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Ergodic theorems in fully symmetric spaces
of τ-measurable operators

by

Vladimir Chilin (Tashkent) and Semyon Litvinov (Hazleton, PA)

Abstract. Junge and Xu (2007), employing the technique of noncommutative inter-
polation, established a maximal ergodic theorem in noncommutative Lp-spaces, 1< p <∞,
and derived corresponding maximal ergodic inequalities and individual ergodic theorems.
In this article, we derive maximal ergodic inequalities in noncommutative Lp-spaces di-
rectly from the results of Yeadon (1977) and apply them to prove corresponding individual
and Besicovitch weighted ergodic theorems. Then we extend these results to noncommuta-
tive fully symmetric Banach spaces with the Fatou property and nontrivial Boyd indices, in
particular, to noncommutative Lorentz spaces Lp,q. Norm convergence of ergodic averages
in noncommutative fully symmetric Banach spaces is also studied.

1. Preliminaries and introduction. Let H be a Hilbert space over C,
B(H) the algebra of all bounded linear operators in H, ‖ · ‖∞ the uniform
norm in B(H), and I the identity in B(H). IfM⊂ B(H) is a von Neumann
algebra, we denote by P(M) = {e ∈ M : e = e2 = e∗} the complete
lattice of all projections in M. For every e ∈ P(M) we write e⊥ = I− e. If
{ei}i∈I ⊂ P(M), the projection on the subspace

⋂
i∈I ei(H) is denoted by∧

i∈I ei.
A linear operator x : Dx → H, where the domain Dx of x is a linear

subspace of H, is said to be affiliated with the algebra M if yx ⊆ xy for
every y from the commutant of M.

Assume now thatM is a semifinite von Neumann algebra equipped with
a faithful normal semifinite trace τ . A densely-defined closed linear operator
x affiliated with M is called τ -measurable if for each ε > 0 there exists
e ∈ P(M) with τ(e⊥) ≤ ε such that e(H) ⊂ Dx. Let L0(M, τ) denote the
set of all τ -measurable operators.

It is well-known [22] that if x, y ∈ L0(M, τ), then the operators x + y
and xy are densely-defined and preclosed. Moreover, the closures x+ y (the
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strong sum) and xy (the strong product) and x∗ are also τ -measurable and,
equipped with these operations, L0(M, τ) is a unital ∗-algebra over C.

For every subset X ⊂ L0(M, τ) the set of all self-adjoint [positive] op-
erators in X is denoted by Xh [X+]. The partial order ≤ in Lh0(M, τ) is
defined by the cone L+

0 (M, τ).

The topology defined in L0 = L0(M, τ) by the family

V (ε, δ) = {x ∈ L0 : ‖xe‖∞ ≤ δ for some e ∈ P(M) with τ(e⊥) ≤ ε}
[W (ε, δ) = {x ∈ L0 : ‖exe‖∞ ≤ δ for some e ∈ P(M) with τ(e⊥) ≤ ε}],

ε > 0, δ > 0, of (closed) neighborhoods of zero is called the measure topology
[the bilaterally measure topology]. It is said that a sequence {xn} ⊂ L0(M, τ)
converges to x ∈ L0(M, τ) in measure [bilaterally in measure] if this se-
quence converges to x in measure topology [in bilaterally measure topo-
logy]. It is known [3, Theorem 2.2] that xn → x in measure if and only if
xn → x bilaterally in measure. For basic properties of the measure topology
in L0(M, τ), see [19].

A sequence {xn} ⊂ L0(M, τ) is said to converge to x ∈ L0(M, τ)
almost uniformly (a.u.) [bilaterally almost uniformly (b.a.u.)] if for every
ε > 0 there exists e ∈ P(M) such that τ(e⊥) ≤ ε and ‖(x − xn)e‖∞ → 0
[‖e(x − xn)e‖∞ → 0]. It is clear that every sequence in L0(M, τ) a.u. con-
vergent [b.a.u. convergent] to x converges to x in measure [bilaterally in
measure, hence in measure].

For a positive self-adjoint operator x =
	∞
0 λ deλ affiliated with M one

can define

τ(x) = sup
n
τ
(n�
0

λ deλ

)
=

∞�

0

λ dτ(eλ).

If 1 ≤ p <∞, then the noncommutative Lp-space associated with (M, τ) is
defined as

Lp = (Lp(M, τ), ‖ · ‖p) = {x ∈ L0(M, τ) : ‖x‖p = (τ(|x|p))1/p <∞},

where |x| = (x∗x)1/2, the absolute value of x (see [24]). Naturally, L∞ =
(M, ‖ · ‖∞). If xn, x ∈ Lp and ‖x− xn‖p → 0, then xn → x in measure [11,
Theorem 3.7]. Moreover, utilizing the spectral decomposition of x ∈ L+

p , it
is possible to find a sequence {xn} ⊂ L+

p ∩M such that 0 ≤ xn ≤ x for each
n and xn ↑ x; in particular, ‖xn‖p ≤ ‖x‖p for all n and ‖x− xn‖p → 0.

Let T : L1 ∩M → L1 ∩M be a positive linear map that satisfies the
conditions of [25]:

(Y) T (x) ≤ I and τ(T (x)) ≤ τ(x) ∀x ∈ L1 ∩M with 0 ≤ x ≤ I.

It is known [25, Proposition 1] that such a T admits a unique positive ultra-
weakly continuous linear extension T :M→M. In fact, T contracts M:
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Proposition 1.1. Let T be the extension to M of a positive linear map
T : L1 ∩M→ L1 ∩M satisfying condition (Y). Then ‖T (x)‖∞ ≤ ‖x‖∞ for
every x ∈M.

Proof. Since the trace τ is semifinite, there exists a net {pα}α∈Λ ⊂
P(M), where Λ is a base of neighborhoods of zero of the ultraweak topol-
ogy ordered by inclusion, such that 0 < τ(pα) <∞ for every α and pα → I
ultraweakly. Then T (xα) → T (I) ultraweakly. Since ‖T (pα)‖∞ ≤ 1, and
the unit ball of M is closed in the ultraweak topology, we conclude that
‖T (I)‖∞ ≤ 1. Therefore, by [20, Corollary 2.9],

‖T‖M→M = ‖T (I)‖∞ ≤ 1.

In [13, Theorem 4.1], a maximal ergodic theorem in noncommutative
Lp-spaces, 1 < p <∞, was established for the class of positive linear maps
T :M→M satisfying the condition

(JX) ‖T (x)‖∞ ≤ ‖x‖∞ ∀x ∈M and τ(T (x)) ≤ τ(x) ∀x ∈ L1∩M+.

