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On the ideal convergence of sequences of
quasi-continuous functions

by

Tomasz Natkaniec and Piotr Szuca (Gdańsk)

Abstract. For any Borel ideal I we describe the I-Baire system generated by the
family of quasi-continuous real-valued functions. We characterize the Borel ideals I for
which the ideal and ordinary Baire systems coincide.

1. Introduction. Laczkovich and Recław [LR09] and (independently)
Debs and Saint Raymond [DSR09] characterized the Borel ideals I for which
the first I-Baire class (the family of pointwise ideal limits of sequences of
continuous functions) is equal to the classical first Baire class. They formu-
lated four equivalent conditions, two in the language of game theory, and
two via some combinatorial properties of the ideal I. Moreover, they showed
that for every non-pathological ideal I, if the class of functions considered is
closed under sums and scaling, then the first I-Baire class for such functions
is equal to the family of all classical limits of such functions.

Our goal is to describe the I-Baire system generated by the family of
quasi-continuous real-valued functions. The notion of quasi-continuity has
been introduced by Kempisty [Kem32]. It plays an important role in the
theory of real functions, particularly in the study of separately continuous
functions (see e.g. [BT10]). It is worth noticing that unlike the continuous
functions, the class of quasi-continuous functions is not closed under arith-
metic sums. This suggests that conditions on I under which the first I-Baire
class for quasi-continuous functions is equal to the ordinary first Baire class
for such functions can be different from the conditions given in [LR09] and
[DSR09]. We prove that this is indeed true (see Theorem 4.4).
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In Section 3 we consider two combinatorial properties of ideals: being
weakly Ramsey and ω-+-diagonalizability. For Borel ideals those proper-
ties are equivalent, which has been proven in terms of some game G(I) by
Laflamme [Laf96]. We will characterize those properties by properties of ideal
limits of sequences of quasi-continuous functions. Next, in Section 4 we apply
those results to characterize the I-Baire system generated by the family of
quasi-continuous real-valued functions defined on a Baire space X. We finish
with a characterization of weakly Ramsey filters in several fashions, similarly
to [LR09]; to do so, we use a characterization of weakly Ramsey filters given
recently by Kwela [Kwe15].

2. Preliminaries. We use standard set-theoretic and topological nota-
tion. In particular, the set of natural numbers is identified with the ordinal ω.
We denote by [ω]ω the family of all infinite subsets of ω. The cardinality of
a set A is denoted by card(A).

Let X be a topological space. For A ⊂ X we denote by intA and clA
the interior and closure of A, respectively. We say that a set A is nowhere
meager in an open set U ⊂ X if A ∩ V is non-meager for each non-empty
open set V ⊂ U .

2.1. Quasi-continuous and pointwise discontinuous functions.
We denote by C(X) the class of all continuous real-valued functions de-
fined on X. The class of all functions f : X → R with the Baire property is
denoted by Baire(X). We will write C (Baire, respectively) instead of C(X)
(Baire(X), respectively) if X is fixed.

A function f : X → R is quasi-continuous at a point x0 ∈ X if for each
open set U 3 x0 and each open set V 3 f(x0) there is a non-empty open
set W ⊂ U with f(W ) ⊂ V [Kem32]; and f is quasi-continuous if it is
quasi-continuous at each x ∈ X. The class of all quasi-continuous real-valued
functions defined on a space X is denoted by QC(X) (or QC if X is fixed).
We say that a set U ⊂ X is semi-open in X if U ⊂ cl intU . It is known
that f : X → R is quasi-continuous iff f−1(U) is semi-open for each open set
U ⊂ R.

A function f : X → R is pointwise discontinuous if the set C(f) of conti-
nuity points of f is dense in X (see e.g. [Kur58, Chapter I.13.III]). The class
of all pointwise discontinuous functions defined on a space X is denoted by
PWD(X) (or PWD if X is fixed).

LetX be a Baire space. Then for any quasi-continuous function f : X→R
the set C(f) is dense (hence residual) in X, thus QC(X) ⊂ PWD(X) ⊂
Baire(X).

