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The strong Morita equivalence for coactions of
a finite-dimensional C∗-Hopf algebra on unital C∗-algebras

by

Kazunori Kodaka (Okinawa) and Tamotsu Teruya (Maebashi City)

Abstract. Following Jansen and Waldmann, and Kajiwara and Watatani, we intro-
duce notions of coactions of a finite-dimensional C∗-Hopf algebra on a Hilbert C∗-bimodule
of finite type in the sense of Kajiwara and Watatani and define their crossed product. We
investigate their basic properties and show that the strong Morita equivalence for coac-
tions preserves the Rokhlin property for coactions of a finite-dimensional C∗-Hopf algebra
on unital C∗-algebras.

1. Introduction. Let A and B be unital C∗-algebras and X a Hilbert
A-B-bimodule of finite type in the sense of Kajiwara and Watatani [8]. Let
H be a finite-dimensional C∗-Hopf algebra with dual C∗-Hopf algebra H0.
In this paper, following Jansen and Waldmann [7], we shall introduce the
notion of coactions of H0 on X and define their crossed product. That is,
for coactions ρ and σ of H0 on A and B, respectively, we introduce a linear
map λ from X to X ⊗H0, which is compatible with the coactions ρ, σ and
the left A-module action, the right B-module action and the left A-valued
and right B-valued inner products. Then we can define the crossed product
X oλ H, which is a Hilbert A oρ H -B oσ H-bimodule of finite type. Fur-
thermore, we shall give a duality theorem similar to the ordinary one. The
corresponding theorems in the case of countably discrete group actions and
of Kac systems are found in Kajiwara and Watatani [9] and Guo and Zhang
[5], respectively. The latter result is almost a generalization of our dual-
ity theorem. But our approach to coactions of a finite-dimensional C∗-Hopf
algebra on a unital C∗-algebra is a useful addition, especially the main re-
sult on preservation of the Rokhlin property under strong Morita equiva-
lence. So, in Section 5, we give a duality theorem, a version of crossed prod-
uct duality for coactions of finite-dimensional C∗-Hopf algebras on Hilbert
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C∗-bimodules of finite type. Also, if X is an A-B-equivalence bimodule,
we can show that X oλ H is an A oρ H -B oσ H-equivalence bimodule.
Hence A oρ H is strongly Morita equivalent to B oσ H. Finally, if X is
an A-B-equivalence bimodule and ρ has the Rokhlin property, then σ has
also the Rokhlin property. As an application of this result, we obtain the
following: Under a certain condition, if a unital C∗-algebra A has a coac-
tion of H0 with the Rokhlin property, then any unital C∗-algebra that is
strongly Morita equivalent to A also has a coaction of H0 with the Rokhlin
property. In [13, Section 4], we gave an incorrect example of an action of a
finite-dimensional C∗-Hopf algebra on a unital C∗-algebra with the Rokhlin
property. But applying the above result to [11, Section 7], we can give several
such examples.

For an algebra A, we denote by 1A and idA the unit element in A and the
identity map on A, respectively. If no confusion arises, we denote them by 1
and id, respectively. For each n ∈ N, we denote by Mn(C) the n× n-matrix
algebra over C, and In denotes the unit element in Mn(C).

For projections p, q in a C∗-algebra A, we write p ∼ q in A if p and q are
Murray–von Neumann equivalent in A.

2. Preliminaries. Let H be a finite-dimensional C∗-Hopf algebra. We
denote its comultiplication, counit and antipode by ∆, ε and S, respec-
tively. We shall use Sweedler’s notation ∆(h) = h(1) ⊗ h(2) for any h ∈ H,
which suppresses a possible summation when we write comultiplications.
We denote by N the dimension of H. Let H0 be the dual C∗-Hopf al-
gebra of H. We denote its comultiplication, counit and antipode by ∆0,
ε0 and S0, respectively. There is a distinguished projection e in H. We
note that e is the Haar trace on H0. Also, there is a distinguished projec-
tion τ in H0 which is the Haar trace on H. Since H is finite-dimensional,
H ∼=

⊕L
k=1Mfk(C) and H0 ∼=

⊕K
k=1Mdk(C) as C∗-algebras. Let {vkij |

k = 1, . . . , L, i, j = 1, . . . , fk} be a system of matrix units of H. Let {wkij |
k = 1, . . . ,K, i, j = 1, . . . , dk} be a basis of H satisfying Szymański and
Peligrad’s [17, Theorem 2.2,2], which is called a system of comatrix units
of H, that is, the dual basis of a system of matrix units of H0. Also let
{φkij | k = 1, . . . ,K, i, j = 1, . . . , dk} and {ωkij | k = 1, . . . , L, i, j =

1, . . . , fk} be systems of matrix units and comatrix units of H0, respec-
tively.

Let A and B be unital C∗-algebras and X a Hilbert A-B-bimodule
of finite type in the sense of [8]. We regard a C∗-Hopf algebra H0 as an
H0-H0-equivalence bimodule in the usual way.

Let X ⊗H0 be the exterior tensor product of the Hilbert C∗-bimodules
X and H0, which is a Hilbert A⊗H0 -B ⊗H0-bimodule.
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Lemma 2.1. With the above notation, X ⊗ H0 is a Hilbert A ⊗ H0 -
B ⊗ H0-bimodule of finite type. In particular, if X is an A-B-equivalence
bimodule, then X ⊗H0 is an A⊗H0 -B ⊗H0-equivalence bimodule.

Proof. Since X is of finite type, there is a right B-basis {ui}ni=1 of X.
Then for any x ∈ X and φ ∈ H0,

n∑
i=1

(ui ⊗ 10)〈ui ⊗ 10, x⊗ φ〉B⊗H0 =

n∑
i=1

(ui ⊗ 10)(〈ui, x〉B ⊗ φ) = x⊗ φ.

Thus the family {ui ⊗ 10}ni=1 is a right B ⊗ H0-basis of X ⊗ H0. In the
same way, we can see that there is a left A ⊗ H0-basis of X ⊗ H0. Hence
by [8, Proposition 1.12] or [9, Lemma 1.3], X ⊗ H0 is a Hilbert A ⊗ H0 -
B⊗H0-bimodule of finite type. Now suppose that X is an A-B-equivalence
bimodule. Since X is full with both-sided inner products, by the definitions
of the left and right inner products of X ⊗H0, so is X ⊗H0. Moreover, the
associativity condition holds for the left and right inner products of X⊗H0

since it holds for the left and right inner products of X. Hence X ⊗H0 is
an A⊗H0 -B ⊗H0-equivalence bimodule.

Let Hom(H,X) be the vector space of all linear maps from H to X.
Then X ⊗H0 and Hom(H,X) are isomorphic as vector spaces. Sometimes,
we identify them.

3. Coactions of a finite-dimensional C∗-Hopf algebra on a Hil-
bert C∗-bimodule of finite type and strong Morita equivalence.
Let A and B be unital C∗ algebras and X a Hilbert A-B-bimodule of finite
type. Let H be a finite-dimensional C∗-Hopf algebra with dual C∗-Hopf
algebra H0. Let ρ be a weak coaction of H0 on A, and λ a linear map from
X to X ⊗H0. Following [7], [9], we introduce several definitions.

Definition 3.1. With the above notation, we say that (A,X, ρ, λ,H0)
is a weak left covariant system if:

(1) λ(ax) = ρ(a)λ(x) for any a ∈ A and x ∈ X,
(2) ρ(A〈x, y〉) = A⊗H0〈λ(x), λ(y)〉 for any x, y ∈ X,
(3) (idX ⊗ ε0) ◦ λ = idX .

We then call λ a weak left coaction of H0 on X with respect to (A, ρ).

We define the weak action of H on A induced by ρ as follows: For any
a ∈ A and h ∈ H,

h ·ρ a = (id⊗ h)(ρ(a)),

where we regard H as the dual space of H0. In the same way as above, we
can define the action of H on X induced by λ as follows: For any x ∈ X
and h ∈ H,

h ·λ x = (id⊗ h)(λ(x)) = λ(x)̂(h),
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where λ(x)̂ is the element in Hom(H,X) induced by λ(x) in X⊗H0. Then
we obtain the following conditions which are equivalent to conditions (1)–(3)
in Definition 3.1, respectively:

(1)′ h ·λ ax = [h(1) ·ρ a][h(2) ·λ x] for any a ∈ A, x ∈ X and h ∈ H,

(2)′ h ·ρ A〈x, y〉 = A〈[h(1) ·λ x], [S(h∗(2)) ·λ y]〉 for any x, y ∈ X and h ∈ H,

(3)′ 1H ·λ x = x for any x ∈ X.

Definition 3.2. Let σ be a weak coaction of H0 on B. With the above
notation, we say that (B,X, σ, λ,H0) is a weak right covariant system if:

(4) λ(xb) = λ(x)σ(b) for any b ∈ B and x ∈ X,

(5) σ(〈x, y〉B) = 〈λ(x), λ(y)〉B⊗H0 for any x, y ∈ X,

(6) (idX ⊗ ε0) ◦ λ = idX .

We then call λ a weak right coaction of H0 on X with respect to (B, σ).
We can also define the weak action of H on X induced by λ satisfying
conditions similar to (1)′–(3)′. That is, we have the following conditions
which are equivalent to conditions (4)–(6), respectively:

(4)′ h ·λ xb = [h(1) ·λ x][h(2) ·σ b] for any b ∈ B, x ∈ X and h ∈ H,

(5)′ h ·σ 〈x, y〉B = 〈[S(h∗(1)) ·λ x], [h(2) ·λ y]〉B for any x, y ∈ X and h ∈ H,

(6)′ 1H ·λ x = x for any x ∈ X.

Let ρ and σ be weak coactions of H0 on A and B, respectively. Let X
be a Hilbert A-B-bimodule of finite type.

Definition 3.3. We say that (A,B,X, ρ, σ, λ,H0) is a weak covariant
system if:

(1) λ(ax) = ρ(a)λ(x) for any a ∈ A and x ∈ X,

(2) λ(xb) = λ(x)σ(b) for any b ∈ B and x ∈ X,

(3) ρ(A〈x, y〉) = A⊗H0〈λ(x), λ(y)〉 for any x, y ∈ X,

(4) σ(〈x, y〉B) = 〈λ(x), λ(y)〉B⊗H0 for any x, y ∈ X,

(5) (idX ⊗ ε0) ◦ λ = idX .

We then call λ a weak coaction of H0 on X with respect to (A,B, ρ, σ). We
note that the above conditions are equivalent to the following conditions,
respectively:

(1)′ h ·λ ax = [h(1) ·ρ a][h(2) ·λ x] for any a ∈ A, x ∈ X and h ∈ H,

(2)′ h ·λ xb = [h(1) ·λ x][h(2) ·σ b] for any b ∈ B, x ∈ X and h ∈ H,

(3)′ h ·ρ A〈x, y〉 = A〈[h(1) ·λ x], [S(h∗(2)) ·λ y]〉 for any x, y ∈ X and h ∈ H,

(4)′ h ·σ 〈x, y〉B = 〈[S(h∗(1)) ·λ x], [h(2) ·λ y]〉B for any x, y ∈ X and h ∈ H,

(5)′ 1H ·λ x = x for any x ∈ X.
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We extend the above notions to coactions of a finite-dimensional C∗-Hopf
algebra on unital C∗-algebras.

Definition 3.4. Let A,B and H,H0 be as above. Let ρ and σ be coac-
tions of H0 on A and B, respectively, and let X be a Hilbert A-B-bimodule
of finite type.

(i) We say that (A,X, ρ, λ,H0) is a left covariant system if it is a weak
left covariant system and the weak left coaction λ of H0 on X with respect
to (A, ρ) satisfies

(∗) (λ⊗ id) ◦ λ = (id⊗∆0) ◦ λ,

which is equivalent to

(∗)′ h ·λ [l ·λ x] = hl ·λ x for any x ∈ X and h, l ∈ H.

We then call λ a left coaction of H0 on X with respect to (A, ρ).
(ii) We say that (B,X, σ, λ,H0) is a right covariant system if it is a

weak right covariant system and the weak right coaction λ of H0 on X with
respect to (B, σ) satisfies (∗) or (∗)′. We call λ a right coaction of H0 on X
with respect to (B, σ).

(iii) We say that (A,B,X, ρ, σ, λ,H0) is a covariant system if it is the
weak covariant system and the weak coaction λ with respect to (A,B, ρ, σ)
satisfies (∗) or (∗)′. We then call λ a coaction of H0 on X with respect to
(A,B, ρ, σ).

Furthermore, we extend the notion of the covariant system to twisted
coactions of a finite-dimensional C∗-Hopf algebra on unital C∗-algebras. We
recall the definition of a twisted coaction (ρ, u) of a C∗-Hopf algebra H0 on
a unital C∗-algebra A (see [9], [10]). Let ρ be a weak coaction of H0 on A
and u a unitary element in A⊗H0⊗H0. Then we say that (ρ, u) is a twisted
coaction of H0 on A if:

(1) (ρ⊗ id) ◦ ρ = Ad(u) ◦ (id⊗∆0) ◦ ρ,
(2) (u⊗ 10)(id⊗∆0 ⊗ id)(u) = (ρ⊗ id⊗ id)(u)(id⊗ id⊗∆0)(u),
(3) (id⊗ h⊗ ε0)(u) = (id⊗ ε0 ⊗ h)(u) = ε0(h)10 for any h ∈ H.

