Rational torsion points on Jacobians of modular curves

by

HWAJONG YOO (Pohang)

1. Introduction. Let N be a square-free integer. Consider the modular curve $X_0(N)$ and its Jacobian variety $J_0(N) = \operatorname{Pic}^0(X_0(N))$. Let $\mathcal{T}(N)$ denote the group of rational torsion points on $J_0(N)$ and let $\mathcal{C}(N)$ denote the cuspidal group of $J_0(N)$. By Manin and Drinfeld [2, 3], we have $\mathcal{C}(N) \subseteq \mathcal{T}(N)$ and they are both finite abelian groups.

When N is prime, Ogg conjectured that $\mathcal{T}(N) = \mathcal{C}(N)$ [5, Conjecture 2]. In his article [4], Mazur proved this conjecture by studying the Eisenstein ideal of level N. Recently, Ohta [6] proved a generalization of the result of Mazur. More precisely, he proved the following.

THEOREM 1.1 (Ohta). For a prime $\ell \geq 5$, we have $\mathcal{T}(N)[\ell^{\infty}] = \mathcal{C}(N)[\ell^{\infty}]$. Moreover, if 3 does not divide N, then $\mathcal{T}(N)[3^{\infty}] = \mathcal{C}(N)[3^{\infty}]$.

(For a finite abelian group A, $A[\ell^{\infty}]$ denotes its ℓ -primary subgroup.)

We briefly sketch the proof of this theorem. Let T_r (resp. U_p and w_p) denote the *r*th Hecke operator (resp. the *p*th Hecke operator and the Atkin– Lehner operator with respect to *p*) acting on $J_0(N)$ for a prime *r* not dividing N (resp. a prime divisor *p* of N). Let $\mathbb{T}(N)$ (resp. $\mathbb{T}(N)'$) be the \mathbb{Z} -subalgebra of End $(J_0(N))$ generated by the T_r 's and U_p 's (resp. T_r 's and w_p 's) for primes $r \nmid N$ and $p \mid N$. Let

$$\mathcal{I}_0 := (T_r - r - 1 : r \text{ prime}, r \nmid N)$$

be the (minimal) Eisenstein ideal of $\mathbb{T}(N)$ (or $\mathbb{T}(N)'$). Then \mathcal{I}_0 annihilates $\mathcal{T}(N)$ and $\mathcal{C}(N)$ by the Eichler–Shimura relation. Thus, $\mathcal{T}(N)[\ell^{\infty}]$ is a module over $\mathbb{T}(N)_{\ell}/\mathcal{I}_0$ (or $\mathbb{T}(N)'_{\ell}/\mathcal{I}_0$), where $\mathbb{T}(N)_{\ell} := \mathbb{T}(N) \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell}$. Note that since $w_p^2 = 1$, for a prime $\ell \geq 3$ we have the decomposition

$$\mathbb{T}(N)'_{\ell}/\mathcal{I}_0 = \prod_{M|N, M \neq N} \mathbb{T}(N)'_{\ell}/\mathcal{I}_M,$$

²⁰¹⁰ Mathematics Subject Classification: 11G10, 11G18, 14G05.

Key words and phrases: rational points, modular curves, Eisenstein ideals. Received 19 April 2015.

Published online 3 December 2015.

where $\mathcal{I}_M := (w_p - 1, w_q + 1, \mathcal{I}_0 : p, q \text{ primes}, p \mid M \text{ and } q \mid N/M)$. Thus, we have

$$\mathcal{T}(N)[\ell^{\infty}] = \bigoplus \mathcal{T}(N)[\ell^{\infty}][\mathcal{I}_M] \text{ and } \mathcal{C}(N)[\ell^{\infty}] = \bigoplus \mathcal{C}(N)[\ell^{\infty}][\mathcal{I}_M].$$

Finally, he proved that $\mathcal{T}(N)[\ell^{\infty}][\mathcal{I}_M] = \mathcal{C}(N)[\ell^{\infty}][\mathcal{I}_M]$ by computing the index of \mathcal{I}_M (up to 2-primary parts).

In this paper, we discuss the case where N = pq for two distinct primes pand q. In contrast to the discussion above, we use $\mathbb{T}(pq)$ instead of $\mathbb{T}(pq)'$, and hence the corresponding decomposition of $\mathbb{T}(pq)/\mathcal{I}_0$ as above does not always exist. (However, other computations are relatively easier than in the method by Ohta.) When ℓ satisfies some conditions, we get a similar decomposition of the quotient ring $\mathbb{T}(pq)/\mathcal{I}_0$ and we can prove the following.

