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Abstract. In this paper we work in o-minimal structures with definable Skolem func-
tions, and show that: (i) a Hausdorff definably compact definable space is definably nor-
mal; (ii) a continuous definable map between Hausdorff locally definably compact definable
spaces is definably proper if and only if it is a proper morphism in the category of de-
finable spaces. We give several other characterizations of definably proper, including one
involving the existence of limits of definable types. We also prove the basic properties of
definably proper maps and the invariance of definably proper (and definably compact) in
elementary extensions and o-minimal expansions.

1. Introduction. Let M = (M,<, . . .) be an arbitrary o-minimal struc-
ture with definable Skolem functions. In this paper we show that Hausdorff
definably compact definable spaces are definably normal (Theorem 2.11).
We also show a local almost everywhere curve selection for Hausdorff lo-
cally definably compact definable spaces (Theorem 2.18).

Theorem 2.11 was only known in special cases: it was proved by Be-
rarducci and Otero for definable manifolds in o-minimal expansions of real
closed fields ([1, Lemma 10.4]—the proof there works as well in o-minimal
expansions of ordered groups); it was proved in [9] for definably compact
groups in arbitrary o-minimal structures. Theorem 2.18 is an extension of
the almost everywhere curve selection for Mn in arbitrary o-minimal struc-
tures proved by Peterzil and Steinhorn [17, Theorem 2.3].

In Corollary 4.6 and Proposition 4.8 we show that definably compact is
invariant under elementary extensions and o-minimal expansions of M. In
Proposition 4.10 we show that if M is an o-minimal expansion of the ordered
set of real numbers, then definably compact corresponds to compact. These
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invariance and comparison results extend similar ones for definably com-

pact subsets of Mn in arbitrary o-minimal structures and answer partially

a question from [17].

In the authors’ recent work on the formalism of the six Grothendieck

operations on o-minimal sheaves [7], [8] we require the basic theory of mor-

phisms proper in the category of o-minimal spectral spaces similar to the

theory of proper morphisms in semialgebraic geometry [3, Section 9] (and

also in algebraic geometry [12, Chapter II, Section 4] or [11, Chapter II,

Section 5.4]). Here, in Section 3, we provide such a theory by giving a cat-

egory theory characterization of definably proper maps (as separated and

universally closed morphisms in the category of definable spaces) and by

proving the basic properties of such morphisms.

In Theorems 4.4 and 4.9 we show that definably proper is invariant

under elementary extensions and o-minimal expansions of M. In Theorem

4.11 we prove that if M is an o-minimal expansion of the ordered set of real

numbers, then definably proper corresponds to proper. These invariance and

comparison results transfer to the notion of proper morphism in the category

of o-minimal spectral spaces.

The formalism of the six Grothendieck operations on o-minimal sheaves

[7], [8] provides the cohomological ingredients required for the computation

of the subgroup of m-torsion points of a definably compact, abelian definable

group G, thus extending the main result of [6] which was proved in o-minimal

expansions of ordered fields using the o-minimal singular (co)homology. This

result is enough to settle Pillay’s conjecture for definably compact definable

groups [19], [15] in arbitrary o-minimal structures: see [5]. Pillay’s conjec-

ture is a nonstandard analogue of Hilbert’s 5o problem for locally compact

topological groups; roughly it says that after taking the quotient by a “small

subgroup” (a smallest type-definable subgroup of bounded index) the quo-

tient when equipped with the the so-called logic topology is a compact real

Lie group of the same dimension.

Finally in Section 5 we prove that definable compactness of Hausdorff

definable spaces can be characterized by the existence of limits of definable

types (Theorem 5.2), extending a remark by Hrushovski and Loeser [14]

in the affine case. In Theorem 5.3 we prove a corresponding characteriza-

tion of definably proper maps between Hausdorff locally definably compact

definable spaces which, when transferred to morphisms proper in the cate-

gory of o-minimal spectral spaces, is the analogue of the valuative criterion

for properness in algebraic geometry [12, Chapter II, Theorem 4.7]. As is

known, in o-minimal structures with definable Skolem functions, definable

types correspond to valuations [16], [18].
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2. On definably compact spaces

2.1. Hausdorff definably compact spaces. Here we will show that
if M has definable Skolem functions, then Hausdorff definably compact de-
finable spaces are definably normal.

Below, we will assume the reader is familiar with basic o-minimality
notions (see for example [4]). Below, by definable we mean definable in M
possibly with parameters. Recall also that M has definable Skolem functions
if for every uniformly definable family {Ft}t∈T of definable sets, there is a
definable map f : T →

⋃
t Ft such that for each t ∈ T we have f(t) ∈ Ft.

Recall the notion of definable spaces [4]:

Definition 2.1. A definable space is a tuple (X, (Xi, θi)i≤k) where:

• X =
⋃
i≤kXi;

• each θi : Xi → Mni is an injection such that θi(Xi) is a definable
subset of Mni with the induced topology;

• for all i, j, θi(Xi ∩ Xj) is an open definable subset of θi(Xi) and the
transition maps θij : θi(Xi ∩Xj) → θj(Xi ∩Xj) : x 7→ θj(θ

−1
i (x)) are

definable homeomorphisms.

We call the (Xi, θi)’s the definable charts of X and set

dimX = max{dim θi(Xi) : i = 1, . . . , k}.
If all the θi(Xi)’s are open definable subsets of some Mn, we say that X is
a definable manifold of dimension n.

A definable space X has a topology such that each Xi is open and the
θi’s are homeomorphisms: a subset U of X is open in this topology if and
only if for each i, θi(U ∩Xi) is an open definable subset of θi(Xi).

A map f : X → Y between definable spaces with definable charts
(Xi, θi)i≤k and (Yj , δj)j≤l respectively is a definable map if

• for all i and j with f(Xi) ∩ Yj 6= ∅, δj ◦ f ◦ θ−1i : θi(Xi)→ δj(Yj) is a
definable map between definable sets.

We say that a definable space is affine if it is definably homeomorphic to a
definable set with the induced topology.

The construction above defines the category of definable spaces with de-
finable continuous maps which we denote by Def. All topological notions
on definable spaces are relative to the topology above. Note however that
often we will have to replace topological notions on definable spaces by their
definable analogues.

We say that a subset A of a definable space X is definable if for each i,
θi(A ∩Xi) is a definable subset of θi(Xi). A definable subset A of a defin-
able space X is naturally a definable space and its topology is the induced
topology, thus we also call them definable subspaces.
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In nonstandard o-minimal structures closed and bounded definable sets
are not compact. Thus we have to replace the notion of compactness by a
suitable definable analogue.

Let X be a definable space and C ⊆ X a definable subset. By a definable
curve in C we mean a continuous definable map α : (a, b)→ C ⊆ X, where
a < b are in M∪{−∞,∞}. We say that a definable curve α : (a, b)→ C ⊆ X
in C is completable in C if both limits limt→a+ α(t) and limt→b− α(t) exist
in C, equivalently if there exists a continuous definable map α : [a, b] →
C ⊆ X such that the following diagram is commutative:

(a, b)
α //

� _

��

C ⊆ X

[a, b]

α

::

Definition 2.2. Let X be a definable space and C ⊆ X a definable
subset. We say that C is definably compact if every definable curve in C is
completable in C (see [17]).

The following is easy:

Fact 2.3. Suppose M has definable Skolem functions. Let f : X → Y be
a continuous definable map between definable spaces. If K ⊆ X is a definably
compact definable subset, then so is f(K) ⊆ Y .

For definable subsets X ⊆ Mn with their induced topology (i.e., affine
definable spaces) the notion of definably compact is very well behaved. In-
deed, we have [17, Theorem 2.1]:

Fact 2.4. A definable subset X ⊆ Mn is definably compact if and only
if it is closed and bounded in Mn.

However, in general, definably compact definable subsets of a definable
space are not Hausdorff and are not even necessarily closed subsets:

Example 2.5 (Non-Hausdorff and nonclosed definably compact sub-
sets). Let a, b, c, d ∈ M be such that c < a < b < d. Let X be the de-
finable space with definable charts (Xi, θi)i=1,2 given by X1 = ({〈x, y〉 ∈
[c, d]× [c, d] : x = y} \ {〈b, b〉})∪{〈b, a〉} ⊆M2, X2 = {〈x, y〉 ∈ [c, d]× [c, d] :
x = y} ⊆ M2 and θi = π|Xi

where π : M2 → M is the projection onto the
first coordinate. Then any open definable neighborhood in X of 〈b, a〉 inter-
sects any open definable neighborhood in X of 〈b, b〉. Clearly X is definably
compact but not Hausdorff, and X2 is a definably compact subset which is
not closed (in X).

It is desirable to work in a situation where definably compact subsets
are closed. We will show that this is the case in Hausdorff definable spaces
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when M has definable Skolem functions. First, we need to introduce some
notation.

Let X be a definable space and let (Xi, θi)i≤k be the definable charts of
X with θi(Xi) ⊆Mni . Let N = n1 + · · ·+nk and fix ∗ ∈M. For each i ≤ k,
let πi : MN = Mn1×· · ·×Mnk →Mni be the natural projection and let ρi :
Mni →MN be the inclusion with ρi(M

ni) = {∗}× · · · × Mni︸︷︷︸
position i

× · · · × {∗}

⊆ MN . Identify each Mni with ρi(M
ni) ⊆ MN . Identify also each θi(Xi)

with ρi(θi(Xi)) ⊂MN and each θi with ρi ◦ θi.
For a ∈ X, let Ia = {i ≤ k : a ∈ Xi} and set

D(a) =
{〈
〈d−1 , d

+
1 〉, . . . , 〈d

−
N , d

+
N 〉
〉
∈M2N :

θj(a) ∈ πj
( N∏
l=1

(d−l , d
+
l )
)

for all j ∈ Ia
}
.