The above conditions are respectively equivalent to:

(1)′ h ·ρ [l ·ρ a] = û(h(1), l(1))[h(2)l(2) ·ρ a]û∗(h(3), l(3)) for any a ∈ A and
h, l ∈ H,

(2)′ û(h(1), l(1))û(h(2)l(2),m) = [h(1) ·ρ û(l(1),m(1))]û(h(2), l(2)m(2)) for
any h, l,m ∈ H,

(3)′ û(h, 1) = û(1, h) = ε(h)10 for any h ∈ H.

Definition 3.5. Let A,B and H,H0 be as above. Let (ρ, u) and (σ, v)
be twisted coactions of H0 on A and B, respectively, and let X be a Hilbert
A-B-bimodule of finite type. We say that (A,B,X, ρ, u, σ, v, λ,H0) is a
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twisted covariant system if it is a weak covariant system and the weak coac-
tion λ of H0 with respect to (A,B, ρ, σ) satisfies

(∗∗) (λ⊗ id)(λ(x)) = u(id⊗∆0)(λ(x))v∗ for any x ∈ X,

which is equivalent to

(∗∗)′ h ·λ [l ·λ x] = û(h(1), l(1))[h(2)l(2) ·λ x]v̂∗(h(3), l(3)) for any x ∈ X and
h, l ∈ H,

where û and v̂ are the elements in Hom(H × H,A) and Hom(H × H,B)
induced by u ∈ A⊗H0 ⊗H0 and v ∈ B ⊗H0 ⊗H0, respectively. We then
call λ a twisted coaction of H0 on X with respect to (A,B, ρ, u, σ, v).

Next, we introduce the notion of strong Morita equivalence for coactions
of a finite-dimensional C∗-Hopf algebra on unital C∗-algebras.

Definition 3.6. Let A,B and H,H0 be as above.

(i) Let ρ and σ be weak coactions of H0 on A and B, respectively. We say
that ρ is strongly Morita equivalent to σ if there are an A-B-equivalence bi-
module X and a weak coaction λ of H0 on X such that (A,B,X, ρ, σ, λ,H0)
is a weak covariant system.

(ii) Let ρ and σ be coactions of H0 on A and B, respectively. We say
that ρ is strongly Morita equivalent to σ if there are an A-B-equivalence
bimodule X and a coaction λ of H0 on X such that (A,B,X, ρ, σ, λ,H0) is
a covariant system.

(iii) Let (ρ, u) and (σ, v) be twisted coactions of H0 on A and B, respec-
tively. We say that (ρ, u) is strongly Morita equivalent to (σ, v) if there are
an A-B-equivalence bimodule X and a twisted coaction λ of H0 on X such
that (A,B,X, ρ, u, σ, v, λ,H0) is a twisted covariant system.

We shall show that the above strong Morita equivalences are equivalence
relations.

Proposition 3.7. The strong Morita equivalence of weak coactions of a
finite-dimensional C∗-Hopf algebra on a unital C∗-algebra is an equivalence
relation.

Proof. It suffices to show transitivity since the other conditions clearly
hold. Let A,B,C be unital C∗-algebras and let X and Y be an A-B-
equivalence bimodule and a B-C-equivalence bimodule, respectively. Let ρ,
σ and γ be weak coactions of H0 on A,B and C, respectively. We suppose
that ρ is strongly Morita equivalent to σ and that σ is strongly Morita equiv-
alent to γ. Let λ and µ be weak coactions of H0 on X and Y respectively
satisfying Definition 3.6(i). Then X ⊗B Y is an A-C-equivalence bimodule.
We define a bilinear map “ ·λ⊗µ” from H × (X ⊗B Y ) to X ⊗B Y as follows:
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For any x ∈ X, y ∈ Y and h ∈ H,

h ·λ⊗µ (x⊗ y) = [h(1) ·λ x]⊗ [h(2) ·µ y].

Then we can show that the above map “ ·λ⊗µ” satisfies conditions (1)′–(5)′

in Definition 3.3 by routine computations.

Corollary 3.8. The strong Morita equivalence of twisted coactions of a
finite-dimensional C∗-Hopf algebra on a unital C∗-algebra is an equivalence
relation.

Proof. By Proposition 3.7, we have only to prove condition (∗∗)′ in Def-
inition 3.5. Let (ρ, u), (σ, v) and (γ,w) be twisted coactions of H0 on unital
C∗-algebras A, B and C, respectively. Let the notation be as in the proof
of Proposition 3.7. For any x ∈ X, y ∈ Y and h, l ∈ H,

h ·λ⊗µ [l ·λ⊗µ x⊗ y] = [h(1) ·λ [l(1) ·λ x]]⊗ [h(2) ·µ [l(2) ·µ y]]

= û(h(1), l(1))[h(2)l(2) ·λ x]⊗ [h(3)l(3) ·µ y]ŵ∗(h(4), l(4))

= û(h(1), l(1))[h(2)l(2) ·λ⊗µ (x⊗ y)]ŵ∗(h(3), l(3)).

Therefore, we obtain the conclusion.

The notion of strong Morita equivalence of coactions of a finite-dimensio-
nal C∗-Hopf algebra on unital C∗-algebras is an extension of that of actions
of a finite group on unital C∗-algebras. To see this, let G be a finite group
and α an action of G on a unital C∗-algebra A. We consider the coaction
of C(G) on A induced by the action α of G on A; we denote it also by α.
That is,

α : A→ A⊗ C(G), a 7→
∑
t∈G

αt(a)⊗ δt

for any a ∈ A, where for any t ∈ G, δt is the projection in C(G) defined by

δt(s) =

{
0 if s 6= t,

1 if s = t.

Let B be a unital C∗-algebra and β an action of G on B. We denote by the
same symbol β the coaction of C(G) on B induced by β.

Proposition 3.9. With the above notation, the following conditions are
equivalent:

(1) The actions α and β of G on A and B are strongly Morita equivalent.
(2) The coactions α and β of C(G) on A and B are strongly Morita

equivalent.

Proof. Suppose (1) holds. Then by Raeburn and Williams [15, Defini-
tion 7.2], there are an A-B-equivalence bimodule X and an action u of G
by linear isomorphisms of X such that

αt(A〈x, y〉) = A〈ut(x), ut(y)〉, βt(〈x, y〉B) = 〈ut(x), ut(y)〉B
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for any x, y ∈ X and t ∈ G. We note that by [15, Remark 7.3],

ut(ax) = αt(a)ut(x), ut(xb) = ut(x)βt(b)

for any a ∈ A, b ∈ B, x ∈ X and t ∈ G. Let λ be a linear map from X to
X ⊗ C(G) defined by setting, for any x ∈ X,

λ(x) =
∑
t∈G

ut(x)⊗ δt.

Then by routine computations, λ is a coaction of C(G) on X with respect
to (A,B, α, β). Hence we obtain (2).

Conversely, suppose (2) holds. Then there are an A-B-equivalence bi-
module X and a coaction λ of C(G) on X with respect to (A,B, α, β). We
regard G as a subset of C∗(G). For any t ∈ G, we define a linear map ut on
X as follows: for any x ∈ X, ut(x) = t ·λx. Then for any t, s ∈ G and x ∈ X,

ut(us(x)) = t ·λ [s ·λ x] = ts ·λ x = uts(x).

Thus u is an action of G by linear isomorphisms of X, which satisfies the
desired conditions by easy computations. Hence we obtain (1).

Modifying [15, Example 7.4(b)], we shall obtain the following lemma,
which can give examples of the strong Morita equivalence of coactions of a
finite-dimensional C∗-Hopf algebra on a unital C∗-algebra. First, we intro-
duce the following definition:

Definition 3.10. Let ρ and σ be weak coactions of H0 on A. We say
that ρ is exterior equivalent to σ if there is a unitary element w ∈ A ⊗H0

such that

σ = Ad(w) ◦ ρ, (id⊗ ε0)(w) = 1.

Lemma 3.11. Let ρ and σ be weak coactions of H0 on A. Then the
following conditions are equivalent:

(1) ρ and σ are exterior equivalent.
(2) ρ and σ are strongly Morita equivalent via a weak coaction λ from

an A-A-equivalence bimodule AAA to an A⊗H0 -A⊗H0-equivalence
bimodule A⊗H0A ⊗ H0

A⊗H0, where we regard A and A ⊗ H0 as an
A-A-equivalence bimodule and an A ⊗ H0 -A ⊗ H0-equivalence bi-
module respectively in the usual way.

Proof. Suppose (1) holds. Then there is a unitary element w ∈ A⊗H0

such that σ = Ad(w) ◦ ρ and (id ⊗ ε0)(w) = 1. Let λ be a linear map from

AAA to A⊗H0A ⊗H0
A⊗H0 defined by λ(x) = ρ(x)w∗ for any x ∈ AAA. By

routine computations, λ is a weak coaction of H0 on AAA with respect to
(A,A, ρ, σ).

Conversely, suppose (2) holds. We note that λ is a weak coaction
of H0 on AAA with respect to (A,A, ρ, σ). We identify A ⊗ H0 with
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EndA⊗H0(A⊗H0
A⊗H0), the C∗-algebra of all right A⊗H0-module maps on

A⊗H0
A⊗H0 . Let w = θλ(1)∗,1⊗10 be the rank-one operator on A⊗H0

A⊗H0

induced by λ(1)∗ and 1⊗ 10. Then w is a unitary element in EndA⊗H0(A⊗
H0

A⊗H0). Indeed, for any x ∈ A⊗H0
A⊗H0 ,

ww∗(x) = λ(1)∗(1⊗ 10)λ(1)x = 〈λ(1), λ(1)〉A⊗H0 x = σ(1)x = x,

w∗w(x) = λ(1)λ(1)∗x = A⊗H0〈λ(1), λ(1)〉x = ρ(1)x = x.

Also, for any a ∈ A and x ∈ A⊗H0
A⊗H0 ,

(wρ(a)w∗)(x) = w(ρ(a)λ(1)x) = λ(1)∗λ(a)x

= 〈λ(1), λ(a)〉A⊗H0 x = σ(a)x.

Thus w is a unitary element inA⊗H0 and σ = Ad(w)◦ρ. Let z = (id⊗ε0)(w).
Then z is a unitary element in A such that az = za for any a ∈ A since
σ = Ad(w)◦ρ. Let w1 = w(z∗⊗10). Then w1 is a unitary element in A⊗H0

such that σ = Ad(w1) ◦ ρ and (id⊗ ε0)(w1) = 1. Therefore we obtain (1).

Lemma 3.12. Let (ρ, u) and (σ, v) be twisted coactions of H0 on A. Then
the following conditions are equivalent:

(1) (ρ, u) and (σ, v) are exterior equivalent.
(2) (ρ, u) and (σ, v) are strongly Morita equivalent via a twisted coaction

λ from an A-A-equivalence bimodule AAA to an A ⊗ H0 -A ⊗ H0-
equivalence bimodule A⊗H0A ⊗ H0

A⊗H0, where we regard A and
A ⊗ H0 as an A-A-equivalence bimodule and an A ⊗ H0 -A ⊗ H0-
equivalence bimodule respectively in the usual way.

Proof. Suppose (1) holds. Then there is a unitary w ∈ A⊗H0 such that

σ = Ad(w) ◦ ρ, v = (w ⊗ 10)(ρ⊗ id)(w)u(id⊗∆0)(w∗).

Let λ be as in the proof of Lemma 3.11. Then for any x ∈ AAA,

((λ⊗ id) ◦ λ)(x) = u(id⊗∆0)(ρ(x))u∗(ρ⊗ id)(w∗)(w∗ ⊗ 10)

= u(id⊗∆0)(ρ(x))(id⊗∆0)(w∗)v∗

= u(id⊗∆0)(λ(x))v∗.

Thus by Lemma 3.11, λ is a twisted coaction of H0 on AAA with respect to
(A,A, ρ, u, σ, v).

Conversely, suppose (2) holds. We note that λ is a twisted coaction
of H0 on AAA with respect to (A,A, ρ, u, σ, v). We identify A ⊗ H0 with
EndA⊗H0(A ⊗ H0

A⊗H0). Let w = θλ(1)∗,1⊗10 be the rank-one operator on

A ⊗H0
A⊗H0 induced by λ(1)∗ and 1 ⊗ 10. Then w is a unitary element in

EndA⊗H0(A⊗H0
A⊗H0) such that σ = Ad(w) ◦ ρ by Lemma 3.11. We note

that w∗ = A⊗H0〈λ(1), 1⊗ 10〉. Indeed, for any x ∈ A⊗H0
A⊗H0 ,

w∗x = (1⊗ 10)〈λ(1)∗, x〉A⊗H0 = λ(1)x = A⊗H0〈λ(1), 1⊗ 10〉x.
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Hence w∗ = A⊗H0〈λ(1), 1⊗ 10〉. Thus

(ρ⊗ id)(w∗) = (ρ⊗ id)(A⊗H0〈λ(1), 1⊗ 10〉)
= A⊗H0⊗H0〈((λ⊗ id) ◦ λ)(1), λ(1)⊗ 10〉
= A⊗H0⊗H0〈u((id⊗∆0) ◦ λ)(1)v∗, λ(1)⊗ 10〉
= u((id⊗∆0) ◦ λ)(1)v∗(λ(1)∗ ⊗ 10).