Remark 1.2. Due to Proposition 1.1, (JX) ⇔ (Y).

Moreover, by [13, Lemma 1.1], a positive linear map T : M→M that
satisfies (JX) uniquely extends to a positive linear contraction T in Lp,
1 < p <∞.

We shall write T ∈ DS+ = DS+(M, τ) to indicate that the map T :
L1 +M → L1 +M is the unique positive linear extension of a positive
linear map T :M→M satisfying condition (JX). Such a T is often called
a positive Dunford–Schwartz transformation (see, for example, [26]).

Assume that T ∈ DS+ and form its ergodic averages:

(1) Mn = Mn(T ) =
1

n+ 1

n∑
k=0

T k, n = 1, 2, . . . .

The following fundamental result provides a maximal ergodic inequality
in L1 for the averages (1).

Theorem 1.3 ([25]). If T ∈ DS+, then for every x ∈ L+
1 and ε > 0,

there is e ∈ P(M) such that

τ(e⊥) ≤ ‖x‖1
ε

and sup
n
‖eMn(x)e‖∞ ≤ ε.

Here is a corollary of Theorem 1.3, a noncommutative individual ergodic
theorem of Yeadon:

Theorem 1.4 ([25]). If T ∈ DS+, then for every x ∈ L1 the averages
Mn(x) converge b.a.u. to some x̂ ∈ L1.

The next result, an extension of Theorem 1.4, was established in [13].
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Theorem 1.5 ([13, Corollary 6.4]). Let T ∈ DS+, 1 < p < ∞, and
x ∈ Lp. Then the averages Mn(x) converge b.a.u. to some x̂ ∈ Lp. If p ≥ 2,
these averages converge also a.u.

The proof of Theorem 1.5 in [13] is based on an application of a weak
type (p, p) maximal inequality for the averages (1), an Lp-version of Theo-
rem 1.3. Note that the proof of this inequality itself relies on Theorem 1.3
and essentialy involves an intricate technique of noncommutative interpo-
lation. Below (Theorem 2.1) we provide a simple proof of such a maximal
inequality, based only on Theorem 1.3.

As an application of Theorem 2.1, we prove a Besicovitch weighted non-
commutative ergodic theorem in Lp, 1 < p < ∞ (Theorem 3.5), which
contains Theorem 1.5 as a particular case. Theorem 3.5 is an extension of
the corresponding result for L1 in [3]. Note that, in [18], Theorem 1.5 was
derived from Theorem 1.3 by utilizing the notion of uniform equicontinuity
at zero of a family of additive maps into L0(M, τ).

Having the Besicovitch weighted ergodic theorem for noncommutative
Lp-spaces with 1 ≤ p < ∞ allows us to establish its validity for a wide
class of noncommutative fully symmetric spaces with Fatou property. As a
consequence, we obtain an individual ergodic theorem in noncommutative
Lorentz spaces Lp,q.

The last section of the article is devoted to a study of the mean ergodic
theorem in noncommutative fully symmetric spaces for T ∈ DS(M, τ).

2. Maximal ergodic inequalities in noncommutative Lp-spaces.
Everywhere in this section T ∈ DS+. Assume that a sequence {βk}∞k=0 of
complex numbers is such that |βk| ≤ C for every k. Let us denote

(2) Mβ,n = Mβ,n(T ) =
1

n+ 1

n∑
k=0

βkT
k.

Theorem 2.1. If 1 ≤ p <∞, then for every x ∈ Lp and ε > 0 there is
e ∈ P(M) such that

(3) τ(e⊥) ≤ 4

(
‖x‖p
ε

)p
and sup

n
‖eMβ,n(x)e‖∞ ≤ 48Cε.

Proof. Let first βk ≡ 1. In this case, Mβ,n = Mn. Fix ε > 0. Assume that
x ∈ L+

p , and let x =
	∞
0 λ deλ be its spectral decomposition. Since λ ≥ ε

implies λ ≤ ε1−pλp, we have

∞�

ε

λ deλ ≤ ε1−p
∞�

ε

λp deλ ≤ ε1−pxp.
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Then we can write

(4) x =

ε�

0

λ deλ +

∞�

ε

λ deλ ≤ xε + ε1−pxp,

where xε =
	ε
0 λ deλ.

As xp ∈ L1, Theorem 1.3 entails that there exists e ∈ P(M) satisfying

τ(e⊥) ≤ ‖x
p‖1
εp

=

(
‖x‖p
ε

)p
and sup

n
‖eMn(xp)e‖∞ ≤ εp.

It follows from (4) that

0 ≤Mn(x) ≤Mn(xε) + ε1−pMn(xp),

0 ≤ eMn(x)e ≤ eMn(xε)e+ ε1−peMn(xp)e

for every n.
Since xε ∈M, the inequality

‖T (xε)‖∞ ≤ ‖xε‖∞ ≤ ε
holds, and we conclude that

sup
n
‖eMn(x)e‖∞ ≤ ε+ ε = 2ε.

If x ∈ Lp, then x = Rex+i Imx, where Rex = 1
2(x+x∗) ∈ Lp and Imx =

1
2i(x + x∗) ∈ Lp so that ‖Rex‖p ≤ 1

2(‖x‖p + ‖x∗‖p) = ‖x‖p and ‖Imx‖p
≤ ‖x‖p. Moreover, Rex = (Rex)+ − (Rex)−, Imx = (Imx)+ − (Imx)−,
where (Rex)+ ∈ Lp and (Rex)− ∈ Lp are positive and negative parts
of Rex. Since |(Rex)+| ≤ |Rex| and |(Rex)−| ≤ |Rex|, we have ‖(Rex)+‖p
≤ ‖Rex‖p ≤ ‖x‖p and ‖(Rex)−‖p ≤ ‖x‖p. Thus x = (x1 − x2) + i(x3 − x4),
where xj ∈ L+

p and ‖xj‖p ≤ ‖x‖p for every j = 1, . . . , 4. As we have shown,
there exists ej ∈ P(M) such that

(5) τ(e⊥j ) ≤
(
‖xj‖p
ε

)p
≤
(
‖x‖p
ε

)p
, sup

n
‖ejMn(xj)ej‖∞ ≤ 2ε,

j = 1, . . . , 4.
Now, let {βk}∞k=0 ⊂ C satisfy |βk| ≤ C for every k. As 0 ≤ Reβk+C ≤ 2C

and 0 ≤ Imβk + C ≤ 2C, it follows from the decomposition

Mβ,n =
1

n+ 1

n∑
k=0

(Reβk + C)T k +
i

n+ 1

n∑
k=0

(Imβk + C)T k(6)

− C(1 + i)Mn

and (5) that

sup
n
‖ejMβ,n(xj)ej‖∞ ≤ 6C sup

n
‖ejMn(xj)ej‖∞ ≤ 12Cε, j = 1, . . . , 4.