Note that PWD(X) is closed with respect to addition, while QC(X)
may not be closed, even for X = R. Recall also that the sum of a continuous
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function and quasi-continuous one is quasi-continuous. More properties of
quasi-continuous functions can be found e.g. in [Bor96].

We will use the following well-known facts.

Lemma 2.1. Assume that X is a Baire space and f : X → R.

(1) If f 6∈ PWD(X) then there are reals α < β such that the sets A =
f−1[(−∞, α)] and B = f−1[(β,∞)] are both dense in some non-
empty open set U ⊂ X.

(2) If f 6∈ Baire(X) then there are reals α < β such that the sets A =
f−1[(−∞, α)] and B = f−1[(β,∞)] are both nowhere meager in some
non-empty open set U ⊂ X.

Lemma 2.2 (Borsik [Bor96, Lemma 1]). Let X be a metric space, F ⊂ X
a closed and nowhere dense set, U ⊂ X non-empty semi-open and F ⊂ clU .
Then there is a sequence (Un)n<ω of non-empty semi-open sets such that:

(1) F ⊂ clUn for each n < ω;
(2)

⋃
n<ω Un = U \ F .

Lemma 2.3. Suppose that X is a metric space and U ⊂ X is a semi-open
set. Then there exists a quasi-continuous function g : U → R such that for
each x ∈ clU \U , y ∈ R and ε > 0 and for every open neighbourhood V ⊂ X
of x, there exists a non-empty open set V ′ ⊂ U ∩ V with

∀x′ ∈ V ′ |g(x′)− y| < ε,

i.e. any extension of g is quasi-continuous on clU .

Proof. Let (Un)n be a sequence of pairwise disjoint non-empty semi-open
sets which satisfy the assertions of Lemma 2.2 for F = clU \ intU . Let (qn)n
be a sequence of all rationals. Define

g(x) =

{
qn for x ∈ Un, n ∈ ω,
0 otherwise.

2.2. Ideal convergence. An ideal on ω is a non-empty family of subsets
of ω closed under taking finite unions and subsets. If not explicitly mentioned
otherwise, we assume that an ideal is proper (6= P(ω)) and contains all finite
sets. We denote by FIN the ideal of all finite subsets of ω. We can talk about
ideals on any other countable set by identifying this set with ω via a fixed
bijection.

For an ideal I we define the dual filter to I as I? = {A : ω \A ∈ I}. We
denote by I+ the set of all subsets of ω which do not belong to I.

By identifying subsets of ω with their characteristic functions, we equip
P(ω) with the product topology of {0, 1}ω. It is known that P(ω) with this
topology is a metrizable compact Polish space without isolated points (it is
homeomorphic to the Cantor set). An ideal I is an Fσ ideal (analytic ideal,
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respectively) if I is an Fσ subset of P(ω) (a continuous image of a Gδ subset
of P(ω), respectively).

Let I be an ideal on ω. Let xn ∈ R (n ∈ ω) and x ∈ R. We say that the
sequence (xn) is I-convergent to x if

{n ∈ ω : |xn − x| ≥ ε} ∈ I
for every ε > 0. We then write I-limxn = x. If I = FIN, then the
I-convergence is equivalent to the classical convergence (see [FNS13]).

2.3. Combinatorial properties of ideals and the game G(I). Let
I be an ideal. We will consider the following properties of the dual filter I?.

Definition 2.4 ([Laf96]).

(1) We call a tree T ⊂ ω<ω an X -tree for some X ⊂ [ω]ω if for each
s ∈ T there is an Xs ∈ X such that s _ n ∈ T for all n ∈ Xs.

(2) I? is weakly Ramsey if any I?-tree has a branch in I+.
(3) I? is ω-+-diagonalizable if there are sets {Xn ∈ I+ : n ∈ ω} such

that for each F ∈ I? there is an n ∈ ω with Xn ⊂ F .
For an ideal I define an infinite game G(I) as follows: player I in the

nth move plays an element Cn of the ideal, and then player II plays any
element an /∈ Cn. Player I wins when {an : n ∈ ω} ∈ I. Otherwise player II
wins. This game was investigated by Laflamme [Laf96], who denoted it by
G(F , ω,F+) for F = I?.

