ) is denoted by RUC ∗(T ) in that source).

The enveloping semigroup of a flow (T,X) is the right topological semi-
group E(T,X) or just E(X) defined as the closure in XX of the set of all
mappings of the form x 7→ tx : X → X, t ∈ T , equipped with the topology of
pointwise convergence and composition as the semigroup operation. We may
regard E(X) as a semigroup compactification of T with the joint continuity
property. It acts on X in a natural way, although this action is not jointly
continuous, in general. We can also define an action of TLC on X via the
canonical homomorphism from TLC to E(X).

Let X be a T -flow. The proximal relation P (X) is defined as the set of
all pairs (x, x′) ∈ X×X for which ax = ax′ for some a ∈ E(X). These pairs
are called proximal pairs, and non-proximal pairs are distal pairs. A distal
point is a point x ∈ X such that (x, x′) is a distal pair for all x′ ∈ X \ {x}.
The flow X is distal if all points are distal, i.e., if P (X) = ∆X , the diagonal
in X ×X. A well-known characterisation of distality states that X is distal
if and only if E(X) is a group. A function f ∈ LC(T ) is distal if the flow
Xf is distal, and D(T ) denotes the m-admissible algebra of all distal func-
tions on T . The compactification TD = MM (D(T )) is the universal (right
topological) group compactification of T , and it is also the universal minimal
distal T -flow in the sense that all other minimal distal T -flows are factors
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of TD. A flow (T,X) is equicontinuous if E(X) is an equicontinuous family
of functions. This condition is equivalent to E(X) being a topological group
of homeomorphisms, so equicontinuity implies distality. The notions of prox-
imality, distality and equicontinuity can also be defined for homomorphisms
of flows, and the domains (as flows) of such homomorphisms are called prox-
imal, distal and equicontinuous extensions of the co-domains, respectively.
See [1] or [8] for the definitions.

Let T be a topological group, and let u ∈ TLC be a minimal idempotent,
soG = uTLCu is algebraically a group with identity u. We say that a T -ambit
(X,x) is a u-ambit if ux = x. The universal u-ambit is (TLCu, u), which is
a minimal flow since TLCu is a minimal left ideal in TLC , so u-ambits are
minimal. Conversely, any minimal T -flow X can be turned into a u-ambit
by picking a base point from the set uX. The structure group of a u-ambit
(X,x) is the subgroup G(X,x) of all g ∈ G with gx = x. The group G carries
a topology called the τ -topology, which is weaker than the relative topology
inherited from TLC , and it is defined with respect to u. The topology is
constructed by defining the closure operator clτ : for a subset A ⊆ G, a
point x ∈ G belongs to clτA if and only if there are nets (tλ) in T and
(xλ) in A such that tλxλ

λ−→ x and ε(tλ)
λ−→ u in TLC . When equipped

with the τ -topology, G becomes compact, T1, not necessarily Hausdorff,
with separately continuous group operation and continuous inversion. The
structure groups of u-ambits are τ -closed. See [1] or [8] for more details.

A flow (T,X) is said to be strictly PI if it is minimal and if there exists
a sequence (Xα)α≤θ of factors of X, indexed by ordinals up to some θ, such
that

(i) X0 is the trivial flow,
(ii) Xα+1 is either an equicontinuous or a proximal extension of Xα for

all α with α+ 1 ≤ θ,
(iii) whenever β ≤ θ is a limit ordinal, Xβ is an inverse limit of the flows

Xα, α < β (see [8] for the definition), and
(iv) Xθ is isomorphic to X.

A flow is PI if it is a factor of a strictly PI flow via a proximal homomorphism.
The letters PI come from ‘proximal-isometric’, referring to the alternating
proximal and equicontinuous (e.g. isometric) extensions. All minimal distal
flows are strictly PI by the famous Furstenberg structure theorem, and point-
distal minimal flows, i.e., those with a distal transitive point, are PI (see [8,
Corollary 4.49, p. 577]).

An algebraic characterisation states that, if (X,x) is a u-ambit for some
minimal idempotent u ∈ TLC , then it is PI if and only if the structure group
G(X,x) contains a certain subgroup G∞ of G ([9], also [1, Theorem 23,
p. 217]). The group G∞ is the terminal member of a transfinite, decreasing
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sequence (Gα) of τ -closed subgroups of G. We set G0 = G, and if Gα is
defined for some ordinal α, then Gα+1 ⊆ Gα is defined by

Gα+1 =
⋂
{clτU | U ⊆ Gα is a τ -neighbourhood of u}.

For a limit ordinal β, we set Gβ =
⋂
α<β Gα. Now, for some ordinal θ, we

have Gθ+1 = Gθ, and we define G∞ = Gθ.
In the structure theory of minimal flows, in particular in the cited works,

the phase group is often assumed to be discrete, so TLC = βT . But the alge-
braic characterisation of PI flows holds in the more general topological case
as well; all the arguments and constructions are analogous. The convention
of using a topological phase group is followed in [8].

Consider a flow (T,X), and let M(X) be the weakly compact, convex
space of all regular probability measures defined on the Borel sets of X,
so M(X) can be identified with M(C(X)). We say that µ ∈ M(X) is an
invariant measure if µ(tA) = µ(A) for all t ∈ T and all Borel sets A ⊆ X.
LetM(T,X) denote the (possibly empty) closed, convex set of all invariant
measures on X. We say that µ ∈ M(T,X) is ergodic if the invariant Borel
sets A ⊆ X satisfy µ(A) ∈ {0, 1}. When T is locally compact and second
countable, the ergodic measures coincide with the extreme points ofM(T,X)
(see [2, Proposition 3.1]). In general, the extreme points of M(T,X) are
ergodic. We say that X is uniquely ergodic if M(T,X) is a singleton, in
which case the unique invariant measure is ergodic. It is well known that all
minimal equicontinuous flows are uniquely ergodic.