THEOREM 1.2 (Main Theorem). For a prime ℓ not dividing $2pq \operatorname{gcd}(p-1, q-1)$, we have $\mathcal{T}(pq)[\ell^{\infty}] = \mathcal{C}(pq)[\ell^{\infty}]$. Moreover, $\mathcal{T}(pq)[p^{\infty}] = \mathcal{C}(pq)[p^{\infty}]$ if one of the following holds:

(1)
$$p \ge 5$$
 and $\begin{cases} either q \not\equiv 1 \pmod{p} \text{ or} \\ q \equiv 1 \pmod{p} \text{ and } p^{(q-1)/p} \not\equiv 1 \pmod{q}. \end{cases}$
(2) $p = 3$ and $\begin{cases} either q \not\equiv 1 \pmod{9} \text{ or} \\ q \equiv 1 \pmod{9} \text{ and } 3^{(q-1)/3} \not\equiv 1 \pmod{q}. \end{cases}$

Note that most cases above are special cases of Theorem 1.1. The new result is as follows:

THEOREM 1.3. Let p be a prime greater than 3. Assume that either $p \neq 1 \pmod{9}$ or $3^{(p-1)/3} \not\equiv 1 \pmod{p}$. Then

$$\mathcal{T}(3p)[3^{\infty}] = \mathcal{C}(3p)[3^{\infty}].$$

1.1. Notation. For $x = a/b \in \mathbb{Q}$, we denote by num(x) the numerator of x, i.e.,

$$\operatorname{num}(x) := a/(a,b).$$

From now on, we denote by $\ell^{\alpha} := \ell^{\alpha(p,q,\ell)}$ (resp. $\ell^{\beta} := \ell^{\beta(p,q,\ell)}$) the exact power of ℓ dividing

$$M_p := \operatorname{num}\left(\frac{(p-1)(q^2-1)}{3}\right) \quad \left(\operatorname{resp.} M_q := \operatorname{num}\left(\frac{(p^2-1)(q-1)}{3}\right)\right).$$

2. Eisenstein ideals of level pq. Throughout this section, we fix two distinct primes p and q; and ℓ denotes a prime not dividing 2pq(q-1). Let $\mathbb{T} := \mathbb{T}(pq)$ and $\mathbb{T}_{\ell} := \mathbb{T}(pq) \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell}$. We say that an ideal of \mathbb{T} is *Eisenstein* if it contains

$$\mathcal{I}_0 := (T_r - r - 1 : r \text{ prime}, r \nmid pq).$$

DEFINITION 2.1. We define Eisenstein ideals as follows:

$$\begin{aligned} \mathcal{I}_1 &:= (U_p - 1, U_q - 1, \mathcal{I}_0), \\ \mathcal{I}_2 &:= (U_p - 1, U_q - q, \mathcal{I}_0), \quad \mathcal{I}_3 &:= (U_p - p, U_q - 1, \mathcal{I}_0) \end{aligned}$$

Moreover, we set $\mathfrak{m}_i := (\ell, \mathcal{I}_i)$. They are all possible Eisenstein maximal ideals in \mathbb{T}_ℓ by the result in [9, §2]. For ease of notation, we set $\mathbb{T}_i := \mathbb{T}_{\mathfrak{m}_i} = \lim_{k \to \infty} \mathbb{T}/\mathfrak{m}_i^n$.

Since \mathbb{T}_{ℓ} is a semi-local ring, we have

$$\mathbb{T}_{\ell} = \prod_{\ell \in \mathfrak{m} \text{ maximal}} \mathbb{T}_{\mathfrak{m}}.$$

Using the above description of Eisenstein maximal ideals, we prove the following.

THEOREM 2.2. The quotient $\mathbb{T}_{\ell}/\mathcal{I}_0$ is isomorphic to $\mathbb{T}_{\ell}/\mathcal{I}_2 \times \mathbb{T}_{\ell}/\mathcal{I}_3$.

This theorem is crucial to deduce our Main Theorem. In general, the author expects that $\mathbb{T}_{\ell}/\mathcal{I}_0$ should be isomorphic to

$$\{(x, y, z) \in \mathbb{T}_{\ell}/\mathcal{I}_1 \times \mathbb{T}_{\ell}/\mathcal{I}_2 \times \mathbb{T}_{\ell}/\mathcal{I}_3 : x \equiv y \pmod{p-1} \text{ and } x \equiv z \pmod{q-1}\}.$$

To prove the theorem above, we need several lemmas.