Theorem 2.5 ([Laf96]). For any ideal I and the game G(I):
(1) I has a winning strategy if and only if I? is not weakly Ramsey,

i.e. there exists an I?-tree T with every branch in I;
(2) II has a winning strategy if and only if I? is ω-+-diagonalizable.

Note that theorem above shows that ω-+-diagonalizability implies the
weakly Ramsey property. It seems that for many ideals which occur in the
literature it is easier to construct winning strategies for player I or II than to
verify directly that I? has the relevant combinatorial properties. In Proposi-
tion 2.7 we consider some classes of ideals which are—in our opinion—simple
and important.

The ideal I is dense if for every infinite A there exists an infinite B ⊂ A
with B ∈ I. Note that I is not dense iff I = FIN or I = FIN⊕ J for some
ideal J .

Lemma 2.6. If an ideal I is not dense then player II has a winning
strategy in the game G(I).

Proof. Since I is not dense, there is an infinite set A ⊂ ω such that no
infinite subset of A belongs to I. Then player II wins if in the nth move he
chooses a number an ∈ A \ (Cn ∪ {ai : i < n}).
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Proposition 2.7. For the game G(I):

(1) if I is an analytic P-ideal then I has a winning strategy if I is dense,
otherwise II has a winning strategy (hence G(I) is determined);

(2) if I = NWD = {A ⊂ Q : A is nowhere dense in Q} then II has a
winning strategy;

(3) if I = CONV = {A ⊂ Q : A has finitely many cluster points} then
II has a winning strategy.

Proof. (1) The case of an analytic P-ideal. By [Sol99], I = {A ⊂ ω :
limn→∞ φ(A \ {0, 1, . . . , n}) = 0} for some lsc submeasure φ. For each ε > 0
let Aε = {k ∈ ω : φ({k}) ≥ ε}. We have two possibilities: either

(i) there exists ε > 0 such that Aε is infinite, or
(ii) for each ε > 0 there is Nε ∈ ω with φ({k}) < ε for each k > Nε.

Observe that the first condition characterizes analytic P-ideals which are not
dense. Then, by Lemma 2.6, II has a winning strategy. In the second case in
the nth move I can play Cn = {k ∈ ω : k ≤ N1/n2}. Then, regardless of the
an played by II, φ({ai}i>n) ≤

∑∞
k=n 1/k

2 → 0. Thus, {ai : i ∈ ω} ∈ I, and I
wins.

(2) Case “I = NWD”. Let {Bn}n∈ω be a basis of Q. If in the nth move
II plays an ∈ Bn \ Cn 6= ∅ then {an}n∈ω is dense in Q.

(3) Case “I = CONV”. A strategy for II can be constructed using the
definition of I (we leave this as an exercise). On the other hand, since
CONV ⊂ NWD, if I has a winning strategy in G(CONV) then the same
strategy works in G(NWD). From Borel determinacy of G(CONV) and
G(NWD) (see Proposition 2.8 and use transposition) it follows that the
existence of a winning strategy for II in G(NWD) implies the existence of a
winning strategy for II in G(CONV).

In particular, Proposition 2.7(1) implies that I has a winning strategy in
G(I) for

I = I1/n =

{
A ⊂ ω :

∑
n∈A

1

n
<∞

}
and for

I = Id =
{
A ⊂ ω : lim sup

n→∞

card(A ∩ {0, 1, . . . , n− 1})
n

= 0

}
.

Moreover, the example of I1/n shows that the family of Fσ-ideals for which
player II has a winning strategy forms a proper subset of the class of all
Fσ-ideals.