Consider the finite set IX = {I ⊆ {1, . . . , k} : I = Ia for some a ∈ X}.
Then each XI = {x ∈ X : Ix = I} with I ∈ IX is a definable subset and
X =

⊔
I∈IX XI . Therefore, {D(a)}a∈X is a uniformly definable family of

definable sets, since it is defined by the first-order formula∨
I∈IX

[
(a ∈ XI) ∧

∧
j∈I

Nj∧
l=Nj−1+1

(d−l < θj(a)l < d+l )
]

where for each i ≤ k we set Ni = n1 + · · · + ni and where θj(a)l is the
l-coordinate of θj(a) ∈MN .

For d, d′ ∈ D(a) we set d � d′ if
∏N
l=1(d

−
l , d

+
l ) ⊆

∏N
l=1(d

′−
l , d

′+
l ), and

write d ≺ d′ whenever
∏N
l=1(d

−
l , d

+
l ) ⊂

∏N
l=1(d

′−
l , d

′+
l ).

The following are immediate:

(D0) The relation � on D(a) is a definable downwards directed order
on D(a).

(D1) D(a) ⊆M2N is an open definable subset.
(D2) If d ∈ D(a) then {d′ ∈ D(a) : d′ ≺ d} is an open definable subset

of D(a).

For a ∈ X and d = 〈〈d−1 , d
+
1 ), . . . , 〈d−N , d

+
N 〉〉 ∈ D(a), set

U(a, d) =
⋂
j∈Ia

θ−1j

(
θj(Xj) ∩ πj

( N∏
l=1

(d−l , d
+
l )
))
.

Then {U(a, d)}d∈D(a) is a uniformly definable system of fundamental open
definable neighborhoods of a in X.

The following will also be useful:
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(D3) If a, a′ ∈ X are such that Ia′ ⊆ Ia, then for every d ∈ D(a)∩D(a′)
we have U(a, d) ⊆ U(a′, d).

Finally we will also require:

(D4) If a ∈ X and W is an open definable neighborhood of a, then
{d ∈ D(a) : U(a, d) ⊂W} is an open definable subset of D(a).

If B ⊆ X is a definable subset and ε : B →M2N is a definable map such
that ε(x) ∈ D(x) for all x ∈ B, then

U(B, ε) =
⋃
x∈B

U(x, ε(x))

is an open definable neighborhood of B in X. This implies:

Remark 2.6. The notions of open (resp. closed) in a definable space X
are first-order in the sense that if (At)t∈T is a uniformly definable family of
definable subsets of X, then the set of all t ∈ T such that At is an open
(resp. a closed) subset of X is a definable set.

Recall that a topological space X is regular if the following equivalent
conditions hold:

• for every a ∈ X and S ⊆ X closed such that a 6∈ S, there are open
disjoint subsets U and V of X such that a ∈ U and S ⊆ V ;
• for every a ∈ X and W ⊆ X open such that a ∈ W , there is an open

subset V of X such that a ∈ V and V ⊆W .

Proposition 2.7. Suppose that M has definable Skolem functions. Let
X be a Hausdorff definable space. Then for any a ∈ X and any definably
compact subset K ⊆ X such that a 6∈ K, there are finitely many definably
compact subsets Ki (i = 1, . . . , l) of K, continuous definable functions εi :
Ki →M2N with εi(x) ∈ D(x) for all x ∈ Ki, and a d ∈ D(a) such that

K ⊆
l⋃

i=1

U(Ki, εi), U(a, d) ∩
l⋃

i=1

U(Ki, εi) = ∅.

In particular, if X is a Hausdorff, definably compact definable space, then
X is regular.

Proof. We fix a ∈ X and prove the result by induction on the dimension
of definably compact subsets K ⊆ X such that a 6∈ K.

If dimK = 0, then this follows because X is Hausdorff. Assume the
result holds for every definably compact subset L of X such that a 6∈ L and
dimL < dimK.

Since X is Hausdorff, for each x ∈ K there are d′ ∈ D(x) and d ∈ D(a)
such that U(a, d) ∩ U(x, d′) = ∅. By definable Skolem functions there are
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definable maps g : K → M2N and h : K → M2N such that, for all
x ∈ K,

g(x) ∈ D(a), h(x) ∈ D(x), U(a, g(x)) ∩ U(x, h(x)) = ∅.

Since, by Remark 2.6, continuity is first-order, the subset of K where ei-
ther g or h is not continuous is a definable subset. By working in charts
and using [4, Chapter 3, (2.11), and Chapter 4, (1.8)] this definable sub-
set has dimension < dimK, and if L is the closure of this subset, then
dimL < dimK. By induction hypothesis, there are finitely many defin-
ably compact subsets Li (i = 1, . . . , k) of L, continuous definable functions
εi : Li → M2N with εi(x) ∈ D(x) for all x ∈ Li, and a dL ∈ D(a) such
that

L ⊆
k⋃
i=1

U(Li, εi), U(a, dL) ∩
k⋃
i=1

U(Li, εi) = ∅.

Let K ′ = K \
⋃k
i=1 U(Li, εi). Then K ′ is definably compact and both

g| : K ′ → M2N and h| : K ′ → M2N are continuous. We show that there is
dK′ ∈ D(a) such that dK′ � g|(x) for all x ∈ K ′.

Write g(x) = 〈〈g−(x)1, g
+(x)1〉, . . . , 〈g−(x)N , g

+(x)N 〉〉 ∈ D(a) where,
for each l = 1, . . . , N , g−(x)l and g+(x)l are the two l-components of g(x).

By Fact 2.3, for each l = 1, . . . , N, let d−l = max{g−(x)l : x ∈ K ′} and
d+l = min{g+(x)l : x ∈ K ′}. Since each d−l equals g−(z)l for some z ∈ K ′,
and similarly each d+l equals g+(z′)l for some z′ ∈ K ′, we have dK′ :=
〈〈d−1 , d

+
1 〉, . . . , 〈d

−
N , d

+
N 〉〉 ∈ D(a). By construction we also have dK′ � gl(x)

for all x ∈ K ′.
To finish the proof, choose d � dL, dK′ by (D0) and, for each i = 1, . . . , k,

set Ki = Li and also take Kk+1 = K ′ and εk+1 = h|K′ . Then, by construc-
tion,

K ⊆
k+1⋃
i=1

U(Ki, εi), U(a, d) ∩
k+1⋃
i=1

U(Ki, εi) = ∅.

The following is now immediate:

Corollary 2.8. Suppose that M has definable Skolem functions, and
X is a Hausdorff definable space. If K is a definably compact subset of X,
then K is a closed definable subset.

We will require the following:

Lemma 2.9. Suppose that M has definable Skolem functions. Let X be
a Hausdorff, definably connected, definable space and K ⊆ X a definably
compact subset. Let ε : K → M2N be a definable continuous map such that
ε(x) ∈ D(x) for all x ∈ K, and suppose that for each w ∈ K there is



8 M. J. Edmundo et al.

d ∈ D(w) such that ε(w) ≺ d and U(w, d) is definably compact. Then⋃
x∈K

U(x, ε(x))

is a closed definably compact definable neighborhood of K. In particular,

U(K, ε) =
⋃
x∈K

U(x, ε(x)) =
⋃
x∈K

U(x, ε(x)).

Proof. Let α : (a, b) →
⋃
x∈K U(x, ε(x)) be a definable curve. We have

to show that limt→b− α(t) exists in
⋃
x∈K U(x, ε(x)).

By definable Skolem functions there is a definable map β : (a, b) → K
such that for each t ∈ (a, b) we have

α(t) ∈ U
(
β(t), ε(β(t))

)
.

By o-minimality, after shrinking (a, b) if necessary, i.e., after replacing a by
a′ ∈ (a, b), we may assume that β is a definable curve in K. Since K is
definably compact, let w = limt→b− β(t) ∈ K. Let also β : (a, b]→ K be the
continuous definable map such that β|(a,b) = β|(a,b).

Recall that ε◦β(b) = ε(w) ∈ D(w) and D(w) ⊆M2N is an open definable
subset by (D1). Since ε : K → M2N is continuous, it follows from the
continuity of ε ◦ β : (a, b] → M2N at b that there is a′ ∈ (a, b) such that
ε ◦ β(t) ∈ D(w) for all t ∈ [a′, b].

Since for each j ∈ Iw, Xj is an open definable neighborhood of w, by
continuity, after shrinking (a′, b] if necessary, we may assume that β(t) ∈ Xj

for all t ∈ [a′, b] and all j ∈ Iw. Thus Iw ⊆ Iβ(t) for all t ∈ [a′, b]. Therefore,

by (D3), for all t ∈ [a′, b] we have U(β(t), ε(β(t))) ⊆ U(w, ε(β(t))).

In particular, for each t ∈ [a′, b) we have

α(t) ∈ U(w, ε(β(t))).

By hypothesis there is d ∈ D(w) such that ε(w) = ε(β(b)) ≺ d and
U(w, d) is definably compact. By (D2) and continuity of ε ◦ β : [a′, b] →
D(w) ⊆ M2N , after shrinking (a′, b] if necessary, we may further assume
ε(β(t)) ≺ d for all t ∈ [a′, b]. Therefore,

α(t) ∈ U(w, d)

for all t ∈ [a′, b).

As U(w, d) is definably compact, the limit limt→b− α(t) ∈ U(w, d) exists.
Let v = limt→b− α(t) ∈ U(w, d). We want to show that v ∈ U(w, ε(w)).
Suppose not and set L = U(w, ε(w)). Since L is a definably compact subset
of U(w, d), by Proposition 2.7 there are finitely many definably compact
subsets Li (i = 1, . . . , k) of L, continuous definable functions εi : Li →M2N
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with εi(x) ∈ D(x) for all x ∈ Li, and a dL ∈ D(v) such that

L ⊆
k⋃
i=1

U(Li, εi), U(v, dL) ∩
k⋃
i=1

U(Li, εi) = ∅.