LEMMA 2.3. We have $(U_p - 1)(U_p + 1) \in \mathcal{I}_0 \mathbb{T}_{\ell}$.

Proof. Since $q \not\equiv 1 \pmod{\ell}$, no maximal ideal containing \mathcal{I}_0 can be *p*-old. Therefore $\mathbb{T}_{\ell}/\mathcal{I}_0 \simeq \mathbb{T}_{\ell}^{p\text{-new}}/\mathcal{I}_0$. Since $U_p^2 = 1$ in $\mathbb{T}_{\ell}^{p\text{-new}}$, the result follows.

LEMMA 2.4. Suppose that \mathfrak{m}_2 is maximal. Then

$$\mathbb{T}_2/\mathcal{I}_0 = \mathbb{T}_2/\mathcal{I}_2 \simeq \mathbb{T}_\ell/\mathcal{I}_2.$$

If \mathfrak{m}_1 is maximal, then $p \equiv 1 \pmod{\ell}$ and hence $\mathfrak{m}_1 = \mathfrak{m}_3$; moreover, $\mathbb{T}_1/\mathcal{I}_0 = \mathbb{T}_3/\mathcal{I}_0 \simeq \mathbb{T}_\ell/\mathcal{I}_3$. If $p \not\equiv 1 \pmod{\ell}$, then \mathfrak{m}_1 is not maximal and $\mathbb{T}_3/\mathcal{I}_0 \simeq \mathbb{T}_\ell/\mathcal{I}_3$.

Proof. Since $U_p - 1 \in \mathfrak{m}_2$ and ℓ is odd, $U_p + 1 \notin \mathfrak{m}_2$ and hence it is a unit in \mathbb{T}_2 . By the lemma above, $(U_p - 1)(U_p + 1) \in \mathcal{I}_0\mathbb{T}_\ell$ and hence $U_p - 1 \in \mathcal{I}_0\mathbb{T}_2$. Similarly, $U_q - q \in \mathcal{I}_0\mathbb{T}_2$ because $q \not\equiv 1 \pmod{\ell}$ and $(U_q - 1)(U_q - q) \in \mathcal{I}_0\mathbb{T}_2$ by the next lemma. Thus, we have $\mathbb{T}_2/\mathcal{I}_0 = \mathbb{T}_2/\mathcal{I}_2$. Since the index of \mathcal{I}_2 in \mathbb{T} is finite (cf. [7, Lemma 3.1]), we have $\mathfrak{m}_2^n \subseteq \mathcal{I}_2$ for large enough n. Therefore $\mathbb{T}_\ell/(\mathfrak{m}_2^n, \mathcal{I}_2) \simeq \mathbb{T}_\ell/\mathcal{I}_2$ and hence $\mathbb{T}_2/\mathcal{I}_2 \simeq \mathbb{T}_\ell/\mathcal{I}_2$.

If \mathfrak{m}_1 is maximal, the index of \mathcal{I}_1 in \mathbb{T} is divisible by ℓ . By [9, Theorem 1.4], it is $\operatorname{num}((p-1)(q-1)/3)$ up to powers of 2 and hence $p \equiv 1 \pmod{\ell}$.

Assume that $p \equiv 1 \pmod{\ell}$. Let α be the number in §1.1. Since ℓ does not divide (p+1)(q-1), ℓ^{α} divides (p-1). Note that the index of \mathcal{I}_3 in \mathbb{T}_{ℓ} is equal to ℓ^{α} (cf. [9, Theorem 1.4]) and hence $\mathcal{I}_3\mathbb{T}_{\ell}$ contains p-1. Thus, $U_p - 1 = (U_p - p) + (p-1) \in \mathcal{I}_3\mathbb{T}_{\ell}$. In other words, $\mathcal{I}_1\mathbb{T}_{\ell} \subseteq \mathcal{I}_3\mathbb{T}_{\ell}$. Similarly, $\mathcal{I}_3\mathbb{T}_{\ell} \subseteq \mathcal{I}_1\mathbb{T}_{\ell}$. Therefore $\mathcal{I}_1\mathbb{T}_{\ell} = \mathcal{I}_3\mathbb{T}_{\ell}$. By the same argument as above, $\mathcal{I}_0\mathbb{T}_3$ contains $U_p - 1$ and $(U_q - 1)(U_q - q)$. Since $q \neq 1 \pmod{\ell}$ and $U_q - 1 \in \mathfrak{m}_3$, we have $U_q - q \notin \mathfrak{m}_3$ and hence $\mathbb{T}_3/\mathcal{I}_0 = \mathbb{T}_3/\mathcal{I}_3$. By the same argument as above, we get $\mathbb{T}_3/\mathcal{I}_3 \simeq \mathbb{T}_\ell/\mathcal{I}_3$.

