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Abstract. We study conditions on automorphisms of Boolean algebras of the form
P(λ)/Iκ (where λ is an uncountable cardinal and Iκ is the ideal of sets of cardinality less
than κ) which allow one to conclude that a given automorphism is trivial. We show (among
other things) that every automorphism of P(2κ)/Iκ+ which is trivial on all sets of cardi-
nality κ+ is trivial, and that MAℵ1 implies both that every automorphism of P(R)/Fin
is trivial on a cocountable set and that every automorphism of P(R)/Ctble is trivial.

1. Introduction. Given a set X and an ideal I on X, an automorphism
of P(X)/I is said to be trivial if it is induced by a bijection between sets in
P(X) \ I (see Definition 2.1 below for a more precise formulation). In 1956,
Walter Rudin [14] showed that if the Continuum Hypothesis holds, then the
set of nontrivial automorphisms of P(ω)/Fin has cardinality 2ℵ1 . Around
1980, Saharon Shelah [15] showed that consistently all automorphisms of
P(ω)/Fin are trivial. Boban Veličković [18] later proved from OCA+MAℵ1 ,
a weak fragment of the Proper Forcing Axiom, that all automorphisms of
P(λ)/Fin are trivial for all infinite cardinals λ. In the same paper, Veličković
showed that the existence of nontrivial automorphisms of P(ω)/Fin is con-
sistent with MAℵ1 .

The possibilities for automorphisms of structures of the form P(λ)/I, for
λ an uncountable cardinal and I an ideal containing Fin, seem to be much
less understood than the case λ = ω. For instance, it appears to be unknown
whether ZFC proves that every automorphism of P(λ)/Fin is trivial off
of a countable subset of λ, or that every automorphism of P(λ)/Ctble is
trivial. Shelah and Steprāns [16] have recently shown, however, that for
every λ below the least strongly inaccessible cardinal, every automorphism
of P(λ)/Fin is trivial off of a subset of λ of cardinality 2ℵ0 .
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Many questions about automorphisms of P(ω1)/Fin are closely related
to the question (due to Marian Turzański, and often called the Katowice
Problem) of whether the Boolean algebras P(ω)/Fin and P(ω1)/Fin can
be isomorphic. There exists such an isomorphism if and only if there is
an automorphism of P(ω1)/Fin which maps the equivalence class of some
infinite set to the equivalence class of an infinite set of a different cardinality
(analogous possibilities exist at higher cardinals). We call automorphisms
where this does not happen cardinality-preserving (see Definition 2.7 for a
more precise formulation).

In this paper we consider the ideals Iκ = {X | |X| < κ} for infinite cardi-
nals κ. We prove (Theorem 3.4) than a cardinality-preserving automorphism
of P(2κ)/Iκ+ (for any infinite cardinal κ) which is trivial on all sets of cardi-
nality κ+ is trivial. Assuming a weak fragment of Martin’s Axiom, we prove
(Theorem 4.4) the analogous result for automorphisms of P(R)/Fin which
are trivial on all countable sets. Assuming another fragment of Martin’s
Axiom, we show (Corollary 5.9) that every automorphism of P(R)/Ctble
is trivial, and also that every automorphism of P(R)/Fin is trivial off of a
countable set.

In Section 2 we prove several lemmas in a general setting that will be
useful for work in later sections. In Section 3 we discuss almost-trivial au-
tomorphisms, and prove Theorem 3.4 (mentioned above). In Section 4 we
introduce a weak fragment of Martin’s Axiom, and use it to prove Theo-
rem 4.4. Section 5 develops a necessary and sufficient condition for when
an isomorphism between two countable, atomless subalgebras of P(λ)/Iκ
can extend to a trivial automorphism, when κ has uncountable cofinality.
We use this to study automorphisms of P(ω1)/Ctble when an uncountable
Q-set exists. In Section 6 we give some conditions on automorphisms which
imply the existence of fixed points. In Section 7 we develop a connection
between ladder systems and nonfixed points of automorphisms of P(λ)/Iκ,
showing in particular that if there is an automorphism of P(ω1)/Fin whose
set of ordinal fixed points is nonstationary, then 2ℵ0 = 2ℵ1 . Finally, Section 8
contains a list of open questions.

1.1. Notation. We write A ∼κ B to indicate |A 4 B| < κ. Given
σ ∈ 2<ω, we write Nσ for the set {x ∈ 2ω | σ ⊂ x}. Given a set X and
a cardinal κ, we write IXκ for the ideal of subsets of X of cardinality less
than κ. When there is no chance of confusion, we will drop the X and just
write Iκ. We write Fin for Iℵ0 and Ctble for Iℵ1 . If I is an ideal on a set
X and A ⊆ X, we write [A]I for the equivalence class of A in P(X)/I.
When there is no chance of confusion, we will simply write [X] instead. We
write [X]I ≤ [Y ]I to mean that X \ Y ∈ I, and [X]I < [Y ]I to mean that
[X]I ≤ [Y ]I and [X]I 6= [Y ]I .
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2. Preliminaries

Definition 2.1. Suppose that I and J are ideals on sets X and Y
respectively. A homomorphism π : P(X)/I → P(Y )/J is trivial if there
is a function f : Y → X such that π([A]I) = [f−1(A)]J for all A ⊆ X.
Similarly, if Z ⊆ X then we say that π is trivial on Z if there is a function
f : Y → Z such that π([A]I) = [f−1(A)]J for all A ⊆ Z.

One gets equivalent definitions by allowing the domain of f to be a
subset of Y with complement in J . We say that such a function witnesses
the triviality of π. We use inverse images to describe trivial homomorphisms
since these are guaranteed to preserve the Boolean operations. The following
lemma shows that we can often work with forward images instead.

Lemma 2.2. Let X and Y be sets, let κ be an infinite cardinal, and
suppose that f : Y → X witnesses that π : P(X)/Iκ → P(Y )/Iκ is a trivial
isomorphism. Then there are sets E ⊆ X and F ⊆ Y with X \ E ∈ IXκ
and Y \ F ∈ IYκ such that f restricts to a bijection from F to E. Moreover,
f−1 : E → F witnesses that π−1 is trivial.

Proof. Suppose that A = X \ ran f has cardinality ≥ κ. Then [A] is
nonzero, but π([A]) = [f−1(A)] is zero, a contradiction. Now suppose that
there is a set A ⊆ X such that |f−1(a)| ≥ 2 for all a ∈ A, and |A| ≥ κ.
Then f−1(A) has cardinality ≥ κ. Let f−1(A) = B ∪ C be a partition such
that f ′′(B) = f ′′(C) = A and |B|, |C| ≥ κ. Then there is no D such that
f−1(D) ∼κ B, a contradiction of the fact that [B] is in the range of π. Let
E = {x ∈ X | |f−1(x)| = 1} and F = f−1(E). It follows that f restricts to
a bijection from F to E, and |X \ E|, |Y \ F | < κ.