Finally, letting e =
∧4
j=1 ej , we arrive at (3).
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Remark 2.2. Note that (5) provides the following extension of the max-
imal ergodic inequality given in Theorem 1.3 for p = 1: for every x ∈ L+

p

and ε > 0 there exists e ∈ P(M) such that

τ(e⊥) ≤
(
‖x‖p
ε

)p
and sup

n
‖eMn(x)e‖∞ ≤ 2ε.

To refine Theorem 2.1 when p ≥ 2 we turn to the fundamental result of
Kadison [14]:

Theorem 2.3 (Kadison’s inequality). Let S : M → M be a positive
linear map such that S(I) ≤ I. Then S(x)2 ≤ S(x2) for every x ∈Mh.

We will need the following technical lemma; see the proof of [3, Theo-
rem 2.7] or [18, Theorem 3.1]. The proof of this lemma involves a simple
diagonal argument.

Lemma 2.4. Let {amn}∞m,n=1 ⊂ L0(M, τ) be such that for any n the
sequence {amn}∞m=1 converges in measure to some an ∈ L0(M, τ). Then
there exists {amkn}∞k,n=1 such that for any n we have amkn → an a.u. as
k →∞.

Proposition 2.5 (cf. [13, proof of Remark 6.5]). If 2 ≤ p < ∞ and
T ∈ DS+, then for every x ∈ Lhp and ε > 0, there exists e ∈ P(M) such that

τ(e⊥) ≤ ε and

‖gMn(x)2g‖∞ ≤ ‖gMn(x2)g‖∞ <∞
for all g ∈ P(M) with g ≤ e and n = 1, 2, . . . .

Proof. Let x =
	∞
−∞ λ deλ be the spectral decomposition of x ∈ Lhp , and

let xm =
	m
−m λ deλ. Then, since x ∈ Lp, we clearly have ‖x − xm‖p → 0.

Moreover, ‖x2 − x2m‖p/2 → 0, so ‖Mn(x2) −Mn(x2m)‖p/2 → 0 for every n,
which implies that

Mn(x2m)→Mn(x2) in measure, n = 1, 2, . . . .

Also ‖Mn(x) − Mn(xm)‖p → 0 for every n, hence Mn(xm) → Mn(x) in
measure and

Mn(xm)2 →Mn(x)2 in measure, n = 1, 2, . . . .

In view of Lemma 2.4, it is possible to find a subsequence {xmk
} ⊂ {xm}

such that

Mn(x2mk
)→Mn(x2) and Mn(xmk

)2 →Mn(x)2 a.u., n = 1, 2, . . . .

Then one can construct such e1 ∈ P(M) that τ(e⊥1 ) ≤ ε/2 and

(7) ‖e1(Mn(x2mk
)−Mn(x2))e1‖∞ → 0, ‖e1(Mn(xmk

)2−Mn(x)2)e1‖∞ → 0

for every n.
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Since Mn(x2) and Mn(x)2 are measurable operators, there exists e2 ∈
P(M) such that τ(e⊥2 ) ≤ ε/2 and Mn(x2)e2,Mn(x)2e2 ∈ M for all n. Let
e = e1∧e2. It is clear that τ(e⊥) ≤ ε, and, in view of (7), for every g ∈ P(M)
with g ≤ e we have

‖gMn(x2mk
)g − gMn(x2)g‖∞ → 0 and ‖gMn(xmk

)2g − gMn(x)2g‖∞ → 0.

Hence

‖gMn(x2mk
)g‖∞ → ‖gMn(x2)g‖∞ <∞ and

‖gMn(xmk
)2g‖∞ → ‖gMn(x)2g‖∞ <∞.

Since, by Kadison’s inequality,

‖gMn(xmk
)2g‖∞ ≤ ‖gMn(x2mk

)g‖∞, k, n = 1, 2, . . . ,

the result follows.

Theorem 2.6. If 2 ≤ p < ∞, then for every x ∈ Lp and ε > 0 there is
e ∈ P(M) such that

(8) τ(e⊥) ≤ 6

(
‖x‖p
ε

)p
and sup

n
‖Mβ,n(x)e‖∞ ≤ 4C(2

√
2 + 1)ε.

Proof. Pick x ∈ Lhp . Since x2 ∈ L+
p/2, referring to (5), we can find e1(x) ∈

P(M) such that

(9)
τ(e1(x)⊥) ≤

(‖x2‖p/2
ε2

)p/2
=

(
‖x‖p
ε

)p
,

sup
n
‖e1(x)Mn(x2)e1(x)‖∞ ≤ 2ε2.

By Proposition 2.5, there is e2(x) ∈ P(M) such that

τ(e2(x)⊥) ≤
(
‖x‖p
ε

)p
and sup

n
‖gMn(x)2g‖∞ ≤ sup

n
‖gMn(x2)g‖∞

for all g ∈ P(M) with g ≤ e2(x). Then, letting g(x) = e1(x) ∧ e2(x), we
obtain τ(g(x)⊥) ≤ 2(‖x‖p/ε)p and (see Proposition 2.5)

sup
n
‖Mn(x)g(x)‖∞ =

(
sup
n
‖Mn(x)g(x)‖2∞

)1/2
=
(

sup
n
‖g(x)Mn(x)2g(x)‖∞

)1/2
≤
(

sup
n
‖g(x)Mn(x2)g(x)‖∞

)1/2
≤
√

2 ε.

If {βk}∞k=0 ⊂ C, |βk| ≤ C, in accordance with the decomposition (6), we
denote

M
(R)
β,n =

1

n+ 1

n∑
k=0

(Reβk + C)T k, M
(I)
β,n =

1

n+ 1

n∑
k=0

(Imβk + C)T k.
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Let x = x1 + ix2 ∈ Lp, where xj ∈ Lhp and ‖xj‖p ≤ ‖x‖p, j = 1, 2. Since

x21 ∈ L
+
p/2, it follows from (9) that there is e1(x1) ∈ P(M) such that

τ(e1(x1)
⊥) ≤

(
‖x1‖p
ε

)p
and sup

n
‖e1(x1)Mn(x21)e1(x1)‖∞ ≤ 2ε2.