If $p \not\equiv 1 \pmod{\ell}$, then \mathfrak{m}_3 is neither *p*-old nor *q*-old. If $p \not\equiv -1 \pmod{\ell}$, then \mathfrak{m}_3 is not maximal. Thus, $\mathbb{T}_{\ell}/\mathcal{I}_3 = \mathbb{T}_3/\mathcal{I}_0 = 0$. If $p \equiv -1 \pmod{\ell}$, then the result follows by [8, Proposition 2.3].

LEMMA 2.5. Let
$$I := (U_p - 1, \mathcal{I}_0) \subseteq \mathbb{T}_{\ell}$$
. Then $(U_q - 1)(U_q - q) \in I$.

Proof. We closely follow the argument in $[4, \S II.5]$.

Let $f(z) := \sum_{n \ge 1} (T_n \mod I) x^n$ be the Fourier expansion (at ∞) of a cusp form of weight 2 and level pq over \mathbb{T}_{ℓ}/I , where $x = e^{2\pi i z}$. (Here, we often denote by T_p (resp. T_q) the Hecke operator U_p (resp. U_q).) Let $E := E_{p,pq}$ be an Eisenstein series of weight 2 and level pq in [7, §2.3]. Note that

$$(f-E)(z) \equiv (U_q - q) \sum_{n \ge 1} a_n x^{qn} \pmod{I},$$

where $a_p = 1$ and $a_r = 1 + r$ for all primes $r \neq pq$; and $a_q = U_q + q$. If $U_q - q \notin I$, then by Ohta [6, Lemma 2.1.1], there is a cusp form $g(z) = \sum_{n\geq 1} b_n x^n$ of weight 2 and level p such that

$$(f-E)(z) \equiv (U_q - q) \sum_{n \ge 1} a_n x^{qn} \equiv (U_q - q)g(qz) \pmod{I}.$$

Therefore $p \equiv 1 \pmod{\ell}$ and $b_r \equiv 1 + r \pmod{I'}$ for primes $r \neq p$, where I' is the Eisenstein ideal of level p. Thus, we have $(U_q - q)(a_q - b_q) \equiv (U_q - q)(U_q - 1) \in I$.

Proof of Theorem 2.2. If $p \equiv 1 \pmod{\ell}$, then $\mathfrak{m}_1 = \mathfrak{m}_3$. Otherwise \mathfrak{m}_1 is not maximal. Therefore,

$$\mathbb{T}_{\ell}/\mathcal{I}_0 \simeq \mathbb{T}_2/\mathcal{I}_0 \times \mathbb{T}_3/\mathcal{I}_0 = \mathbb{T}_2/\mathcal{I}_2 \times \mathbb{T}_3/\mathcal{I}_3 \simeq \mathbb{T}_{\ell}/\mathcal{I}_2 \times \mathbb{T}_{\ell}/\mathcal{I}_3.$$

3. Case where ℓ does not divide pq. From now on, let $\mathcal{C} := \mathcal{C}(pq)$ and $\mathcal{T} := \mathcal{T}(pq)$ be the cuspidal group of $J_0(pq)$ and the group of rational torsion points on $J_0(pq)$, respectively. For a prime r and a finite abelian group A, we denote by $A[r^{\infty}]$ the r-primary subgroup of A. In this section, we prove the following theorem.

THEOREM 3.1. For a prime ℓ not dividing 2pq(q-1), we have $\mathcal{T}[\ell^{\infty}] = \mathcal{C}[\ell^{\infty}]$.

Before proving this theorem, we introduce some cuspidal divisors.

Let P_n be the cusp of $X_0(pq)$ corresponding to $1/n \in \mathbb{P}^1(\mathbb{Q})$. Let $C_p := P_1 - P_p$ and $C_q := P_1 - P_q$ denote the cuspidal divisors in \mathcal{C} . Let $M_p = \ell^{\alpha} \times x$ and $M_q = \ell^{\beta} \times y$ as in §1.1. (Thus, $(\ell, xy) = 1$.) We define

$$D_p := xC_p$$
 and $D_q := yC_q$.