For a T -ambit (X,x), the spaces C(X) and F = φxC(X) ⊆ LC(T ) are
isomorphic, so probability measures on X can be translated into means on
F and vice versa: for µ ∈M(X), we can define a corresponding m ∈M(F)
by

m(φxf) =
�

X

f dµ, f ∈ C(X),

and conversely, for any m ∈ M(F) we can find µ ∈ M(X) such that the
identity above holds. If µ ∈M(T,X), then m is a left invariant mean on F
in the sense that m ◦Lt = m for all t ∈ T , and the converse is also true. The
set LIM (F) of all left invariant means on this space is weak∗ compact and
convex. Right invariance of means is defined in the obvious way, provided
that the space of functions is invariant under right translations, and a mean is
invariant if it is both left and right invariant. We use the notation IM (F) for
the set of invariant means on F , again assuming that F is right translation
invariant.

If T is a locally compact group, it is amenable if the set LIM (LC(T )) of
left invariant means on LC(T ) is non-empty, or equivalently if all T -flows ad-
mit an invariant measure. All locally compact abelian groups are amenable.
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If X and Y are T -flows for a locally compact, amenable group T and if
π : X → Y is a homomorphism, then any invariant measure on Y can be
lifted to an invariant measure on X, that is, if ν ∈ M(T, Y ), then there is
some µ ∈ M(T,X) such that π∗µ = ν, where π∗ :M(X) → M(Y ) is the
pushforward operator. It follows that if (X,x) is a T -ambit with the corre-
sponding space F = φxC(X) of functions and if ν ∈ LIM (F), then we can
extend this mean to some µ ∈ LIM (LC(T )), that is, µ|F = ν.

Suppose that T is locally compact and amenable. A function f ∈ LC(T )
is (left) almost convergent to c ∈ C if µ(f) = c for all µ ∈ LIM (LC(T )).
A T -ambit (X,x) is uniquely ergodic if and only if the functions in φxC(X)
are all left almost convergent. The notion of left almost convergent func-
tions comes from almost convergent sequences. These were first studied by
Lorentz [23]. Using the scalar field C (instead of R as in [23]), a sequence
x ∈ l∞(N) is almost convergent to c ∈ C when µ(f) = c for all Banach limits
µ (shift invariant means of l∞(N)), and this happens if and only if

1

n

n∑
i=1

x(i+ k)
n−→ c

uniformly for all non-negative integers k. We shall encounter these kinds
of averages in the last section. The simplest non-convergent example of an
almost convergent x ∈ l∞(N) is the characteristic function of kN for some
k ∈ N (using the convention that 0 /∈ N): it is almost convergent to 1/k. Not
every sequence is almost convergent. For example, if we define y ∈ l∞(N) by
concatenating alternating blocks of zeroes and ones so that the length of the
blocks double at each step, so

y = (0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, . . .),

then y is not almost convergent. Similar concrete examples of almost con-
vergent and non-almost convergent functions can also be constructed on Z.
Recall also that almost periodic functions on a locally compact amenable
group T are almost convergent. This is equivalent to the unique ergodicity
of minimal equicontinuous flows.

3. Maximal equicontinuous factors and disjointness. Consider two
minimal flows X and Y with a common phase group. Recall that they are
said to be disjoint if the product flow X × Y is minimal, and this is de-
noted by X ⊥ Y . If {Xi}i∈I is a collection of minimal flows with a common
phase group, we say that it is multiply disjoint if the product flow

∏
i∈I Xi is

minimal. Note that multiple disjointness of a collection of flows is equivalent
to multiple disjointness of all finite subcollections due to the nature of the
product topology. Chapter 11 of [1] provides a concise treatment of disjoint-
ness, and the notion of multiple disjointness is taken from an exercise at the
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end of that chapter. The purpose of this section is to find conditions that
imply multiple disjointness. The main result, Theorem 3.6, states that, for a
collection of suitably ‘nice’ minimal flows, multiple disjointness follows from
the multiple disjointness of their maximal equicontinuous factors, which are
defined below.

The equicontinuous structure relation EQ(X) for a flow (T,X) is the
intersection of all factor relations on X that induce an equicontinuous factor.
Thus, EQ(X) is also a factor relation, and it can be shown that X/EQ(X)
is equicontinuous. It follows that all equicontinuous factors of X are also
factors of X/EQ(X), and we call the latter factor (or any flow isomorphic
to it) the maximal equicontinuous factor of X and denote it by Xeq.

An alternative way of defining EQ(X) is based on the regionally proxi-
mal relation Q(X): if UX denotes the base for the uniform structure on X
consisting of neighbourhoods of the diagonal ∆X ⊆ X ×X, then

Q(X) =
⋂

U∈UX

TU.

Here the elements U ∈ UX are treated as subsets of the product flow X×X.
Now, EQ(X) is the smallest factor relation on X that contains Q(X). More-
over, Q(X) is reflexive, symmetric, closed and invariant. Under certain dy-
namical conditions, Q(X) is also transitive, so Q(X) = EQ(X) (see [8,
Remark 3, p. 400]). Note that the flow X also has a maximal distal factor
and a corresponding distal structure relation, which is the smallest factor
relation on X that contains the proximal relation P (X).

For any flow (T,X), the regionally proximal relation can be described in
terms of nets: (x, y) ∈ Q(X) if and only if there are nets (tλ) in T and (xλ)

and (yλ) in X such that (xλ, yλ)
λ−→ (x, y) and (tλxλ, tλyλ)

λ−→ (z, z) for
some z ∈ X. See [8, Q.3, p. 397] for details.

Disjointness of two minimal flows was studied at a very general level
by Ellis, Glasner and Shapiro [10] in terms of algebras of functions defined
on the phase group. In the cited paper, the phase group T is discrete, so
TLC = βT . One of the important subalgebras of LC(T ) = l∞(T ) used in [10]
is K , defined with respect to a fixed minimal idempotent u ∈ βT as follows:

K = {f ∈ l∞(T ) | TuRtTuf = Rtf for all t ∈ T}.
Note that, for a T -ambit (X,x), we have φxC(X) ⊆ K if and only if utux =
tx for all t ∈ T . In this case, we say that (X,x) is a K(u)-ambit and x
is a K(u)-point. Such ambits have the nice property that Q(X) = EQ(X)
(see [11]). Any K(u)-ambit is a u-ambit. When T is abelian, the two notions
coincide. Also, if the base point x of a T -ambit (X,x) is distal, then (X,x)
is a K(u)-ambit. The well-known fact that Q(X) = EQ(X) when X is a
minimal distal flow can be seen as a corollary of this observation.
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The following theorem is translated into the language of ambits from the
original presentation.