Since 0 ≤ Reβk + C ≤ 2C and 0 ≤ Imβk + C ≤ 2C, we have

sup
n
‖e1(x1)M (R)

β,n (x21)e1(x1)‖∞ ≤ 4Cε2,

sup
n
‖e1(x1)M (I)

β,n(x21)e1(x1)‖∞ ≤ 4Cε2.

In addition, (2C)−1M
(R)
β,n : M → M and (2C)−1M

(I)
β,n : M → M are pos-

itive linear maps satisfying (2C)−1M
(R)
β,n (I) ≤ I and (2C)−1M

(I)
β,n(I) ≤ I for

every n. Then, applying Kadison’s inequality, we obtain

(2C)−2M
(R)
β,n (x1)

2 ≤ (2C)−1M
(R)
β,n (x21),

(2C)−2M
(I)
β,n(x1)

2 ≤ (2C)−1M
(I)
β,n(x21).

This in turn entails

sup
n
‖e1(x1)M (R)

β,n (x1)
2e1(x1)‖∞ ≤ 2C sup

n
‖e1(x1)M (R)

β,n (x21)e1(x1)‖∞,

sup
n
‖e1(x1)M (I)

β,n(x1)
2e1(x1)‖∞ ≤ 2C sup

n
‖e1(x1)M (I)

β,n(x21)e1(x1)‖∞.

Therefore

sup
n
‖M (R)

β,n (x1)e1(x1)‖2∞ = sup
n
‖e1(x1)M (R)

β,n (x1)
2e1(x1)‖∞

≤ 2C sup
n
‖e1(x1)M (R)

β,n (x21)e1(x1)‖∞ ≤ 8C2ε2,

and similarly

sup
n
‖M (I)

β,n(x1)e1(x1)‖2∞ ≤ 8C2ε2.

Then, letting g1 = g(x1) ∧ e1(x1), we derive that τ(g⊥1 ) ≤ 3(‖x‖p/ε)p and

sup
n
‖Mβ,n(x1)g1‖∞ ≤ 2C(2

√
2 + 1)ε.

Similarly, one can find g2 ∈ P(M) with τ(g⊥2 ) ≤ 3(‖x2‖p/ε)p such that

sup
n
‖Mβ,n(x2)g2‖∞ ≤ 2C(2

√
2 + 1)ε.

Finally, we conclude that e = g1 ∧ g2 ∈ P(M) satisfies (8).

Remark 2.7. Beginning of the proof of Theorem 2.6 contains the follow-
ing maximal ergodic inequality for the ergodic averages (1): if 2 ≤ p < ∞,
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given x ∈ Lhp and ε > 0, there exists e ∈ P(M) such that

τ(e⊥) ≤ 2

(
‖x‖p
ε

)p
and sup

n
‖eMn(x)e‖∞ ≤

√
2 ε.

3. Besicovitch weighted ergodic theorem in noncommutative Lp-
spaces. In this section, using the maximal ergodic inequalities of Theorems
2.1 and 2.6, we prove a Besicovitch weighted ergodic theorem in noncom-
mutative Lp-spaces, 1 < p <∞. As was already mentioned, this extends the
corresponding result for p= 1 from [3]. Everywhere in this section T ∈ DS+.

We will need the following technical lemma.

Lemma 3.1 (see [2, Lemma 1.6]). Let X be a linear space, and let Sn :
X → L0(M, τ) be a sequence of additive maps. Assume that x ∈ X is such
that for every ε > 0 there exists a sequence {xk} ⊂ X and a projection
e ∈ P(M) satisfying the following conditions:

(i) for each k, the sequence {Sn(x + xk)} converges a.u. [b.a.u.] as
n→∞;

(ii) τ(e⊥) ≤ ε;
(iii) supn ‖Sn(xk)e‖∞ → 0 [supn ‖eSn(xk)e‖∞ → 0] as k →∞.

Then the sequence {Sn(x)} also converges a.u. [b.a.u.]

Using Theorems 2.1 and 2.6, we obtain a corollary:

Corollary 3.2. Let 1 ≤ p <∞ [2 ≤ p <∞]. Then the set

{x ∈ Lp : {Mβ,n(x)} converges b.a.u.}
[{x ∈ Lp : {Mβ,n(x)} converges a.u.}]

is closed in Lp.

Proof. Denote A = {x ∈ Lp : {Mβ,n(x)} converges b.a.u.}. Fix ε > 0.
Theorem 2.1 implies that for every given k ∈ N there is γk > 0 such that for
every x ∈ Lp with ‖x‖p < γk it is possible to find ek,x ∈ P(M) for which

τ(e⊥k,x) ≤ ε

2k
and sup

n
‖ek,xMβ,n(x)ek,x‖∞ ≤

1

k
.

Let x be in the closure of A in Lp. Given k, let yk ∈ A satisfy ‖yk − x‖p
< γk. Denoting yk − x = xk, choose a sequence {ek} ⊂ P(M) such that

τ(e⊥k ) ≤ ε

2k
and sup

n
‖ekMβ,n(xk)ek‖∞ ≤

1

k
, k = 1, 2, . . . .

Then x+ xk = yk ∈ A for every k. Also, letting e =
∧
k≥1 ek, we have

τ(e⊥) ≤ ε and sup
n
‖eMβ,n(xk)e‖∞ ≤

1

k
.

Consequently, Lemma 3.1 yields x ∈ A.
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Analogously, applying Theorem 2.6 instead of Theorem 2.1, we obtain
the remaining part of the statement.

Corollary 3.2, in the particular case where βk ≡ 1, allows us to present
a new, direct proof of Theorem 1.5.