We have U(w, ε(w)) ⊆ L ⊆
⋃k
i=1 U(Li, εi). If U(w, ε(w)) =

⋃k
i=1 U(Li, εi)

then U(w, ε(w)) = L = U(w, ε(w)), and so U(w, ε(w)) is a closed and
open definable subset of X. Since X is definably connected we would have
U(w, ε(w)) = X and so v ∈ U(w, ε(w)), which is a contradiction.

Since U(w, ε(w)) ⊂
⋃k
i=1 U(Li, εi) and

⋃k
i=1 U(Li, εi) is an open definable

neighborhood of w, by (D4) there is a′′ ∈ [a′, b] such that U(w, ε(β(t))) ⊂⋃k
i=1 U(Li, εi) for all t ∈ [a′′, b]. Therefore, for each t ∈ [a′′, b] we have

α(t) ∈
k⋃
i=1

U(Li, εi).

This implies v ∈
⋃k
i=1 U(Li, εi), contradicting U(v, dL)∩

⋃k
i=1 U(Li, εi) = ∅.

By Corollary 2.8,
⋃
x∈K U(x, ε(x)) is closed and hence

U(K, ε) =
⋃
x∈K

U(x, ε(x)) =
⋃
x∈K

U(x, ε(x)).

Recall that a definable space X is definably normal if the following equiv-
alent conditions hold:

(1) for any disjoint closed definable subsets Z1 and Z2 of X there are
disjoint open definable subsets U1 and U2 of X such that Zi ⊆ Ui
for i = 1, 2.

(2) for every S ⊆ X closed definable and W ⊆ X open definable such
that S ⊆ W , there is an open definable subsets U of X such that
S ⊆ U and U ⊆W .

In general, regular does not imply definably normal:

Example 2.10 (Regular non-definably normal definable space). Assume
that M = (M,<) is a dense linearly ordered set with no end points. Let
a, b, c, d ∈M be such that c < a < b < d and let X = (c, d)× (c, d)\{〈a, b〉}.
Since X is affine, it is regular. Note also that the only open definable subsets
of X are the intersections with X of definable subsets of M2 which are finite
unions of nonempty finite intersections W1∩· · ·∩Wk where each Wi is either
an open box in M2, {〈x, y〉 ∈M2 : x < y} or {〈x, y〉 ∈M2 : y < x}.

Let C = {〈x, y〉 ∈ X : x = a} and D = {〈x, y〉 ∈ X : y = b}. Then C and
D are closed disjoint definable subsets of X. However, by the description of
open definable subsets of X, there are no open disjoint definable subsets U
and V of X such that C ⊆ U and D ⊆ V .
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Theorem 2.11. Suppose that M has definable Skolem functions. If X is
a Hausdorff, definably compact definable space, then X is definably normal.
In fact, for every closed definable subset K ⊆ X and every open definable
subset V ⊆ X, if K ⊆ V then there are finitely many definably compact sub-
sets Ki (i = 1, . . . , l) of K and continuous definable functions εi : Ki →M2N

with εi(x) ∈ D(x) for all x ∈ Ki such that

K ⊆
l⋃

i=1

U(Ki, εi),
l⋃

i=1

U(Ki, εi) ⊆ V.

Proof. Clearly we may assume that X is definably connected, and we
can fix an open definable subset V ⊆ X. We prove the result by induction
on the dimension of closed definable subsets K ⊆ X such that K ⊂ V.

If dimK = 0 then the result follows since X is regular (Proposition 2.7).
So assume that the result holds for every closed definable subset L such that
L ⊆ V and dimL < dimK.

Since X is regular (Proposition 2.7), for each x ∈ K there is d ∈ D(x)
such that U(x, d) ⊆ V. Since the property “d ∈ D(x) and U(x, d) ⊆ V ” is
first-order (Remark 2.6), by definable Skolem functions there is a definable
map δ : K →M2N such that, for all x ∈ K,

δ(x) ∈ D(x), U(x, δ(x)) ⊆ V.

By definable Skolem functions again and by (D2), there is a definable map
ε : K →M2N such that, for all x ∈ K,

ε(x) ∈ D(x), ε(x) ≺ δ(x), U(x, ε(x)) ⊆ V.

Since, by Remark 2.6, continuity is first-order, the subset of K where ε is
not continuous is a definable subset. By working in charts and using [4,
Chapter 3, (2.11), and Chapter 4, (1.8)] this definable subset has dimension
< dimK, and if L is the closure of this subset, then dimL < dimK. By
induction hypothesis, there are finitely many definably compact subsets Li
(i = 1, . . . , k) of L and continuous definable functions εi : Li → M2N with
εi(x) ∈ D(x) for all x ∈ Li such that

L ⊆
k⋃
i=1

U(Li, εi),

k⋃
i=1

U(Li, εi) ⊆ V.

Let K ′ = K \
⋃k
i=1 U(Li, εi). Then K ′ is a closed definable subset and

ε′ = ε| : K ′ → M2N is continuous. Furthermore, for each w ∈ K ′ there is

d = δ(w) ∈ D(w) such that ε′(w) ≺ d and U(w, d) is definably compact.
Therefore, by Lemma 2.9, we have U(K ′, ε′) ⊆ V.
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For each i = 1, . . . , k, setKi = Li and also takeKk+1 = K ′ and εk+1 = ε′.
Then, by construction,

K ⊆
k+1⋃
i=1

U(Ki, εi),

k+1⋃
i=1

U(Ki, εi) ⊆ V.

Definable normality gives the shrinking lemma (compare with [4, Chap-
ter 6, (3.6)]):

Corollary 2.12 (The shrinking lemma). Suppose that M has definable
Skolem functions. Let X be a Hausdorff definably compact definable space.
If {Ui : i = 1, . . . , n} is a covering of X by open definable subsets, then there
are definable open subsets Vi and definable closed subsets Ci of X (1 ≤ i ≤ n)
with Vi ⊆ Ci ⊆ Ui and X =

⋃
{Vi : i = 1, . . . , n}.

2.2. Local almost everywhere curve selection. To prove our results
about definably proper maps later we will need a local version of an extension
to definable spaces of the almost everywhere curve selection [17, Theorem
2.3]:

Fact 2.13. If C ⊆ Mn is a definable subset which is not closed, then
there is a definable set E ⊆ C \ C such that dimE < dim(C \ C) and for
every x ∈ C \ (C ∪E) there is a definable curve in C which has x as a limit
point.

We say that almost everywhere curve selection holds for a definable space
X if for every definable subset C ⊆ X which is not closed, there is a definable
set E ⊆ C \C such that dimE < dim(C \C) and for every x ∈ C \ (C ∪E)
there is a definable curve in C which has x as a limit point.

For general definable spaces, even affine ones, even if M has definable
Skolem functions, almost everywhere curve selection does not hold:

Example 2.14. (1) In M = (Q, <), for the definable set D = {〈x, y〉 ∈
Q2 : 0 < y < x} there is no definable curve in D with limit d = 〈0, 0〉. (This
example is from [17].)

(2) Let Γ = (R, <, 0,−,+, (q)q∈Q). Let Γ0 = {0} × Γ and Γ1 = {1} × Γ ,
and ∞ be a new symbol such that 〈0, x〉 < ∞ < 〈1, y〉 for all x, y ∈ R.
Let M = Γ0 ∪ {∞} ∪ Γ1 be equipped with the natural induced total order
from <. Let M be the structure obtained by including on Γ0 and on Γ1 the
structure from Γ. Then M has definable Skolem functions (since each copy
of Γ has definable Skolem functions by [4, Chapter 6, (1.2)]). However, for
the definable set D = {〈〈0, x〉, 〈0, y〉〉 ∈ M2 : x, y > 0} there is no definable
curve in D with limit d = 〈〈0, 0〉,∞〉. Indeed, any definable curve in D will
be definable in Γ and so its graph will be a piecewise linear subset of D
[4, Chapter 1, (7.8)]. By piecewise linearity there are no definable bijections
between bounded and unbounded intervals, and so no definable curve in D
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will have d = 〈〈0, 0〉,∞〉 as a limit point. (This example is essentially the
same as the Γ∞ from [14, Section 4.1]; the only difference is that we added
a new copy of Γ, the Γ1, so that our M has no endpoints.)

In both cases, if X = D ∪ {d} then almost everywhere curve selection
does not hold for the definable space X since in X we have D \D = {d}.

Almost everywhere curve selection fails for X ⊆ M2 in Example 2.14
because X is not a locally closed subset of M2:

Lemma 2.15. Suppose that X is a definable space and that almost every-
where curve selection holds for X. Then it also holds for every locally closed
definable subset of X.

Proof. Let Z be a closed definable subset of X and let C ⊆ Z be a
definable subset which is not closed in Z. Since Z is closed, C = clZ(C) ⊆ Z
(the closure of C in Z), so C \C = clZ(C) \C 6= ∅ and the result follows by
the assumption on X.

Let U be an open definable subset of X and let C ⊆ U be a definable
subset which is not closed in U . Note that C ∩ U = clU (C). Let B =
C ∪ (C \ U) = C ∪ ((C \ C) \ U). Then ∅ 6= clU (C) \ C = C ∩ U \ C =
(C \ C) ∩ U = B \ B and the result follows by applying the assumption on
X to B. Note that any definable curve in B with limit a point in B \B ⊆ U
must enter U , and so gives a definable curve in C = B ∩ U.