Theorem 3.1 ([10, Theorem 4.2]). Let T be a discrete group, let u ∈ βT
be a minimal idempotent, and let (X,x) and (Y, y) be u-ambits with phase
group T . Suppose that:

(i) x or y is a K(u)-point;
(ii) G∞ ⊆ G(X,x)G(Y, y);
(iii) Xeq ⊥ Y eq.

Then X ⊥ Y .

The algebra K and the notion of K(u)-ambits can, of course, be defined
for arbitrary topological groups T . We can always replace a topological phase
group T with its discretised version Td, and any v-ambit or a K(v)-ambit
for some minimal idempotent v ∈ TLC can be regarded as a u-ambit or a
K(u)-ambit, respectively, when we pick a minimal idempotent u ∈ βTd so
that π(u) = v for the canonical homomorphism π : βTd → TLC . In addition,
it is not too difficult to prove the analogue of Theorem 3.1 for a general
topological group T as a corollary to the discrete version. Condition (ii) in the
topological case implies an analogous statement in the discrete setting; the
only part requiring some thought is the verification of the fact that the group
G∞ in TLC contains the π-image of its counterpart in βTd. The argument
involves transfinite induction, and it also relies on the observation that the
restriction of π to uβTdu is a closed, continuous group homomorphism onto
vTLCv with respect to the appropriate τ -topologies.

The conditions of the theorem above are satisfied if T is abelian and one
of the flows is PI, or if one of the base points is distal. In order to find a
similar condition for multiple disjointness, we must characterise the maximal
equicontinuous factor of a product flow (Theorem 3.4). Two simple lemmas
are needed.

Lemma 3.2. Let (T,X) be a flow, and let R be a reflexive, symmetric,
invariant relation on X. For each ordinal α, define a relation Rα on X by
transfinite recursion as follows:

(1) Define R0 = R.
(2) If Rα has been defined for some ordinal α, set Rα+1 = Rα ◦Rα.
(3) If β is a limit ordinal and Rα has been defined for each α < β, set

Rβ =
⋃
α<β Rα.

Then there exists an ordinal θ for which Rα = Rθ for all α ≥ θ, and Rθ is
the smallest factor relation on X that contains R.

Proof. Let R′ be the smallest factor relation on X that contains R. It is
the intersection of all factor relations containing R, one of which is X ×X.
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A straightforward argument by transfinite induction shows that, for any or-
dinal α, the relation Rα is reflexive, symmetric, invariant, and R ⊆ Rα ⊆ R′.
The transfinite sequence is increasing and therefore eventually constant, say
Rα = Rθ for all α ≥ θ. It follows that Rθ = Rθ ◦ Rθ, i.e., Rθ is transitive.
Also, it must be closed by the limit ordinal step. In conclusion, Rθ is a factor
relation with R ⊆ Rθ ⊆ R′. We infer that Rθ = R′.

Suppose that {Xi}i∈I is a collection of sets, and Q = {Qi}i∈I is a col-
lection of relations such that Qi ⊆ Xi × Xi for each i ∈ I. Write X =∏
i∈I Xi. We define the product of the relations Qi as a relation on X

by ⊗
Q =

⊗
i∈I

Qi = {(x, x′) ∈ X ×X | (xi, x′i) ∈ Qi for all i ∈ I}.

Products of equivalence relations are again equivalence relations. Similarly,
the product of factor relations is a factor relation on the product flow.

Lemma 3.3. Let {Xi}i∈I be a collection of topological spaces, and let Qi
be a relation on Xi for each i ∈ I. Define X =

∏
i∈I Xi with the product

topology. For every set J ⊆ I, let Q(J) = {Qi(J)}i∈I be the collection of
relations defined by Qi(J) = Qi when i ∈ J and Qi(J) = ∆Xi otherwise.
Let R be a closed, transitive relation on X containing each

⊗
Q({i}), i ∈ I.

Then R also contains the relation
⊗
Q(I).

Proof. The first step is to show that
⊗
Q(J) ⊆ R for all (non-empty)

finite sets J ⊆ I, and this is done by induction on the cardinality of J . By
assumption, the claim holds when |J | = 1. Suppose that

⊗
Q(K) ⊆ R for

any set K ⊆ I of cardinality n ∈ N. Consider a set J ⊆ I of cardinality
n + 1, so J = K ∪ {j} for some K ⊆ I of cardinality n and for some
j ∈ I \ K. If (x, x′) ∈

⊗
Q(J), then for a suitably chosen y ∈ X, we get

(x, y) ∈
⊗
Q({j}) and (y, x′) ∈

⊗
Q(K), so (x, x′) ∈ R by the assumptions.

To prove the general case, consider an arbitrary pair (x, x′) ∈
⊗
Q(I).

Let F be the collection of non-empty finite subsets of I, ordered by inclusion.
For each J ∈ F , define xJ ∈ X so that (xJ)j = xj for all j ∈ J and (xJ)i = x′i
for i ∈ I \J . Then (xJ , x

′) ∈
⊗
Q(J) ⊆ R for every J ∈ F , and the net (xJ)

converges to x. Since R is closed, we have (x, x′) ∈ R.

Theorem 3.4. Let {Xi}i∈I be a collection of flows with a common phase
group T , and let X =

∏
i∈I Xi. Then

EQ(X) =
⊗
i∈I

EQ(Xi).

In other words, the maximal equicontinuous factor Xeq of X is isomorphic
to the product flow

∏
i∈I X

eq
i .
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Proof. The product flow
∏
i∈I X

eq
i is equicontinuous and clearly isomor-

phic to X/
⊗

i∈I EQ(Xi), so EQ(X) ⊆
⊗

i∈I EQ(Xi).
For all subsets J ⊆ I, define a collection Q(J) = {Qi(J)}i∈I of relations

by setting Qi(J) = Q(Xi) when i ∈ J and Qi(J) = ∆Xi otherwise. Similarly,
for J ⊆ I, define EQ(J) = {EQi(J)}i∈I by EQi(J) = EQ(Xi) if i ∈ J and
EQi(J) = ∆Xi otherwise.