Proof of Theorem 1.5. Assume first that p ≥ 2. Since the map T gener-
ates a contraction in the real Hilbert space (Lh2 , (·, ·)τ ) [25, Proposition 1],
where (x, y)τ = τ(xy), x, y ∈ Lh2 , it is easy to verify that the set

H0 = {x ∈ Lh2 : T (x) = x}+ {x− T (x) : x ∈ Lh2}
is dense in (Lh2 , ‖·‖2) (see for example [10, Ch. VIII, §5]). Therefore, because
the set Lh2 ∩M is dense in Lh2 and T contracts Lhp , we conclude that the set

H1 = {x ∈ Lh2 : T (x) = x}+ {x− T (x) : x ∈ L2
h ∩M}

is also dense in (Lh2 , ‖ · ‖2). Moreover, if y = x−T (x), x ∈ Lh2 ∩M, then the
sequence Mn(y) = (n + 1)−1(x − Tn+1(x)) converges to zero with respect
to the norm ‖ · ‖∞, hence a.u. Therefore H1 + iH1 is a dense (in L2) subset
on which the averages Mn converge a.u. This, by Corollary 3.2, implies that
{Mn(x)} converges a.u. for all x ∈ L2. Further, since the set Lp ∩ L2 is
dense in Lp, Corollary 3.2 implies that the sequence {Mn(x)} converges a.u.
for each x ∈ Lp (to some x̂ ∈ L0(M, τ)). Then {Mn(x)} converges to x̂
in measure. Since Mn(x) ∈ Lp and ‖Mn(x)‖p ≤ 1, n = 1, 2, . . . , by [3,
Theorem 1.2] we conclude that x̂ ∈ Lp.

Let now 1 < p <∞. By the first part of the proof, the sequence {Mn(x)}
converges b.a.u. for all x ∈ L2. But Lp∩L2 is dense in Lp, and Corollary 3.2
entails b.a.u. convergence of the averagesMn(x) for all x ∈ Lp. Remembering
that b.a.u. convergence implies convergence in measure (see Section 1), we
conclude, as before, that Mn(x)→ x̂ ∈ Lp b.a.u.

Let C1 = {z ∈ C : |z| = 1} be the unit circle in C. A function P : Z→ C
is said to be a trigonometric polynomial if P (k) =

∑s
j=1 zjλ

k
j , k ∈ Z, for

some s ∈ N, {zj}s1 ⊂ C, and {λj}sj=1 ⊂ C1. A sequence {βk}∞k=0 ⊂ C is
called a bounded Besicovitch sequence if

(i) |βk| ≤ C <∞ for all k;
(ii) for every ε > 0 there exists a trigonometric polynomial P such that

lim sup
n

1

n+ 1

n∑
k=0

|βk − P (k)| < ε.

Assume now that M has a separable predual. The reason for this as-
sumption is that our argument essentially relies on [21, Theorem 1.22.13].

Since L1 ∩M ⊂ L2, using Theorem 1.5 for p = 2 (or [5, Theorem 3.1])
and repeating the steps of the proof of [3, Lemma 4.2], we arrive at the
following.
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Proposition 3.3. For any trigonometric polynomial P and x ∈ L1∩M,
the averages

1

n+ 1

n∑
k=0

P (k)T k(x)

converge a.u.

Next, it is easy to verify the following (see the proof of [3, Theorem 4.4]).

Proposition 3.4. If {βk} is a bounded Besicovitch sequence, then the
averages (2) converge a.u. for every x ∈ L1 ∩M.

Here is an extension of [3, Theorem 4.6] to Lp-spaces, 1 < p <∞.

Theorem 3.5. Assume thatM has a separable predual. Let 1 < p <∞,
and let {βk} be a bounded Besicovitch sequence. Then for every x ∈ Lp
the averages (2) converge b.a.u. to some x̂ ∈ Lp. If p ≥ 2, these averages
converge a.u.

Proof. In view of Proposition 3.4 and Corollary 3.2, we only need to
recall that the set L1 ∩M is dense in Lp. The inclusion x̂ ∈ Lp follows as in
the proof of Theorem 1.5.

4. Individual ergodic theorems in noncommutative fully sym-
metric spaces. Let x ∈ L0(M, τ), and let {eλ}λ≥0 be the spectral family
of projections for the absolute value |x| of x. If t > 0, then the tth generalized
singular number of x (see [11]) is defined as

µt(x) = inf{λ > 0 : τ(e⊥λ ) ≤ t}.
A Banach space (E, ‖ · ‖E) ⊂ L0(M, τ) is called fully symmetric if the

conditions

x ∈ E, y ∈ L0(M, τ),

s�

0

µt(y) dt ≤
s�

0

µt(x) dt for all s > 0

imply that y ∈ E and ‖y‖E ≤ ‖x‖E . It is known [6] that if (E, ‖·‖E) is a fully
symmetric space, xn, x ∈ E, and ‖x− xn‖E → 0, then xn → x in measure.
A fully symmetric space (E, ‖ · ‖E) is said to have the Fatou property if the
conditions

xα ∈ E+, xα ≤ xβ for α ≤ β, and sup
α
‖xα‖E <∞

imply that x = supα xα ∈ E exists and ‖x‖E = supα ‖xα‖E . The space
(E, ‖ · ‖E) is said to have order continuous norm if ‖xα‖E ↓ 0 whenever
xα ∈ E and xα ↓ 0.

Let L0(0,∞) be the linear space of all (equivalence classes of) almost ev-
erywhere finite complex-valued Lebesgue measurable functions on the inter-
val (0,∞). We identify L∞(0,∞) with the commutative von Neumann alge-



188 V. Chilin and S. Litvinov

bra acting on the Hilbert space L2(0,∞) via multiplication by the elements
of L∞(0,∞) with the trace given by integration with respect to Lebesgue
measure. A fully symmetric space E ⊂ L0(M, τ), where M = L∞(0,∞)
and τ is given by the Lebesgue integral, is called a fully symmetric function
space on (0,∞).

Let E = (E(0,∞), ‖ · ‖E) be a fully symmetric function space. For each
s > 0 let Ds : E(0,∞)→ E(0,∞) be the bounded linear operator given by
Ds(f)(t) = f(t/s), t > 0. The Boyd indices pE and qE are defined as

pE = lim
s→∞

log s

log ‖Ds‖E
, qE = lim

s→+0

log s

log ‖Ds‖E
.

It is known that 1 ≤ pE ≤ qE ≤ ∞ [17, II, Ch. 2, Proposition 2.b.2]. A fully
symmetric function space is said to have nontrivial Boyd indices if 1 < pE
and qE <∞. For example, the spaces Lp(0,∞), 1 < p <∞, have nontrivial
Boyd indices:

pLp(0,∞) = qLp(0,∞) = p

(see [1, Ch. 4, §4, Theorem 4.3]).
If E(0,∞) is a fully symmetric function space, define

E(M) = E(M, τ) = {x ∈ L0(M, τ) : µt(x) ∈ E}
and set

‖x‖E(M) = ‖µt(x)‖E , x ∈ E(M).