Let Z ∩U be a general locally closed definable subset of X, where Z is a
closed definable subset and U is an open definable subset. Let C ⊆ Z∩U be
a definable subset which is not closed in Z ∩ U. Then clZ∩U (C) = C ∩ U =
clU (C) and clU (C) \C = clZ∩U (C) \C 6= ∅, and therefore the result follows
from the previous case.

Lemma 2.16. Suppose that X is a definable space and V and W are
open definable subsets such that V ∪W = X and almost everywhere curve
selection holds for V and W . Then it also holds for X.

Proof. Let C ⊆ X = V ∪W be a definable subset which is not closed.
Let CV = C ∩ V ⊆ V and let CW = C ∩ W ⊆ W . Then we have
C = CV ∪ CW , C = CV ∪ CW and clV (CV ) = CV ∩ V = C ∩ V , and
similarly clW (CW ) = CW ∩W = C ∩W. So C = (C ∩ V ) ∪ (C ∩ W ) =
clV (CV ) ∪ clW (CW ). Hence, C \ C = (clV (CV ) \ C) ∪ (clW (CW ) \ C) =
(clV (CV ) \ CV ) ∪ (clW (CW ) \ CW ).

If CV is not closed in V , by the hypothesis, there is a definable set
FV ⊆ clV (CV ) \ CV such that dimFV < dim(clV (CV ) \ CV ) and for every
x ∈ clV (CV ) \ (CV ∪ FV ) there is a definable curve in CV which has x as
a limit point. Similarly, if CW is not closed in W , there is a definable set
FW ⊆ clW (CW ) \ CW such that dimFW < dim(clW (CW ) \ CW ) and for
every x ∈ clW (CW ) \ (CW ∪ FW ) there is a definable curve in CW which
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has x as a limit point. Let EV be FV if the latter exists, and ∅ otherwise.
Similarly, let EW be FW if it exists, and ∅ otherwise. Let E = EV ∪ EW .
Since C \ C = (clV (CV ) \ CV ) ∪ (clW (CW ) \ CW ) we have E ⊆ C \ C.
As C = CV ∪ CW , for every x ∈ C \ (C ∪ E) there is a definable curve
in C which has x as a limit point. Since dimE = max{dimEV ,dimEW }
and dimC \C = max{dim(clV (CV ) \CV ), dim(clW (C) \CW )} we also have
dimE < dim(C \ C), as required.

By Fact 2.13, Lemma 2.15 and an induction argument using Lemma 2.16
we see that:

Corollary 2.17. Almost everywhere curve selection holds for locally
closed definable subsets of definable manifolds.

Let X be a definable space. We say that X is locally definably compact
if every x ∈ X has a definably compact neighborhood.

We now have the following extension of almost everywhere curve selec-
tion to the nonaffine case, which will be useful later:

Theorem 2.18 (Local almost everywhere curve selection). Suppose that
M has definable Skolem functions. Let X be a Hausdorff, locally definably
compact definable space. If C ⊆ X is a definable subset which is not closed,
then for every z ∈ C \ C there is a definable open neighborhood V of z
in X such that V is definably compact, and there is a definable set E ⊆
(C \ C) ∩ V such that dimE < dim((C ∩ V ) \ (C ∩ V )), and for every
x ∈ (C ∩ V ) \ ((C ∩ V ) ∪ E) there is a definable curve in C ∩ V which has
x as a limit point.

Proof. By the assumption on X we get V such that V is definably com-
pact and so definably normal (Theorem 2.11). The result then follows once
we show that almost everywhere curve selection holds for definably normal,
definably compact definable spaces Y.

Let Y be such a space. Consider the definable charts (Ui, φi)
l
i=1 of Y .

Since Y is definably normal, by the shrinking lemma there are open definable
subsets Vi (1 ≤ i ≤ l) and closed definable subsets Ci (1 ≤ i ≤ l) such that
Vi ⊆ Ci ⊆ Ui and Y =

⋃
{Vi : i = 1, . . . , l}. Since each Ci is definably

compact and each φi is a definable homeomorphism, we see that each φi(Ci)
is a closed (and bounded) definable subset of Mni , and hence, by Fact 2.13
and Lemma 2.15, each φi(Ci) and so each Ci has almost everywhere curve
selection. Therefore, by Lemma 2.15, each Vi has almost everywhere curve
selection. Now we conclude by induction on l, using Lemma 2.16, that Y
has almost everywhere curve selection.

The second part of the proof of Theorem 2.18 shows:
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Corollary 2.19. Almost everywhere curve selection holds for definably
normal, definably compact definable spaces, even without assuming that M
has definable Skolem functions.

3. Proper morphisms in Def

3.1. Preliminaries. Here we recall some preliminary notions for the
category Def whose objects are definable spaces and whose morphisms are
continuous definable maps between definable spaces.

Let f : X → Y be a morphism in Def. We say that:

• f : X → Y is closed in Def (i.e., definably closed) if for every object A
of Def such that A is a closed subset of X, its image f(A) is a closed
(definable) subset of Y.
• f : X → Y is a closed (resp. open) immersion if f : X → f(X) is a

homeomorphism and f(X) is a closed (resp. open) subset of Y .

Proposition 3.1. In the category Def the cartesian square of any two
morphisms f : X → Z and g : Y → Z in Def exists and is given by a
commutative diagram

X ×Z Y
pY //

pX
��

Y

g

��
X

f // Z

where the morphisms pX and pY are known as projections. The cartesian
square has the following universal property: for any other object Q of Def
and morphisms qX : Q→ X and qY : Q→ Y of Def for which the following
diagram commutes:

Q

qX

  

qY

&&

u

##
X ×Z Y

pX
��

pY
// Y

g

��
X

f // Z

there exists a unique natural morphism u : Q → X ×Z Y (called the medi-
ating morphism) making the whole diagram commute. As with all universal
constructions, the cartesian square is unique up to a definable homeomor-
phism.

Proof. The usual fiber product X×ZY = {〈x, y〉 ∈ X×Y : f(x) = g(y)}
(a closed definable subspace of the definable space X×Y ) together with the
restrictions pX : X×ZY → X and pY : X×ZY → Y of the usual projections
determine a cartesian square in the category Def.
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Given a morphism f : X → Y in Def, the corresponding diagonal mor-
phism is the unique morphism ∆ : X → X ×Y X in Def given by the
universal property of cartesian squares:

X

idX

  

idX

&&

∆

$$
X ×Y X

pX
��

pY
// X

f
��

X
f // Y

We say that f : X → Y is separated in Def if the corresponding diagonal
morphism ∆ : X → X ×Y X is a closed immersion.

We say that an object Z in Def is separated in Def if the morphism
Z → {pt} to a point is separated.

Remark 3.2. Since in the above diagram we have pX◦∆ = pY ◦∆ = idX ,
it is clear that the following are equivalent:

(1) f : X → Y (resp. Z) is separated in Def.
(2) The image of the corresponding diagonal morphism∆ : X → X×YX

is a closed (definable) subset of X ×Y X (resp. the diagonal ∆Z of
Z is a closed (definable) subset of Z × Z).

Let Z be an object of Def and s : Z ′ → Z a morphism in Def.

• By a morphism over Z in Def we mean a commutative diagram

X

p
  

f // Y

q

��
Z

of morphisms in Def.
• We call s : Z ′ → Z a base extension in Def, and the induced commu-

tative diagram

X ×Z Z ′

&&

f ′ // Y ×Z Z ′

��
Z ′

where f ′ = f × idZ′ and the down arrows are the natural projections
is called the base extension in Def of
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X

p
  

f // Y

q

��
Z

Note that since the f ′ above is completely determined by the corre-
sponding morphism over Z we will often just say that f ′ : X ×Z Z ′ →
Y ×Z Z ′ is the corresponding base extension morphism.

Let f : X → Y be a morphism in Def. We say that f : X → Y is uni-
versally closed in Def if for any morphism g : Y ′ → Y in Def the morphism
f ′ : X ′ → Y ′ in Def obtained from the cartesian square

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y

in Def is closed in Def.

Definition 3.3. We say that a morphism f : X → Y in Def is proper
in Def if f : X → Y is separated and universally closed in Def.

Definition 3.4. We say that an object Z of Def is complete in Def if
the morphism Z → {pt} is proper in Def.

Below we will relate the notion of proper in Def and complete in Def
with the usual notions of definably proper and definably compact.

3.2. Separated and proper in Def. Here we list the main properties
of morphisms separated or proper in Def.

From Remark 3.2 and the way cartesian squares are defined in Def we
easily obtain the following:

Remark 3.5. Let f : X → Y be a morphism in Def. Then the following
are equivalent:

(1) f : X → Y is separated in Def.
(2) The fibers f−1(y) of f are Hausdorff (with the induced topology).

Directly from the definitions (as in [10, Chapter I, Propositions 5.5.1 and
5.5.5]) or more easily from Remark 3.5 the following is immediate:

Proposition 3.6. In the category Def:

(1) Injective continuous definable maps are separated in Def.
(2) A composition of two morphisms separated in Def is separated in

Def.
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(3) Let

X

p
  

f // Y

q

��
Z

be a morphism over Z in Def and let Z ′ → Z be a base extension
in Def. If f : X → Y is separated in Def, then the corresponding
base extension morphism f ′ : X ×Z Z ′ → Y ×Z Z ′ is separated in
Def.

(4) Let

X

p
  

f // Y

q

��
Z

and

X ′

p′ !!

f ′ // Y ′

q′

��
Z

be morphisms over Z in Def. If f : X → Y and f ′ : X ′ → Y ′ are
separated in Def, then the corresponding product morphism f × f ′ :
X ×Z X ′ → Y ×Z Y ′ is separated in Def.