For the last part of the lemma, we want to see that for each A ⊆ Y ,
we have π−1([A]) = [(f−1)−1(A)], i.e. that π([(f−1)−1(A)]) = [A]. Now,
(f−1)−1(A) = f ′′(A ∩ F ), so we want π([f ′′(A ∩ F )]) = [A]. We see that
π([f ′′(A ∩ F )]) = [f−1(f ′′(A ∩ F ))]. Since f−1(f ′′(A ∩ F )) ∩ F = A ∩ F , we
have [f−1(f ′′(A ∩ F ))] = [A ∩ F ], which is the same as [A].

Definition 2.3. A Boolean algebra B is <κ-complete if every subset A
of B with cardinality < κ has a least upper bound.

Remark 2.4. The Boolean algebra P(X)/Iκ is < cf κ-complete. In par-
ticular, if A is a family of subsets of X, and |A| < cf κ, then [

⋃
A] is a least

upper bound for the set {[A] | A ∈ A}.

It is a well-known open question (asked by Marian Turzański) whether
the Boolean algebras P(ω1)/Fin and P(ω)/Fin can consistently be isomor-
phic. In many of the arguments in this paper, we must allow for the possi-
bility that such an isomorphism exists (as well as analogous isomorphisms
at other cardinals). We record here some facts that we use to deal with this
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possibility. The following theorem was proved by Balcar and Frankiewicz [1]
in the case λ = ω and µ = ω1; their proof gives the general version below.

Theorem 2.5 (Balcar, Frankiewicz). Suppose κ ≤ λ < µ, and κ is
regular. If P(λ)/Iκ and P(µ)/Iκ are isomorphic, then λ = κ and µ = κ+.

We will also make use of the following fact, where d is the minimal
cardinality of a set X, consisting of functions from ω to ω, such that every
such function is dominated everywhere by a member of X.

Theorem 2.6 (Balcar, Frankiewicz). If P(ω)/Fin and P(ω1)/Fin are
isomorphic, then d = ω1.

Finally, we make the following definition.

Definition 2.7. A homomorphism π : P(X)/I → P(Y )/J is cardina-
lity-preserving if for every A ⊆ X, there is some B ⊆ Y such that |A| = |B|
and π([A]) = [B].

Remark 2.8. An isomorphism π : P(X)/Iκ → P(Y )/Iκ is cardinality-
preserving if and only if for all A ⊆ X, and B ⊆ Y , if |A|, |B| ≥ κ
and π([A]) = [B] then |A| = |B|. By Theorem 2.5, for any pair of infi-
nite cardinals κ < λ, there exists an automorphism of P(λ)/Iκ which is
not cardinality-preserving if and only if there is an isomorphism between
P(κ)/Iκ and P(κ+)/Iκ.

In our first application of the notion of cardinality-preservation, we show
that it allows one to lift automorphisms on Boolean algebras of the form
P(λ)/Iκ to ones of the form P(λ)/Iµ when κ ≤ µ ≤ λ.

Definition 2.9. Suppose that I and J are ideals on sets X and Y
respectively, and that π : P(X)/I → P(Y )/J is a function. A selector for
π is a map π∗ : P(X)→ P(Y ) such that π([A]) = [π∗(A)] for all A ⊆ X.

Remark 2.10. A selector, in the literature, often denotes a function
which is constant on equivalence classes. Our definition does not make this
requirement, and in fact we will often instead take selectors which form
bijections between equivalence classes.

Lemma 2.11. Let κ ≤ µ ≤ λ be infinite cardinals, and let π be an
automorphism of P(λ)/Iκ. Suppose that at least one of the following holds:

• π is cardinality-preserving;
• µ > κ+ and κ is regular.

Then π induces an automorphism πµ of P(λ)/Iµ. In particular, if A is a
family of subsets of λ, |A| < cf µ, and π∗ is a selector for π, then

π∗
(⋃
A
)
∼µ
⋃
{π∗(A) | A ∈ A}.
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Proof. Our assumptions on π (using Theorem 2.5 in the case where
µ > κ+ and κ is regular) imply that π takes the subalgebra Iµ/Iκ into
itself. It follows that if π∗ is a selector for π, then the map

πµ([A]µ) = [π∗(A)]µ

is well-defined and an automorphism of P(λ)/Iµ. The rest follows from the
< cf µ-completeness of the Boolean algebra P(λ)/Iµ.

The function πµ from the proof of Lemma 2.11 clearly does not depend
on the choice of π∗. We make the following definition, which will be used in
Section 3.

Definition 2.12. Let κ ≤ µ ≤ λ be infinite cardinals, and let π be an
automorphism of P(λ)/Iκ. We let πµ be the function on P(λ)/Iµ defined
by setting πµ([A]µ) = [π∗(A)]µ for each A ⊆ λ and any selector π∗ for π.

Lemma 2.13 shows that every automorphism of a Boolean algebra of the
form P(λ)/Iκ is determined by how it acts on sets of cardinality κ.

Lemma 2.13. Let κ ≤ λ and let π and ρ be automorphisms of P(λ)/Iκ.
Then if π 6= ρ, there is some X ⊆ λ of cardinality κ such that π([X])
6= ρ([X]). Moreover, for each X ⊆ λ such that π([X]) 6≤ ρ([X]), there exists
Y ∈ [X]κ with π([Y ]) 6≤ ρ([Y ]).

Proof. By composing with ρ−1, we may assume that ρ = id. Fix a bijec-
tive selector π∗ for π, and choose X ⊆ λ such that π([X]) 6= [X]. Without
loss of generality, by choosing between X and its complement we may as-
sume π∗(X) \X has cardinality ≥ κ. Let

W = (π∗)−1(π∗(X) \X).

Then |W | ≥ κ and |W \X| < κ. Let Y be a subset of W ∩X of cardinality κ.
Then π∗(Y ) has cardinality at least κ, and

|π∗(Y ) \ (π∗(X) \X)| < κ.

It follows that |π∗(Y ) \ Y | ≥ κ, so π([Y ]) 6≤ [Y ].

3. Almost trivial automorphisms of P(λ)/Iκ
Definition 3.1. Given an automorphism π of P(λ)/Iκ, we define T (π)

to be the ideal of subsets A of λ such that π is trivial on A. We let Aµ(π)
be the ideal generated by T (π) and Iµ.

If A ∈ Aµ(π), then we say π is µ-almost trivial on A. If π is µ-almost
trivial on λ, we just say that π is µ-almost trivial. If π is κ+-almost trivial
on a set A, then we just say that π is almost trivial on A.

In Lemma 3.2 we show that if two automorphisms lift to the same auto-
morphism, then they are the same off of a small set.
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Lemma 3.2. Suppose that κ < µ ≤ λ are infinite cardinals, with κ and µ
regular, and let π and ρ be automorphisms of P(λ)/Iκ. Suppose that either
µ > κ+, or both π and ρ are cardinality-preserving. If πµ = ρµ then there is
some A ∈ Iµ such that for all X ⊆ λ \A, π([X]) = ρ([X]).

Proof. By composing with ρ−1, we may assume that ρ = id. Let π∗ be a
bijective selector for π. Our assumptions on π imply that π is a permutation
of Iµ. Suppose that the conclusion of the lemma fails, so that for every
A ∈ Iµ there is some X ⊆ λ disjoint from A with π([X]) 6= [X]. We will
show that πµ is not the identity.