We claim that, for all j ∈ I, the relation
⊗
EQ({j}) is the smallest

factor relation on X containing
⊗
Q({j}). This seems intuitive because of

the characterisation of the equicontinuous structure relation as the smallest
factor relation containing the regionally proximal relation (for any flow). We
need Lemma 3.2 for a rigorous argument.

Fix j ∈ I. Define a transfinite sequence (Qα(Xj)) of relations on Xj ,
indexed by ordinals α, in the manner of Lemma 3.2, starting with Q0(Xj) =
Q(Xj). We know that this sequence ultimately reaches EQ(Xj). For each
ordinal α, define a collection Qα({j}) = {Qα,i({j})}i∈I by Qα,j({j}) =
Qα(Xj) and Qα,i({j}) = ∆Xi for i 6= j. Defining R =

⊗
Q0({j}) and

applying the transfinite construction of Lemma 3.2 to this relation, we obtain
another transfinite sequence (Rα). It is not difficult to verify that Rα =⊗
Qα({j}) for each ordinal α by using transfinite induction. Therefore, the

sequence (Rα) reaches the factor relation
⊗
EQ({j}), from which the claim

follows.
Observe that

⊗
Q({i}) ⊆ Q(X) for all i ∈ I (use the net characterisation

of the regionally proximal relation). Therefore also
⊗
Q({i}) ⊆ EQ(X)

and
⊗
EQ({i}) ⊆ EQ(X) for all i ∈ I. Using Lemma 3.3, we infer that⊗

i∈I EQ(Xi) =
⊗
EQ(I) ⊆ EQ(X), as required.

Similarly, the maximal distal factor of the product
∏
i∈I Xi is isomorphic

to the product of the respective maximal distal factors. The arguments are
essentially the same as above with the exception that the regionally proximal
relations are replaced with proximal relations.

Next, we focus on the problem of characterising multiple disjointness for
minimal equicontinuous flows with an abelian phase group (Theorem 3.5).

Let G be an abelian group with identity e, and let {Hi}i∈I be a col-
lection of subgroups of G. We say that {Hi}i∈I is independent if, when-
ever J ⊆ I is non-empty and finite and

∏
j∈J hj = e for some hj ∈ Hj ,

j ∈ J , we must have hj = e for all j ∈ J . It is clear that a collection of
subgroups is independent if and only if all non-empty, finite subcollections
are independent. Also, a collection {Hi}i∈I is independent if and only if
the subgroup generated by all Hi is an internal direct sum of these sub-
groups.

Recall that when T is an abelian topological group, any minimal equicon-
tinuous T -flow arises from a topological group compactification (φ,X) of T



Multiple disjointness and invariant measures 165

[8, Corollary 3.42, p. 317]; T acts on X by tx = φ(t)x, t ∈ T , x ∈ X. We
denote the character group of T by T̂ .

Theorem 3.5. Let T be an abelian topological group, and let {(φi, Xi)}i∈I
be a collection of topological group compactifications of T . For each i ∈ I,
let Ai = φ∗i (X̂i) ⊆ T̂ . Then the family {Xi}i∈I of T -flows is multiply disjoint
if and only if the family {Ai}i∈I of subgroups of T̂ is independent.

Proof. We may assume that I is finite since the general case reduces to
this one.

Suppose first that {Xi}i∈I is multiply disjoint. Let X =
∏
i∈I Xi, and let

χi ∈ X̂i, i ∈ I, be such that
∏
i∈I φ

∗
iχi = 1. Define a continuous function

χ : X → T by χ(x) =
∏
i∈I χi(xi) for all x ∈ X. Let ei be the identity of Xi

for each i ∈ I, so e = (ei)i∈I is the identity of the product group X. Now,
for any t ∈ T ,

χ(te) =
∏
i∈I

χi(tei) =
∏
i∈I

χi(φi(t)) = 1.

Since X is minimal, χ = 1. Thus, for any i ∈ I and x ∈ X with xj = ej
for j ∈ I \ {i}, we get χi(xi) = χ(x) = 1. This shows that χi = 1 for all
i ∈ I. Consequently, φ∗iχi = 1 for all i ∈ I, and the collection {Ai}i∈I is
independent.

Suppose then that {Xi}i∈I is not multiply disjoint, so X is not minimal.
Let φ : T → X be the continuous homomorphism φ(t)i = φi(t), i ∈ I, t ∈ T ,
and let Y = φ(T ), both a closed subgroup of X and the orbit closure of
the identity. Since X is distal, all orbit closures are minimal sets, so Y is a
proper subset of X. Pick an arbitrary z ∈ X \ Y . We can find a character
χ ∈ X̂ so that χ(y) = 1 for all y ∈ Y and χ(z) 6= 1 [18, Corollary 23.26].
It must be of the form χ(x) =

∏
i∈I χi(xi) for all x ∈ X for some χi ∈ X̂i,

i ∈ I. Clearly, at least one of the characters χi must be non-trivial, and the
corresponding character φ∗iχi of T is also non-trivial. On the other hand,∏
i∈I φ

∗
iχi(t) = χ(φ(t)) = 1 for every t ∈ T , so the collection {Ai}i∈I is not

independent.

This theorem can be used to obtain the well-known characterisations of
multiple disjointness of finite collections of continuous rotations and discrete
irrational rotations of the circle [8, 1.14, p. 157], and these results are easily
generalised to infinite collections.

Finally, we can state the main theorem of this section. Note that we as-
sume that the phase group is topological as opposed to discrete, so when we
invoke Theorem 3.1, we are actually referring to the version with T topolog-
ical. But as we have noted, the two versions are equivalent.
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Theorem 3.6. Let T be a topological group, let u ∈ TLC be a minimal
idempotent, and let {(Xi, xi)}i∈I be a collection of K(u)-ambits with phase
group T such that each Xi is a PI flow. If {Xeq

i }i∈I is multiply disjoint,
then {Xi}i∈I is also multiply disjoint.