Proposition 2.8 (folklore, cf. also [LR09, Prop. 3]). G(I) is determined
for every Borel ideal I.
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Proof. Since I is a Borel ideal, the game G(I) is Borel with respect to
the discrete topology on P(ω) (we can consider ω as a subset of P(ω)). Hence
the assertion follows directly from Martin’s Theorem on Borel determinacy
[Kec95, Th. 20.5].

Corollary 2.9. If I is a Borel ideal then I? is ω-+-diagonalizable iff
it is weakly Ramsey.

By Proposition 2.8, for all ideals considered in Proposition 2.7 the game
G(I) is determined, thus the negations of the conditions which characterize
the existence of a winning strategy for II also characterize the existence of a
winning strategy for I.

3. I-limits of sequences of QC functions

Proposition 3.1. Suppose X is a Baire space, fn : X → R, n ∈ ω, are
quasi-continuous and f = I-lim fn. If I? is ω-+-diagonalizable then f is
pointwise discontinuous.

Proof. Suppose f is not pointwise discontinuous. By Lemma 2.1(1) there
are a non-empty open set U ⊂ X and reals α < β such that A=f−1[(−∞, α)]
and B = f−1[(β,∞)] are dense in U . Moreover, we may assume that A is
nowhere meager in U , i.e. A∩W is non-meager for every non-empty open set
W ⊂ U . Since I? is ω-+-diagonalizable, there exists a family {Xn : n < ω}
⊂ I+ such that for each F ∈ I? there is n with Xn ⊂ F . For each x ∈ U ∩A
we have Fx = {n : fn(x) < α} ∈ I?, thus there is nx < ω with Xnx ⊂ Fx.
Since X is a Baire space, there is n for which the set {x ∈ U ∩ A : nx = n}
is dense in some non-empty open set W ⊂ U . For each k ∈ Xn, since fk is
quasi-continuous, we have fk(x) ≤ α for each x ∈W . Now, let x0 ∈W ∩B.
Then F = {k : fk(x0) > β} ∈ I?, so F ∩Xn 6= ∅, a contradiction.

Proposition 3.2. Suppose I? is not weakly Ramsey. Let X be a metric
space. For every meager M ⊂ X and f : X → R with {x : f(x) 6= 0} ⊂ M
there exists a sequence of quasi-continuous functions fn : X → R such that

∀x ∈ X {n ∈ ω : fn(x) 6= f(x)} ∈ I.
Proof. Let T be an I?-tree with every branch in I. Let M =

⋃
n∈ωMn,

where each Mn is nowhere dense. We may also assume that for each s ∈ T :
(i) Xs > s (i.e. minXs > max s);
(ii) Xs_n ⊂ Xs for each s ∈ T and n ∈ ω such that s _ n ∈ T .

Let {Ut : t ∈ ω<ω} be a family of semi-open subsets of X fulfilling the fol-
lowing conditions (such a family exists by Lemma 2.2):

(iii) U∅ = X;
(iv) for each t ∈ ω<ω and n ∈ ω, Ut_n ⊂ Ut;
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(v) for each t ∈ ω<ω and n 6= m, n,m ∈ ω, Ut_n ∩ Ut_m = ∅;
(vi) for each t ∈ ω<ω, Mt :=Mlength(t) ∩ Ut = Ut \

⋃
n∈ω Ut_n;

(vii) for each t ∈ ω<ω and n ∈ ω, Mt ⊂ clUt_n.

Note that from the above construction it follows that M =
⋃
t∈ω<ω Mt.

For each t ∈ ω<ω and n ∈ ω let

last(t _ n) := n, σ(t _ n) := σ(t)_ σt(n),

where σt(n) is the (n + 1)th element of Xσ(t), i.e. σt(n) = p iff p ∈ Xσ(t)
and card(Xσ(t) ∩{0, 1, . . . , p− 1}) = n. Then σ : ω<ω → T is a bijection (see
Fig. 1).