Fix some A ∈ Iµ. By our assumption, there is some X disjoint from
A ∪ π∗(A) ∪ (π∗)−1(A) with π∗(X) �κ X. By choosing between X and
λ \ (A ∪ X), we may assume that |π∗(X) \ X| ≥ κ. By Lemma 2.13, we
may also assume that X has cardinality κ. Applying this observation re-
peatedly, we may construct sets Aα (α < µ) in Iµ, and sets Xα (α < µ) of
cardinality κ, such that:

• for all α < µ:

– Xα ∩ (Aα ∪ π∗(A) ∪ (π∗)−1(A)) = ∅,
– |π∗(Xα) \Xα| ≥ κ,
– Aα ∪Xα ∪ π∗(Aα) ∪ (π∗)−1(Aα) ∪ π∗(Xα) ⊆ Aα+1;

• for all limit α < µ, we have Aα =
⋃
{Aβ | β < α}.

For each α < µ, we have |π∗(Xα)∩Aα| < κ, so |π∗(Xα) \ (Aα+1 \Aα)| < κ.
Let X =

⋃
{Xα | α < µ}. Since, for all α < µ,

|(π∗(Xα) \Xα) ∩ (Aα+1 \Aα)| ≥ κ,
|π∗(Xα) \ π∗(X)| < κ,

X ∩ (Aα+1 \Aα) = Xα,

it follows that |(π∗(X) \ X) ∩ (Aα+1 \ Aα)| ≥ κ for every α < µ. Then
|π∗(X) \X| ≥ µ.

By applying Lemma 3.2 in the case where πµ (recall Definition 2.12) is
trivial, we obtain the following

Theorem 3.3. Suppose that κ < µ ≤ λ are infinite cardinals with κ and
µ regular, and let π be an automorphism of P(λ)/Iκ. Suppose that either
π is cardinality-preserving or µ > κ+. If πµ is trivial, then π is µ-almost
trivial.

Theorem 3.4 below is one of the main results of the paper. The strategy
used in its proof is reused in Section 4.

Theorem 3.4. Suppose that π is an automorphism of P(2κ)/Iκ+, and
that π is trivial on every set of cardinality κ+. Then π is trivial.
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Proof. Let π∗ be a bijective selector for π, and for each A ⊆ 2κ of
cardinality κ+, choose a function fA : A → π∗(A) such that for all B ⊆ A,
π∗(B) ∼κ+ f ′′A(B). By Lemma 2.2, each fA restricts to a bijection between
subsets of A and π∗(A) whose complements (in A and π∗(A) respectively)
have cardinality at most κ, and moreover, for every B ⊆ π∗(A), we have
π−1([B]) = [f−1

A (B)].
Let 〈xα | α < 2κ〉 be an enumeration of P(κ). For each β < κ, let

Rβ = {α < 2κ | β ∈ xα} and let Tβ = (π∗)−1(Rβ). For each γ < 2κ, let
yγ = {β < κ | γ ∈ Tβ}. Let h : 2κ → 2κ be such that for all γ, α < 2κ, if
yγ = xα, then h(γ) = α (1).

For each β < κ, and A ∈ [2κ]κ
+

, let GA,β be the set of γ ∈ A for which
γ ∈ Tβ if and only if fA(γ) ∈ Rβ. Since for each such β and A, we have

f−1
A [Rβ] ∼κ+ (π∗)−1(Rβ ∩ π∗(A)) ∼κ+ (Tβ ∩A),

it follows that GA,β ∼κ+ A. Then, for each A ∈ [2κ]κ
+

,

HA =
⋂
{GA,β | β < κ} ∼κ+ A.

For each γ ∈ HA and β < κ, we have

β ∈ yγ ⇔ γ ∈ Tβ ⇔ fA(γ) ∈ Rβ ⇔ β ∈ xfA(γ).

Then, for each γ ∈ HA, yγ = xfA(γ), so h(γ) = fA(γ). Since HA ∼κ+ A, we
then have h�A ∼κ+ fA.

It follows from this that∣∣{α < 2κ
∣∣ |h−1[{α}]| 6= 1

}∣∣ ≤ κ,
so for some B,C ∈ [2κ]≤κ, h�(2κ \ B) is a bijection between 2κ \ B and
2κ \ C. Thus, the map ρ([A]) = [h′′(A)] defines a trivial automorphism of
P(2κ)/Iκ+ . By the above, we have π([A]) = ρ([A]) for all A ⊆ 2κ with
cardinality ≤ κ+; hence, by Lemma 2.13, π = ρ.

Remark 3.5. Theorem 3.4 contradicts the remark at the end of [18]
which claims that MAℵ1 + OCA (which implies that 2ℵ0 ≥ ℵ2, and that
all automorphisms of P(ω1)/Fin are trivial) does not imply that all auto-
morphisms of P(ω2)/Fin are trivial. Combining Theorem 3.4 with the main
result of [16], one deduces that if all automorphisms of P(ω1)/Fin are triv-
ial, then all automorphisms of P(λ)/Fin are trivial, for all λ below the least
strongly inaccessible cardinal.

Remark 3.6. Theorems 3.3 and 3.4 show that if µ < κ are infinite
cardinals and π is an automorphism of P(2κ)/Iµ which is trivial on all sets
of cardinality κ+, then π is trivial.

(1) While it is not important for the current proof, we note (without any triviality
condition on π) that h′′(A) ∼κ+ π∗(A) for every A in the smallest κ-complete subalgebra
of P(2κ) containing Iκ+ and the sets Tβ (β < κ).
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We finish this section with facts about T (π) to be used in Section 4.

Lemma 3.7. Suppose that κ ≤ λ are infinite cardinals, and that π is an
automorphism of P(λ)/Iκ. Then T (π) is closed under unions of cardinality
less than cf κ.

Proof. Fix a cardinal γ < cf κ, and let Aδ (δ < γ) be sets in T (π). We
may assume that each Aδ has cardinality ≥ κ, and that the Aδ’s are pairwise
disjoint. Applying Lemma 2.2 (and possibly removing a set of cardinality
less than κ from each Aδ), let fδ : Aδ → λ (δ < γ) be injections such that
for all δ < γ and X ⊆ Aδ, π([X]) = [f ′′δ (X)]. Set f =

⋃
{fδ | δ < γ} and

A =
⋃
{Aδ | δ < γ}. Fix a selector π∗ of π, and let X ⊆ A. Since P(λ)/Iκ

is < cf κ-complete and π is an automorphism, it follows that

π∗(X) ∼κ
⋃
{π∗(X ∩Aδ) | δ < γ}.

Note also that
f ′′(X) =

⋃
{f ′′(X ∩Aδ) | δ < γ}.

Since π∗(X ∩ Aδ) ∼κ f ′′δ (X ∩ Aδ) for every δ < γ, π∗(X) ∼κ f ′′(X). This
shows that A ∈ T (π), as required.

Theorem 3.3 and Lemma 3.7 give the following.