Proof. Again, we prove the theorem for finite index sets I.
The case |I| = 1 is trivial. Suppose that the claim of the theorem holds

whenever |I| = n for some n ∈ N. Consider a collection {(Xi, xi)}i∈I of
K(u)-ambits with phase group T such that each is PI, {Xeq

i }i∈I is multiply
disjoint, and |I| = n+1. Pick k ∈ I, and define J = I\{k} andX =

∏
j∈J Xj .

By assumption, X is minimal, and its maximal equicontinuous factor Xeq is
isomorphic to

∏
j∈J X

eq
j by Theorem 3.4. Moreover, the point x = (xj)j∈J

is a K(u)-point, and G∞ ⊆
⋂
j∈J G(Xj , xj) = G(X,x), so X is PI (recall

the characterisation of PI flows in terms of the group G∞). We can apply
Theorem 3.1 to conclude that X ⊥ Xk, completing the argument.

We shall now turn our attention to R-flows to prove a specialised dis-
jointness theorem. Here we adopt the convention of denoting an R-flow
(R, X, σ) by a letter other than X. The maximal equicontinuous factor
of a flow F = (R, X, σ) is denoted by F eq instead of just Xeq. For any
flow F = (R, X, σ) and for any a ∈ R, a > 0, we define a new flow
Fa = (R, X, aσ) by keeping the same phase space and defining a new ac-
tion aσ(t, x) = σ(at, x) for all t ∈ R and x ∈ X. This retains all the essential
dynamical features such as orbits and invariant measures, as it simply alters
the ‘speed’ by which the phase group acts on X. Hence, Fa is distal, equicon-
tinuous, minimal or uniquely ergodic for some a > 0 if and only if F has
the same property. If F ′ = (R, X ′, σ′) is another R-flow and if π : X → X ′

is a homomorphism, then it is also a homomorphism from Fa to F ′a for any
a > 0, and the dynamical properties of π such as equicontinuity and proxi-
mality are not affected by the change of actions. Consequently, it is easy to
see that Fa is PI for any a > 0 if F is PI. Another point worth noting is that
the enveloping semigroups of F and Fa are identical for any a > 0. Also, the
regionally proximal relations Q(F ) and Q(Fa) are identical subsets of X×X.
It follows that EQ(F ) = EQ(Fa), and we may write (Fa)

eq = (F eq)a = F eq
a

with no ambiguity.
We can now build a large multiply disjoint collection of metric, minimal,

PI R-flows out of a single one:

Theorem 3.7. Let F = (R, X, σ) be a metric, minimal, PI flow. Then
there exists an uncountable set A ⊆ R such that {Fa}a∈A is multiply disjoint.

Proof. Define E = E(F eq) = E(F eq
a ), a > 0, so E is a topological

group. Let ψa : R → E denote the canonical continuous homomorphism
from R into the enveloping semigroup of F eq

a for any a > 0, that is, ψa(t) =
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ψ1(at) for all t ∈ R. Each Fa can be turned into a K(u)-ambit for a fixed
minimal idempotent u ∈ RLC by picking a base point xa from the phase
space of Fa such that uxa = xa. By Theorem 3.6, it suffices to find an
uncountable set A ⊆ R such that {F eq

a }a∈A is multiply disjoint. Since the
flow on the enveloping semigroup of F eq

a is isomorphic to F eq
a for any a > 0

due to R being abelian, a collection {F eq
a }a∈A for some non-empty A ⊆ R

is multiply disjoint if and only the corresponding collection {E(F eq
a )}a∈A is

multiply disjoint. By Theorem 3.5, the latter property is equivalent to the
independence of the subgroups ψ∗a(Ê) of R̂, a ∈ A.

Since X is metrisable, so is Xeq and therefore also E, which is isomorphic
to F eq as a flow. It follows that the character group Ê is countable [19,
Theorem 8.45]. Let Φ : R̂→ R be the inverse of the topological isomorphism
that maps r ∈ R to the character x 7→ eirx : R → T. We define Ga =
Φ(ψ∗a(Ê)) for all a > 0, and we set G = G1. Now, Ga = aG for any a > 0.
The group G is countable. It remains to find an uncountable A ⊆ (0,∞)
such that {aG}a∈A is independent.

Let A be the (non-empty) family of all non-empty subsets of (0,∞) for
which {aG}a∈A is independent. Inclusion provides a partial order on A. If
{Ci}i∈I ⊆ A is a chain in A, write C =

⋃
i∈I Ci. This is an upper bound for

{Ci}i∈I , and {cG}c∈C is easily seen to be independent. By Zorn’s lemma,
there is a maximal element A ∈ A. This set must be uncountable. Indeed,
if A is countable, so are AG and the subgroup Γ ⊆ R generated by AG. We
define B ⊆ R as the set of all elements of the form b = γ/g, where γ ∈ Γ
and g ∈ G \ {0}. Again, B is countable, so we can pick a ∈ (0,∞) \B. The
set {a} ∪ A is now in A. To see this, suppose that ai ∈ A and g, gi ∈ G for
1 ≤ i ≤ n, n ∈ N, are such that ag +

∑n
i=1 aigi = 0. If g = 0, we also get

gi = 0 for all 1 ≤ i ≤ n from the independence of {aiG}ni=1. If g 6= 0, we get
a = γ/g ∈ B, where γ = −

∑n
i=1 aigi ∈ Γ , contradicting the choice of a, so

this case is not possible. Thus, we must have ag = aigi = 0 for 1 ≤ i ≤ n,
showing that {a} ∪ A ∈ A. But this contradicts the maximality of A. In
conclusion, A is uncountable.

4. Applications. We can now use the multiple disjointness results to
answer the original problem of finding the cardinalities of the sets of invariant
means on the spaces D(Z) and D(R).