It is shown in [6] that (E(M), ‖ · ‖E(M)) is a fully symmetric space. If
1 ≤ p < ∞ and E = Lp(0,∞), the space (E(M), ‖ · ‖E(M)) coincides with
the noncommutative Lp-space (Lp(M, τ), ‖ · ‖p) because

‖x‖p =
(∞�

0

µpt (x) dt
)1/p

= ‖x‖E(M)

(see [24, Proposition 2.4]).
It was shown in [4, Proposition 2.2] that if M is nonatomic, then ev-

ery noncommutative fully symmetric (E, ‖ · ‖E) ⊂ L0(M, τ) is of the form
(E(M), ‖ · ‖E(M)) for a suitable fully symmetric function space E(0,∞).

Let Lp,q(0,∞), 1 ≤ p, q < ∞, be the classical Lorentz function space,
that is, the space of all functions f ∈ L0(0,∞) such that

‖f‖p,q =

(∞�
0

(t1/pµt(f))q
dt

t

)1/q

<∞.

It is known that for q ≤ p the space (Lp,q(0,∞), ‖ · ‖p,q) is a fully symmetric
function space with the Fatou property and order continuous norm. In addi-
tion, Lp,p = Lp. In the case 1 < p < q, ‖ · ‖p,q is a quasi-norm on Lp,q(0,∞),
but there exists a norm ‖ · ‖(p,q) on Lp,q(0,∞) that is equivalent to the norm
‖ · ‖p,q and such that (Lp,q(0,∞), ‖ · ‖(p,q)) is a fully symmetric function
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space with the Fatou property and order continuous norm [1, Ch. 4, §4]. In
addition, if 1 ≤ q ≤ p <∞ [1 < p <∞, 1 ≤ q <∞], then

p(Lp,q(0,∞),‖·‖p,q) = q(Lp,q(0,∞),‖·‖p,q) = p ([1, Ch. 4, §4, Theorem 4.3])

[p(Lp,q(0,∞),‖·‖(p,q)) = q(Lp,q(0,∞),‖·‖(p,q)) = p ([1, Ch. 4, §4, Theorem 4.5])].

Using the Lorentz function space (Lp,q(0,∞), ‖ · ‖p,q) [(Lp,q(0,∞), ‖ · ‖(p,q))],
one can define the noncommutative Lorentz space

Lp,q(M, τ) =

{
x ∈ L0(M, τ) : ‖x‖p,q =

(∞�
0

(t1/pµt(x))q
dt

t

)1/q

<∞
}

that is fully symmetric with respect to the norm ‖·‖p,q for 1 ≤ q ≤ p [‖·‖(p,q)
for q > p > 1]. In addition, the norm ‖ · ‖p,q [‖ · ‖(p,q)] is order continuous
[7, Proposition 3.6] and satisfies the Fatou property [8, Theorem 4.1]. These
spaces were first introduced in [15].

Following [16], a Banach couple (X,Y ) is a pair of Banach spaces,
(X, ‖ · ‖X) and (Y, ‖ · ‖Y ), which are algebraically and topologically em-
bedded in a Hausdorff topological space. With any Banach couple (X,Y )
the following Banach spaces are associated:

(i) the space X ∩ Y equipped with the norm

‖x‖X∩Y = max{‖x‖X , ‖x‖Y }, x ∈ X ∩ Y ;

(ii) the space X + Y equipped with the norm

‖x‖X+Y = inf{‖y‖X + ‖z‖Y : x = y+ z, y ∈ X, z ∈ Y }, x ∈ X + Y.

Let (X,Y ) be a Banach couple. A linear map T : X + Y → X + Y is
called a bounded operator for the couple (X,Y ) if both T : X → X and
T : Y → Y are bounded. Denote by B(X,Y ) the linear space of all bounded
linear operators for the couple (X,Y ). Equipped with the norm

‖T‖B(X,Y ) = max{‖T‖X→X , ‖T‖Y→Y },

it is a Banach space. A Banach space Z is said to be intermediate for the
Banach couple (X,Y ) if

X ∩ Y ⊂ Z ⊂ X + Y

with continuous inclusions. If Z is intermediate for the Banach couple (X,Y ),
then it is called an interpolation space for (X,Y ) if every bounded linear
operator for the couple (X,Y ) acts boundedly from Z to Z.

If Z is an interpolation space for a Banach couple (X,Y ), then there
exists a constant C > 0 such that ‖T‖Z→Z ≤ C‖T‖B(X,Y ) for all T ∈
B(X,Y ). An interpolation space Z for a Banach couple (X,Y ) is called an
exact interpolation space if ‖T‖Z→Z ≤ ‖T‖B(X,Y ) for all T ∈ B(X,Y ).
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Every fully symmetric function space E = E(0,∞) is an exact inter-
polation space for the Banach couple (L1(0,∞), L∞(0,∞)) [16, Ch. II, §4,
Theorem 4.3].

We need the following noncommutative interpolation result for the spaces
E(M).

Theorem 4.1 ([6, Theorem 3.4]). Let E, E1, E2 be fully symmetric
function spaces on (0,∞). Let M be a von Neumann algebra with a faithful
semifinite normal trace. If (E1, E2) is a Banach couple and E is an exact
interpolation space for (E1, E2), then E(M) is an exact interpolation space
for the Banach couple (E1(M), E2(M)).

It follows now from [16, Ch. II, Theorem 4.3] and Theorem 4.1 that
every noncommutative fully symmetric space E(M), where E = E(0,∞)
is a fully symmetric function space, is an exact interpolation space for the
Banach couple (L1(M),M).

Let T ∈ DS+(M, τ). Let E(0,∞) be a fully symmetric function space.
Since the noncommutative fully symmetric space E(M) is an exact in-
terpolation space for the Banach couple (L1(M, τ),M), we conclude that
T (E(M)) ⊂ E(M) and T is a positive linear contraction on (E(M),
‖ · ‖E(M)). Thus

Mn(x) =
1

n+ 1

n∑
k=0

T k(x) ∈ E(M)

for each x ∈ E(M) and all n. Moreover, the inequalities

‖T (x)‖1 ≤ ‖x‖1, x ∈ L1, ‖T (x)‖∞ ≤ ‖x‖∞, x ∈M,

imply that

sup
n≥1
‖Mn‖L1→L1 ≤ 1 and sup

n≥1
‖Mn‖M→M ≤ 1.