Lemma 3.8. Suppose that κ < λ are infinite cardinals, and that π is
a cardinality-preserving automorphism of P(λ)/Iκ. Then Aκ+(π) is closed
under unions of cardinality κ.

4. Automorphisms of P(R)/Fin. In this section we define a cardinal
characteristic of the continuum—the Cofinal Selection Number—and use it
to show that a certain fragment of MAℵ1 (a consequence of cov(M) > ℵ1,
where cov(M) denotes the covering number for the ideal of meager sets)
implies that any automorphism of P(R)/Fin which is trivial on all countable
sets is trivial. By Theorem 3.4, it suffices to prove this result with ω1 in place
of R; as this makes no essential difference in the proof, we work with R.
Veličković has shown [18] that MAℵ1 implies that any automorphism of
P(ω1)/Fin which is trivial on all countable sets is trivial. His fragment of
MAℵ1 is different, corresponding roughly to adding ℵ1 many Cohen reals
and then specializing an Aronszajn tree.

Definition 4.1. Given Γ ⊆ P(2ω), we let CSN(Γ ) be the smallest car-
dinality of a family F ⊆ (2ω)ω × (2ω)ω such that:

(1) for every (f, g) ∈ F , {f(n) | n < ω} ∪ {g(n) | n < ω} is dense in 2ω,
(2) for all pairs (f, g), (f ′, g′) from F , if g 6= g′, then

{g(n) | n < ω} ∩ {g′(n) | n < ω} = ∅,
(3) for every (f, g) ∈ F and n < ω, we have f(n) 6= g(n),
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(4) for every set A ∈ Γ , the set{
(f, g) ∈ F

∣∣ ∃∞n < ω |A ∩ {f(n), g(n)}| = 1
}

has cardinality smaller than that of F ,

if such a family F exists. If no such family exists, we set CSN(Γ ) = (2ℵ0)+.

It is not hard to see that CSN(P(2ω)) = (2ℵ0)+ (condition (2) was in-
cluded to make this the case).

Consider the poset Q with conditions (σ, s), where σ ∈ 2<ω and s is a
function mapping into 2, with domain {(σ�n)_〈1−σ(n)〉 | n < domσ}. We
define (σ, s) ≤ (τ, t)⇔ σ ⊇ τ ∧ s ⊇ t. It is easy to see that Q is isomorphic
to a dense subset of C×C, where C is a Cohen forcing. Given p = (σ, s) ∈ Q
we define

Up =
⋃
{Nτ | τ ∈ dom s ∧ s(τ) = 1},

Vp =
⋃
{Nτ | τ ∈ dom s ∧ s(τ) = 0}

and, given G ⊆ Q, we set

UG =
⋃
{Up | p ∈ G}, VG =

⋃
{Vp | p ∈ G}.

Lemma 4.2. Let X = {xn | n < ω} and Y = {yn | n < ω} be subsets
of 2ω such that X ∪ Y is dense and xn 6= yn for all n < ω. Then if G is
Q-generic, there are infinitely many n < ω such that UG contains exactly
one of xn, yn.

Proof. Given p ∈ Q we let Ep be the set of n ∈ ω for which Up and Vp
each contain a member of {xn, yn}. We will show that for each p ∈ Q, there
exist q ≤ p and n 6∈ Ep with n ∈ Er. Let p ∈ Q be given. Since X ∪ Y is
dense, there must be some n such that at least one of xn or yn is in [σp]. We
consider the case xn ∈ [σp]; the case yn ∈ [σp] can be handled similarly.

Suppose first that yn 6∈ [σp]; then yn ⊇ τ for some τ ∈ dom sp. Let σq
be some extension of σp such that xn 6⊇ σq; say k is minimal such that
xn(k) 6= σq(k). Let ν = (σq�k)axn(k). Define sq so that sq(ν) = 1− sp(τ).

Now suppose yn ∈ [σp]. Then we may find σq extending σp such that
neither of xn, yn is in [σq]. Let k and ` be minimal such that xn(k) 6= σq(k)
and yn(`) 6= σq(`); let

τ = (σq�k)axn(k), ν = (σq�`)
ayn(`).

Define sq so that sq(τ) = 0 and sq(ν) = 1.

Lemma 4.2 and the fact that Q is isomorphic to a dense subset of C×C
give the following.

Corollary 4.3. CSN(Σ0
1) ≥ cov(M).
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Theorem 4.4 is a variant of Theorem 3.4, restricted to the case κ = ω.
Theorem 4.4 assumes triviality on countable sets, instead of sets of cardi-
nality ℵ1 as in Theorem 3.4, at the cost of assuming a weak fragment of
Martin’s Axiom.

Theorem 4.4. Assume CSN(∆1
1) > ω1, and let π be a cardinality-

preserving automorphism of P(2ω)/Fin which is trivial on every countable
subset of 2ω. Then π is trivial.

Proof. Suppose that π is nontrivial and let π∗ be a bijective selector for π.
We may choose π so that for all σ, τ ∈ 2<ω, if σ ⊆ τ then π∗(Nσ) ⊇ π∗(Nτ ),
and if σ ⊥ τ then π∗(Nσ) ∩ π∗(Nτ ) = ∅.

For each x ∈ 2ω and n < ω, there is a unique σ ∈ 2n such that x is
in π∗(Nσ). Moreover, these σ’s form a branch through 2ω, which we will
call h(x). Thus h : 2ω → 2ω is a function satisfying h−1(Nσ) = π∗(Nσ) for
each σ ∈ 2<ω. By Lemma 2.11, it follows that h−1(B)4 π∗(B) is countable
for every Borel set B ⊆ 2ω. In particular, h is countable-to-one.

Let Q be the set of σ ∈ 2<ω such that π is nontrivial on Nσ.

Claim 4.5. Q is a perfect tree.

Proof. Clearly, every σ ∈ Q has at least one extension in Q. Suppose
that for some σ ∈ Q, there is exactly one x ∈ [Q] which extends σ. Then π
is trivial on Nτ for every τ ⊇ σ with τ 6⊆ x; hence by Lemma 3.8 (and our
assumption that π is trivial on countable sets), π is trivial on their union,
i.e. Nσ \ {x}. But then clearly π is trivial on Nσ.

For each countable A ⊆ 2ω we may fix a function fA : π∗(A) → A such
that for all X ⊆ A, we have π([X]) = [f−1

A (X)].

Claim 4.6. Let A ⊆ 2ω be countable. Then there is a countable set
B ⊆ 2ω with B ⊇ A, and an infinite set X ⊆ B \ A, such that h′′X ∪ f ′′BX
is dense in [Q], and for every x ∈ X, h(x) 6= fB(x).