Furstenberg [16] gave an example of a minimal distal system (a Z-flow)
on T2 with multiple invariant measures. It extends a particular irrational
rotation of the circle, but as Kodaka [20] pointed out, an analogous sys-
tem can be constructed for any irrational rotation angle. To be specific,
given any α ∈ R \ Q and defining a = ei2πα ∈ T, there is a contin-
uous function τa : T → T such that the homeomorphism ta : T2 → T2,
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ta(x, y) = (ax, τa(x)y), (x, y) ∈ T2, defines a minimal distal system (T2, ta)
that is not uniquely ergodic.

More generally, if the irrational rotation angle α is fixed and τ : T → T
is a continuous function, then we can consider a homeomorphism t : T2 →
T2 defined by t(x, y) = (ax, τ(x)y), (x, y) ∈ T2, and the minimality and
unique ergodicity of the system (T2, t) can be determined by considering the
following functional equations:

(1)
f(ax)

f(x)
= τ(x)m for all x ∈ T,

where f : T→ T is a continuous function and m ∈ Z \ {0}; and

(2)
g(ax)

g(x)
= τ(x)n for almost every x ∈ T,

where g : T → T is a Borel function and n ∈ Z \ {0}. The space T is un-
derstood as a measure space with respect to its normalised Haar measure,
which is the unique invariant measure for (T, λa), the mapping λa being the
translation λa(x) = ax, x ∈ T. The system (T2, ta) is minimal if and only if
(1) has no solution f,m, and the system is uniquely ergodic if and only if
(2) has no solution g, n. These facts are special cases of more general results
in [24]. If a solution g exists for the second equation with n = 1, and if,
for any k ∈ Z \ {0}, the function gk does not agree almost everywhere with
any continuous function, then the first equation has no solution f,m. Oth-
erwise, the Borel function h = gm/f would satisfy h(ax) = h(x) for almost
every x ∈ T, and the ergodicity of (T, λa) would imply that h is essentially
constant, say c ∈ T, so gm = cf almost everywhere on T, contradicting the
assumption that gm is not essentially continuous. There is a function τa for
which the required function g exists [20, Lemma 6].

Proposition 4.1. For any a = ei2πα, α ∈ R \Q, the maximal equicon-
tinuous factor of (T2, ta) is (T, λa).

Proof. Let a = ei2πα for some α ∈ R \Q. We must show that the region-
ally proximal relation Q = Q(T2, ta) coincides with R(π), where π : T2 → T
is the projection onto the first coordinate. (Recall thatQ(T2, ta)=EQ(T2, ta)
since the system is minimal and distal.) Since π is a homomorphism to an
equicontinuous factor, we have Q ⊆ R(π).

For any z ∈ T, let Az : T2 → T2 be the mapping Az(x, y) = (x, yz),
(x, y) ∈ T2. It is an automorphism of the system (T2, ta), i.e., an isomorphism
from the system to itself. It is easy to verify that (Az ×Az)(Q) = Q for any
z ∈ T by using the net characterisation of the regionally proximal relation;
this holds in general for all flows and all automorphisms. For each w ∈ T2,
let

Z(w) = {z ∈ T | (w,Az(w)) ∈ Q}.
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It is easy to check that this is a closed subgroup of T for any w ∈ T2. We
claim that Z(w) does not depend on the choice of w. This follows from the
minimality of (T2, ta): given w,w′ ∈ T2, there exists p ∈ E(T2, ta) such that
pw = w′, and if z ∈ Z(w), then

(w′, Az(w
′)) = (pw,Az(pw)) = (p× p)(w,Az(w)) ∈ (p× p)(Q) ⊆ Q.

This proves that Z(w) ⊆ Z(w′), and the reverse inclusion is proved analo-
gously. Set Z = Z(w) for any w ∈ T2.

We must show that Z = T. Knowing that Z is a closed subgroup of T,
we only need to show that Z cannot be a finite cyclic group. Suppose that
|Z| = k ∈ N, so Z is generated by some z ∈ T with zk = 1. Define s : T2 → T2

by s(x, y) = (ax, τa(x)
ky), (x, y) ∈ T2, and define a homomorphism φ from

(T2, ta) to (T2, s) by φ(x, y) = (x, yk), (x, y) ∈ T2. Now, R(φ) = Q, so (T2, s)
is the maximal equicontinuous factor of (T2, ta), and (T2, s) is uniquely er-
godic by minimality and equicontinuity. The construction of ta relies on the
fact that there is a Borel function g : T → T such that g(ax)/g(x) = τa(x)
for almost every x ∈ T, so we also have g(ax)k/g(x)k = τa(x)

k for almost
every x ∈ T. In other words, equation (2) for (T2, s) is solved by gk and
n = 1, so (T2, s) is not uniquely ergodic, and we have arrived at the desired
contradiction.

Forming a large enough multiply disjoint collection of systems (T2, ta)
will lead us to the exact cardinality of the set of extreme invariant means
on D(Z). But first, we must recall some technical details about joinings of
invariant measures.

We can construct invariant measures on product flows as products of in-
variant measures. Firstly, consider a collection {Xi}i∈I of compact spaces, de-
fine XJ =

∏
j∈J Xj for every non-empty subset J ⊆ I, and let πJ : XI → XJ

and πi : XI → Xi, i ∈ I, be projections. If we pick µi ∈ M(Xi) for each
i ∈ I, then there is a unique product measure µ =

⊗
i∈I µi ∈ M(XI) such

that, for any non-empty finite J ⊆ I and any Borel sets Aj ⊆ Xj , j ∈ J ,

µ
(⋂
j∈J

π−1j (Aj)
)
=
∏
j∈J

µj(Aj).

In particular, (πi)∗µ = µi for all i ∈ I. If {Xi}i∈I is a collection of flows that
share a common phase group T and if each µi is invariant, then the product
measure µ is also invariant. More generally, a joining of the measures µi is
any µ ∈M(T,XI) such that (πi)∗µ = µi for every i ∈ I. The set J(µi | i ∈ I)
of all such joinings is a (non-empty) compact, convex subspace ofM(T,XI),
and if each µi is an extreme point in M(T,Xi), then all extreme points of
J(µi | i ∈ I) are also extreme points in M(T,XI). Recall that when T is
locally compact and second countable, in particular if T = Z or T = R, then
the extreme points coincide with the ergodic measures.
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Theorem 4.2. The cardinality of the set of extreme invariant means on
D(Z), which is the cardinality of the set of ergodic measures on the universal
minimal distal Z-flow, is 2c.