M∅ ⊂ U∅ = X, σ(∅) = ∅,
X∅ = {p0 < p1 < p2 < · · · }

M〈0〉 ⊂ U〈0〉 ⊂ U∅ \M∅,
σ(〈0〉) = 〈p0〉,

X〈p0〉 ⊂ {p1, p2, . . .}

· · ·

p0

M〈1〉 ⊂ U〈1〉 ⊂ U∅ \M∅,
σ(〈1〉) = 〈p1〉,

X〈p1〉 ⊂ {p2, p3, . . .}

· · ·

p 3

M〈1,1〉 ⊂ U〈1,1〉 ⊂ U〈1〉 \M〈1〉,
σ(〈1, 1〉) = 〈p1, p6〉,
X〈p1,p6〉 ⊂ {p7, p9, . . .}

p
6

· · ·

p
7

p 1

M〈2〉 ⊂ U〈2〉 ⊂ U∅ \M∅,
σ(〈2〉) = 〈p2〉,

X〈p2〉 ⊂ {p3, p4, . . .}

· · ·

p
2

· · ·

p
3

Fig. 1. The tree T . To draw the last level of this diagram we assume that X〈p1〉 =
{p3, p6, p7, p9, . . .}.

Additionally, for each t ∈ ωω define

σ(t) :=
⋃
l∈ω

σ(t�l) = 〈last(σ(t�1)), last(σ(t�2)), . . .〉.

Recall that by (i) and (ii), σ(t) is a strictly increasing sequence. Moreover,
for each l ∈ ω,

last(σ(t)�l) = last(σ(t�l)).

Using our notation, from the fact that T is an I?-tree it follows that for each
t ∈ ωω and l ∈ ω, we have

Xσ(t�l) ∈ I? and range(σ(t)) ∈ I.

For each t ∈ ω<ω let gt : Ut → R be a quasi-continuous function such that
any extension of gt is quasi-continuous at each x ∈ clUt (such a function
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exists by Lemma 2.3). Let

fn(x) =


f(x) if there exists a t ∈ ω<ω with x ∈Mt and n ∈ Xσ(t),
gt(x) if there exists a t ∈ ω<ω with x ∈ Ut and n = last(σ(t)),
0 in any other case.

For each t ∈ ωω let Nt :=
⋂
n∈ω Ut�n. Then

⋃
t∈ωω Nt = X \

⋃
t∈ω<ω Mt =

X \M . We claim that:

(1) {n ∈ ω : fn(x) 6= f(x)} ∈ I for each x ∈Mt (t ∈ ω<ω);
(2) {n ∈ ω : fn(x) 6= 0} ∈ I for each x ∈ Nt (t ∈ ωω);
(3) fn is quasi-continuous for each n.

The first claim follows immediately from the first case of the definition
of fn and the fact that Xσ(t) ∈ I? for each t ∈ ω<ω.

To see the second claim, observe that if x ∈ Nt then

{n : fn(x) 6= 0} ⊂ {last(σ(t�l)) : l ∈ ω} = range(σ(t)) ∈ I.
Finally, we have to show that for each n ∈ ω and x ∈ X, fn is quasi-

continuous at x. Fix n ∈ ω. First, assume that x ∈ Nt for some t ∈ ωω.
We will show that fn is quasi-continuous on some Ut 3 x. We have two
possibilities:

(1) n = last(σ(t�l)) for some l ∈ ω (i.e. n ∈ range(σ(t))), or
(2) n 6= last(σ(t�l)) for each l ∈ ω (i.e. n /∈ range(σ(t))).

In the first case, fn�Ut�l = gt�l (by the second case of the definition of fn).
For (2) observe that by the monotonicity of σ(t) there exists l such that

last(σ(t�l)) = last(σ(t)�l) < n < last(σ(t)�(l + 1)) = last(σ(t�(l + 1))).

Then it follows from (i) that

range(σ(t�l)) < n < Xσ(t�l+1),

so n and σ(t�(l + 1)) do not fulfill the conditions from the first or second
case of the definition of fn. Thus fn = 0 on Ut�(l+1) (thus quasi-continuous).