Proof. Suppose otherwise. Then there is a countable A∗ ⊆ 2ω such that
for every countable B ⊇ A∗, there is some σ ∈ Q such that the set of
x ∈ B \A∗ with h(x) 6= fB(x) and Nσ ∩{h(x), fB(x)} 6= ∅ is finite. Pressing
down, we may fix a σ∗ ∈ Q and a finite F ∗ ⊆ 2ω such that for all B in
some stationary subset of [2ω]ω, if x ∈ B \ A∗ ∪ F ∗, then whenever one of
h(x), fB(x) is in Nσ∗ , we have h(x) = fB(x). In particular, if x ∈ π∗(Nσ∗) =
h−1(Nσ∗), then h(x) ∈ Nσ∗ and so h(x) = fB(x) as long as x ∈ B\(A∗∪F ∗).
It follows that π is trivial on π∗(Nσ∗), a contradiction.

By applying Claim 4.6 repeatedly, we may find a ⊆-increasing sequence
〈Aα : α < ω1〉 consisting of countable subsets of 2ω, and infinite sets Xα ⊆
Aα+1 \ Aα, such that for every α < ω1, h′′Xα ∪ f ′′Aα+1

Xα is dense in [Q],

and h(x) 6= fAα+1(x) for every x ∈ Xα. Since h is countable-to-one, we
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may thin the sequence if necessary so that the sets h[Xα] are disjoint for
distinct α. Applying the assumption that CSN(∆1

1) > ω1 (and possibly
thinning our sequence again), we may find a Borel set B ⊆ [Q] such that
for every α < ω1, there are infinitely many x ∈ Xα such that B contains
exactly one of h(x), fAα+1(x). Hence,

(h−1(B)4 f−1
Aα+1

(B)) ∩ (Aα+1 \Aα)

is infinite for every α < ω1. As f−1
Aα+1

(B) 4 (π∗(B) ∩ Aα+1) is finite for

each α, it follows that π∗(B)4 h−1(B) is uncountable, a contradiction.

Remark 4.7. Since d ≥ cov(M), if we replace “CSN(∆1
1) > ω1” with

“cov(M) > ω1” in Theorem 4.4, by Theorem 2.6 we can then remove the
assumption that π is cardinality-preserving. On the other hand, it follows
from Theorem 2.5 that if π and π−1 are both trivial on every countable
subset of 2ω, then π must be cardinality-preserving.

5. Isomorphisms between countable subalgebras. In [7, Theo-
rem 3.1], Geschke showed that any isomorphism between countable subal-
gebras of P(ω)/Fin extends to a trivial automorphism, and in fact a trivial
automorphism witnessed by a permutation of ω. In this section we find a
necessary and sufficient condition for an isomorphism between two count-
able, atomless subalgebras of P(λ)/Iκ to extend to a trivial automorphism,
in the case where κ has uncountable cofinality. We then use our result to
examine automorphisms of P(ω1)/Ctble when a Q-set exists.

Recall that any two countable, atomless Boolean algebras are isomor-
phic. In particular, if A is a countable, atomless Boolean algebra, then A
is isomorphic to the Boolean algebra of clopen subsets of 2ω, hence A is
generated by elements aσ (σ ∈ 2<ω) such that aσ ∧ aτ = 0 for σ ⊥ τ , and
aσa0 ∨ aσa1 = aσ. Note that in this case, if π : A → B is an isomorphism,
then the elements bσ = π(aσ) (σ ∈ 2<ω) generate B, and satisfy the same
relations.

Definition 5.1. If A is a countable, atomless Boolean subalgebra of
P(λ)/Iκ, then we say that a sequence Ā = 〈Aσ | σ ∈ 2<ω〉 of subsets of λ is
a nice sequence of representatives for A if

• for every σ ∈ 2<ω, the sets Aσa0 and Aσa1 partition Aσ, and
• the sequence [Aσ] (σ ∈ 2<ω) generates A.

If Ā is a nice sequence of representatives for A, and x ∈ 2ω, then we set

Ax =
⋂
{Aσ | σ ⊂ x}, X(Ā) = {x ∈ 2ω | Ax 6= ∅}.
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Note that if Ā is a nice sequence of representatives for A, then [A∅] is
the top element of A, and

A∅ =
⋃
{Ax | x ∈ X(Ā)}.

The following lemma shows that this information serves as a sort of invariant
for A.

Lemma 5.2. Suppose that A is a countable, atomless Boolean subalgebra
of P(λ)/Iκ, where cf κ > ω, and that Ā and B̄ are nice sequences of repre-
sentatives for A with Aσ ∼κ Bσ for each σ ∈ 2<ω. Then there is an S ∈ Iκ
such that for every x ∈ 2ω, Ax \ S = Bx \ S. Moreover, X(Ā) ∼κ X(B̄).

Proof. Let S =
⋃
{Aσ 4 Bσ | σ ∈ 2<ω}; then |S| < κ, and for every

x ∈ 2ω, we have Ax \S = Bx \S. Now, if x ∈ X(Ā)4X(B̄), then it follows
that Ax∪Bx ⊆ S, since one of Ax or Bx must be empty. But for each α ∈ S,
there is at most one x ∈ 2ω such that α ∈ Ax, and likewise, there is at most
one y ∈ 2ω such that α ∈ By.

Theorem 5.3 characterizes when an isomorphism between two countable,
atomless subalgebras of P(λ)/Iκ can extend to a trivial isomorphism.

Theorem 5.3. Let Ā and B̄ be nice sequences of representatives for
countable, atomless Boolean subalgebras of P(λ)/Iκ, where cf κ > ω. Then
the following are equivalent:

(1) There is a trivial isomorphism from P(A∅)/Iκ to P(B∅)/Iκ which
sends [Aσ] to [Bσ] for every σ ∈ 2<ω.

(2) X(Ā) ∼κ X(B̄), and there is some S ∈ Iκ such that for all x ∈ 2ω,
|Ax \ S| = |Bx \ S|.

Proof. Suppose that f : E → F is a bijection, where:

• E ⊆ A∅,
• F ⊆ B∅,
• A∅ \ E and B∅ \ F are both in Iκ,
• f ′′(Aσ ∩ E) ∼κ Bσ for all σ ∈ 2<ω.

Let C̄ = 〈f ′′(Aσ) | σ ∈ 2<ω〉. Then B̄ and C̄ satisfy the hypotheses of
Lemma 5.2, so X(C̄) ∼κ X(B̄). Since f ′′(Ax ∩ E) = Cx ∩ F for all x ∈ 2ω,
it follows that X(C̄) ∼κ X(Ā) as well, so X(Ā) ∼κ X(B̄). Now let S be
as given in Lemma 5.2, applied to B̄ and C̄, so that Cx \ S = Bx \ S for
all x ∈ 2ω. Expanding S if necessary (but preserving its membership in Iκ)
we may assume that S contains A∅ \ E and B∅ \ F , and is closed under f
and f−1. Then, for each x ∈ 2ω, f maps Ax \ S to Bx \ S. Since f is a
bijection, it follows that |Ax \ S| = |Bx \ S|.