It follows that

(ρ⊗ id)(w∗)(w∗ ⊗ 10)

= u((id⊗∆0) ◦ λ)(1)v∗(λ(1)∗ ⊗ 10)
(
A⊗H0〈λ(1), 1⊗ 10〉 ⊗ 10

)
= u((id⊗∆0) ◦ λ)(1)v∗

(
〈λ(1), λ(1)〉A⊗H0 ⊗ 10

)
= u((id⊗∆0) ◦ λ)(1)v∗(σ(〈1, 1〉A)⊗ 10)

= u(id⊗∆0)(λ(1))v∗ = u(id⊗∆0)(A⊗H0〈λ(1), 1⊗ 10〉)v∗

= u(id⊗∆0)(w∗)v∗.

Thus v = (w ⊗ 10)(ρ⊗ id)(w)u(id⊗∆0)(w∗), proving (1).

Next, we discuss relations between innerness, outerness and strong Mo-
rita equivalence. Let ρAH0 be the trivial coaction of H0 on A.

Lemma 3.13. (i) Let ρ be a weak coaction of H0 on A. Then the following
conditions are equivalent:

(1) ρ is inner.
(2) ρ is strongly Morita equivalent to ρAH0.

(ii) Let ρ be a coaction of H0 on A. Then the following conditions are
equivalent:

(1) ρ is strongly inner,
(2) ρ is strongly Morita equivalent to ρAH0.

Proof. (i) Suppose that ρ is inner. Then there is a unitary w ∈ A⊗H0

such that ρ = Ad(w) ◦ ρAH0 and (id ⊗ ε0)(w) = 1 (we argue as in the proof

of (2)⇒(1) in Lemma 3.11). Thus ρ is exterior equivalent to ρAH0 . Hence by

Lemma 3.11, ρ is strongly Morita equivalent to ρAH0 .

Conversely, suppose that ρ is strongly Morita equivalent to ρAH0 . Then
there are an A-A-equivalence bimodule X and a weak coaction λ of H0 on
X with respect to (A,A, ρ, ρAH0). We note that for any a ∈ A and x ∈ X,

λ(xa) = λ(x)ρAH0(a) = λ(x)(a⊗ 10).

For any h ∈ H, let ŵ(h) be a linear map on X defined by setting, for any
x ∈ X,

ŵ(h)x = h ·λ x.
Then by the above discussion, ŵ(h) is in EndA(X), the C∗-algebra of all
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right A-module maps on X. Since X is an A-A-equivalence bimodule, we
can identify EndA(X) with A and regard ŵ(h) as an element in A for any
h ∈ H. Furthermore, since the map h 7→ ŵ(h) is linear, ŵ ∈ Hom(H,A).
Let w ∈ A ⊗H0 be induced by ŵ. By the definition, clearly ŵ(1) = 1. We
show that w is a unitary element in A⊗H0 such that ρ = Ad(w) ◦ ρAH0 . For
any x, y ∈ X and h ∈ H,

〈(ŵ∗ŵ)(h)x, y〉A = 〈ŵ(h(2))x, ŵ(S(h∗(1)))y〉A
= 〈[h(2) ·λ x] , [S(h∗(1)) ·λ y]〉A = S(h∗) ·ρA

H0
〈x, y〉A = 〈ε(h)x, y〉A.

Thus w∗w = 1⊗ 10. Also, for any x, y ∈ X and h ∈ H,

h ·ρ A〈x, y〉 = A〈[h(1) ·λ x], [S(h∗(2)) ·λ y]〉 = A〈ŵ(h(1))x, ŵ(S(h∗(2)))y〉

= ŵ(h(1))A〈x, y〉ŵ∗(h(2)).

Hence ρ = Ad(w) ◦ ρAH0 since X is an A-A-equivalence bimodule. Thus

ww∗ = wρAH0(1)w∗ = ρ(1) = 1⊗ 10. Therefore, the weak coaction ρ is inner.

(ii) Suppose that ρ is strongly inner. Then it is exterior equivalent to ρAH0 .

Hence by Lemma 3.12, ρ is strongly Morita equivalent to ρAH0 .

Conversely, suppose that ρ is strongly Morita equivalent to ρAH0 . Then
there are an A-A-equivalence bimodule X and a coaction λ of H0 on X with
respect to (A,A, ρ, ρAH0). Let w be as in (i). It suffices to show that for any
h, l ∈ H we have ŵ(hl) = ŵ(h)ŵ(l). Indeed, for any x ∈ X and h, l ∈ H,

ŵ(h)ŵ(l)x = h ·λ [l ·λ x] = hl ·λ x = ŵ(hl)x.

Therefore, ρ is strongly inner.

Let ρAH0 and ρBH0 be the trivial coactions of H0 on A and B, respectively.
Suppose that A and B are strongly Morita equivalent and let X be an A-B-
equivalence bimodule. Then ρAH0 and ρBH0 are strongly Morita equivalent. If

a linear map λXH0 from X to X ⊗H0 is defined by λXH0(x) = x⊗ 10 for any

x ∈ X, then λXH0 is a coaction of H0 on X with respect to (A,B, ρAH0 , ρ
B
H0).

Corollary 3.14.

(i) Let ρ and σ be weak coactions of H0 on A and B, respectively. If ρ
is strongly Morita equivalent to σ, then ρ is inner if and only if so
is σ.

(ii) Let ρ and σ be coactions of H0 on A and B, respectively. If ρ is
strongly Morita equivalent to σ, then ρ is strongly inner if and only
if so is σ.

Proof. (i) Suppose that ρ is inner. Then σ is strongly Morita equiva-
lent to ρBH0 by Lemma 3.13(i), Proposition 3.7 and the above discussion.
Therefore, σ is inner by Lemma 3.13(i).
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(ii) Suppose that ρ is strongly inner. Then σ is strongly Morita equivalent
to ρBH0 by Lemma 3.13(ii), Corollary 3.8 and the above discussion. Therefore,
σ is strongly inner by Lemma 3.13(ii).

Proposition 3.15. Suppose that H0 is not trivial. Let ρ and σ be coac-
tions of H0 on A and B, respectively. If ρ is strongly Morita equivalent to σ,
then ρ is outer if and only if so is σ.

Proof. Suppose that ρ is outer. To show that σ is outer, let π be a
surjective C∗-Hopf algebra homomorphism of H0 onto a non-trivial C∗-
Hopf algebra K0. Suppose that (id ⊗ π) ◦ σ is inner. Then (id ⊗ π) ◦ σ is
strongly Morita equivalent to (id ⊗ π) ◦ ρ by easy computations. Thus by
Corollary 3.14(i), (id⊗π)◦ρ is inner. This is a contradiction completing the
proof.

Furthermore, we also have the following easy lemma:

Lemma 3.16. Let (ρ, u) be a twisted coaction of H0 on A and let
(ρ ⊗ id, u ⊗ In) be a twisted coaction of H0 on A ⊗Mn(C), where n is a
positive integer and we identify A ⊗ H0 ⊗Mn(C) with A ⊗Mn(C) ⊗ H0.
Then (ρ, u) is strongly Morita equivalent to (ρ⊗ id, u⊗ In).

Proof. Let f be a minimal projection in Mn(C) and define X =
(1⊗f)(A⊗Mn(C)). We regard it as an A -A⊗Mn(C)-equivalence bimodule
in the usual way. Let λ be the linear map from X to X ⊗H0 defined by

λ((1⊗ f)x) = (1⊗ f ⊗ 10)(ρ⊗ id)(x)

for any x ∈ A⊗Mn(C), where we identify A⊗H0⊗Mn(C) with A⊗Mn(C)
⊗H0. By routine computations, we can see that λ satisfies conditions (1)–(5)
in Definition 3.3 and condition (∗∗).

4. Crossed products of Hilbert C∗-bimodules of finite type by
finite-dimensional C∗-Hopf algebras. In this section, we extend the
notion of crossed products of Hilbert C∗-bimodules of finite type defined in
[7], [9] to (twisted) coactions of finite-dimensional C∗-Hopf algebras.

Let H be a finite-dimensional C∗-Hopf algebra with dual C∗-Hopf al-
gebra H0. Let A and B be unital C∗-algebras and X a Hilbert A-B-bimodule
of finite type. Let (A,B,X, ρ, u, σ, v, λ,H0) be a twisted covariant system.
Under certain conditions, we define X oλH, a Hilbert Aoρ,uH -Boσ,v H-
bimodule of finite type, as follows: X oλ H is just X ⊗ H (the algebraic
tensor product) as a vector space; and its left action and right action are
given by

(aoρ,u h)(xoλ l) = a[h(1) ·λ x]v̂(h(2), l(1)) oλ h(3)l(2),

(xoλ l)(boσ,v m) = x[l(1) ·σ,v b]v̂(l(2),m(1)) oλ l(3)m(2)
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for any a ∈ A, b ∈ B, x ∈ X and h, l,m ∈ H. Then for any a1, a2 ∈ A,
x ∈ X and h, l,m ∈ H,(
(a1 oρ,u h)(a2 oρ,u l)

)
(xoλ m)

= a1[h(1) ·ρ,u a2]û(h(2), l(1))[h(3)l(2) ·λ x]v̂(h(4)l(3),m(1)) oλ h(5)l(4)m(2)

= a1
[
h(1) ·λ a2[l(1) ·λ x]

]
v̂(h(2), l(2))v̂(h(3)l(3),m(1)) oλ h(4)l(4)m(2)

= a1
[
h(1) ·λ a2[l(1) ·λ x]v̂(l(2),m(1))

]
v̂(h(2), l(3)m(2)) oλ h(3)l(4)m(3)

= (a1 oρ,u h)
(
(a2 oρ,u l)(xoλ m)

)
.

Also, for any b1, b2 ∈ B, x ∈ X and h, l,m ∈ H,

(xoλ h)
(
(b1 oσ,v l)(b2 oσ,v m)

)
= x[h(1) ·σ,v b1]

[
h(2) ·σ,v [l(1) ·σ,v b2]

]
v̂(h(3), l(2))v̂(h(4)l(3),m(1))

oλ h(5)l(4)m(2)

= x[h(1) ·σ,v b1]v̂(h(2), l(1))[h(3)l(2) ·σ,v b2]v̂(h(4)l(3),m(1)) oλ h(5)l(4)m(2)

=
(
(xoλ h)(b1 oσ,v l)

)
(b2 oσ,v m).

Thus X oλH is a left Aoρ,uH- and right Boσ,vH-bimodule. Also, its left
Aoρ,u H-valued and right B oσ,v H-valued inner products are given by

Aoρ,uH〈xoλ h, y oλ l〉
= A〈x, [S(h(2)l

∗
(3))
∗ ·λ y]v̂(S(h(1)l

∗
(2))
∗, l(1))〉oρ,u h(3)l

∗
(4),

〈xoλ h, y oλ l〉Boσ,vH

= v̂∗(h∗(2), S(h(1))
∗)[h∗(3) ·σ,v 〈x, y〉B]v̂(h∗(4), l(1)) oσ,v h

∗
(5)l(2)

for any x, y ∈ X and h, l ∈ H. We shall show that X oλ H is a Hilbert
Aoρ,uH -Boσ,vH-bimodule of finite type by proving that XoλH satisfies
conditions (1)–(10) in [9, Lemma 1.3]. Clearly X oλ H is a left A oρ H-
and right B oσ H-bimodule. Thus conditions (1), (4) in [9, Lemma 1.3] are
satisfied. For any a, b ∈ A, x, y ∈ X and h, l,m ∈ H,

(aoρ,u h)Aoρ,uH〈xoλ l, y oλ m〉
= a

[
h(1) ·ρ,u A

〈
x, [S(l(2)m

∗
(3))
∗ ·λ y]v̂(S(l(1)m

∗
(2))
∗,m(1))

〉]
û(h(2), l(3)m

∗
(4))

oρ,u h(3)l(4)m
∗
(5)

= aA
〈
[h(1) ·λ x], [S(h∗(3) ·λ [S(l(2)m

∗
(3))
∗ ·λ y]

[
S(h∗(2)) ·σ,v v̂(S(l(1)m

∗
(2))
∗,m(1))

]〉
× û(h(4), l(3)m

∗
(4)) oρ,u h(5)l(4)m

∗
(5)

= aA〈[h(1) ·λ x],
[
S(h∗(5)) ·λ [S(l(4)m

∗
(4))
∗ ·λ y]

]
v̂(S(h∗(4)), S(l(3)m

∗
(3))
∗)

× v̂(S(h(3)l(2)m
∗
(2))
∗,m(1))v̂∗(S(h∗(2)), S(l∗(1)))〉û(h(6), l(5)m

∗
(5))

oρ,u h(7)l(6)m
∗
(6)
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= aA
〈
[h(1) ·λ x], û(S(h∗(5)), S(l(4)m

∗
(4))
∗)[S(h(4)l(3)m

∗
(3))
∗ ·λ y]

× v̂(S(h(3)l(2)m
∗
(2))
∗,m(1))v̂(h(2), l(1))

∗〉û(h(6), l(5)m
∗
(5)) oρ,u h(7)l(6)m

∗
(6)

= aA
〈
[h(1) ·λ x]v̂(h(2), l(1)), [S(h(4)l(3)m

∗
(3))
∗ ·λ y]v̂(S(h(3)l(2)m

∗
(2))
∗,m(1))

〉
× û∗(h(5), l(4)m∗(4))û(h(6), l(5)m

∗
(5)) oρ,u h(7)l(6)m

∗
(6)

= aA
〈
[h(1) ·λ x]v̂(h(2), l(1)), [S(h(4)l(3)m

∗
(3))
∗ ·λ y]v̂(S(h(3)l(2)m

∗
(2))
∗,m(1))

〉
oρ,u h(5)l(4)m

∗
(4)

= Aoρ,uH〈a[h(1) ·λ x]v̂(h(2), l(1)) oλ h(3)l(2), y oλ m〉
= Aoρ,uH〈(aoρ,u h)(xoλ l), y oλ m〉.