Proof. For each a = ei2πα, α ∈ R \ Q, let (T2, ta) be the minimal distal
system from the beginning of this section, and pick distinct ergodic measures
µa,0 and µa,1 fromM(T2, ta). Let B1 be a Hamel basis for the vector space
R over the scalar field Q, and assume that 1 ∈ B1. Define B = B1 \ {1}, so
B consists of irrational numbers. Let A ⊆ T be the set of the elements ei2πα
for α ∈ B. Note that the mapping α 7→ ei2πα : B → A is injective, so the
cardinality of A is the cardinality of B, namely c. Now, the system (T, λa) is
minimal for any a ∈ A, and the collection {(T, λa)}a∈A is multiply disjoint,
which can be shown by using Theorem 3.5. Indeed, associating (T, λa), a ∈ A,
with the compactification (φa,T) of Z, where φa(n) = an, n ∈ Z, and identi-
fying the subgroup φ∗a(T̂) of Ẑ with the subgroup Ga = {an}n∈Z ⊆ T, shows
that the collection {Ga}a∈A is independent. Since {(T, λa)}a∈A is the col-
lection of all maximal equicontinuous factors of the systems (T2, ta), a ∈ A,
the product system (X, t), X = (T2)A and t(x)a = ta(xa) for all x ∈ X and
a ∈ A, is minimal by Theorem 3.6.

For any ω ∈ {0, 1}A, we may consider the joining of the measures µa,ω(a),
a ∈ A, so J(ω) = J(µa,ω(a) | a ∈ A) is a non-empty subspace of M(X, t),
and each µ ∈ J(ω) maps to the measures µa,ω(a) under the pushforwards
induced by the projections from X to Xa. Clearly, J(ω) ∩ J(ω′) = ∅ when
ω, ω′ ∈ {0, 1}A are distinct. For each ω ∈ {0, 1}A, pick µω ∈ ext J(ω), so
µω is an ergodic measure on X. We see that the set {µω | ω ∈ {0, 1}A} has
cardinality 2c. Each µω can be lifted to an ergodic measure on the universal
minimal distal system ZD, so the latter admits at least 2c ergodic measures.
In other words, there are at least 2c extreme invariant means on D(Z). On the
other hand, the universal point-transitive system, which is simply βZ, has
exactly 2c invariant measures since l∞(Z) has exactly 2c invariant means [6],
so the cardinality of the set of ergodic measures on ZD is 2c.

It is apparent from the last argument that the cardinality of the set of
all invariant means on D(Z) is also 2c.

As in the case of Z-actions, we can find a minimal distal R-flow with (at
least) 2c ergodic measures. This is achieved by

(1) first constructing a metric, minimal, distal flow F = (R, X, σ) ad-
mitting multiple ergodic measures (necessarily of cardinality c due
to metrisability),

(2) applying Theorem 3.7 to find an uncountable set A ⊆ R such that
{Fa}a∈A is multiply disjoint,

(3) fixing distinct ergodic measures µa,0 and µa,1 for Fa, a ∈ A, and
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(4) picking an extreme point from each of the 2c pairwise disjoint sets
J(µa,ω(a) | a ∈ A), ω ∈ {0, 1}A.

The rest of the argument is also similar to the proof of Theorem 4.2; the
cardinality of the set of invariant measures on LC(R) is again 2c (see [22]).
Finding F is the only remaining task. The idea is to interpolate a suitable
distal function on Z to a distal function on R. The result quoted below shows
how this is done.

Theorem 4.3 ([21, Theorem 4.8(iv)]). Let G be a locally compact group,
let N be a closed normal subgroup of G, and suppose that there is a compact
set K ⊆ G such that G = KN . Let g ∈ C(K × N) be such that g(h,m) =
g(k, n) whenever (h,m), (k, n) ∈ K × N satisfy hm = kn. Let f ∈ C(G) be
the well-defined function f(kn) = g(k, n), k ∈ K, n ∈ N . Then, f ∈ D(G)
if and only if g(k, ·) ∈ D(N) for every k ∈ K and {g(·, n) ∈ C(K) | n ∈ N}
is equicontinuous.

In our case, G = R, N = Z, and K = [0, 1]. We start with a real-
valued function h ∈ D(Z) for which the averages (1/N)

∑N−1
n=0 h(n) diverge

as N grows. Such functions can be obtained from the system (T2, ta) for an
arbitrary a = ei2πα ∈ T with α ∈ R \ Q: since the system is minimal but
not uniquely ergodic, there is a point x ∈ T2 and a function k ∈ C(T2) such
that the sequence (1/N)

∑N−1
n=0 k(t

n
ax) diverges as N grows. This can be seen

from [17, alternative proof of Theorem 4.10]. To sketch the idea, assuming
on the contrary that these averages converge for any given k ∈ C(T2) and
x ∈ T2, we may define a function A(k) : T2 → C by letting A(k)(x) =

limN→∞(1/N)
∑N−1

n=0 k(t
n
ax) for all x ∈ T2. The function A(k) must have a

point of continuity since it is a pointwise limit of continuous functions, and
alsoA(k)(ta(x)) = A(k)(x) for all x ∈ T2. These two properties together with
the minimality of the underlying system imply that A(k) must be constant.
On the other hand, this cannot be true for all k ∈ C(T2) since the system
is not uniquely ergodic [17, Theorem 4.9], so we have located the desired
contradiction.

Now, we may define h as either the real or imaginary part of the function
n 7→ k(tnax) : Z → C, whichever has divergent averages. Moreover, we may
assume that h(2n) = 0 for every n ∈ Z since, in general, h = p0h + p1h,
where pi is the characteristic function of 2Z+ i, i = 0, 1; both p0h and p1h
are distal, and at least one of them must have divergent averages, so we can
replace h by either R1p0h or p1h if necessary (recall that R1 is the shift
by 1). We define g : [0, 1] × Z → C by g(t, n) = (1 − t)h(n) + th(n + 1)
for all (t, n) ∈ [0, 1] × Z. This is a bounded, continuous function, and if
n ∈ Z, then g(1, n) = g(0, n + 1). Define f ∈ C(R) by f(t + n) = g(t, n),
(t, n) ∈ [0, 1] × Z. Now, g(t, ·) ∈ D(Z) for any t ∈ [0, 1], and each g(·, n)
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is ‖h‖-Lipschitz, so {g(·, n) | n ∈ Z} is equicontinuous. The theorem above
says that f ∈ D(R).