Since the noncommutative fully symmetric space E(M) is an exact inter-
polation space for the Banach couple (L1(M, τ),M), we have

(10) sup
n≥1
‖Mn‖E(M)→E(M) ≤ 1.

Now, let {βk}∞k=0 ⊂ C satisfy |βk| ≤ C, k = 1, 2, . . . . As 0 ≤ Reβk+C ≤
2C and 0 ≤ Imβk + C ≤ 2C, it follows from (6) that

sup
n≥1
‖Mβ,n‖L1→L1 ≤ 6C and sup

n≥1
‖Mβ,n‖M→M ≤ 6C.

Since the noncommutative fully symmetric space E(M) is an exact inter-
polation space for the Banach couple (L1(M, τ),M), we obtain

(11) sup
n≥1
‖Mβ,n‖E(M)→E(M) ≤ 6C.
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The following theorem is a version of Theorem 1.5 for noncommutative
fully symmetric Banach spaces with nontrivial Boyd indices.

Theorem 4.2. Let E(0,∞) be a fully symmetric function space with
the Fatou property and nontrivial Boyd indices. If T ∈ DS+(M, τ), then
for any given x ∈ E(M, τ) the averages Mn(x) converge b.a.u. to some
x̂ ∈ E(M, τ). If pE(0,∞) > 2, these averages converge a.u.

Proof. Since E(0,∞) has nontrivial Boyd indices, according to [17, II,
Ch. 2, Proposition 2.b.3], there exist 1 < p, q < ∞ such that E(0,∞) is an
intermediate space for the Banach couple (Lp(0,∞), Lq(0,∞)). Since

(Lp + Lq)(M, τ) = Lp(M, τ) + Lq(M, τ)

(see [6, Proposition 3.1]), we have

E(M, τ) ⊂ Lp(M, τ) + Lq(M, τ).

Then x = x1 + x2, where x1 ∈ Lp(M, τ), x2 ∈ Lq(M, τ), and, by Theorem
1.5, there exist x̂1 ∈ Lp(M, τ) and x̂1 ∈ Lq(M, τ) such thatMn(xj) converge
b.a.u. to x̂j , j = 1, 2. Therefore

Mn(x)→ x̂ = x̂1 + x̂2 ∈ Lp(M, τ) + Lq(M, τ) ⊂ L0(M, τ)

b.a.u., hence Mn(x) → x̂ in measure. Since E(M) has the Fatou property,
the unit ball of E(M) is closed in the measure topology [8, Theorem 4.1],
and (10) implies that x̂ ∈ E(M).

If pE(0,∞) > 2, then the numbers p and q can be chosen such that 2 <
p, q < ∞. Utilizing Theorem 1.5 and repeating the argument above, we
conclude that the averages Mn(x) converge to x̂ a.u.

Following the proof of Theorem 4.2, we obtain its extended version:

Theorem 4.3. Let E(0,∞) be a fully symmetric function space with the
Fatou property. If T ∈DS+ and x∈E(M, τ) is such that x=x1+ · · ·+xn(x),
where xj ∈ Lpj(x)(M, τ) and pj(x) ≥ 1 for j = 1, . . . , n(x), then the averages
Mn(x) converge b.a.u. to some x̂ ∈ E(M, τ). If pj(x) ≥ 2 for all j =
1, . . . , n(x), these averages converge a.u.

Since any Lorentz function space E = Lp,q(0,∞) with 1 < p < ∞ and
1 ≤ q <∞ has nontrivial Boyd indices pE = qE = p, we have the following
corollary of Theorem 4.2.

Theorem 4.4. Let 1 < p < ∞ and 1 ≤ q < ∞. Then, given x ∈
Lp,q(M, τ), the averages Mn(x) converge b.a.u. to some x̂ ∈ Lp,q(M, τ). If
p > 2, these averages converge a.u.

Remark 4.5. If 1 ≤ q ≤ p, then Lp,q(M, τ) ⊂ Lp,p(M, τ) = Lp(M, τ)
(see [15] and [12, Lemma 1.6]). Then it follows directly from Theorem 1.5
along with the ending of the proof of the first part of Theorem 4.2 that for
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every x ∈ Lp,q(M, τ) the averages Mn(x) converge to some x̂ ∈ Lp,q(M, τ)
b.a.u. (a.u. for p ≥ 2).

The next theorem is a version of the Besicovitch weighted ergodic theo-
rem for a noncommutative fully symmetric space E(M, τ).

Theorem 4.6. Assume thatM has a separable predual. Let E(0,∞) be a
fully symmetric function space with the Fatou property and nontrivial Boyd
indices. Let {βk} be a bounded Besicovitch sequence. If T ∈ DS+(M, τ),
then for any given x ∈ E(M, τ) the averages Mβ,n(x) converge b.a.u. to
some x̂ ∈ E(M, τ). If pE(0,∞) > 2, these averages converge a.u.

The proof of Theorem 4.6 uses Theorem 3.5 and the inequality (11) and
is analogous to the proof of Theorem 4.2.

Immediately from Theorem 4.6 we obtain the following individual er-
godic theorem for the Lorentz spaces Lp,q(M, τ) (cf. Theorem 4.4).

Theorem 4.7. Let M have a separable predual. If 1 < p < ∞ and
1 ≤ q < ∞, then for any x ∈ Lp,q(M, τ) the averages Mβ,n converge b.a.u.
to some x̂ ∈ Lp,q(M, τ). If p > 2, these averages converge a.u.

Remark 4.8. If 1 ≤ q ≤ p, then Lp,q(M, τ) ⊂ Lp(M, τ), and it follows
directly from Theorem 3.5 along with the ending of the proof of the first part
of Theorem 4.2 that for every x ∈ Lp,q(M, τ) the averages Mβ,n converge
to some x̂ ∈ Lp,q(M, τ) b.a.u. (a.u. for p ≥ 2).

5. Mean ergodic theorems in noncommutative fully symmetric
spaces. LetM be a von Neumann algebra with a faithful normal semifinite
trace τ . In [24] the following mean ergodic theorem for noncommutative fully
symmetric spaces was proven.

Theorem 5.1. Let E(M) be a noncommutative fully symmetric space
such that:

(i) L1 ∩M is dense in E(M);
(ii) ‖en‖E(M) → 0 for any sequence of projections {en} ⊂ L1 ∩M with

en ↓ 0;
(iii) ‖en‖E(M)/τ(en) → 0 for any increasing sequence {en} ⊂ L1 ∩M

of projections with τ(en)→∞.