Also,

〈xoλ h, y oλ l〉Boσ,vH(boσ,v m)

= v̂∗(h∗(2), S(h∗(1)))[h
∗
(3) ·σ,v 〈x, y〉B]v̂(h∗(4), l(1))[h

∗
(5)l(2) ·σ,v b]v̂(h∗(6)l(3),m(1))

oσ,v h
∗
(7)l(4)m(2)

= v̂∗(h∗(2), S(h∗(1)))[h
∗
(3) ·σ,v 〈x, y〉B]

[
h∗(4) ·σ,v [l(1) ·σ,v b]

]
v̂(h∗(5), l(2))v̂(h∗(6)l(3),m(1))

oσ,v h
∗
(7)l(4)m(2)

= v̂∗(h∗(2)S(h∗(1)))
[
h∗(3) ·σ,v 〈x, y〉B[l(1) ·σ,v b]

]
v̂(h∗(4), l(2))v̂(h∗(5)l(3),m(1))

oσ,v h
∗
(6)l(4)m(2)

= v̂∗(h∗(2), S(h∗(1)))
[
h∗(3) ·σ,v 〈x, y〉B[l(1) ·σ,v b]

]
[h∗(4) ·σ,v v̂(l(2),m(1))]v̂(h∗(5), l(3)m(2))

oσ,v h
∗
(6)l(4)m(3)

= v̂∗(h∗(2), S(h∗(1)))
[
h∗(3) ·σ,v 〈x, y〉B[l(1) ·σ,v b]v̂(l(2),m(1))

]
v̂(h∗(4), l(3)m(2))

oσ,v h
∗
(5)l(4)m(3)

= 〈xoλ h, (y oλ l)(boσ,v m)〉Boσ,vH .

Thus conditions (3), (6) in [9, Lemma 1.3] are satisfied. For any x, y ∈ X
and h, l ∈ H,

Aoρ,uH〈xoλ h, y oλ l〉∗

= û∗(l(5)h
∗
(4), S(l(4)h

∗
(3)))

[
l(6)h

∗
(5) ·ρ,u A〈[S(l(3)h

∗
(2)) ·λ y]v̂(S(l(2)h

∗
(1)), l(1)), x〉

]
oρ,u l(7)h

∗
(6)

= û∗(l(5)h
∗
(4), S(l(4)h

∗
(3)))

× A

〈[
l(6)h

∗
(5) ·λ [S(l(3)h

∗
(2)) ·λ y]

][
l(7)h

∗
(6) ·σ,v v̂(S(l(2)h

∗
(1)), l(1))

]
, [S(l(8)h

∗
(7))
∗ ·λ x]

〉
oρ,u l(9)h

∗
(8)
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= û∗(l(6)h
∗
(6), S(l(5)h

∗
(5)))

× A

〈[
l(7)h

∗
(7) ·λ [S(l(4)h

∗
(4)) ·λ y]

]
v̂(l(8)h

∗
(8), S(l(3)h

∗
(3)))v̂(l(9)h

∗
(9)S(l(2)h

∗
(2)), l(1))

× v̂∗(l(10)h∗(10), S(h∗(1))), [S(l(11)h
∗
(11))

∗ ·λ x]
〉
oρ,u l(12)h

∗
(12)

= û∗(l(6)h
∗
(6), S(l(5)h

∗
(5)))

× A

〈
û(l(7)h

∗
(7), S(l(4)h

∗
(4)))[l(8)h

∗
(8)S(l(3)h

∗
(3)) ·λ y]v̂(l(9)h

∗
(9)S(l(2)h

∗
(2)), l(1))

× v̂∗(l(10)h∗(10), S(h∗(1))), [S(l(11)h
∗
(11))

∗ ·λ x]
〉
oρ,u l(8)h

∗
(8)

= A〈y, [S(l(2)h
∗
(3))
∗ ·λ x]v̂(S(l(1)h

∗
(2))
∗, h(1))〉oρ,u l(3)h

∗
(4)

= Aoρ,uH〈y oλ l, xoλ h〉.

Similarly

〈xoλ h, y oλ l〉∗Boσ,vH

= v̂∗(l∗(3)h(6), S(l∗(2)h(5)))
[
l∗(4)h(7) ·σ v̂(h∗(4), l(1))

∗[S(h(3)) ·σ,v 〈y, x〉B]v̂(S(h(2)), h(1))
]

oσ,v l
∗
(5)h(8)

= v̂∗(l∗(3)h(6), S(l(2)h(5)))[l(4)∗h(7) ·σ,v v̂∗(S(h(4)), S(l∗(1)))]

×
[
l∗(5)h(8) ·σ,v [S(h(3)) ·σ,v 〈y, x〉B]

]
[l∗(6)h(9) ·σ,v v̂(S(h(2)), h(1))] oσ,v l

∗
(7)h(10)

= v̂(S(l∗(3)h(6))
∗, (l∗(2)h(5))

∗)∗[S(h∗(7)l(4)) ·σ v̂(h∗(4), l(1))]
∗

×
[
l∗(5)h(8) ·σ,v [S(h(3)) ·σ,v 〈y, x〉B]

]
[l∗(6)h(9) ·σ,v v̂(S(h(2)), h(1))] oσ,v l

∗
(7)h(10)

=
[
[S(h∗(7)l(4)) ·σ,v v̂(h∗(4), l(1))]v̂(S(h∗(6)l(3)), h

∗
(5)l(2))

]∗
×
[
l∗(5)h(8) ·σ,v [S(h(3)) ·σ,v 〈y, x〉B]

]
[l∗(6)h(9) ·σ,v v̂(S(h(2)), h(1))] oσ,v l

∗
(7)h(10)

= [v̂(S(h∗(7)l(3)), h
∗
(4))v̂(S(h∗(6)l(2))h

∗
(5), l(1))]

∗[l∗(4)h(8) ·σ,v [S(h(3)) ·σ,v 〈y, x〉B]
]

× [l∗(5)h(9) ·σ,v v̂(S(h(2)), h(1))] oσ,v l
∗
(6)h(10)

= v̂(S(l(2)), l(1))
∗v̂∗(l∗(3)h(5), S(h(4)))

[
l∗(4)h(6) ·σ,v [S(h(3)) ·σ,v 〈y, x〉B]

]
× [l∗(5)h(7) ·σ,v v̂(S(h(2)), h(1))] oσ,v l

∗
(6)h(8)

= v̂(S(l(2)), l(1))
∗[l∗(3)h(5)S(h(4)) ·σ,v 〈y, x〉B]v̂∗(l∗(4)h(6), S(h(3)))

× [l∗(5)h(7) ·σ,v v̂(S(h(2)), h(1))] oσ,v l
∗
(6)h(8)

= v̂(S(l(2)), l(1))
∗[l∗(3) ·σ,v 〈y, x〉B]v̂∗(l∗(4)h(4), S(h(3)))l

∗
(5)h(5) ·σ,v v̂(S(h(2)), h(1))]

oσ,v l
∗
(6)h(6)

= v̂(S(l(2)), l(1))
∗[l∗(3) ·σ,v 〈y, x〉B]v̂(l∗(4)h(5)S(h(4)), h(1))v̂∗(l

∗
(5)h(6), S(h(3))h(2))

oσ,v l
∗
(6)h(7)

= 〈y oλ l, xoλ h〉Boσ,vH .
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Thus conditions (2), (5) in [9, Lemma 1.3] are satisfied. Moreover, for any
b ∈ B, x, y ∈ X and l,m ∈ H,

Aoρ,uH〈xoλ l, (y oλ m)(boσ,v 1)∗〉
= A

〈
x, [S(l(3)m

∗
(5))
∗ ·λ y]v̂(S(l(2)m

∗
(4))
∗,m(1))[S(l(1)m

∗
(3))
∗m(2) ·σ,v b∗]

〉
oρ,u l(4)m

∗
(6)

= A〈x[l(1) ·σ,v b], [S(l(3)m
∗
(3))
∗ ·λ y]v̂(S(l(2)m

∗
(2))
∗,m(1))〉oρ,u l(4)m

∗
(4)

= Aoρ,uH〈(xoλ l)(boσ,v 1), y oλ m〉.
Also, for any x, y ∈ X and h, l,m ∈ H,

Aoρ,uH〈xoλ l, (y oλ m)(1 oσ,v h)∗〉
= Aoρ,uH

〈
xoλ l, y[m(1) ·σ,v v̂(S(h(2)), h(1))

∗]v̂(m(2), h
∗
(3)) oλ m(3)h

∗
(4)

〉
= A

〈
x,
[
S(l(2)h(6)m

∗
(5))
∗ ·λ y[m(1) ·σ,v v̂∗(h∗(2), S(h(1))

∗)]v̂(m(2), h
∗
(3))
]

× v̂(S(l(1)h(5)m
∗
(4))
∗,m(3)h

∗
(4))
〉
oρ,u l(3)h(7)m

∗
(6)

= A

〈
x,
[
S(l(2)h(7)m

∗
(5))
∗ ·λ yv̂(m(1), h

∗
(3)S(h∗(2)))v̂

∗(m(2)h
∗
(4), S(h∗(1)))

]
× v̂(S(l(1)h(6)m

∗
(4))
∗,m(3)h

∗
(5))
〉
oρ,u l(3)h(8)m

∗
(6)

= A

〈
x, [S(l(3)h(6)m

∗
(5))
∗ ·λ y]

[
S(l(2)h(5)m

∗
(4))
∗ ·σ,v v̂∗(m(1)h

∗
(2), S(h∗(1)))

]
× v̂(S(l(1)h(4)m

∗
(3))
∗,m(2)h

∗
(3))
〉
oρ,u l(4)h(7)m

∗
(6)

= A

〈
x, [S(l(3)h(7)m

∗
(5))
∗ ·λ y]v̂

(
S(l(2)h(6)m

∗
(4))
∗,m(1)h

∗
(3)S(h∗(2))

)
× v̂∗

(
S(l(1)h(5)m

∗
(3))
∗m(2)h

∗
(4), S(h∗(1))

)〉
oρ,u l(4)h(8)m

∗
(6)

= A

〈
xv̂(l(1), h(1)), [S(l(3)h(3)m

∗
(3))
∗ ·λ y]v̂(S(l(2)h(2)m

∗
(2))
∗,m(1))

〉
oρ,u l(4)h(4)m

∗
(4)

= Aoρ,uH〈(xoλ l)(1 oσ,v h), y oλ m〉.
Thus we see that for any b ∈ B, x, y ∈ X and h, l,m ∈ H,

Aoρ,uH〈(xoλ l)(boσ,v h), y oλ m〉 = Aoρ,uH〈xoλ l, (y oλ m)(boσ,v h)∗〉.

We note that for any a ∈ A, x, y ∈ X and h, l,m ∈ H,

〈(aoρ,u h)(xoλ l), y oλ m〉Boσ,vH

= (1 oσ,v l)
∗〈(aoρ,u h)(xoλ 1), y oλ 1〉Boσ,vH(1 oσ,v m).

Hence in order to show that for any a ∈ A, x, y ∈ X and h, l,m ∈ H,

〈(aoρ,u h)(xoλ l), y oλ m〉Boσ,vH = 〈xoλ l, (y oλ m)(aoρ,u h)∗〉Boσ,vH ,

we have only to show that for any a ∈ A, x, y ∈ X and h ∈ H,

〈(aoρ,u h)(xoλ 1), y oλ 1〉Boσ,vH = 〈xoλ 1, (aoρ,u h)∗(y oλ 1)〉Boσ,vH .
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For any a ∈ A and x, y ∈ X, we have

〈(aoρ,u 1)(xoλ 1), y oλ 1〉Boσ,vH = 〈axoλ 1, y oλ 1〉Boσ,vH

= 〈ax, y〉B = 〈xoλ 1, (aoρ,u 1)∗(y oλ 1)〉Boσ,vH .

Also, for any x, y ∈ X and h ∈ H,

〈(1 oρ,u h)(xoλ 1), y oλ 1〉Boσ,vH

=
〈
[S(h(4)) ·λ [h(1) ·λ x]]v̂(S(h(3)), h(2)), [h

∗
(5) ·λ y]

〉
B
oσ,v h

∗
(6)

= 〈û(S(h(2)), h(1))x, [h
∗
(3) ·λ y]〉B oσ,v h

∗
(4)

=
〈
xoλ 1, û(S(h(2)), h(1))

∗[h∗(3) ·λ y] oλ h
∗
(4)

〉
Boσ,vH

= 〈xoλ 1, (1 oρ,u h)∗(y oλ 1)〉Boσ,vH .

Thus condition (8) in [9, Lemma 1.3] is satisfied. Moreover, for any a ∈ A,
b ∈ B, x ∈ X and h, l,m ∈ H,

(aoρ,u h)[(xoλ l)(boσ,v m)]

= a[h(1) ·λ x]
[
h(2) ·σ,v [l(1) ·σ,v b]

]
v̂(h(3), l(2))v̂(h(4)l(3),m(1)) oλ h(5)l(4)m(2)

= a[h(1) ·λ x]v̂(h(2), l(1))[h(3)l(2) ·σ,v b]v̂(h(4)l(3),m(1)) oλ h(5)l(4)m(2)

= [(aoρ,u h)(xoλ l)](boσ,v m).