There are two strictly increasing sequences (An) and (Bn) in N and some
distinct a, b ∈ R such that

1

An

An−1∑
m=0

h(m)
n−→ a and

1

Bn

Bn−1∑
m=0

h(m)
n−→ b.

We may modify the sequences (An) and (Bn) if necessary so that An, Bn ∈
2N for all n ∈ N. Define means αn, βn ∈M(D(R)) for all n ∈ N by

αn(q) =
1

An

An�

0

q(x) dx and βn(q) =
1

Bn

Bn�

0

q(x) dx

for q ∈ D(R). Let α, β ∈ D(R)∗ be weak∗ cluster points of the sequences
(αn) and (βn), respectively. They are invariant means [3, 3.4(d), p. 80], and
it is easy to check that α(f) = a and β(f) = b. The flow F = (R, Xf , σ),
where Xf = {Tµf | µ ∈ RLC} and σ(t, f ′) = Rtf

′ for all t ∈ R and f ′ ∈ Xf ,
is minimal, distal, metric (the topologies of uniform convergence on compact
sets and of pointwise convergence coincide on Xf since f is uniformly con-
tinuous) and admits at least two invariant measures. Consequently, there are
at least two ergodic measures on F . To summarise, the following theorem is
now proved:

Theorem 4.4. The cardinality of the set of extreme invariant means on
D(R), which is the cardinality of the set of ergodic measures on the universal
minimal distal R-flow, is 2c.

Again, the cardinality of the set of all invariant means on D(R) is like-
wise 2c. Theorems 4.2 and 4.4 also tell us something about ergodic measures
on βZ and RLC :

Corollary 4.5. Let X = βZ or X = RLC. For any minimal left ideal
M in X, there are 2c ergodic measures on X whose support is contained
in M .

Proof. Let T = Z or T = R so that X is a compactification of T . Let
M ⊆ X be a minimal left ideal, i.e., a minimal set for the flow (T,X). Now,
the subflow (T,M) is a universal minimal T -flow, so there is a homomor-
phism π : M → TD. Any ergodic µ ∈ M(T, TD) can be lifted to an ergodic
µ̃ ∈M(T,M) with respect to π, that is, π∗µ̃ = µ. Thus, there are 2c ergodic
measures on M . Each of them can be viewed as an invariant measure on X.
Moreover, if µ̃ is ergodic onM , then it is also ergodic as an invariant measure
on X.

The final issue we address is the non-separability of the quotient space
D(T )/V for T = Z or T = R and for any closed subspace V ⊆ D(T ) such that
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every function in V is almost convergent. Whichever the phase group, we can
find an uncountable, multiply disjoint collection {Xi}i∈I of minimal distal
T -flows, each admitting more than one invariant measure. For each i ∈ I,
pick xi ∈ Xi and a real-valued function gi ∈ C(Xi) such that the function
fi ∈ D(T ) defined by fi(t) = gi(txi), t ∈ T , is not almost convergent. The
set

Ki = {µ(fi) ∈ R | µ ∈ IM (D(T ))}
is a non-degenerate closed interval for each i ∈ I since the space IM (D(T ))
of invariant means on D(T ) is weak∗ compact and convex. By scaling the
functions fi and adding constants, if necessary, we may assume that Ki =
[0, 1] for every i ∈ I. As argued in the proof of Theorem 4.2, the multiple
disjointness of {Xi}i∈I implies that, for any function ω : I → [0, 1], there
exists some µω ∈ IM (D(T )) such that µω(fi) = ω(i) for every i ∈ I (the
steps ensuring ergodicity are, of course, omitted here).

Next, define a function R : D(T )→ R by

R(f) = sup{|µ(f)− ν(f)| | µ, ν ∈ IM (D(T ))}
for all f ∈ D(T ). Note that the supremum is attained for some means by the
weak∗ compactness of IM (D(T )). The function R has the following proper-
ties:

(i) R(f) = 0 if and only if f ∈ D(T ) is almost convergent;
(ii) R(f + g) ≤ R(f) +R(g) for all f, g ∈ D(T );
(iii) R(f) ≤ 2‖f‖ for all f ∈ D(T );
(iv) R(fi − fj) ≥ 2 for all distinct i, j ∈ I.

The last estimate is obtained by choosing functions ω1, ω2 : I → [0, 1] with
ω1(i) = ω2(j) = 1 and ω1(j) = ω2(i) = 0, so |µω1(fi−fj)−µω2(fi−fj)| = 2.

Letting Bi ⊆ D(T ) denote the norm open ball centred at fi and of
radius 1/2 for each i ∈ I, we see that the collection {Bi + V }i∈I of non-
empty open sets in the quotient space D(T )/V is pairwise disjoint. For if
(Bi + V ) ∩ (Bj + V ) 6= ∅ for some i, j ∈ I, we can find hi ∈ Bi and hj ∈ Bj
such that hi − hj ∈ V . We may write hi = gi + fi and hj = gj + fj for some
gi, gj ∈ D(T ) such that ‖gi‖, ‖gj‖ < 1/2. Then

R(fi − fj) ≤ R(gi − gj) +R(hi − hj) ≤ R(gi) +R(gj)

≤ 2‖gi‖+ 2‖gj‖ < 2,

so we must have i = j by property (iv) in the list above. In conclusion, the
space D(T )/V has an uncountable, pairwise disjoint collection of non-empty
open sets, completing the proof of the following theorem:

Theorem 4.6. Let T = Z or T = R, and let V ⊆ D(T ) be a closed
subspace such that each function in V is almost convergent. Then the space
D(T )/V is not separable.
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For example, V could be AP(T ) or the space of all almost convergent
functions in D(T ).
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