(5) If f : X → Y and g : Y → Z are morphisms such that g ◦ f is
separated in Def, then f is separated in Def.

(6) A morphism f : X → Y is separated in Def if and only if Y
can be covered by finitely many open definable subsets Vi such that
f| : f

−1(Vi)→ Vi is separated in Def.

Directly from the definitions (as in [11, Chapter II, Proposition 5.4.2
and Corollary 5.4.3], see also [3, Section 9]) one has the following. For the
reader’s convenience we include some details:

Proposition 3.7. In the category Def:

(1) Closed immersions are proper in Def.
(2) A composition of two morphisms proper in Def is proper in Def.
(3) Let

X

p
  

f // Y

q

��
Z

be a morphism over Z in Def and Z ′ → Z a base extension in Def.
If f : X → Y is proper in Def, then the corresponding base extension
morphism f ′ : X ×Z Z ′ → Y ×Z Z ′ is proper in Def.
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(4) Let

X

p
  

f // Y

q

��
Z

and

X ′

p′ !!

f ′ // Y ′

q′

��
Z

be morphisms over Z in Def. If f : X → Y and f ′ : X ′ → Y ′ are
proper in Def, then the corresponding product morphism f × f ′ :
X ×Z X ′ → Y ×Z Y ′ is proper in Def.

(5) If f : X → Y and g : Y → Z are morphisms such that g ◦f is proper
in Def, then:

(i) f is proper in Def;
(ii) if g is separated in Def and f is surjective, then g is proper

in Def.

(6) A morphism f : X → Y is proper in Def if and only if Y can
be covered by finitely many open definable subsets Vi such that f| :

f−1(Vi)→ Vi is proper in Def.

Proof. (1) Let X → Y be a closed immersion and Y ′ → Y a morphism in
Def. Since X ×Y Y ′ → Y ×Y Y ′ = Y ′ is also a closed immersion, it is closed
in Def. So X → Y is universally closed, and it is separated by Proposition
3.6(1).

(2) Let X → Y and Y → Z be morphisms proper in Def and let Z ′ → Z
be a morphism in Def. Since X×Z Z ′ = X×Y (Y ×Z Z ′) and X×Z Z ′ → Z ′

is X ×Y (Y ×Z Z ′) → Y ×Z Z ′ → Z ′, the result follows from the fact
that the composition of morphisms closed in Def is closed in Def, and from
Proposition 3.6(2).

(3) Since X×Z Z ′ = X×Y (Y ×Z Z ′), for every morphism W → Y ×Z Z ′
we have

(X ×Z Z ′)×Y×ZZ′ W = (X ×Y (Y ×Z Z ′))×Y×ZZ′ W = X ×Y W.

Hence, since X×Y W →W is closed in Def by hypothesis, the result follows
by using also Proposition 3.6(3).

(4) The product morphism X×ZX ′ → Y ×Z Y ′ is the composition of the
base extension X ×Z X ′ → Y ×Z X ′, the identification Y ×Z X ′ = X ′×Z Y
and the base extension X ′×Z Y → Y ′×Z Y. So (4) follows from (1) and (3).

(5) Let X → Y and Y → Z be morphisms in Def such that the compo-
sition X → Y → Z is proper in Def.

(i) Let Y ′ → Y be a morphism in Def. Then X ×Z Y ′ → Y ′ obtained
with the composition Y ′ → Y → Z is the same as the composition of
X ×Z Y ′ → X ×Y Y ′, which is surjective, with X ×Y Y ′ → Y ′. Therefore,



Definably proper maps 19

since X ×Z Y ′ → Y ′ is closed in Def, so is X ×Y Y ′ → Y ′, and the result
follows by using also Proposition 3.6(5).

(ii) Let Z ′ → Z be a morphism in Def. Then

X ×Z Z ′
f×idZ′ //

p
''

Y ×Z Z ′

p′

��
Z ′

is a commutative diagram with f × idZ′ surjective and p closed in Def by
hypothesis. It follows that p′ is closed in Def as required.

(6) Suppose that f : X → Y is a morphism in Def and let {Vi}i≤k be a
finite cover of Y by open definable subsets. If g : Y ′ → Y is a morphism in
Def, then {f−1(Vi)}i≤k (resp. {g−1(Vi)}i≤k) is a finite cover of X (resp. Y ′)
by open definable subsets, and {f−1(Vi) ×Y g−1(Vi)}i≤k is a finite cover of
X×Y Y ′ by open definable subsets. One the other hand, f−1(Vi)×Y g−1(Vi) =
f−1(Vi)×Vi g−1(Vi) and

f−1(Vi)×Vi g−1(Vi)
i //

p′i
��

X ×Y Y ′

p′

��
g−1(Vi)

j // Y ′

is a commutative diagram with i and j the inclusions, p′ the projection and
p′i the restriction of p′. Since p′ is closed in Def if and only if each p′i is closed
in Def, the result follows by using also Proposition 3.6(6).

Corollary 3.8. Let f : X → Y be a morphism in Def and Z ⊆ X an
object in Def which is complete in Def. Then:

(1) Z is a closed (definable) subset of X.
(2) f|Z : Z → Y is proper in Def.
(3) f(Z) ⊆ Y is (definable) complete in Def.
(4) If f : X → Y is proper in Def and C ⊆ Y is an object in Def which

is complete in Def, then f−1(C) ⊆ X is (definable) complete in Def.

From Proposition 3.7 we also obtain in a standard way the following:

Corollary 3.9. Let B be a full a subcategory of the category of defin-
able spaces Def whose set of objects is:

• closed under taking locally closed definable subspaces of objects of B;
• closed under taking cartesian products of objects of B.

Then the following are equivalent:

(1) Every object X of B is completable in B, i.e., there exists an object
X ′ of B which is complete in Def together with an open immersion
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i : X ↪→ X ′ in B with i(X) dense in X ′. Such an i : X ↪→ X ′ is
called a completion of X in B.

(2) Every morphism f : X → Y in B is completable in B, i.e., there
exists a commutative diagram

X

f
��

i // X ′

f ′

��
Y

j // Y ′

of morphisms in B such that i is a completion of X in B, and j is
a completion of Y in B.

(3) Every morphism f : X → Y in B has a proper extension in B, i.e.,
there exists a commutative diagram

X

f   

ι // P

f
��
Y

of morphisms in B such that ι is a open immersion with ι(X) dense
in P and f proper in Def.

Proof. Assume that (1) holds. Let h : X → Y be a morphism in B.
Let j : Y → Y ′ be a completion of Y in B. Choose also a completion
g : X → X ′′ of X in B and note that g × j : X × Y → X ′′ × Y ′ is a
completion of X ×Y in B (since X ′′×Y ′ is complete in Def by Proposition
3.7(4)). Let X ′ be the closure of (g× j)(Γ (h)) in X ′′×Y ′. Then i : X → X ′

given by i = (g × j) ◦ (idX × h) is a completion of X in B (by Proposition
3.7(1) & (5)), and the restriction of the projection X ′′× Y ′ → Y ′ to X ′ is a
morphism h′ : X ′ → Y ′ completing a commutative diagram

X

h
��

i // X ′

h′

��
Y

j // Y ′

of morphisms in B as required in (2).
Assume that (2) holds. Let h : X → Y be a morphism in B. Then there

exists a commutative diagram

X

h
��

i // X ′

h′

��
Y

j // Y ′

of morphisms in B such that i is a completion of X in B, and j is a comple-
tion of Y in B. Let P = h′−1(j(Y )) (an open definable subspace of X ′) and
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h = j−1 ◦ h′|P : P → Y where j−1 : j(Y )→ Y is the inverse of j : Y → j(Y )

which is a definable homeomorphism. Then we have a commutative diagram

X

h   

ι // P

h
��
Y

of morphisms in B such that ι = i : X → P is a definable open immersion
with ι(X) dense in P and h is proper in Def (since h′ : X ′ → Y ′ is proper
in Def by Corollary 3.8(2)) as required in (3).

Assume that (3) holds. Let X be an object of B. Take h : X → {pt}
to be the morphism in B to a point. Applying (3) to this morphism we
obtain (1).

3.3. Definably proper maps. Here we recall the definition of a de-
finably proper map between definable spaces and prove its main properties.
A special case of this theory appears in [4, Chapter 6, Section 4] in the con-
text of affine definable spaces in o-minimal expansions of ordered groups.

Definition 3.10. A continuous definable map f : X → Y between
definable spaces X and Y is called definably proper if for every definably
compact definable subset K of Y its inverse image f−1(K) is a definably
compact definable subset of X.

From the definitions we deduce:

Remark 3.11. A definable space X is definably compact if and only if
the map X → {pt} is definably proper.

Typical examples of definably proper continuous definable maps are:
(i) f : X → Y where X is a definably compact definable space and Y is
any definable space; (ii) the projection X × Y → Y where X is a definably
compact definable space and Y is any definable space; (iii) closed definable
immersions.

The following is proved just as in the affine case in o-minimal expansions
of ordered groups treated in [4, Chapter 6, Lemma (4.5)]:

Theorem 3.12. Let f : X → Y be a continuous definable map. Suppose
that every definably compact subset of Y is a closed subset (e.g. M has
definable Skolem functions and Y is Hausdorff ). Then the following are
equivalent:

(1) f is definably proper.
(2) For every definable curve α : (a, b) → X and every continuous de-

finable map [a, b]→ Y forming a commutative diagram
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(a, b)
α //

� _

��

X

f

��
[a, b] //

α

==

Y

there is at least one continuous definable map [a, b]→ X making the
whole diagram commutative.