Thus condition (7) in [9, Lemma 1.3] is satisfied. Since X is of finite type,
there are finite subsets {wi}ni=1 and {zj}mj=1 in X such that

x =
n∑
i=1

wi〈wi, x〉B =
m∑
j=1

A〈x, zj〉zj

for any x ∈ X. Then we have the following lemma:

Lemma 4.1. With the above notation, if (A,B,X, ρ, σ, λ,H0) is a co-
variant system, then for any x ∈ X and h ∈ H,

xoλ h =

n∑
i=1

(wi oλ 1)〈wi oλ 1, xoλ h〉BoσH

=

m∑
j=1

AoρH〈xoλ h, zj oλ 1〉(zj oλ 1).

Proof. For any x ∈ X and h ∈ H,

n∑
i=1

(wi oλ 1)〈wi oλ 1, xoλ h〉BoσH =

n∑
i=1

wi〈wi, x〉B oλ h = xoλ h.
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Also,

m∑
j=1

AoρH〈xoλ h, zj oλ 1〉(zj oλ 1)

=
m∑
j=1

A〈[h(2)S(h(1)) ·λ x], [S(h(3))
∗ ·λ zj ]〉[h(4) ·λ zj ] oλ h(5)

=
m∑
j=1

[
h(2) ·λ A〈[S(h(1)) ·λ x], zj〉zj

]
oλ h(3)

=
[
h(2) ·λ [S(h(1)) ·λ x]

]
oλ h(3) = xoλ h.

Therefore, we obtain the conclusion.

For any Hilbert C∗-bimodule Y , l-Ind[Y ] and r-Ind[Y ] denote its left and
right indices, respectively.

Corollary 4.2. With the above notation and assumptions,

l-Ind[X oλ H] = l-Ind[X] oσ 1, r-Ind[X oλ H] = r-Ind[X] oρ 1.

Proof. By the definitions of the left and right indices of a Hilbert C∗-
bimodule,

l-Ind[X oλ H] =

m∑
j=1

〈zj , zj〉B oσ 1 = l-Ind[X] oσ 1,

r-Ind[X oλ H] =

n∑
i=1

A〈wi, wi〉oρ 1 = r-Ind[X] oρ 1.

Proposition 4.3. With the above notation and assumptions, X oλ H
is a Hilbert Aoρ H -B oσ H-bimodule of finite type with

l-Ind[X oλ H] = l-Ind[X] oσ 1, r-Ind[X oλ H] = r-Ind[X] oρ 1.

Proof. This is immediate by Lemma 4.1, Corollary 4.2 and [9, Lem-
ma 1.3].

Lemma 4.4. With the above notation, if (A,B,X, ρ, u, σ, v, λ,H0) is a
twisted covariant system and X is an A-B-equivalence bimodule, then for
any x ∈ X and h ∈ H,

xoλ h =

n∑
i=1

(wi oλ 1)〈wi oλ 1, xoλ h〉Boσ,zH

=

m∑
j=1

Aoρ,wH〈xoλ h, zj oλ 1〉(zj oλ 1).
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Proof. For any x ∈ X and h ∈ H,
n∑
i=1

(wi oλ 1)〈wi oλ 1, xoλ h〉Boσ,vH =
n∑
i=1

wi〈wi, x〉B oλ h = xoλ h.

Also,

m∑
j=1

Aoρ,uH〈xoλ h, zj oλ 1〉(zj oλ 1)

=
m∑
j=1

A〈x, [S(h(1))
∗ ·λ zj ]〉[h(2) ·λ zj ] oλ h(3)

=

m∑
j=1

x〈[S(h(1))
∗ ·λ zj ], [h(2) ·λ zj ]〉B oλ h(3)

=

m∑
j=1

x[h(1) ·σ 〈zj , zj〉B] oλ h(2) = xoλ h.

Therefore, we obtain the conclusion.

Lemma 4.5. With the above notation and assumptions, if X is an A-B-
equivalence bimodule, then the Hilbert A oρ,u H -B oσ,v H-bimodule is full
with both-sided inner products.

Proof. For any x, y ∈ X, Aoρ,uH〈x oλ 1, y oλ 1〉 = A〈x, y〉 oρ,u 1. Since

Aoρ,uH〈X oλH,X oλH〉 is a closed ideal of Aoρ,uH, for any x, y ∈ X and
h ∈ H we have

(A〈x, y〉oρ,u 1)(1 oρ,u h) = A〈x, y〉oρ,u h ∈ Aoρ,uH〈X oλ H,X oλ H〉.
Since A〈X,X〉 = A, we obtain

Aoρ,uH〈X oλ H,X oλ H〉 = Aoρ,u H.

Also, for any x, y ∈ X and h ∈ H,

〈xoλ 1, y oλ h〉Boσ,vH = 〈x, y〉B oσ,v h ∈ 〈X oλ H,X oλ H〉Boσ,vH .

Since 〈X,X〉B = B, we conclude that

〈X oλ H,X oλ H〉Boσ,vH = B oσ,v H.

Corollary 4.6. With the above notation and assumptions, suppose that
X is an A-B-equivalence bimodule. Then XoλH is an Aoρ,uH -Boσ,vH-
equivalence bimodule.

Proof. By Lemma 4.5, it suffices to show that

Aoρ,uH〈xoλ h, y oλ l〉(z oλ m) = (xoλ h)〈y oλ l, z oλ m〉Boσ,vH

for any x, y, z ∈ X and h, l,m ∈ H. Since X is an A-B-equivalence bimodule,



278 K. Kodaka and T. Teruya

(xoλ h)〈y oλ l, z oλ m〉Boσ,vH

= x
[
h(1) ·σ,v v̂∗(l∗(2), S(l(1))

∗)[l∗(3) ·σ,v 〈y, z〉B]v̂(l∗(4),m(1))
]
v̂(h(2), l

∗
(5)m(2))

oλ h(3)l
∗
(6)m(3)

= x[h(1) ·σ,v v̂∗(l∗(2), S(l(1))
∗)]
[
h(2) ·σ,v [l∗(3) ·σ,v 〈y, z〉B]

]
× [h(3) ·σ,v v̂(l∗(4),m(1))]v̂(h(4), l

∗
(5)m(2)) oλ h(5)l

∗
(6)m(3)

= x[h(1) ·σ,v v̂∗(l∗(2), S(l∗(1)))]v̂(h(2), l
∗
(3))[h(3)l

∗
(4) ·σ,v 〈y, z〉B]

× v̂(h(4)l
∗
(5),m(1)) oλ h(5)l

∗
(6)m(2)

= xv̂∗(h(1)l
∗
(2), S(l∗(1)))[h(2)l

∗
(3) ·σ,v 〈y, z〉B]v̂(h(3)l

∗
(4),m(1)) oλ h(4)l

∗
(5)m(2).

On the other hand,

Aoρ,uH〈xoλ h, y oλ l〉(z oλ m)

= A

〈
x, [S(h(2)l

∗
(3))
∗ ·λ y]v̂(S(h(1)l

∗
(2))
∗, l(1))

〉
[h(3)l

∗
(4) ·λ z]v̂(h(4)l

∗
(5),m(1))

oλ h(5)l
∗
(6)m(2)

= x
〈
[S(h(2)l

∗
(3))
∗ ·λ y]v̂(S(h(1)l

∗
(2))
∗, l(1)), [h(3)l

∗
(4) ·λ z]

〉
B
v̂(h(4)l

∗
(5),m(1))

oλ h(5)l
∗
(6)m(2)

= xv̂∗(h(1)l
∗
(2), S(l∗(1)))[h(2)l

∗
(3) ·σ,v 〈y, z〉B]v̂(h(3)l

∗
(4),m(1)) oλ h(4)l

∗
(5)m(2).

This yields the conclusion.

By the above discussions, we obtain the following:

Corollary 4.7.

(1) Let (A,B,X, ρ, u, σ, v, λ,H0) be a twisted covariant system. Suppose
that X is an A-B-equivalent bimodule. Then XoλH is an Aoρ,uH -
B oσ,v H-equivalence bimodule.

(2) Let (A,B,X, ρ, σ, λ,H0) be a covariant system. Then X oλ H is a
Hilbert Aoρ H -B oσ H-bimodule of finite type.

In the situation of Corollary 4.7(1), let X oλ H be the crossed product
associated to a twisted covariant system (A,B,X, ρ, u, σ, v, λ,H0), where X
is an A-B-equivalence bimodule. Then we define the dual covariant system
to X oλ H as follows: Let ρ̂ and σ̂ be the dual coactions of H on Aoρ,u H

and Boσ,vH of (ρ, u) and (σ, v), respectively. Let λ̂ be the dual coaction of
H on X oλ H defined by

λ̂(xoλ h) = (xoλ h(1))⊗ h(2)
for any x ∈ X and h ∈ H. Then by easy computations, we can see that

(Aoρ,u H,B oσ,v H,X oλ H, ρ̂, σ̂, λ̂,H)

is a covariant system. Hence we obtain the following:
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Corollary 4.8. Let (ρ, u) and (σ, v) be twisted coactions of H0 on A
and B, respectively. Then the following conditions are equivalent:

(1) (ρ, u) is strongly Morita equivalent to (σ, v).
(2) The dual coaction ρ̂ of (ρ, u) is strongly Morita equivalent to the dual

coaction σ̂ of (σ, v).

Proof. By the above discussion, it is clear that (1) implies (2). Con-

versely, suppose (2) holds. Then we can see that ̂̂ρ is strongly Morita equiv-

alent to ̂̂σ, where ̂̂ρ and ̂̂σ are the dual coactions of ρ̂ and σ̂, respectively. By
[11, Theorem 3.3], there is an isomorphism Ψ of MN (A) onto Aoρ,uHoρ̂H

0

such that ̂̂ρ is exterior equivalent to the twisted coaction(
(Ψ ⊗ id) ◦ (ρ⊗ id) ◦ Ψ−1, (Ψ ⊗ idH0 ⊗ idH0)(u⊗ IN )

)
.

Hence by Lemma 3.12, ̂̂ρ is strongly Morita equivalent to (ρ ⊗ id, u ⊗ IN ).

Thus, by Lemma 3.16 and Corollary 3.8, ̂̂ρ is strongly Morita equivalent

to (ρ, u). Similarly ̂̂σ is strongly Morita equivalent to (σ, v). Therefore, by
Corollary 3.8, (ρ, u) is strongly Morita equivalent to (σ, v).

Also, in the situation of Corollary 4.7(2), we can see that

(Aoρ H, B oσ H, X oλ H, ρ̂, σ̂, λ̂,H)

is a covariant system in the same way as above.

5. Duality. In this section, we present a duality theorem for a crossed
product of a Hilbert C∗-bimodule of finite type by a (twisted) coaction of a
finite-dimensional C∗-Hopf algebra, in the same way as in [11]. As mentioned
in Section 1, Guo and Zhang [5] have already obtained a duality result using
the language of multiplicative unitary elements and Kac systems. We give
our duality result because our approach to coactions of a finite-dimensional
C∗-Hopf algebra on a unital C∗-algebra is a useful addition to the main
result in Section 6.

First, suppose condition (1) or (2) in Corollary 4.7 holds. In both cases,
we can consider the dual covariant systems

(Aoρ,u H,B oσ,v H,X oλ H, ρ̂, σ̂, λ̂,H),

(Aoρ H,B oσ H,X oλ H, ρ̂, σ̂, λ̂,H).

Let Λ be the set of all triplets (i, j, k) where i, j = 1, . . . , dk and k = 1, . . . ,K

and
∑K

k=1 d
2
k = N . For each I = (i, j, k) ∈ Λ, let W ρ

I , V ρ
I be elements in

Aoρ,u H oρ̂ H
0 defined by

W ρ
I =

√
dk oρ,u w

k
ij , V ρ

I = (1 oρ,u 1 oρ̂ τ)(W ρ
I oρ̂ 10).
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Similarly for each I = (i, j, k) ∈ Λ, we define elements

W σ
I =

√
dk oσ,v w

k
ij , V σ

I = (1 oσ,v 1 oσ̂ τ)(W σ
I oσ̂ 10)

in Boσ,vHoσ̂H
0. We regard MN (C) as a Hilbert MN (C)-MN (C)-bimodule

in the usual way. Let X ⊗MN (C) be the exterior tensor product of X and
MN (C), which is a Hilbert A⊗MN (C) -B⊗MN (C)-bimodule. In the same
way as in Lemma 2.1, we can see that X ⊗MN (C) is of finite type. Let
{fIJ}I,J∈Λ be the system of matrix units of MN (C). Let ΨX be a linear map
from X ⊗MN (C) to X oλ H o

λ̂
H0 defined by

ΨX

(∑
I,J

xIJ ⊗ fIJ
)

=
∑
I,J

V ρ∗
I (xIJ oλ 1 o

λ̂
10)V σ

J

for any xIJ ∈ X. Let ΨA and ΨB be isomorphisms of A ⊗ MN (C) and
B ⊗MN (C) onto Aoρ,u H oρ̂ H

0 and B oσ,v H oσ̂ H
0 defined by

ΨA

(∑
I,J

aIJ ⊗ fIJ
)

=
∑
I,J

V ρ∗
I (aIJ oρ,u 1×ρ̂ 10)V ρ

J ,

ΨB

(∑
I,J

bIJ ⊗ fIJ
)

=
∑
I,J

V σ∗
I (aIJ oσ,v 1×σ̂ 10)V σ

J ,

for any aIJ ∈ A and bIJ ∈ B (see [11]).