Next, assume that x ∈Mt for some t ∈ ω<ω. We have three possibilities:

(1) n ∈ {σ(t�1), . . . , σ(t�length(t))} (i.e. n ∈ range(σ(t)));
(2) n ∈ Xσ(t);
(3) n /∈ range(σ(t)) ∪ Xσ(t).

In the first case, n = σ(t�l) for some l ∈ ω, and so x ∈ Mt ⊂ Ut�l. Then
the situation is exactly as in the paragraph above: fn�Ut�l = gt�l is quasi-
continuous.

Now consider the second case. Let t′ = σ−1[σ(t)_ n]. By (v), x ∈Mt ⊂
clUt′ and, by the second case of the definition of fn, fn�Ut′ = gt′ . Thus,
regardless of its value at x, fn is quasi-continuous at x.



On the ideal convergence of sequences of QC functions 277

In the last case, fn(x) = 0. Let t′ = t _ m be such that last(σ(t′)) > n.
Then x ∈Mt ⊂ clUt′ , and n and σ(t′) do not fulfill the conditions from the
first or second case of the definition of fn. Thus fn�Ut′ is constant (and equal
to 0).

4. I-Baire system generated by the family of QC functions. For
any family F of real-valued functions defined on X there is a smallest family
B(F) of all real-valued functions defined on X which contains F and which
is closed under taking limits of sequences. This family is called the Baire
system generated by F . One method of generating B(F) from F consists in
iteration of limits:

• B0(F) = F ;
• Bα(F) = LIM(

⋃
β<α Bβ(F)) for α > 0,

where LIM(G) denotes the family of all limits of sequences from G. Then
B(F) =

⋃
α<ω1

Bα(F). This system was described in 1899 by Baire in the
case when F is the family of all continuous functions defined on a topological
space X.

In a similar way one can define the I-Baire system generated by the
family F , replacing LIM(F) by the family I-LIM(F) of all I-limits of se-
quences of functions from F (cf. [FNS13]). Recall that the I-Baire system
generated by the family of continuous functions defined on a Polish space
X was partly characterized in [LR09], [DSR09] and [FS12] for analytic ide-
als I. In this section we study the I-Baire system generated by the family
of quasi-continuous functions defined on a Baire space X.

The Baire system generated by the family QC(X) has been described
by Grande [Gra88] for X = R and by Richter [Ric02] for any metric Baire
space X. If X is a metric Baire space then:

• B1(QC) = LIM(QC) = PWD;
• Bα(QC) = LIM(PWD) = Baire for α ≥ 2.

Theorem 4.1. Suppose I? is ω-+-diagonalizable and X is a metric Baire
space. Then:

(1) I-B1(QC) = I-LIM(QC) = PWD;
(2) I-Bα(QC) = I-LIM(PWD) = Baire for α ≥ 2.

Proof. The inclusion I-LIM(QC) ⊂ PWD follows from Proposition 3.1,
and the opposite one from LIM(QC) = PWD and the assumption FIN ⊂ I.
Similarly, to prove I-LIM(PWD) = I-LIM(Baire) = Baire we have to show
that I-LIM(Baire) ⊂ Baire. Fix a sequence (fn)n of functions with the Baire
property and suppose f = I-limn(fn) does not have the Baire property.
Then, by Lemma 2.1(2), there are a non-empty open set U ⊂ X and reals
α < β such that A = f−1[(−∞, α)] and B = f−1[(β,∞)] are nowhere meager
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in U . Since I∗ is ω-+-diagonalizable, there exists a family {Xn : n < ω} ⊂ I+
such that for each F ∈ I∗ there is n with Xn ⊂ F . For each x ∈ U ∩ A we
have Fx = {n : fn(x) < α} ∈ I∗, thus there is nx < ω with Xnx ⊂ Fx. Since
X is a Baire space, there is n for which the set {x ∈ U ∩ A : nx = n} is
nowhere meager in some non-empty open set W ⊂ U . Fix k ∈ Xn. Since fk
has the Baire property, this easily implies that the set A0 = {x ∈ W : ∀k ∈
Xn fk(x) ≤ α} is a residual subset ofW . Similarly, we can find a non-empty
open set V ⊂ W and m < ω such that B0 = {x ∈ V : ∀k ∈ Xm fk(x) ≥ β}
is a residual subset of V . Fix any point x ∈ A0 ∩ B0. Then {k < ω : fk(x)
≤ α} ∈ I+ and {k < ω : fk(x) ≥ β} ∈ I+, contrary to the I-convergence
of (fn(x))n.