Proof. Assume that (1) holds. Let α : (a, b)→ X be a definable curve in
X such that f ◦ α is completable in Y , say limt→b− f ◦ α(t) = y ∈ Y . Take
c ∈ (a, b) and set K = {f(α(t)) : t ∈ [c, b)} ∪ {y} ⊆ Y. Then K is a defin-
ably compact definable subset of Y , and so f−1(K) is a definably compact
definable subset of X containing α((c, b)). Thus α must be completable in
f−1(K), hence in X.

Assume that (2) holds. Suppose that f is not definably proper. Then
there is a definably compact definable subset K of Y such that f−1(K) is not
a definably compact definable subset of X. Thus there is a definable curve α :
(a, b)→ f−1(K) ⊆ X in f−1(K) which is not completable in f−1(K). Since
f−1(K) is closed (by assumption on Y , K is closed), α is not completable.
But f ◦ α : (a, b)→ K ⊆ Y is completable, which contradicts (2).

By Theorem 3.12 we have the following result which summarizes the
main properties of definably proper maps.

Corollary 3.13. Let A be a full subcategory of Def such that every
definably compact subset of an object of A is a closed subset. Suppose that
the set of objects of A is:

• closed under taking locally closed definable subsets of objects of A;
• closed under taking cartesian products of objects of A.

Then in the category A:

(1) Closed immersions are definably proper.
(2) A composition of two definably proper morphisms is definably proper.
(3) Let

X

p
  

f // Y

q

��
Z

be a morphism over Z in A and Z ′ → Z a base extension in A. If
f : X → Y is definably proper, then the corresponding base extension
morphism f ′ : X ×Z Z ′ → Y ×Z Z ′ is definably proper.
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(4) Let

X

p
  

f // Y

q

��
Z

and

X ′

p′ !!

f ′ // Y ′

q′

��
Z

be morphisms over Z in A. If f : X → Y and f ′ : X ′ → Y ′ are
definably proper, then the corresponding product morphism f × f ′ :
X ×Z X ′ → Y ×Z Y ′ is definably proper.

(5) If f : X → Y and g : Y → Z are morphisms such that g ◦ f is
definably proper, then:

(i) f is definably proper;
(ii) if M has definable Skolem functions, then g|f(X) : f(X)→ Z is

definably proper.

(6) A morphism f : X → Y is definably proper if and only if Y can
be covered by finitely many open definable subsets Vi such that f| :

f−1(Vi)→ Vi is definably proper.

Proof. (1) Consider the commutative diagram

(a, b)

��

α // X

f

��
f(X)

��
[a, b]

γ′

DD

γ

;;

α
// Y

where f : X → Y is a definable closed immersion and we assume we have α
such that α exists. We must show that γ′ exists. As the inclusion f(X) ⊆ Y is
closed and we have f ◦α such that α exists, γ exists. So, since f : X → f(X)
is a definable homeomorphism, we let γ′ = f−1 ◦ γ.

(2) Consider the commutative diagram

(a, b)

��

α // X

f

��
Y

g

��
[a, b]

γ′

EE

γ

<<

α
// Z

where we assume that α is such that α exists. We must show that γ′ exists.
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Since g : Y → Z is definably proper and f ◦ α is such that α exists, by
Theorem 3.12, γ exists. Since f : X → Y is definably proper and α is such
that γ exists, by Theorem 3.12, γ′ exists.

(3) Since the base extension morphism is a special case of the product
morphism, the result follows from (4) below.

(4) Consider the commutative diagram

(a, b)

pX◦α

��

α

��

// [a, b]

xx ��

γ′

��

α

��
X

��

f

::

X ×Z X ′pX
oo

pX′

��

f×f ′
// Y ×Z Y ′

qY
��

qY ′

$$
X ′

�� f ′

DDY

~~

Y ′

xx
Z

where we assume that α is such that α exists. We must show that γ′ : [a, b]→
X ×Z X ′ exists. Since f : X → Y is definably proper and pX ◦ α is such
that qY ◦α exists, by Theorem 3.12, [a, b]→ X exists. Since f ′ : X ′ → Y ′ is
definably proper and pX′ ◦ α is such that qY ′ ◦ α exists, by Theorem 3.12,
[a, b] → X ′ exists. So we let γ′ be the morphism given by the universal
property of cartesian squares.

(5) (i) Consider the commutative diagram

(a, b)

��

α // X

f

��
[a, b]

g◦α
00

γ′
==

α // Y

g

��
Z

where we assume that α is such that α exists. We must show that γ′ exists.
Since g ◦ f : X → Y is definably proper and α is such that g ◦ α exists, by
Theorem 3.12, γ′ exists.
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(ii) Consider the commutative diagram

X

f
��

(a, b)

��

β ..

α
// Y

g

��
[a, b]

γ

FF

γ′

==

α
// Z

where we assume that α is such that α exists. We must show that γ′ exists.
Since f is surjective, by definable Skolem functions let β be such that α =
f ◦ β. Since g ◦ f : X → Y is definably proper and β is such that α exists,
by Theorem 3.12, γ exists. Now take γ′ = f ◦ γ.

(6) One implication is clear. Suppose that there are open definable sub-
sets V1, . . . , Vl of Y such that each restriction f| : f−1(Vi) → Vi is defin-
ably proper. Let α : (a, b) → X be a definable curve such that f ◦ α :
(a, b) → Y is completable. Without loss of generality it is enough to show
that limt→b− α(t) exists in X. Let z = limt→b− f ◦α(t) ∈ Y and let i be such
that z ∈ Vi. By continuity, let c ∈ (a, b) be such that f ◦ α([c, b)) ⊆ Vi.
Then α| : (c, b) → f−1(Vi) ⊆ X is a definable curve in f−1(Vi) such
that f| ◦ α| : (c, b) → Vi is completable. By hypothesis, α| : (c, b) →
f−1(Vi) ⊆ X is completable in f−1(Vi), and so limt→b− α(t) exists in X
as required.

From Corollary 3.13 we obtain as in Corollary 3.9 the following analogue
for definably proper. In the case of o-minimal expansions of real closed fields
this can be read off from [4, Chapter 10, (2.6) and (2.7)].

Corollary 3.14. Let B be a full subcategory of Def. Suppose that the
set of objects of B is:

• closed under taking locally closed definable subspaces of objects of B;
• closed under taking cartesian products of objects of B.

Then the following are equivalent:

(1) Every object X of B is definably completable in B, i.e., there exists
a definably compact space X ′ in B together with a definable open
immersion i : X ↪→ X ′ in B with i(X) dense in X ′. Such an i :
X ↪→ X ′ is called a definable completion of X in B.
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(2) Every morphism f : X → Y in B is definably completable in B,
i.e., there exists a commutative diagram

X

f
��

i // X ′

f ′

��
Y

j // Y ′

of morphisms in B such that i is a definable completion of X in B,
and j is a definable completion of Y in B.

(3) Every morphism f : X → Y in B has a definably proper extension
in B, i.e., there exists a commutative diagram

X

f   

ι // P

f
��
Y

of morphisms in B such that ι is a definable open immersion with
ι(X) dense in P and f definably proper.

If B = Def, we do not mention B and we talk of definably completable,
definable completion and definably proper extension.

3.4. Definably proper and proper in Def. Assuming that M has
definable Skolem functions, we will: (i) show that a definably proper map
between Hausdorff locally definably compact definable spaces is the same as
a morphism proper in Def; (ii) prove the definable analogue of the topological
characterization of the notion of proper continuous maps (as closed maps
with compact and Hausdorff fibers).

Theorem 3.15. Suppose that M has definable Skolem functions. Let X
and Y be Hausdorff definable spaces with Y locally definably compact. Let
f : X → Y be a continuous definable map. Then the following are equivalent:

(1) f is proper in Def.
(2) f is definably proper.

Proof. Assume that (1) holds. Let γ : (a, b)→ X be a definable curve in
X and suppose that f ◦ γ : (a, b)→ Y is completable. By Theorem 3.12, we
need to show that γ : (a, b)→ X is completable in X. By assumption f ◦ γ
extends to a continuous definable map g : [a, b] → Y . Consider a cartesian
square of continuous definable maps
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(a, b)

!!

γ

!!

γ′

%%
X ×Y [a, b]

f ′

��

g′
// X

f

��
[a, b]

g // Y

together with the continuous definable map γ′ : (a, b)→ X×Y [a, b] obtained
from the maps γ : (a, b)→ X and (a, b) ↪→ [a, b].

Consider γ′((a, b)) ⊆ X×Y [a, b]. By assumption, f ′ : X×Y [a, b]→ [a, b]

is definably closed. So f ′(γ′((a, b))) is a closed definable subset of [a, b]. But

(a, b) = f ′(γ′((a, b))) ⊆ f ′(γ′((a, b))) and so f ′(γ′((a, b))) = [a, b]. Hence

there are u, v ∈ γ′((a, b)) such that f ′(u) = a and f ′(v) = b. Since f ′ is
the restriction of the projection X × [a, b] → [a, b], f ′ is definably open.
Therefore, limt→a+ γ

′(t) = u and limt→b− γ
′(t) = v and γ′ : (a, b) → X ×Y

[a, b] is completable in X ×Y [a, b]. Thus γ = g′ ◦ γ′ is completable in X as
required.

Assume that (2) holds. Since f : X → Y is separated in Def (Re-
mark 3.5), it is enough to show that f is universally closed in Def. For
that it suffices to consider a cartesian square of continuous definable maps

X ×Y Z
f ′ //

g′

��

Z

g

��
X

f // Y

and show that f ′ is definably closed (i.e., closed in Def).