Lemma 5.1. With the above notation,

(1) ΨX

((∑
I,J

aIJ ⊗ fIJ
)(∑

I,J

xIJ ⊗ fIJ
))

= ΨA

(∑
I,J

aIJ ⊗ fIJ
)
ΨX

(∑
I,J

xIJ ⊗ fIJ
)
,

(2) ΨX

((∑
I,J

xIJ ⊗ fIJ
)(∑

I,J

bIJ ⊗ fIJ
))

= ΨX

(∑
I,J

xIJ ⊗ fIJ
)
ΨB

(∑
I,J

bIJ ⊗ fIJ
)
,

(3) Aoρ,uHoρ̂H0

〈
ΨX

(∑
I,J

xIJ ⊗ fIJ
)
, ΨX

(∑
I,J

yIJ ⊗ fIJ
)〉

= ΨA

(
A⊗MN (C)

〈∑
I,J

xIJ ⊗ fIJ ,
∑
I,J

yIJ ⊗ fIJ
〉)
,

(4)
〈
ΨX

(∑
I,J

xIJ ⊗ fIJ
)
, ΨX

(∑
I,J

yIJ ⊗ fIJ
)〉

Boσ,vHoσ̂H0

= ΨB

(〈∑
I,J

xIJ ⊗ fIJ ,
∑
I,J

yIJ ⊗ fIJ
〉
B⊗MN (C)

)
for any aIJ ∈ A, bIJ ∈ B, xIJ , yIJ ∈ X and I, J ∈ Λ.
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Proof. This is immediate by routine computations. Indeed,

ΨX

((∑
I,J

aIJ ⊗ fIJ
)(∑

I,J

xIJ ⊗ fIJ
))

=
∑
I,J,L

V ρ∗
I (aILxLJ oλ 1 o

λ̂
10)V σ

J .

On the other hand, by [11, Lemma 3.1],

ΨA

(∑
I,J

aIJ ⊗ fIJ
)
ΨX

(∑
L,M

xLM ⊗ fLM
)

=
∑
I,J,M

V ρ∗
I (aIJ oρ,u 1 oρ̂ 10)(1 oρ,u 1 oρ̂ τ)(xJM oλ 1 o

λ̂
10)V σ

M

=
∑
I,J,M

V ρ∗
I (aIJxJM oλ 1 o

λ̂
10)V σ

M .

Thus we obtain (1). Similarly we can obtain (2). Also, by [11, Lemma 3.1],

Aoρ,uHoρ̂H0

〈
ΨX

(∑
I,J

xIJ ⊗ fIJ
)
, ΨX

(∑
I,J

yIJ ⊗ fIJ
)〉

=
∑

I,J,I1,J1

Aoρ,uHoρ̂H0

〈
V ρ∗
I (xIJ oλ 1 o

λ̂
10)V σ

J , V
ρ∗
I1

(yI1J1 oλ 1 o
λ̂

10)V σ
J1

〉
=
∑
I,J,I1

V ρ∗
I (Aoρ,uH〈xIJ oλ 1, yI1J oλ 1〉oρ̂ τ)V ρ

I1

=
∑
I,J,I1

V ρ∗
I (A〈xIJ , yI1J〉oρ,u oρ̂1

0)V ρ
I1
.

On the other hand,

ΨA

(
A⊗MN (C)

〈∑
I,J

xIJ ⊗ fIJ ,
∑
I1,J1

yI1,J1 ⊗ fI1,J1
〉)

=
∑
I,J,I1

ΨA(A〈xIJ , yI1J〉 ⊗ fII1) =
∑
I,J,I1

V ρ∗
I (A〈xIJ , yI1J〉oρ,u 1 oρ̂ 10)V ρ

I1
.

Thus we obtain (3). Furthermore,〈
ΨX

(∑
I,J

xIJ ⊗ fIJ
)
, ΨX

(∑
I1,J1

yI1J1 ⊗ fI1J1
)〉

Boσ,vHoσ̂H0

=
∑
I,J,J1

V σ∗
J (〈xIJ , yIJ1〉B oσ,v 1 oσ̂ 10)V σ

J1

= ΨB

(〈∑
I,J

xIJ ⊗ fIJ ,
∑
I1,J1

yI1J1 ⊗ fIiJi
〉
B⊗MN (C)

)
.

Thus we obtain (4).

From the above lemma, we can see that ΨX is injective. Next, we show
that ΨX is surjective.
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Lemma 5.2. With the above notation,

(X oλ H o
λ̂

10)(1 oσ,v 1 oσ̂ τ)(B oσ,v H oσ̂ 10) = X oλ H o
λ̂
H0.

Proof. Let x ∈ X, h ∈ H and φ ∈ H0. Since∑
i,j,k

(
√
dkoσ,v w

k
ij oσ̂ 10)∗(1oσ,v 1oσ̂ τ)(

√
dkoσ,v w

k
ij oσ̂ 10) = 1oσ,v 1oσ̂ 10

by [10, Proposition 3.18], we have

xoλ ho
λ̂
φ

=
∑
i,j,k

(xoλ ho
λ̂
φ)(
√
dk oσ,v w

k
ij oσ̂ 10)∗(1 oσ,v 1 oσ̂ τ)

× (
√
dk oσ,v w

k
ij oσ̂ 10)

=
∑

i,j,k,j1,j2

dk
(
(xoλ h)

[
φ ·σ̂

(
v̂(S(wkj1j2), wkij1)∗ oσ,v w

k∗
j2j

)]
o
λ̂
τ
)

× (1 oσ,v w
k
ij oσ̂ 10)

=
∑

i,j,k,j1,j2,j3

dkφ(wk∗j3j)
(
(xoλ h)(v̂(S(wkj1j2), wkij1)∗ oσ,v w

k∗
j2j3) o

λ̂
10
)

× (1 oσ,v 1 oσ̂ τ)(1 oσ,v w
k
ij oσ̂ 10).

Hence we obtain the conclusion.

Let Eσ1 be the canonical conditional expectation from B oσ,v H to B
defined by Eσ1 (b oσ,v h) = τ(h)b for any b ∈ B and h ∈ H. Let Eλ1 be the
linear map from X oλ H onto X defined by

Eλ1 (xoλ h) = τ(h)x

for any x ∈ X and h ∈ H.

Lemma 5.3. With the above notation, for any x ∈ X and h ∈ H,∑
i,j,k

(
√
dk oρ,u w

k
ij)
∗Eλ1

(
(
√
dk oρ,u w

k
ij)(xoλ h)

)
= xoλ h.

Proof. This is also immediate by routine computations. Indeed, for any
x ∈ X and h ∈ H, by [17, Theorem 2.2],∑
i,j,k

(
√
dk oρ,u w

k
ij)
∗Eλ1

(
(
√
dk oρ,u w

k
ij)(xoλ h)

)
=

∑
i,j,k,j1,j2,s,s1,s2,s3

dkû∗(w
k∗
ss1 , w

k
si)
[
wk∗s1s2 ·λ [wkij1 ·λ x]

]
[wk∗s2s3 ·σ,v v̂(wkj1j2 , h(1))]

oλ τ(wkj2jh(2))w
k∗
s3j
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=
∑

i,j,k,j1,j2,s2,s3

dkxv̂∗(w
k∗
is2 , w

k
ij1)[wk∗s2s3 ·σ,v v̂(wkj1j2 , h(1))] oλ τ(wkj2jh(2))w

k∗
s3j

=
∑

i,j,k,j1,j2,s2,s3

dkxv̂(wk∗is2w
k
ij1 , h(1))v̂

∗(wk∗s2s3 , w
k
j1j2h(2))τ(wkj2jh(3)) oλ w

k∗
s3j

=
∑
j,k,s2

dkxτ(wks2jh) oλ S(wkjs2)

=
∑
i,k,s2

dkxτ(wks2jh(1)) oλ S(wkjs2h(2)S(h(3)))

= xoλ S(τ(Neh(1))S(h(2))) = xoλ h.

Lemma 5.4. With the above notation,

(1 oρ,u 1 oρ̂ φ)(xoλ 1 o
λ̂

10) = xoλ 1 o
λ̂
φ = (xoλ 1 o

λ̂
10)(1 oσ,v 1 oσ̂ φ)

for any x ∈ X and φ ∈ H0.

Proof. For any x ∈ X and φ ∈ H0,

(1 oρ,u 1 oρ̂ φ)(xoλ 1 o
λ̂

10) = [φ(1) ·λ̂ (xoλ 1)] o
λ̂
φ(2) = xoλ 1 o

λ̂
φ

= (xoλ 1 o
λ̂

10)(1 oσ,v 1 oσ̂ φ).

Lemma 5.5. With the above notation, ΨX is surjective.

Proof. By Lemma 5.2, it suffices to show that for any b ∈ B, x ∈ X and
h, l ∈ H, there is y ∈ X ⊗MN (C) such that

ΨX(y) = (xoλ ho
λ̂

10)(1 oσ,v 1 oσ̂ τ)(boσ,v l oσ̂ 10).

By Lemma 5.3 and [10, Proposition 3.18],

xoλ h =
∑
I

W ρ∗
I

(
Eλ1 (W ρ

I (xoλ h)) oλ 1
)
,

boσ,v l =
∑
I

(
Eσ1 ((boσ,v l)W

σ∗
I ) oσ,v 1

)
W σ
I .

Thus

(xoλ ho
λ̂

10)(1 oσ,v 1 oσ̂ τ)(boσ,v l oσ̂ 10)

=
∑
I,J

(W ρ∗
I oρ̂ 10)

(
Eλ1 (W ρ

I (xoλ h)) oλ 1 o
λ̂
τ
)

×
(
Eσ1 ((boσ,v l)W

σ∗
J ) oσ,v 1 oσ̂ τ

)
(W σ

J oσ̂ 10).

Since

Eλ1 (W ρ
I (xoλ h)) oλ 1 o

λ̂
τ = (1 oρ,u 1 oρ̂ τ)

(
Eλ1 (W ρ

I (xoλ h)) oλ 1 o
λ̂

10
)

by Lemma 5.4, we have
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(xoλ ho
λ̂

10)(1 oσ,v 1 oσ̂ τ)(boσ,v l oσ̂ 10)

=
∑
I,J

V ρ∗
I

[
Eλ1 (W ρ

I (xoλ h))Eσ1 ((boσ,v l)W
σ∗
J ) oλ 1 o

λ̂
10
]
V σ
J .

Since Eλ1 (W ρ
I (xoλ h))Eσ1 ((boσ,v l)W

σ∗
J ) ∈ X, we obtain the conclusion.

Let V̂ ρ be the linear map from H to Aoρ,uH defined by V̂ ρ(h) = 1oρ,uh

for any h ∈ H. By [10], V̂ ρ is a unitary element in Hom(H,A oρ,u H). Let

V ρ be the unitary element in (A oρ,u H) ⊗ H0 induced by V̂ ρ. Similarly,

we also define the unitary elements V̂ σ ∈ Hom(H,B oσ,v H) and V σ ∈
(B oσ,v H)⊗H0.

Lemma 5.6. With the above notation, for any x ∈ X and h ∈ H,

[h ·λ x] oλ 1 = V̂ ρ(h(1))(xoλ 1)V̂ σ∗(h(2)).

Proof. This is also immediate by routine computations. Indeed, for any
x ∈ X and h ∈ H,

V̂ ρ(h(1))(xoλ 1)V̂ σ∗(h(2))

= [h(1) ·λ x][h(2) ·σ,v v̂∗(S(h(7)), h(8))]v̂(h(3), S(h(6))) oλ h(4)S(h(5))

= [h(1) ·λ x]v̂(h(2), S(h(5))h(6))v̂∗(h(3)S(h(4)), h(7)) oλ 1 = [h ·λ x] oλ 1.

Theorem 5.7 (cf. Guo and Zhang [5, Theorem 2.7]). Let A,B be unital
C∗-algebras and H a finite-dimensional C∗-Hopf algebra with its dual C∗-
Hopf algebra H0. Then:

(1) If X is an A-B-equivalence bimodule and (A,B,X, ρ, u, σ, v, λ, H0) is
a twisted covariant system, then there is a linear isomorphism ΨX from X⊗
MN (C) onto XoλHo

λ̂
H0 which satisfies conditions (1)–(4) in Lemma 5.1,

where XoλHo
λ̂
H0 is an Aoρ,uHoρ̂H

0 -Boσ,vHoσ̂H
0 -equivalence bi-

module and X⊗MN (C) is an exterior tensor product of an A-B-equivalence
bimodule X and an MN (C)-MN (C)-equivalence bimodule MN (C). Further-
more, there are unitary elements U ∈ (A oρ,u H oρ̂ H

0) ⊗ H0 and V ∈
(B oσ,v H oσ̂ H

0)⊗H0 such that

U
̂̂
λ(x)V ∗ =

(
(ΨX ⊗ id) ◦ (λ⊗ idMN (C)) ◦ Ψ−1X

)
(x)

for any x ∈ X oλ H o
λ̂
H0.