Then $\langle D_p \rangle$ (resp. $\langle D_q \rangle$) is a free module of rank 1 over $\mathbb{T}_{\ell}/\mathcal{I}_2 \simeq \mathbb{Z}/\ell^{\alpha}\mathbb{Z}$ (resp. $\mathbb{T}_{\ell}/\mathcal{I}_3 \simeq \mathbb{Z}/\ell^{\beta}\mathbb{Z}$) (cf. [9, Theorem 1.4]).

Proof of Theorem 3.1. By the Eichler–Shimura relation, $\mathcal{T}[\ell^{\infty}]$ is a module over $\mathbb{T}_{\ell}/\mathcal{I}_0$. Therefore $\mathcal{T}[\ell^{\infty}]$ decomposes into $\mathcal{T}[\ell^{\infty}][\mathcal{I}_2] \times \mathcal{T}[\ell^{\infty}][\mathcal{I}_3]$ by Theorem 2.2. Hence it suffices to show that $\mathcal{T}[\ell^{\infty}][\mathcal{I}_2] = \langle D_p \rangle$ and $\mathcal{T}[\ell^{\infty}][\mathcal{I}_3] = \langle D_q \rangle$.

If $\alpha = 0$, then $\mathbb{T}_{\ell}/\mathcal{I}_2 = 0$ and hence $\mathcal{T}[\ell^{\infty}][\mathcal{I}_2] = \langle D_p \rangle = 0$. Thus, we may assume that $\alpha \geq 1$. Note that

$$\mathcal{T}[\ell^{\infty}][\mathcal{I}_2] \simeq \prod_{i=1}^t \mathbb{Z}/\ell^{a_i}\mathbb{Z},$$

where $1 \leq a_i \leq \alpha$ because $\mathbb{T}_{\ell}/\mathcal{I}_2 \simeq \mathbb{Z}/\ell^{\alpha}\mathbb{Z}$ (and \mathcal{T} is finite). Since D_p is in $\mathcal{T}[\ell^{\infty}]$, we have $\langle D_p \rangle \subseteq \mathcal{T}[\ell^{\infty}][\mathcal{I}_2]$ and hence $t \geq 1$; and $\mathcal{T}[\ell^{\infty}][\ell, \mathcal{I}_2] \simeq (\mathbb{Z}/\ell\mathbb{Z})^{\oplus t} \subseteq J_0(N)[\mathfrak{m}_2]$. By the same argument in [4, §II, Corollary 14.8] (cf. [7, Theorem 4.2]), we have t = 1 and $\mathcal{T}[\ell^{\infty}][\mathcal{I}_2] = \langle D_p \rangle$. By symmetry, $\mathcal{T}[\ell^{\infty}][\mathcal{I}_3] = \langle D_q \rangle$, and the result follows.

4. Case where $\ell = p$ or $\ell = q$. Throughout this section, we set P := p if $p \ge 5$, and P := 9 if p = 3. Suppose that

(4.1)
$$\ell = p \text{ and } \begin{cases} \text{either } q \not\equiv 1 \pmod{P} \text{ or} \\ q \equiv 1 \pmod{P} \text{ and } p^{(q-1)/p} \not\equiv 1 \pmod{q}. \end{cases}$$

THEOREM 4.1. We have $\mathcal{T}[p^{\infty}] = \mathcal{C}[p^{\infty}]$.

Proof. We divide the problem into three cases:

(1) Suppose that $q \not\equiv 1 \pmod{P}$ and $q \equiv 1 \pmod{p}$. This happens when $\ell = p = 3$. In this case, the indices of \mathcal{I}_1 , \mathcal{I}_2 and \mathcal{I}_3 are not divisible by 3 (cf. [9, Theorem 1.4]). Therefore there are no Eisenstein maximal ideals containing 3, and $\mathbb{T}_p/\mathcal{I}_0 = 0$. Thus, $\mathcal{T}[3^{\infty}] = \mathcal{C}[3^{\infty}] = 0$.