Theorem 4.2. Suppose that I? is not weakly Ramsey and X is a metric
Baire space. Then for every f : X → R with the Baire property there exists a
sequence of quasi-continuous functions fn : X → R such that f = I-lim fn.
Thus Baire ⊂ I-B1(QC) in X.

Proof. Suppose f : X → R has the Baire property. Then there exists a
residual Gδ set G such that f�G is continuous. Let

A =
{
x ∈ X \G : lim

t→x, t∈G
|f(t)| =∞

}
.

Note that A is closed. Denote by X0 the set of all isolated points of X.
Clearly, X0 ⊂ G. Let g : X → R be defined by

g(x) =


lim

t→x, t∈G
f(t) for x ∈ X \ (X0 ∪A),

f(x) for x ∈ X0,
0 for x ∈ A.

Then g is of the first Baire class (cf. [Kur58, par. 31, VI]), hence it is the
pointwise limit of a sequence (gn)n of continuous functions. Moreover, g(x) =
f(x) for x ∈ G. Let h = f − g; then {x ∈ X : h(x) 6= 0} is meager. By
Proposition 3.2 there exists a sequence (hn)n ∈ QC which I-converges to h.
Then fn = gn + hn is quasi-continuous and I-lim fn = g + h = f .

Recall that if I is an analytic ideal then the I-limit of any sequence of
Baire measurable real-valued functions has the Baire property (cf. [Kat72]).
Thus we obtain the following corollary.

Corollary 4.3. Suppose that I is an analytic ideal, I? is not weakly
Ramsey and X is a metric Baire space. Then I-Bα(QC) = Baire for each
α ≥ 1. (Hence in this case the I-Baire system generated by the family QC
has order ≤ 1.)

There are ideals for which the assertion of Corollary 4.3 does not hold.
In fact, it does not hold for any maximal ideal (see e.g. [FNS13, Example
7.27]).
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4.1. Borel ideals. Conditions characterizing the Borel ideals for which
the first I-Baire class equals the first Baire class were obtained by Laczkovich
and Recław [LR09], and by Debs and Saint Raymond [DSR09]. They proved
the equivalence of four conditions, two of which give a combinatorial charac-
terizations of I, and two are formulated in the language of “Katětov order”
and “containing an isomorphic copy”.

Proposition 2.8 and Theorems 4.1, 4.2 yield similar characterizations of
the Borel ideals I for which I-B1(QC) = B1(QC).

Theorem 4.4. Suppose that I is a Borel ideal. Then the following con-
ditions are equivalent:

(1) I-B1(QC) = B1(QC) for every metric Baire space X;
(2) I-B1(QC) = B1(QC) for X = R;
(3) I? is ω-+-diagonalizable;
(4) I? is weakly Ramsey.

Recently Kwela [Kwe15] proved that it is possible to characterize weakly
Ramsey ideals in the language of “containing an isomorphic copy” of some
ideal. He denoted by WR the ideal generated on ω×ω by two kinds of sets:

• all sets of the form {n} × ω (vertical lines);
• all sets A ⊂ ω × ω with the property: if (i, j), (m,n) ∈ A and (i, j) 6=

(m,n) then either m > i+ j or i > m+ n.

Theorem 4.5 ([Kwe15]). For any ideal I the following conditions are
equivalent:

(4) I? is weakly Ramsey;
(5) WR 6≤K I;
(6) WR 6v I.

Corollary 4.6. For Borel ideals I all conditions (1)–(6) are equivalent.
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