(2) If X is a Hilbert A-B-bimodule of finite type and (A,B,X, ρ, σ, λ,H0)
is a covariant system, then there is a linear isomorphism ΨX from X ⊗
MN (C) onto XoλHo

λ̂
H0 which satisfies conditions (1)–(4) in Lemma 5.1,

where X oλ H o
λ̂
H0 is a Hilbert Aoρ H oρ̂ H

0 -B oσ H oσ̂ H
0-bimodule

of finite type and X ⊗ MN (C) is an exterior tensor product of a Hilbert
A-B-bimodule X of finite type and the MN (C)-MN (C)-equivalence bimodule
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MN (C). Furthermore, there are unitary elements U ∈ (AoρHoρ̂H
0)⊗H0

and V ∈ (B oσ H oσ̂ H
0)⊗H0 such that

U
̂̂
λ(x)V ∗ =

(
(ΨX ⊗ id) ◦ (λ⊗ idMN (C)) ◦ Ψ−1X

)
(x)

for any x ∈ X oλ H o
λ̂
H0.

Proof. (1) Let ΨX be as in Lemma 5.1. By Lemmas 5.1 and 5.5, we see
that ΨX is a linear isomorphism from X⊗MN (C) onto XoλHo

λ̂
H0. By [11,

Theorem 3.3], there are unitary elements U and V in (Aoρ,uHoρ̂H
0)⊗H0

and (B oσ,v H oσ̂ H
0)⊗H0, respectively such that

Ad(U) ◦ ̂̂ρ = (ΨA ⊗ id) ◦ (ρ⊗ idMN (C)) ◦ Ψ−1A ,

Ad(V ) ◦ ̂̂σ = (ΨB ⊗ id) ◦ (σ ⊗ idMN (C)) ◦ Ψ−1B .

Let V ρ and V σ be as above. For any
∑

I,J xIJ ⊗ fIJ ∈ X ⊗MN (C),

U
̂̂
λ
(
ΨX

(∑
I,J

xIJ ⊗ fIJ
))
V ∗

=
∑
I,J

(V ρ∗
I ⊗ 10)V ρ ̂̂λ((1 oρ,u 1 oρ̂ τ)(xIJ oλ 1 o

λ̂
10)(1 oσ,v 1 oσ̂ τ)

)
× V σ∗(V σ

J ⊗ 10)

by [11, Lemma 3.1], since

U =
∑
I

(V ρ∗
I ⊗ 10)V ρ̂̂ρ(V ρ

I ), V =
∑
I

(V σ∗
I ⊗ 10)V σ ̂̂σ(V σ

I ).

Since ̂̂ρ(1 oρ,u 1 oρ̂ τ) = V ρ∗((1 oρ,u 1 oρ̂ τ)⊗ 10)V ρ,̂̂σ(1 oσ,v 1 oσ̂ τ) = V σ∗((1 oσ,v 1 oσ̂ τ)⊗ 10)V σ

by [10, proof of Proposition 3.19], we have

U
̂̂
λ
(
ΨX

(∑
I,J

xIJ ⊗ fIJ
))
V ∗

=
∑
I,J

(V ρ∗
I ⊗ 10)V ρ((xIJ oλ 1 o

λ̂
10)⊗ 10)V σ∗(V σ

J ⊗ 10)

=
∑
I,J

(V ρ∗
I ⊗ 10)λ(xIJ oλ 1 o

λ̂
10)(V σ

J ⊗ 10)

by Lemma 5.6, where we identify X with X oλ 1 and X oλ 1o
λ̂

10. On the
other hand,

((ΨX ⊗ id) ◦ (λ⊗ id))(xIJ ⊗ fIJ) = (ΨX ⊗ id)(λ(xIJ)⊗ fIJ).

We write λ(xIJ) =
∑

i yIJi⊗φi, where φi ∈ H0 and yIJi ∈ X for any I, J, i.
Then
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((ΨX ⊗ id) ◦ (λ⊗ id))(xIJ ⊗ fIJ) =
∑
I,J,i

V ρ∗
I (yIJi oλ 1 o

λ̂
10)V σ

J ⊗ φi

=
∑
I,J

(V ρ∗
I ⊗ 10)λ(xIJ oλ oλ̂

10)(V σ
J ⊗ 10).

This yields the conclusion.

(2) can be proved in the same way.

6. The strong Morita equivalence for coactions and the Rokhlin
property. For a unital C∗-algebra A, we set

c0(A) =
{

(an) ∈ l∞(N, A)
∣∣∣ lim
n→∞

‖an‖ = 0
}
,

A∞ = l∞(N, A)/c0(A).

We denote by [an] the element in A∞ corresponding to (an) ∈ l∞(N, A).
We identify A with the C∗-subalgebra of A∞ consisting of the equivalence
classes of constant sequences and set

A∞ = A∞ ∩A′.

Let X be a Hilbert A-B-bimodule of finite type, where B is a unital C∗-
algebra. We define X∞ in the same way as above. We set

c0(X) =
{

(xn) ∈ l∞(N, X)
∣∣∣ lim
n→∞

‖xn‖ = 0
}
,

X∞ = l∞(N, X)/c0(X).

We denote by [xn] the element in X∞ determined by (xn) ∈ l∞(N, X). We
regard X∞ as an A∞-B∞-bimodule as follows: for any [an] ∈ A∞, [bn] ∈ B∞
and [xn] ∈ X∞,

[an][xn] = [anxn], [xn][bn] = [xnbn].

Also, we define the left A∞-valued and right B∞-valued inner product as
follows: for any [xn], [yn] ∈ X∞,

A∞〈[xn], [yn]〉 = [A〈xn, yn〉], 〈[xn], [yn]〉B∞ = [〈xn, yn〉B].

By [15, Lemma 2.5] and easy computations, the above definitions are in-
dependent of any choices made. We identify X with the Hilbert A∞-B∞-
subbimodule of X∞ consisting of the equivalence classes of constant se-
quences. Also, we can see that X∞ is a complex vector space satisfying
conditions (1)–(8) in [9, Lemma 1.3]. Since X is of finite type, there are
finite subsets {ui}ni=1, {vj}mj=1 ⊂ X such that for any x ∈ X,

n∑
i=1

ui〈ui, x〉B = x =

m∑
j=1

A〈x, vj〉vj .
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Then we can regard ui, vj ∈ X as elements in X∞ for i = 1, . . . , n and
j = 1, . . . ,m. Thus X∞ is a Hilbert A∞-B∞-bimodule of finite type by [9,
Lemma 1.3]. Furthermore, if X is an A-B-equivalence bimodule, then X∞

is an A∞-B∞-equivalence bimodule.

Lemma 6.1. With the above notation, suppose that X is an A-B-equiv-
alence bimodule. Let b ∈ B∞. If xb = 0 for any x ∈ X, then b = 0, where
we regard X as a Hilbert A∞-B∞-subbimodule of X∞.

Proof. Since b ∈ B∞, we write b = [bm], where bm ∈ B for any m ∈ N.
Since xb = 0, we have ‖xbm‖ → 0 (m→∞). For any y ∈ X,

‖〈y, x〉B bm‖ = ‖〈y, xbm〉B‖ ≤ ‖y‖ ‖xbm‖ → 0 (m→∞)

by [15, Lemma 2.5]. On the other hand, there are x1, . . . , xn, y1, . . . , yn ∈ X
such that

∑n
i=1〈yi, xi〉B = 1 since X is full with the right B-valued inner

product. Hence

‖bm‖ =
∥∥∥ n∑
i=1

〈yi, xi〉Bbm
∥∥∥ ≤ n∑

i=1

‖〈yi, xi〉B bm‖ → 0.

Therefore b = 0.

We are in a position to present the main result in this paper. Before
doing so, we give the definitions of approximate representability and the
Rokhlin property for a coaction of a finite-dimensional C∗-Hopf algebra on
a unital C∗-algebra, and make a remark on the definitions.

Definition 6.2 (cf. [11, Definitions 4.3 and 5.1]). Let (ρ, u) be a twisted
coaction of a finite-dimensional C∗-Hopf algebraH0 on a unital C∗-algebraA.
We say that (ρ, u) is approximately representable if there is a unitary element
w ∈ A∞ ⊗H0 satisfying the following conditions:

(1) ρ(a) = (Ad(w) ◦ ρAH0)(a) for any a ∈ A,

(2) u = (w ⊗ 10)(ρA
∞

H0 ⊗ id)(w)(id⊗∆0)(w∗),

(3) u = (ρ∞ ⊗ id)(w)(w ⊗ 10)(id⊗∆0)(w∗).

Also, we say that (ρ, u) has the Rokhlin property if the dual coaction ρ̂ of H
on Aoρ H is approximately representable.

By [11, Corollary 6.4], a coaction ρ of H0 on A has the Rokhlin property
if and only if there is a projection p ∈ A∞ such that e ·ρ∞ p = 1/N , where
N = dim(H).

Theorem 6.3. Let H be a finite-dimensional C∗-Hopf algebra with dual
C∗-Hopf algebra H0. Let ρ and σ be coactions of H0 on unital C∗-algebras
A and B, respectively. Suppose that ρ is strongly Morita equivalent to σ.
Then ρ has the Rokhlin property if and only if σ has the Rokhlin property.
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Proof. Since ρ and σ are strongly Morita equivalent, there are an A-B-
equivalence bimodule X and a coaction λ of H0 on X with respect to
(A,B, ρ, σ). From Rieffel [16, proof of Proposition 2.1], we obtain the fol-
lowing: Since X is full with the right B-valued inner product, there are
x1, . . . , xn, y1, . . . , yn ∈ X such that

∑n
i=1〈xi, yi〉B = 1. Let E = A⊗Mn(C)

and consider Xn as an E-B-equivalence bimodule in the usual way. Let
x = (xi)

n
i=1, y = (yi)

n
i=i ∈ Xn. Let z = E〈y, y〉1/2x and let q = E〈z, z〉 ∈ E.

Then q is a projection in E. Let π be the map from B to E defined by
π(b) = E〈zb, z〉 for any b ∈ B. Then π is an isomorphism of B onto qEq.

Suppose that ρ has the Rokhlin property. Then by [11, Corollary 6.4]
there is a projection p ∈ A∞ such that e ·ρ∞ p = 1/N . We regard (X∞)n

as an E∞-B∞-equivalence bimodule in the usual way. Since p ⊗ In ∈ E∞,
there are

u1, . . . , um, v1, . . . , vm ∈ (X∞)n

such that p⊗ In =
∑m

k=1 E∞〈uk, vk〉. We write

uk = (uk1, . . . , ukn), vk = (vk1, . . . , vkn),

where uki, vki ∈ X∞ for k = 1, . . . ,m and i = 1, . . . , n. Thus

p⊗ In =

m∑
k=1

[A∞〈uki, vkj〉]ni,j=1.

Hence

(∗∗∗)
m∑
k=1

A∞〈uki, vkj〉 =

{
p, i = j,

0, i 6= j.

We note that since p ∈ A∞, we have q(p⊗In)q = q(p⊗In) ∈ (qMn(A)q)∞∩
(qMn(A)q)′. Let π∞ be the isomorphism of B∞ onto (qMn(A)q)∞ induced
by π. Let p1 = (π∞)−1(q(p ⊗ In)q). Then p1 is a projection in B∞ since
π(B) = qMn(A)q. We show that e ·σ∞ p1 = 1/N . Since q = E〈z, z〉,

q(p⊗ In)q =
m∑
k=1

E∞
〈
E〈z, z〉uk,E〈z, z〉vk

〉
=

m∑
k=1

E∞
〈
z〈z, uk〉B∞ 〈vk, z〉B∞ , z

〉
= π∞

( m∑
k=1

〈z, uk〉B∞ 〈vk, z〉B∞
)
.

Thus

p1 =
m∑
k=1

〈z, uk〉B∞〈vk, z〉B∞ =

m∑
k=1

〈
z,E∞〈uk, vk〉z

〉
B∞

.

Since z ∈ Xn, we write z = (zi)
n
i=1, where zi ∈ X for i = 1, . . . , n. Hence

by (∗∗∗),
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p1 =

〈
z1
...

zn

 , m∑
k=1

[A∞〈uki, vkj〉]ni,j=1


z1
...

zn


〉
B∞

=
n∑

i,j=1

〈
zi,

m∑
k=1

A∞〈uki, vkj〉zj
〉
B∞

=
n∑
i=1

〈zi, pzi〉B∞ .

For any w ∈ X,

w[e ·σ∞ p1] =

n∑
i=1

w〈[S(e∗(1)) ·λ zi], [e(2) ·λ∞ pzi]〉B∞

=
n∑
i=1

A〈w, [S(e∗(1)) ·λ zi]〉[e(2) ·λ∞ pzi]

=
n∑
i=1

A〈[e(2)S(e(1)) ·λ w], [S(e∗(3)) ·λ zi]〉 [e(4) ·λ∞ pzi]

=
n∑
i=1

[
e(2) ·ρ A〈[S(e(1)) ·λ w], zi〉

]
[e(3) ·λ∞ pzi]

=
n∑
i=1

[
e(2) ·λ∞ p[S(e(1)) ·λ w]〈zi, zi〉B

]
= [e(2) ·ρ∞ p][e(3)S(e(1)) ·λ w].