Suppose now that X(Ā) ∼κ X(B̄), and that there exists an S ∈ Iκ such
that |Ax \S| = |Bx \S| for every x ∈ 2ω. For each x ∈ X(Ā)4X(B̄), either
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Ax = ∅ or Bx = ∅, so

Ax \ S = Bx \ S = ∅ and Ax ∪Bx ⊆ S.
It follows that if

E =
⋃
{Ax | x ∈ X(Ā) ∩X(B̄)}, F =

⋃
{Bx | x ∈ X(Ā) ∩X(B̄)},

then A∅ \ S ⊆ E and B∅ \ S ⊆ F . For each x ∈ X(Ā) ∩ X(B̄), choose a
bijection gx : Ax\S → Bx\S. Since for x 6= y we have Ax∩Ay = Bx∩By = ∅,
it follows that g =

⋃
x∈X(Ā)∩X(B̄) gx is a bijection from E \ S to F \ S such

that g′′(Aσ \ S) = Bσ \ S for every σ ∈ 2<ω. Then g is as desired.

Remark 5.4. If X ⊆ R has no isolated points, then X ∩Nσ (σ ∈ 2<ω)
forms a nice sequence of representatives for a countable, atomless subalgebra
AX of P(R)/Ctble, and the set X(Ā), where each Aσ is X ∩Nσ, is exactly
equal to X. If X and Y are two such sets, then there is an isomorphism from
AX to AY sending [X ∩ Nσ] to [Y ∩ Nσ] for every σ. By Theorem 5.3, if
X4Y is uncountable, then there does not exist a trivial isomorphism from
P(X)/Ctble to P(Y )/Ctble sending each set [X ∩Nσ] to [Y ∩Nσ].

Definition 5.5. A set X ⊆ 2ω is a QB-set if for every Y ⊆ X, there is
a Borel B ⊆ 2ω such that B ∩X = Y .

The above is a weakening of the usual notion of a Q-set, where the set B
above is required to be Gδ and not just Borel. The reader can consult [12, 11]
for properties of Q-sets. We note in particular that MAκ implies all subsets
of R of size κ are Q-sets (this is credited to Silver in [9, p. 162]), and that
the Ramsey forcing axiom K4 implies that all subsets of R of size ω1 are
Q-sets [17]. As for the difference between Q-sets and QB-sets, Miller [10]
showed that if X ⊆ R is a QB-set, then there is some α < ω1 such that
every subset of X is relatively Σ0

α, whereas it is consistent that for every
2 ≤ α < ω1, there is an uncountable X ⊆ R such that α is the minimal
ordinal for which every subset of X is relatively Σ0

α.

Theorem 5.6. Suppose there exists a QB-set X ⊆ 2ω of cardinality λ,
where cf λ > ω. Then the following are equivalent:

(1) There exists a cardinality-preserving, nontrivial automorphism of
P(λ)/Ctble.

(2) There exists a QB-set Y ⊆ 2ω such that X 4 Y is uncountable and,
for every Borel B ⊆ 2ω, |B ∩X|+ ℵ0 = |B ∩ Y |+ ℵ0.

Proof. Assuming that (1) holds, we may fix a nontrivial cardinality-pre-
serving isomorphism π from P(X)/Ctble to P(λ)/Ctble. Choose a sequence
Ā = 〈Aσ | σ ∈ 2<ω〉 of sets such that A∅ = λ and, for all σ ∈ 2<ω,

• π([Nσ ∩X]) = [Aσ],
• Aσ is the disjoint union of Aσa0 and Aσa1.
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Since X is a QB-set, every subset of X is equal to C ∩X for some Borel C.
Since P(λ)/Ctble is countably complete, π([C ∩X]) = [D], where D is the
set built from Ā in the same way that C is built from 〈Nσ : σ ∈ 2<ω〉. Since
π is an isomorphism, every subset of λ is, up to a countable set, a member
of the σ-algebra generated by the sets Aσ (σ ∈ 2<ω). It follows that for each
y ∈ 2ω, the set

Ay =
⋂
{Ay�n : n ∈ ω}

is countable, and that the set of y ∈ 2ω for which |Ay| ≥ 2 is countable. Let
Y be the set of y ∈ 2ω for which |Ay| = 1, and for each y ∈ Y , let h(y)
be the unique element of Ay. Then h is injective, h′′(Y ) is a cocountable
subset of λ, and h−1(Aσ) = Nσ ∩ Y for each σ ∈ 2<ω. We claim that Y is
the desired set.

To see that Y is a QB-set, fix Z ⊆ Y . Then there exists a D in the σ-
algebra generated by Ā such that D4h′′(Z) is countable. Then h−1(D)4Z
is countable, and h−1(D) is equal to B ∩ Y for a Borel set B ⊆ 2ω which is
built from the sets Nσ in the same way that D was built from the sets Aσ.
Similarly, for each Borel set B ⊆ 2ω, letting D be the set built from the sets
Aσ in the way that B was built from the sets Nσ, we get π([B ∩X]) = [D]
and h−1(D) = B ∩ Y . Since λ \ h′′(Y ) is countable,

|B ∩ Y |+ ℵ0 = |D|+ ℵ0.

Since π is cardinality-preserving,

|D|+ ℵ0 = |C ∩X|+ ℵ0.

Finally, if X4Y were a countable set S, we could fix a bijection b : X \S →
h′′(Y \ S) by setting b(x) to be h(x). Then as above, for each Borel set
B ⊆ 2ω, we have π([B ∩X]) = [h′′(B ∩ Y )] = [b′′(B ∩X)]. Again applying
the fact that X is a QB-set, one shows that π is trivial.

Now suppose that Y ⊆ 2ω witnesses (2). Define π : P(X)/Ctble →
P(Y )/Ctble by

π([C ∩X]) = [C ∩ Y ]

where C ranges over the Borel sets. We claim that:

(i) π is well-defined,
(ii) π is an isomorphism, and
(iii) π is cardinality-preserving and nontrivial.

All of these follow easily from our assumptions, except perhaps the claim
that π is nontrivial. Suppose then that S and T are countable subsets of 2ω,
and that f is a bijection from X \S to Y \T such that π([A]) = [f ′′(A \S)]
for all A ⊆ X. Since X 4 Y is uncountable, there are uncountably many
x ∈ X \S such that f(x) 6= x. Moreover, we may fix incompatible σ, τ in 2<ω
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such that the set

Z = {x ∈ Nσ ∩ (X \ S) | f(x) ∈ Nτ}
is uncountable. Then there exists a Borel set B such that Z = B ∩ X =
(B ∩Nσ) ∩X, so by the definition of π,

π([Z]) = [(B ∩Nσ) ∩ Y ].

On the other hand, f ′′(Z) ⊆ Nτ , hence f ′′(Z) ∩ Nσ = ∅. This contradicts
our assumption that π([Z]) = [f ′′(Z)].

Remark 5.7. We do not know whether it is consistent with ZFC that
there exists a nontrivial automorphism of P(ω1)/Ctble. On the other hand,
[6, Theorem 1] shows that the analogous result for Calkin algebras holds
under the assumption that 2ω1 = ω2. More precisely, let B denote the
C∗-algebra of bounded, linear operators on a Hilbert space of dimension ω1,
and let J be its (closed, two-sided, ∗-) ideal of operators with separable
range. Then 2ω1 = ω2 implies there are 2ω2 many automorphisms of B/J .