Let A ⊆ X×Y Z be a closed definable subset and suppose that f ′(A) ⊆ Z
is not closed. By local almost everywhere curve selection (Theorem 2.18)
there is z ∈ f ′(A) \ f ′(A) together with a definable curve β : (a, b) →
f ′(A) ⊆ Y such that limt→b− β(t) = z. By replacing (a, b) with a smaller
subinterval we may assume that limt→a+ β(t) exists in Z, so β is completable
in Z. By definable Skolem functions, after replacing (a, b) with a smaller
subinterval, there exists a definable curve γ : (a, b) → X in X such that
for every t ∈ (a, b) we have 〈γ(t), β(t)〉 ∈ A. Since f ◦ γ = g ◦ β and β
is completable in Z, g ◦ β is completable in Y . Thus by (2) and Theo-
rem 3.12, γ is completable in X and limt→b− γ(t) exists in X; call it x. If
α = 〈γ, β〉 : (a, b) → X ×Y Z, then limt→b− α(t) = 〈x, z〉 ∈ X ×Y Z and
so 〈x, z〉 ∈ A because A is closed. But then z = f ′(x, z) ∈ f ′(A), which is
absurd.

Note that the assumption that Y is locally definably compact is needed:
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Example 3.16. Consider the setting of Example 2.14 and let X = D,
Y = D ∪ {d} and f : X → Y be the inclusion. Then f : X → Y is definably
proper, Y is not locally definably compact and f is not definably closed.

Corollary 3.17. Suppose that M has definable Skolem functions. Let
X be a Hausdorff definable space. Then the following are equivalent:

(1) X is definably compact.
(2) X is complete in Def.

The following is the definable analogue of the topological characterization
of the notion of proper continuous maps (as closed maps with compact
and Hausdorff fibers). A similar result appears in the semialgebraic case [3,
Theorem 12.5]:

Theorem 3.18. Suppose that M has definable Skolem functions. Let X
and Y be Hausdorff definable spaces with Y locally definably compact. Let
f : X → Y be a continuous definable map. Then the following are equivalent:

(1) f is definably proper.
(2) f is definably closed and has definably compact fibers.

Proof. Assume that (1) holds. Then f : X → Y has definably compact
fibers and, by Theorem 3.15, f is definably closed.

Assume that (2) holds. Let K be a definably compact definable subset
of Y . Let α : (a, b)→ f−1(K) be a definable curve in f−1(K). Suppose that
limt→b− α(t) does not exist in f−1(K). Then this limit does not exist in X
either, since f−1(K) is a closed definable subset of X (by Corollary 2.8, K is
closed). Therefore, if d ∈ (a, b), then for every e ∈ [d, b), α([e, b)) is a closed
definable subset of X contained in f−1(K). Indeed, we can first replace a by
a′ ∈ (a, b) if necessary so that α is injective, and so α((a, b)) has a definable
total order such that α is increasing; then if α([e, b)) is not closed, one
can use local almost everywhere curve selection (Theorem 2.18) to obtain a
definable curve δ : (a′, b′)→ α([e, b)) with say limt→b′− δ(t) ∈ clX(α([e, b)))\
α([e, b)); after replacing a′ by some a′′ ∈ (a′, b′) if necessary, δ will be strictly
increasing, but then we would have limt→b− α(t) = limt→b′− δ(t).

By assumption, for every e ∈ [d, b), f ◦ α([e, b)) is then a closed defin-
able subset of Y contained in K. Since K is definably compact, the limit
limt→b− f ◦ α(t) exists in K; call it c. Hence, c ∈ f ◦ α([e, b)) for every
e ∈ [d, b). Since the definable subset {t ∈ [d, b) : f ◦ α(t) = c} is a fi-
nite union of points and intervals, it follows that there is d′ ∈ [d, b) such
that f ◦ α(t) = c for all t ∈ [d′, b). Thus α([d′, b)) ⊆ f−1(c) ⊆ f−1(K).
Since f−1(c) is definably compact, limt→b− α(t) exists in f−1(K), which is
absurd.
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By Example 3.16 the assumption that Y is locally definably compact is
needed.

4. Invariance and comparison results

4.1. Definably proper in elementary extensions. Here S is an el-
ementary extension of M, and we consider the functor Def → Def(S) from
the category of definable spaces and continuous definable maps to the cat-
egory of S-definable spaces and continuous S-definable maps. This func-
tor sends a definable space X to the S-definable space X(S) and sends a
continuous definable map f : X → Y to the continuous S-definable map
fS : X(S) → Y (S). We show that: (i) f is proper in Def if and only if fS

is proper in Def(S) (Theorem 4.3); (ii) if M has definable Skolem functions
and Y is Hausdorff, then f is definably proper if and only if fS is S-definably
proper (Theorem 4.4).

The following is easy and well known:

Fact 4.1. If M has definable Skolem functions, then so does S.

Since the functor Def → Def(S) is a monomorphism from the boolean
algebra of definable subsets of a definable space X to the boolean algebra
of S-definable subsets of X(S) and it commutes with:

• the interior and closure operations,
• the image and inverse image under (continuous) definable maps,

we have:

Lemma 4.2. Let f : X → Y be a morphism in Def. Then the following
are equivalent:

(1) f is closed in Def (i.e., definably closed).
(2) fS is closed in Def(S) (i.e., S-definably closed).

Proof. Assume that (1) holds. Let A ⊆ X(S) be a closed S-definable
subset and suppose that fS(A) is not a closed subset of Y (S). Then there
is a uniformly definable family {At : t ∈ T} of definable subsets of X such
that A = As(S) for some s ∈ T (S). Since the property of t saying that At is
closed is first-order, after replacing T by a definable subset we may assume
that for all t ∈ T , At is a closed definable subset of X. We also see that
{f(At) : t ∈ T} is a uniformly definable family of definable subsets of Y such
that fS(A) = fS(As(S)). Let E be the definable subset of T of all t such that
f(At) is not closed. Since s ∈ E(S), we have E 6= ∅, which is a contradiction
since by assumption, for every t ∈ T , f(At) is a closed definable subset of Y .

Assume that (2) holds. Let A ⊆ X be a closed definable subset. Then
A(S) ⊆ X(S) is a closed S-definable subset and, by assumption, f(A)(S) =
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fS(A(S)) is a closed S-definable subset of Y (S). So f(A) is a closed definable
subset of Y .

Since the functor Def → Def(S) sends open (resp. closed) definable im-
mersions to open (resp. closed) S-definable immersions and sends cartesian
squares in Def to cartesian squares in Def(S), we have, using Lemma 4.2:

Theorem 4.3. Let f : X → Y a morphism in Def. Then the following
are equivalent:

(1) f is proper (resp. separated) in Def.
(2) fS is proper (resp. separated) in Def(S).

We also have:

Theorem 4.4. Suppose that M has definable Skolem functions. Let X
and Y be definable spaces with Y Hausdorff. Let f : X → Y be a continuous
definable map. Then the following are equivalent:

(1) f is definably proper.
(2) fS is S-definably proper.

Proof. First note that S has definable Skolem functions (Fact 4.1) and
Y (S) is a Hausdorff S-definable space (since Hausdorff is a first-order prop-
erty). Using Corollary 2.8 and Theorem 3.12 in M and Corollary 2.8 and
Theorem 3.12 in S, we deduce the result from:

Claim 4.5. The following are equivalent:

(1) There is a definable curve α : (a, b)→ X such that f ◦α : (a, b)→ Y
is completable in Y but α is not completable in X.

(2) There is an S-definable curve β : (c, d)→ X(S) such that the S-defin-
able curve fS ◦ β : (c, d)→ Y (S) is completable in Y (S) but β is not
completable in X(S).

To prove the claim, assume first that (1) holds; then (2) holds with
(c, d) = (a, b)(S) and β = αS since “α is continuous”, “f ◦ α : (a, b) → Y is
completable in Y ” and “α is not completable in X” are first-order properties.

Now assume that (2) holds; then (1) holds since “β is continuous”,
“fS ◦β : (c, d)→ Y (S) is completable in Y (S)” and “β is not completable in
X(S)” are first-order properties in the parameters defining β (together with
c and d).

The proof of Claim 4.5 above actually shows:

Corollary 4.6. Let X be a definable space. Then the following are
equivalent:

(1) X is definably compact.
(2) X(S) is S-definably compact.
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4.2. Definably proper in o-minimal expansions. Here S is an
o-minimal expansion of M and we again consider the functor Def → Def(S)
as in Section 4.1. This time the functor sends a definable space X to the
S-definable space X and sends a continuous definable map f : X → Y to
the continuous S-definable map f : X → Y . We show that if M has defin-
able Skolem functions, X and Y are Hausdorff and Y is locally definably
compact, then f is definably proper if and only if fS is S-definably proper,
and f is proper in Def if and only if fS is proper in Def(S) (Theorem 4.9).

Fact 4.7. If M has definable Skolem functions, then so does S.

Proof. By Fact 4.1 we may assume that both M and S are ω-saturated.
In this case, by the (observations before the) proof of [4, Chapter 6, (1.2)]
(see also Comment (1.3) there), S has definable Skolem functions if and
only if every nonempty S-definable subset X ⊆M defined with parameters
in a = a1, . . . , al has an element in dclS(a).

So let X be an S-definable subset of M. By o-minimality, X is a finite
union of points {c0, . . . , cm} ⊆ M and open intervals I0, . . . , In ⊆ M with
end points in M ∪ {−∞,∞} with all the ci’s and the end points of the
Ik’s in dclS(a). Thus X is definable over dclS(a) using just equality and
the order relation, hence X is M-definable. Since M has definable Skolem
functions, X has a point in dclM(dclS(a)). Since S is an expansion of M, we
have dclM(dclS(a)) ⊆ dclS(dclS(a)) = dclS(a).

The shrinking lemma (Corollary 2.12) gives the following:

Proposition 4.8. Suppose that M has definable Skolem functions. Let
X be a Hausdorff definable space. Then the following are equivalent:

(1) X is definably compact.
(2) X is S-definably compact.