Since e =
∑

i,k
dk
N w

k
ii, we get

w[e ·σ∞ p1] =
∑
i,j,k,j1

dk
N

[wkjj1 ·ρ∞ p][wkj1iS(wkij) ·λ w]

=
∑
j,k

dk
N

[wkjj ·ρ∞ p]w = [e ·ρ∞ p]w =
1

N
w.

Thus e ·σ∞ p1 = 1/N by Lemma 6.1. This gives the conclusion by [11,
Corollary 6.4].

Corollary 6.4. Let (ρ, u) and (σ, v) be twisted coactions of H0 on A
and B, respectively. Suppose that they are strongly Morita equivalent. Then:

(1) (ρ, u) has the Rokhlin property if and only if so does (σ, v).
(2) (ρ, u) is approximately representable if and only if so is (σ, v).

Proof. (1) Suppose that (ρ, u) has the Rokhlin property. Then so doeŝ̂ρ by [11, Proposition 5.5]. Also, since (ρ, u) and (σ, v) are strongly Morita

equivalent, so are ̂̂ρ and ̂̂σ by Corollary 4.8. Thus (σ, v) has the Rokhlin
property by Theorem 6.3 and [11, Proposition 5.5].
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(2) Suppose that (ρ, u) is approximately representable. Then ρ̂ has the
Rokhlin property by the definition and [11, Proposition 4.6]. Since (ρ, u)
and (σ, v) are strongly Morita equivalent, so are ρ̂ and σ̂ by Corollary 4.8.
Thus by Theorem 6.3, σ̂ has the Rokhlin property. Hence by the definition
and [11, Proposition 4.6], (σ, v) is approximately representable.

7. Application. Let A and B be unital C∗-algebras and H a finite-
dimensional C∗-Hopf algebra with dual C∗-Hopf algebra H0. Suppose that
A is strongly Morita equivalent to B. Let ρ be a coaction of H0 on A. By
[16, Proposition 2.1], there are n ∈ N and a full projection q ∈Mn(A) such
that B is isomorphic to qMn(A)q. We identify B with qMn(A)q. Suppose
that (ρ ⊗ id)(q) ∼ q ⊗ 10 in Mn(A) ⊗H0. Then there is a partial isometry
w ∈Mn(A)⊗H0 such that w∗w = (ρ⊗ id)(q), ww∗ = q ⊗ 10.

Lemma 7.1. With the above notation, there is a partial isometry z ∈
Mn(A)⊗H0 such that z∗z = (ρ⊗ id)(q), zz∗ = q ⊗ 10 and ẑ(1) = q.

Proof. We note that ŵ∗(1) = ŵ(1)∗. Since w∗w = (ρ⊗ id)(q) and ww∗ =
q ⊗ 10, we obtain

ŵ∗(1)ŵ(1) = (id⊗ ε0)((ρ⊗ id)(q)) = q, ŵ(1)ŵ∗(1) = q.

Let z = (ŵ∗(1)⊗ 10)w. Then ẑ(1) = ŵ∗(1)ŵ(1) = q. Also,

z∗z = w∗(ŵ(1)⊗ 10)(ŵ∗(1)⊗ 10)w = (ρ⊗ id)(q),

zz∗ = (ŵ∗(1)⊗ 10)ww∗(ŵ(1)⊗ 10) = q ⊗ 10.

Let

σ = Ad(z) ◦ (ρ⊗ idMn(C)),

u = (z ⊗ 10)(ρ⊗ idMn(C) ⊗ idH0)(z)(idMn(A) ⊗∆0)(z∗).

We note that u ∈ B⊗H0⊗H0. We shall show that (σ, u) is a twisted coaction
of H0 on B, which is strongly Morita equivalent to ρ. We sometimes identify
A⊗H0 ⊗Mn(C) with A⊗Mn(C)⊗H0.

Lemma 7.2. With the above notation, σ is a weak coaction of H0 on B.

Proof. For any x ∈Mn(A),

σ(qxq) = z(ρ⊗ id)(qxq)z∗ = (q ⊗ 10)z(ρ⊗ id)(x)z∗(q ⊗ 10).

Hence σ is a map from B to B ⊗ H0. Also, by routine computations, we
can see that σ is a homomorphism of B to B ⊗ H0 with σ(q) = q ⊗ 10.
Furthermore, since ẑ(1) = q, for any x ∈Mn(A) we have

(id⊗ ε0)(σ(qxq)) = (id⊗ ε0)
(
(q ⊗ 10)z(ρ⊗ id)(x)z∗(q ⊗ 10)

)
= qẑ(1)(id⊗ ε0)((ρ⊗ id)(x))ẑ∗(1)q = qxq.

Thus σ is a weak coaction of H0 on B.
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Lemma 7.3. With the above notation, (σ, u) is a twisted coaction of H0

on B.

Proof. By routine computations, we can see that uu∗ = u∗u = q⊗10⊗10.
Thus u is a unitary element in B ⊗H0 ⊗H0. For any x ∈Mn(A), we have

((σ ⊗ idH0) ◦ σ)(qxq)

= (z ⊗ 10)(ρ⊗ id⊗ idH0)(z)
(
(ρ⊗ id⊗ idH0) ◦ (ρ⊗ id)

)
(qxq)

× (ρ⊗ id⊗ idH0)(z∗)(z∗ ⊗ 10).

On the other hand,

(Ad(u) ◦ (id⊗∆0) ◦ σ)(qxq)

= (z ⊗ 10)(ρ⊗ id⊗ idH0)(z)
(
(id⊗∆0) ◦ (ρ⊗ id)

)
(qxq)

× (ρ⊗ id⊗ idH0)(z∗)(z∗ ⊗ 10).

Since (ρ⊗ id⊗ idH0) ◦ (ρ⊗ id) = (id⊗∆0) ◦ (ρ⊗ id), we obtain

(σ ⊗ idH0) ◦ σ = Ad(u) ◦ (id⊗∆0) ◦ σ.
Also,

(u⊗ 10)(id⊗∆0 ⊗ idH0)(u)

= (z ⊗ 10 ⊗ 10)(ρ⊗ id⊗ idH0 ⊗ idH0)(z ⊗ 10)

× (id⊗∆0 ⊗ idH0)
(
(ρ⊗ id⊗ idH0)(z)(id⊗∆0)(z∗)

)
.

On the other hand, since (ρ⊗ id⊗ idH0) ◦ (ρ⊗ id) = (id⊗∆0) ◦ (ρ⊗ id),

(σ ⊗ idH0 ⊗ idH0)(u)(id⊗ idH0 ⊗∆0)(u)

= (z ⊗ 10 ⊗ 10)(ρ⊗ id⊗ idH0 ⊗ idH0)(z ⊗ 10)

× (id⊗∆0 ⊗ idH0)((ρ⊗ id⊗ idH0)(z))

× (ρ⊗ id⊗ idH0 ⊗ idH0)((id⊗∆0)(z∗))

× (id⊗ idH0 ⊗∆0)((ρ⊗ id⊗ idH0)(z))(id⊗∆0 ⊗ idH0)((id⊗∆0)(z∗)).

We can see that

(ρ⊗ id⊗ idH0 ⊗ idH0) ◦ (id⊗∆0) = (id⊗ idH0 ⊗∆0) ◦ (ρ⊗ id⊗ idH0)

by easy computations. Furthermore, we note that

(id⊗ idH0 ⊗∆0) ◦ (id⊗∆0) ◦ (ρ⊗ id)

= (id⊗∆0 ⊗ idH0) ◦ (id⊗∆0) ◦ (ρ⊗ id)

= (id⊗∆0 ⊗ idH0) ◦ (ρ⊗ id⊗ idH0) ◦ (ρ⊗ id).

Thus since

(id⊗ idH0 ⊗∆0)
(
(ρ⊗ id⊗ idH0)((ρ⊗ id)(q))

)
= (id⊗ idH0 ⊗∆0)

(
(id⊗∆0)((ρ⊗ id)(q))

)
,
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it follows that

(σ ⊗ idH0 ⊗ idH0)(u)(id⊗ idH0 ⊗∆0)(u)

= (z ⊗ 10 ⊗ 10)(ρ⊗ id⊗ idH0 ⊗ idH0)(z ⊗ 10)

× (id⊗∆0 ⊗ idH0)((ρ⊗ id⊗ idH0)(z))

× (id⊗ idH0 ⊗∆0)
(
(ρ⊗ id⊗ idH0)((ρ⊗ id)(q))

)
× (id⊗∆0 ⊗ idH0)((id⊗∆0)(z∗))

= (z ⊗ 10 ⊗ 10)(ρ⊗ id⊗ idH0 ⊗ idH0)(z ⊗ 10)

× (id⊗∆0 ⊗ idH0)
(
(ρ⊗ id⊗ idH0)(z)(id⊗∆0)(z∗)

)
.

Hence we obtain

(u⊗ 10)(id⊗∆0 ⊗ idH0)(u) = (σ ⊗ idH0 ⊗ idH0)(u)(id⊗ idH0 ⊗∆0)(u).

Furthermore, since ẑ(1) = q, for any h ∈ H we have

(id⊗ h⊗ ε0)(u) = ẑ(h(1))[h(2) ·ρ⊗id q]ẑ∗(h(3)) = (id⊗ h)(σ(q)) = ε(h)q,

(id⊗ ε0 ⊗ h)(u) = ẑ(1)[1 ·ρ⊗id ẑ(h(1))]ẑ∗(h(2)) = ẑ(1)ε(h) = ε(h)q.

Therefore, (σ, u) is a twisted coaction of H0 on B.

Let f be a minimal projection in Mn(C) and let p be a full projection
in Mn(A) defined by p = 1A ⊗ f . Let X = pMn(A)q. We regard X as an
A-B-equivalence bimodule in the usual way, where we identify A and B
with pMn(A)p and qMn(A)q, respectively. Then we can regard X as a set
{[a1, . . . , an]q | ai ∈ A, i = 1, . . . , n}. Let λ be the linear map from X to
X ⊗H0 defined by

λ([a1, . . . , an]q) = [ρ(a1), . . . , ρ(an)](ρ⊗ id)(q)z∗

= [ρ(a1), . . . , ρ(an)]z∗(q ⊗ 10)

for any [a1, . . . , an]q ∈ X.

Lemma 7.4. With the above notation, λ is a twisted coaction of H0 on
X with respect to (A,B, ρ, σ, u).

Proof. By routine computations, we can see that λ is a weak coaction of
H0 on X with respect to (A,B, ρ, σ, u). For any [a1, . . . , an]q ∈ X,

((λ⊗ idH0) ◦ λ)([a1, . . . , an]q)

= [((ρ⊗ idH0) ◦ ρ)(a1), . . . , ((ρ⊗ idH0) ◦ ρ)(an)]

× (ρ⊗ id⊗ idH0)(z∗)(z∗ ⊗ 10).

On the other hand, since (ρ⊗ idH0) ◦ ρ = (id⊗∆0) ◦ ρ, we obtain
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((id⊗∆0) ◦ λ)([a1, . . . , an]q)u∗

= [((id⊗∆0) ◦ ρ)(a1), . . . , ((id⊗∆0) ◦ ρ)(an)]

× (ρ⊗ id⊗ idH0)(z∗)(z∗ ⊗ 10).

Hence for any [a1, . . . , an]q ∈ X,

((λ⊗ idH0) ◦ λ)([a1, . . . , an]q) = ((id⊗∆0) ◦ λ)([a1, . . . , an]q)u∗.

Thus λ is a twisted coaction of H0 on X with respect to (A,B, ρ, σ, u).

Theorem 7.5. Let A be a unital C∗-algebra and H a finite-dimensional
C∗-Hopf algebra with dual C∗-Hopf algebra H0. Let ρ be a coaction of H0

on A with the Rokhlin property. Let q be a full projection in a C∗-algebra
Mn(A) such that

(ρ⊗ idMn(C))(q) ∼ q ⊗ 10

in Mn(A) ⊗ H0. Let B = qMn(A)q. Then there is a coaction of H0 on B
with the Rokhlin property.

Proof. By Lemmas 7.3 and 7.4, there is a twisted coaction (σ, u) such
that (σ, u) is strongly Morita equivalent to ρ. By Corollary 6.4, (σ, u) has
the Rokhlin property. Furthermore, by [11, Theorem 9.6], there is a unitary
element y ∈ B ⊗H0 such that

(y ⊗ 10)(σ ⊗ idH0)u(id⊗∆0)(y∗) = 1B ⊗ 10 ⊗ 10.

Let σ1 = Ad(y) ◦ σ. Then σ1 is a coaction of H0 on B with the Rokhlin
property by easy computations since σ1 is exterior equivalent to (σ, u).

Let A be a UHF-algebra of type N∞, where N is the dimension of a
finite-dimensional C∗-Hopf algebra H. In [11], we showed that there is a
coaction ρ of H0 on A with the Rokhlin property.

Corollary 7.6. With the above notation, for any unital C∗-algebra B
that is strongly Morita equivalent to A, there is a coaction σ of H0 on B
with the Rokhlin property.

Proof. By [16, Proposition 2.1] there are n ∈ N and a full projection
q ∈ Mn(A) such that B is isomorphic to qMn(A)q. We identify B with
qMn(A)q. Let ρ be a coaction of H0 on A with the Rokhlin property. Then
by [11, Lemma 10.10], (ρ⊗ idMn(C))(q) ∼ q⊗ 10 in Mn(A)⊗H0 since A has
cancellation. Therefore, by Theorem 7.5 we obtain the conclusion.
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