Notice that condition (2) above fails whenever the union of two QB-sets
of cardinality ω1 is also a QB-set. Combining this with Theorem 3.4, we
obtain the following corollary.

Corollary 5.8. Suppose that there is a QB-set of cardinality ω1, and
the union of any two QB-sets of cardinality ω1 is a QB-set. Then every
automorphism of P(R)/Ctble is trivial.

The cardinal characteristic q0 is the least cardinality of a subset of 2ω

which is not a Q-set (see [2], for instance). Following [19], we let z be the
least cardinality of a subset of 2ω which is not a QB-set. Then q0 is clearly
at most z. We note that q0 is at most d (see [2]; we do not know if the same
holds with z in place of q0) and that MAℵ1 implies q0 = 2ℵ0 , by the result
of Silver mentioned after Definition 5.5.

Corollary 5.8 and Theorem 3.3 give the following.

Corollary 5.9. If z > ℵ1 then each of the following holds:

• Every automorphism of P(R)/Ctble is trivial.
• Every cardinality-preserving automorphism of P(R)/Fin is trivial on

a cocountable set.

In conjunction with the main result of [16], we see that z > ℵ1 implies
that every cardinality-preserving automorphism of P(λ)/Fin is trivial on a
cocountable set, for every λ less than the least strongly inaccessible cardinal.
Veličković [18] has shown that MAℵ1 is consistent with the existence of a
nontrivial automorphism of P(ω)/Fin.

Remark 5.10. Corollary 5.8 applies to automorphisms π which may
not be induced by automorphisms of P(R)/Fin. We do not know if the
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hypothesis of either of Theorem 4.4 and Corollary 5.8 implies the other.
However, as CSN(P(2ω)) = (2ℵ0)+, CSN(∆1

1) is at least z.

6. Fixed points. If π is an automorphism of a Boolean algebra of the
form P(λ)/Iκ, then a fixed point of π is a set A ⊆ λ such that π([A]) = [A].
A fixed point A is nontrivial if A and λ \A both have cardinality at least κ.
By the < cf κ-completeness of P(λ)/Iκ, the set of (∼κ-classes of) fixed points
of such a π is a (possibly trivial) < cf κ-complete subalgebra of P(λ)/Iκ.

Lemma 6.1. Suppose that κ ≤ λ are infinite cardinals, and that π is an
automorphism of P(λ)/Iκ. Let π∗ be a selector for π. Let η be an infinite
regular cardinal not equal to cf κ, and suppose that 〈Aα : α < η〉 is a sequence
of subsets of λ such that:

(1) for all α < β < η,

|(π∗(Aα) ∪ (π∗)−1(Aα)) \Aβ| < κ,

(2) for all β < η, ∣∣∣⋃{Aα | α < β} \Aβ
∣∣∣ < κ.

Then
⋃
{Aα : α < η} is a fixed point of π.

Proof. Let B =
⋃
{Aα | α < η}. We want to see that π∗(B) ∼κ B.

Suppose first that |B \ π∗(B)| ≥ κ. We claim that there is some α < η
such that |Aα \ π∗(B)| ≥ κ. If η < cf κ, then this follows directly; on the
other hand, if η > cf κ, then (by the regularity of η) there is some α < η
such that ∣∣∣⋃{Aβ \ π∗(B) | β < α}

∣∣∣ ≥ κ,
in which case we have |Aα\π∗(B)| ≥ κ by (2). Now fix some X ⊆ Aα\π∗(B)
with cardinality exactly κ. Then

|(π∗)−1(X) \Aα+1| < κ and |(π∗)−1(X) ∩B| < κ,

hence |(π∗)−1(X)| < κ, a contradiction.
Supposing instead that |π∗(B) \B| ≥ κ we get |B \ (π∗)−1(B)| ≥ κ, and

we can run the argument just given with (π∗)−1 in place of π∗ to obtain
another contradiction.

Summarizing, we get the following. Part (3) uses Theorem 2.5. The proof
of (4) breaks into two cases, one where cf κ is uncountable, and one where
cf κ = ℵ0.

Theorem 6.2. Suppose that κ ≤ λ are infinite cardinals, and that π is
an automorphism of P(λ)/Iκ.

(1) The set of ∼κ-classes of fixed points π is a < cf κ-complete subalgebra
of P(λ)/Iκ.
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(2) If η is a regular cardinal not equal to cf κ, and 〈Aα : α < η〉 is a
sequence of fixed points of π such that for all β < η,∣∣∣⋃{Aα | α < β} \Aβ

∣∣∣ < κ,

then
⋃
{Aα | α < η} is a fixed point of π.

(3) If κ is regular and λ > κ, then for every A ⊆ λ, there is a fixed point
B ⊆ λ such that A ⊆ B and |B| ≤ |A|+ κ+.

(4) If π is cardinality-preserving and κ is uncountable, then for every
A ⊆ λ, there is a fixed point B ⊆ λ such that A ⊆ B and |B| = |A|.

Theorem 6.2 gives the following corollary.

Corollary 6.3. If λ > κ are infinite cardinals, and π is an automor-
phism of P(λ)/Iκ, then π has nontrivial fixed points if at least one of the
following holds:

• κ is regular and λ > κ+,
• π is cardinality-preserving and κ is uncountable.

Remark 6.4. Chodounský, Dow, Hart and de Vries [4] have shown that
if the algebras P(ω)/Fin and P(ω1)/Fin are isomorphic, then there exists
a nontrivial automorphism of P(ω)/Fin. A simpler, previously known argu-
ment (see [13]) uses the trivial automorphism of P(ω)/Fin induced by the
(upwards or downwards) shift to establish that if P(ω)/Fin and P(ω1)/Fin
are isomorphic, then there exists an automorphism of P(ω1)/Fin without
nontrivial fixed points. An easy argument shows that every trivial automor-
phism of P(ω1)/Fin has a club of ordinal fixed points.

Section 7 considers ordinal fixed points of cofinality κ for automorphisms
of Boolean algebras of the form P(κ+)/Iκ.

7. Ladder systems. A ladder on a limit ordinal α is a cofinal subset
of α whose ordertype is the cofinality of α (we do not require here that the
subset be closed). If S is a set of limit ordinals, a ladder system on S is a
sequence 〈Lα | α ∈ S〉 such that each Lα is a ladder on the corresponding α.
A ladder system 〈Lα | α ∈ S〉 satisfies κ-uniformization (for a given cardi-
nal κ) if for every sequence of functions fα : Lα → κ (α ∈ S), there is a
function F : sup(S)→ κ such that for all α ∈ S,

{β ∈ Lα | F (β) 6= fα(β)} ∈ Iκ.
Here we show that the existence of a cardinality-preserving automor-

phism of P(κ+)/Iκ without ordinal fixed points of cofinality κ (where κ
is a regular cardinal) gives rise to a ladder system on a club subset of κ+

which satisfies 2-uniformization (which is easily seen to be equivalent to
γ-uniformization for any γ < κ).
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Given an automorphism π of P(λ)/Iκ, for infinite cardinals κ ≤ λ, we
say that β ∈ λ is a closure point of π if for all α < β, π([α]) < [β] and
π−1([α]) < [β] (2). If λ > κ and π is cardinality-preserving, then the set of
closure points of π is a club subset of λ. It is easy to see that every closure
point whose cofinality is not cf κ is a fixed point (this does not require that
π is cardinality-preserving, or that κ is regular).