Proof. By Theorem 2.11, X is definably normal. Let (Xi, φi)i≤l be the
definable charts of X. By the shrinking lemma, there are open definable
subsets Vi (1 ≤ i ≤ l) and closed definable subsets Ci (1 ≤ i ≤ l) such that
Vi ⊆ Ci ⊆ Xi and X =

⋃
{Ci : i = 1, . . . , l}.

Then X is definably compact if and only if each Ci is a definably compact
definable subset of X if and only if each φi(Ci) is also a definably compact
definable subset of Mni , and therefore, by [17, Theorem 2.1], if and only
if each φi(Ci) is a closed and bounded definable subset of Mni . Similarly,
X is S-definably compact if and only if each Ci is an S-definably compact
S-definable subset of X if and only if each φi(Ci) is also an S-definably
compact S-definable subset of Mni , and therefore, by [17, Theorem 2.1]
in S, if and only if each φi(Ci) is a closed and bounded S-definable subset
of Mni . Since “closed” and “bounded” are preserved under going to S, the
result follows.
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Theorem 4.9. Suppose that M has definable Skolem functions. Let X
and Y be Hausdorff definable spaces with Y locally definably compact. Then
the following are equivalent:

(1) f is proper in Def.
(2) f is definably proper.
(3) f is S-definably proper.
(4) f is proper in Def(S).

Proof. First note that since Y is locally definably compact, Y (S) is lo-
cally S-definably compact. By Theorem 3.15 in M and in S it is enough to
prove that f is definably proper if and only if f is S-definably proper. Using
the fact that Y is locally definably compact and Proposition 4.8, one can
show this as in [4, Chapter 6, (4.8), Exercise 2] (see p. 170 for the solution).

4.3. Definably proper in topology. Here M is an o-minimal ex-
pansion of the ordered set of real numbers, and we consider the functor
Def → Top from the category of definable spaces and continuous definable
maps to the category of topological spaces and continuous maps. We show
that if M has definable Skolem functions, then, for Hausdorff locally defin-
ably compact definable spaces, definably proper is the same as proper, and
proper in Def is the same as proper in Top.

As before, we have:

Proposition 4.10. Suppose that M has definable Skolem functions. Let
X be a Hausdorff definable space. Then the following are equivalent:

(1) X is definably compact.
(2) X is compact.

Proof. Follow the proof of Proposition 4.8 using the Heine–Borel the-
orem (a subset of Rn is compact if and only if it is closed and bounded)
instead of [17, Theorem 2.1].

A similar result holds in the semialgebraic case with a completely differ-
ent proof [3, Theorem 9.11]:

Theorem 4.11. Suppose that M has definable Skolem functions. Let X
and Y be Hausdorff definable spaces with Y locally definably compact. Then
the following are equivalent:

(1) f is proper in Def.
(2) f is definably proper.
(3) f is proper.
(4) f is proper in Top.

Proof. First note that Y is locally compact. Next recall that f is proper
if f−1(K) ⊆ X is a compact subset for every K ⊆ Y compact subset, and
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f is proper in Top if it is separated and universally closed in the category
Top of topological spaces. Also, it is well known that f is proper if and only
if f is proper in Top if and only if f is closed and has compact fibers (see
[2, Chapter 1, §10, Theorem 1]).

By Theorem 3.15 it is enough to prove that f is definably proper if and
only if f is proper. Using Theorem 3.18 and Proposition 4.10 one can show
this as in [4, Chapter 6, (4.8), Exercise 3] (see p. 170 for the solution).

5. Definably compact, definably proper and definable types.
Here we show that definable compactness of Hausdorff definable spaces in
o-minimal structures with definable Skolem functions can also be character-
ized by the existence of limits of definable types—extending a similar result
in the affine case [14, Remark 4.2.15]. The corresponding characterization
for definably proper maps between Hausdorff, locally definably compact de-
finable spaces is also given (Theorem 5.3).

Let X be a definable space. A type on X is an ultrafilter α of definable
subsets of X. A type α on X is a definable type on X if for every uniformly
definable family {Ft}t∈T of definable subsets of X with T ⊆Mn for some n,
there is a definable subset T (α) ⊆ T such that Ft ∈ α if and only if t ∈ T (α).

If α is a type on X and x ∈ X, we say that x is a limit of α if for every
open definable subset U of X such that x ∈ U we have U ∈ α.

For affine definable spaces the existence of limits of definable types gives
another criterion for definable compactness (see [14, Remark 4.2.15]). Since
the proof is not written down in [14], for convenience, we include the details.

Fact 5.1. Let Z ⊆Mn be a definable set. Then the following are equiv-
alent:

(1) Z is closed and bounded (i.e., definably compact).
(2) Every definable type on Z has a limit in Z.

Proof. Assume that (1) holds. Let α be a definable type on Z. For each
i = 1, . . . , n, let πi : Mn → M be the projection onto the i-coordinate and
let Zi = πi(Z) and αi = π̃i(α) (the definable type on Zi determined by
the collection of definable subsets {A ⊆ Zi : π−1i (A) ∈ α}). By [16, Lemma
2.3], no αi is a cut, and so, since each Zi is bounded, there is ai ∈ M such
that αi is either determined by x = ai or {b < x < ai : b ∈ M , b < ai}
or {ai < x < b : b ∈ M , ai < b}. In either case ai is the limit of αi in M.
Clearly a = 〈a1, . . . , an〉 ∈Mn is the limit of α in Mn, and since Z is closed,
a ∈ Z as required.

Assume that (2) holds. Let α : (a, b)→ Z be a definable curve. Then the
collection {α([t, b)) : t ∈ (a, b)} of definable subsets of Z determines a type β
on Z such that S ∈ β if and only if α([t, b)) ⊆ S for some t ∈ (a, b). This type
β is definable since for any uniformly definable family {Fl}l∈L of definable
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subsets of Z we have {l ∈ L : Fl ∈ β} = {l ∈ L : ∃t ∈ (a, b) (α([t, b)) ⊆ Fl)}.
By hypothesis, β has a limit z in Z. It equals limt→b− α(t) since for every
d ∈ D(z) we have U(z, d) ∈ β, so α([t, b)) ⊆ U(z, d) for some t ∈ (a, b).

We can use the shrinking lemma to extend this result to nonaffine Haus-
dorff definable spaces:

Theorem 5.2. Suppose that M has definable Skolem functions. Let X
be a Hausdorff definable space. Then the following are equivalent:

(1) X is definably compact.
(2) Every definable type on X has a limit in X.

Proof. By Theorem 2.11, X is definably normal. Let (Xi, θi)i≤k be the
definable charts of X with θi(Xi) ⊆Mni . By the shrinking lemma there are
definable open subsets Vi and definable closed subsets Ci of X (1 ≤ i ≤ n)
with Vi ⊆ Ci ⊆ Xi and X =

⋃
{Ci : i = 1, . . . , n}. We notice that: (i) X is

definably compact if and only if each Ci is definably compact; (ii) every
definable type on X has a limit in X if and only if for each i, every definable
type on Ci has a limit in Ci. Since θi| : Ci → θi(Ci) ⊆ Mni is a definable
homeomorphism, the result now follows by Fact 5.1.

We also have the following definable types criterion for definably proper:

Theorem 5.3. Suppose that M has definable Skolem functions. Let X
and Y be Hausdorff definable spaces with Y locally definably compact. Let
f : X → Y be a continuous definable map. Then the following are equivalent:

(1) f is definably proper.

(2) For every definable type α on X, if f̃(α) has a limit in Y , then α
has a limit in X.

Proof. Assume that (1) holds. Let α be a definable type on X with

lim f̃(α) = y ∈ Y . Since Y is locally definably compact, there is a definable
open neighborhood V of y in Y such that V is definably compact. So, f−1(V )
is a definably compact definable subset of X, and α is a definable type on
f−1(V ). But then, by Theorem 5.2, α has a limit in f−1(V ), hence in X.

Assume that (2) holds. Suppose that f is not definably proper. Then
there is a definably compact definable subset K of Y such that f−1(K) is
not a definably compact definable subset of X. Thus by Theorem 5.2 there
is a definable type α on f−1(K) with no limit in f−1(K). Since f−1(K) is
closed (by Corollary 2.8, K is closed), α does not have a limit in X. But

f̃(α) is a definable type on K ⊆ Y and has a limit by Theorem 5.2, which
contradicts (2).

The following was observed in [14, Remark 4.2.15] in the affine case but
the same proof works here.
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Fact 5.4. Suppose that M has definable Skolem functions. Let X be
a definable space and C ⊆ X a definable subset which is not closed. If
x ∈ C \C, then there is a definable type α on C such that x is a limit of α.

Proof. Consider the definable set D(x) with the relation � (a definable
downwards directed order). By [14, Lemma 4.2.18] (or [13, Lemma 2.19]),
there is a definable type β on D(x) such that for every d ∈ D(x) we have
{d′ ∈ D(x) : d′ � d} ∈ β.

Since x ∈ C, we have U(x, d) ∩ C 6= ∅ for every d ∈ D(x). By definable
Skolem functions, there is a definable map h : D(x) → C such that h(d) is

in U(x, d) ∩ C for every d ∈ D(x). Let α = h̃(β) be the definable type on
C determined by the collection {A ⊆ C : h−1(A) ∈ β} of definable subsets.
Clearly, x is a limit of α.

By Example 3.16 and Fact 5.4, in Theorem 5.3 the assumption that Y is
locally definably compact is needed. Note that, by the same example, this
observation applies also if one replaces the Peterzil–Steinhorn definition of
definably compact (using definable curves [17]) by the Hrushovski–Loeser
definition of definably compact (using definable types [14]).
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1 rue Honoré d’Estienne d’Orves
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