Then, given x ∈ E(M) and T ∈ DS+(M, τ), there exists x̂ ∈ E(M) such
that ‖x̂−Mn(x)‖E(M) → 0.

It is clear that any noncommutative fully symmetric space (E(M),
‖ · ‖E(M)) with order continuous norm satisfies conditions (i) and (ii) of
Theorem 5.1. Moreover, in the case of a noncommutative Lorentz space
Lp,q(M, τ), the inequality p > 1 together with



Ergodic theorems in noncommutative symmetric spaces 193

‖e‖p,q =

(
p

q

)1/q

τ(e)1/p, e ∈ L1 ∩ P(M),

implies that condition (iii) is also satisfied. Therefore Theorem 5.1 entails
the following.

Corollary 5.2. Let 1 < p < ∞, 1 ≤ q < ∞, T ∈ DS+, and x ∈
Lp,q(M, τ). Then there exists x̂ ∈ Lp,q(M, τ) such that ‖x̂−Mn(x)‖p,q → 0.

The next theorem asserts convergence in the norm ‖ · ‖E(M) of the aver-
agesMn(x) for any noncommutative fully symmetric space (E(M), ‖·‖E(M))
with order continuous norm, under the assumption that τ(I) <∞.

Theorem 5.3. Let τ be finite, and let E(M, τ) be a noncommutative
fully symmetric space with order continuous norm. Then for any x ∈ E(M)
and T ∈ DS+ there exists x̂ ∈ E(M) such that ‖x̂−Mn(x)‖E(M) → 0.

Proof. Since the trace τ is finite, we have M ⊂ E(M, τ). As the norm
‖ · ‖E(M) is order continuous, applying the spectral theorem for selfadjoint
operators in E(M, τ), we conclude thatM is dense in (E(M, τ), ‖ · ‖E(M)).
Therefore M+ is a fundamental subset of (E(M, τ), ‖ · ‖E(M)), that is, the
linear span of M+ is dense in (E(M, τ), ‖ · ‖E(M)).

We will now show that the sequence {Mn(x)} is relatively weakly sequen-
tially compact for every x ∈ M+. Without loss of generality, assume that
0 ≤ x ≤ I. Since T ∈ DS+, we have 0 ≤ Mn(x) ≤ Mn(I) ≤ I for any n. By
[9, Proposition 4.3], given y ∈ E+(M, τ), the set {a ∈ E(M, τ) : 0 ≤ a ≤ y}
is weakly compact in (E(M, τ), ‖ · ‖E(M)), which implies that the sequence
{Mn(x)} is relatively weakly sequentially compact in (E(M, τ), ‖ · ‖E(M)).

Since supn≥1 ‖Mn‖E(M)→E(M) ≤ 1 (see (10)) and

0 ≤
∥∥∥∥Tn(x)

n

∥∥∥∥
E(M)

≤
‖x‖E(M)

n
→ 0

whenever x ∈M+, the result follows by [10, Ch. VIII, §5, Corollary 3].

Remark 5.4. In the commutative case, Theorem 5.3 was established
in [23]. It was also shown that if M = L∞(0, 1), then for every fully sym-
metric Banach function space E(0, 1) with the norm that is not order con-
tinuous there exist T ∈ DS+ and x ∈ E(M) such that the averages Mn(x)
do not converge in (E(M), ‖ · ‖E(M)).

The following proposition is a version of Theorem 5.1 for a noncommu-
tative fully symmetric space with order continuous norm with condition (iii)
being replaced by nontriviality of the Boyd indices of E(0,∞). Note that
we do not require T to be positive.

Proposition 5.5. Let E(0,∞) be a fully symmetric function space
with nontrivial Boyd indices and order continuous norm. Then for any
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x ∈ E(M, τ) and T ∈ DS(M, τ) there exists x̂ ∈ E(M, τ) such that
‖x̂−Mn(x)‖E(M) → 0.

Proof. By [17, Theorem 2.b.3], it is possible to find 1 < p, q < ∞ such
that

Lp(0,∞) ∩ Lq(0,∞) ⊂ E(0,∞) ⊂ Lp(0,∞) + Lq(0,∞)

with continuous inclusion maps. In particular,

‖f‖E(0,∞) ≤ C‖f‖Lp(0,∞)∩Lq(0,∞)

for all f ∈ Lp(0,∞) ∩ Lq(0,∞) and some C > 0. Hence

‖x‖E(M,τ) ≤ C‖x‖Lp(M,τ)∩Lq(M,τ)

for all x ∈ L := Lp(M, τ)∩Lq(M, τ). Therefore the space L is continuously
embedded in E(M, τ). Furthermore, it follows as in Theorem 5.3 that L is
a fundamental subset of (E(M, τ), ‖ · ‖E(M)).

We will show that for every x ∈ L the sequence {Mn(x)} is relatively
weakly sequentially compact in (E(M, τ), ‖ · ‖E(M)). Since p, q > 1, the
spaces Lp(M, τ) and Lq(M, τ) are reflexive. As T ∈ DS and x ∈ Lp(M, τ)∩
Lq(M, τ), we conclude that the averages {Mn(x)} converge in (Lp(M, τ),
‖ · ‖p) and in (Lq(M, τ), ‖ · ‖q) to x̂1 ∈ Lp(M, τ) and to x̂2 ∈ Lq(M, τ),
respectively [10, Ch.VIII, §5, Corollary 4]. This implies that the sequence
{Mn(x)} converges to x̂1 and to x̂2 in measure, hence x̂1 = x̂2 := x̂. Since L
is continuously embedded in E(M, τ), the sequence {Mn(x)} converges to x̂
with respect to the norm ‖ · ‖E(M), thus, it is relatively weakly sequentially
compact in (E(M, τ), ‖ · ‖E(M)).

Now we can proceed as in the ending of the proof of Theorem 5.3.

Acknowledgements. The authors are grateful to the anonymous ref-
eree whose insightful comments and suggestions have resulted in a significant
improvement of the presentation of the paper.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988.
[2] V. Chilin and S. Litvinov, Uniform equicontinuity for sequences of homomorphisms

into the ring of measurable operators, Methods Funct. Anal. Topology 12 (2006),
124–130.

[3] V. Chilin, S. Litvinov, and A. Skalski, A few remarks in non-commutative ergodic
theory, J. Operator Theory 53 (2005), 331–350.

[4] V. I. Chilin and F. A. Sukochev, Weak convergence in non-commutative symmetric
spaces, J. Operator Theory 31 (1994), 35–65.
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