(2) Suppose that $q \equiv 1 \pmod{P}$ and $p^{(q-1)/p} \not\equiv 1 \pmod{q}$. Then $\mathfrak{m}_1 = \mathfrak{m}_2$ is not new by [8, Theorem 3.1]. Since $U_p \equiv p \equiv 0 \pmod{\mathfrak{m}_3}$, \mathfrak{m}_3 is not new. Therefore $\mathbb{T}_p/\mathcal{I}_0 \simeq \mathbb{T}_p^{\text{old}}/\mathcal{I}_0$. Consider the exact sequence

$$0 \to J_{\text{old}}(\mathbb{Q})[p^{\infty}] \to J(\mathbb{Q})[p^{\infty}] \to J^{\text{new}}(\mathbb{Q})[p^{\infty}].$$

If $J^{\text{new}}(\mathbb{Q})[p^{\infty}] \neq 0$, then there is a new Eisenstein maximal ideal containing p, a contradiction. Therefore $J_{\text{old}}(\mathbb{Q})[p^{\infty}] = J(\mathbb{Q})[p^{\infty}]$. Now, the result follows from [1, Theorem 2] because p does not divide 2(p-1, q-1).

(3) Suppose that $q \not\equiv 1 \pmod{p}$. First, assume that $q \not\equiv -1 \pmod{P}$. Then the indices of \mathcal{I}_1 , \mathcal{I}_2 and \mathcal{I}_3 are not divisible by p, so there is no Eisenstein maximal ideal. Thus, $\mathbb{T}_p/\mathcal{I}_0 = 0$ and $\mathcal{T}[p^{\infty}] = \mathcal{C}[p^{\infty}] = 0$.

Next, assume $q \equiv -1 \pmod{P}$. For the same reason as above, \mathfrak{m}_1 and \mathfrak{m}_3 are not maximal (but \mathfrak{m}_2 is). Note that \mathfrak{m}_2 is neither *p*-old nor *q*-old

by Mazur. Therefore we obtain $\mathbb{T}_2/\mathcal{I}_0 \simeq \mathbb{T}_{\mathfrak{m}_2}^{\mathrm{new}}/\mathcal{I}_0$. Since $(U_p - 1)(U_p + 1) = (U_q - 1)(U_q + 1) = 0$ in $\mathbb{T}^{\mathrm{new}}$, we get $\mathbb{T}_2/\mathcal{I}_0 = \mathbb{T}_2/\mathcal{I}_2 \simeq \mathbb{T}_p/\mathcal{I}_2$ by [8, Proposition 2.3]. As in the proof of Theorem 3.1, we conclude that

$$\mathcal{T}[p^{\infty}] = \mathcal{T}[p^{\infty}][\mathcal{I}_2] = \mathcal{C}[p^{\infty}][\mathcal{I}_2] = \mathcal{C}[p^{\infty}].$$

REMARK 4.2. If p > q, then the assumption above holds and hence $\mathcal{T}[p^{\infty}] = \mathcal{C}[p^{\infty}]$. Since $\mathcal{C}[p^{\infty}] = 0$, there are no rational torsion points of order p on $J_0(pq)$.

Acknowledgements. This work was supported by IBS-R003-D1.

References

- [1] S.-K. Chua and S. Ling, On the rational cuspidal subgroup and the rational torsion points of $J_0(pq)$, Proc. Amer. Math. Soc. 125 (1997), 2255–2263.
- [2] V. Drinfeld, Two theorems on modular curves, Funct. Anal. Appl. 7 (1973), 155–156.
- [3] Yu. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66 (in Russian); English transl.: Math. USSR-Izv. 6 (1972), 19–64.
- B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. I.H.É.S. 47 (1977), 33–186.
- [5] A. Ogg, Diophantine equations and modular forms, Bull. Amer. Math. Soc. 81 (1975), 14–27.
- M. Ohta, Eisenstein ideals and the rational torsion subgroups of modular Jacobian varieties II, Tokyo J. Math. 37 (2014), 273–318.
- [7] H. Yoo, The index of an Eisenstein ideal and multiplicity one, Math. Z., to appear; arXiv:1311.5275 (2015).
- [8] H. Yoo, Rational torsion points on Jacobians of Shimura curves, arXiv:1502.07370 (2015).
- [9] H. Yoo, On Eisenstein ideals and the cuspidal group of $J_0(N)$, Israel J. Math., to appear; arXiv:1502.01571 (2015).

Hwajong Yoo Center for Geometry and Physics Institute for Basic Science (IBS) Pohang 37673, Republic of Korea E-mail: hwajong@gmail.com