Theorem 7.1. Suppose that:

• κ is a regular cardinal,
• π is a cardinality-preserving automorphism of P(κ+)/Iκ,
• C is the set of closure points of π, and
• S ⊆ κ+ is the set of α ∈ C which are not fixed points of π.

Then there exist S0 and S1 such that S = S0 ∪ S1, and S0 and S1 each
support a ladder system satisfying 2-uniformization.

Proof. Let

S0 = {α ∈ S | [α] 6≤ π([α])} and S1 = {α ∈ S | π([α]) 6≤ [α]}.
Then clearly S = S0 ∪ S1. Let π∗ be a bijective selector for π. For each
α ∈ S0, let L0

α = α \ π∗(α), and for each α ∈ S1, let L1
α = α \ (π∗)−1(α).

Then for each i ∈ {0, 1} and each α ∈ Si,
• |Liα| = κ,
• |Liα ∩ β| < κ for all β < α.

The second of these follows from the fact that α is a closure point of π,
and from the fact that |(π∗)−1(L0

α) ∩ α| < κ in the case where α ∈ S0, and
|π∗(L1

α)∩α| < κ in the case where α ∈ S1. It follows that each Liα is a ladder
on the corresponding α.

Now suppose we are given 2-colorings f iα : Liα → 2 for each pair (α, i)
with i ∈ {0, 1} and α ∈ Si. For each such pair (α, i), let aiα = (f iα)−1({1}).
For each α ∈ S0, define

b0α = (π∗)−1(aα) ∩
(
(π∗)−1(α) \ α

)
,

and for each α ∈ S1, set

b1α = π∗(aα) ∩ (π∗(α) \ α).

Notice that, for each i ∈ {0, 1}, we have biα ∩ biβ = ∅ for distinct α, β ∈ Si.
Let Bi =

⋃
{biα | α ∈ Si} for each i < 2. Define A0 = π∗(B0) and

A1 = (π∗)−1(B1). For each i ∈ {0, 1}, let Fi be the characteristic function
of Ai. If α ∈ S0, then

B0 ∩
(
(π∗)−1(α) \ α

)
= b0α,

hence A0 ∩ Lα ∼κ aα. Similarly, if α ∈ S1, then

(2) See Subsection 1.1 for the meaning of the order < in this context.
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B1 ∩ (π∗(α) \ α) = b1α,

so that A1 ∩ Lα ∼κ aα. It follows that F0�Lα ∼κ fα for all α ∈ S0, and
F1�Lα ∼κ fα for all α ∈ S1.

The following theorem of Devlin and Shelah then shows that the ex-
istence of an automorphism of P(ω1)/Fin without nontrivial ordinal fixed
points implies that 2ℵ0 = 2ℵ1 (3).

Theorem 7.2 (Devlin–Shelah [5]). Suppose {Sα : α < ω1} is such that:

• each Sα is a subset of ω1 supporting a ladder system satisfying 2-uni-
formization,
• the diagonal union of {Sα | α < ω1} contains a club subset of ω1.

Then 2ℵ0 = 2ℵ1.

After a simple modification of π∗, we see that π∗ moves the ladders Lα
for α ∈ S0 to disjoint sets; and (π∗)−1 moves Lα for α ∈ S1 to disjoint sets.
It follows that they satisfy uniformization properties stronger than 2-uni-
formization (but not comparable, as far as we know, with κ-uniformization).
For instance, they each satisfy the following property: for any partition of
Si into sets {Tα | α < γ} (for some γ ≤ κ+) there exist sets {Kα | α < γ}
such that:

• for all α < γ and all β ∈ Tα, |Lβ \Kα| < κ,
• for every sequence of functions fα : Kα → 2 (α < γ) there exists a

function F : κ+ → 2 such that F �Kα ∼κ fα for each α < γ.

8. Open questions. We collect here various open questions related to
the material in this paper, some of which have been mentioned above, and
some of which have been posed by others. First, we ask for various types of
automorphisms.

Question 1. Are any of the following consistent with ZFC?

(a) There exist an uncountable cardinal λ and an automorphism of
P(λ)/Fin which is not trivial on any cocountable set.

(b) There exist an uncountable cardinal λ and an automorphism of
P(λ)/Fin which is not trivial on any uncountable set. (By [16],
λ would have to be at most 2ℵ0 .)

(c) There exist an infinite cardinal κ and a nontrivial automorphism of
P(κ+)/Iκ which is trivial on all sets of cardinality κ.

(d) There exists an infinite cardinal κ such that all automorphisms of
P(κ)/Iκ are trivial, but there is a nontrivial automorphism of
P(κ+)/Iκ.

(3) If 2ℵ0 < 2ℵ1 , then all automorphisms of P(ω1)/ Fin are cardinality-preserving.
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(e) There exist infinite cardinals κ < λ and a nontrivial automorphism
of P(λ)/Iκ+ which is trivial on all sets of cardinality κ+. (By Theo-
rem 3.4, λ would have to be bigger than 2κ.)

(f) There exists an automorphism of P(ω1)/Fin with no nontrivial fixed
points. (If this holds, then 2ℵ0 = 2ℵ1 , by Theorems 7.1 and 7.2.)

(g) There exist uncountable cardinals κ ≤ λ and a nontrivial automor-
phism of P(λ)/Iκ. (What if κ = ℵ1?)

(h) There exists an uncountable cardinal λ and an outer automorphism
of the Calkin algebra on the Hilbert space of dimension λ. (See Re-
mark 5.7 or [6] for definitions and more information.)

We also ask about the Katowice Problem, Question 2(a) below, and its
relation to automorphisms. The reader is referred to [8, 3] for more on the
Katowice Problem and related questions. We note in particular that, in [3],
Chodounský has constructed a model of ZFC where most of the known
consequences of a positive answer to Question 2(a) hold.

Question 2.

(a) (Turzański) Is it consistent with ZFC that the Boolean algebras
P(ω)/Fin and P(ω1)/Fin are isomorphic?

(b) Is it consistent with ZFC that there is an isomorphism from
P(ω1)/Fin to P(ω)/Fin which is trivial on all countable sets?

(c) Is it consistent with ZFC that there exists an automorphism π of
P(ω1)/Fin such that π([A]) = [B] for no infinite A ⊂ B ⊆ ω1 with
ω1 \B infinite?

(d) Does the existence of an isomorphism P(ω)/Fin ' P(ω1)/Fin im-
ply that there is a nontrivial automorphism of P(ω1)/Ctble? (Since
such an isomorphism implies there is an uncountable Q-set, by The-
orem 5.6 it is enough to ask whether such an isomorphism implies
there exist two uncountable QB-sets, with uncountable difference,
which intersect the same Borel sets uncountably.)

(e) Does the existence of an isomorphism between P(ω)/Fin and
P(ω1)/Fin imply that z = ℵ1?
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