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Rational torsion points on Jacobians of modular curves
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Hwajong Yoo (Pohang)

1. Introduction. Let N be a square-free integer. Consider the modular
curve X0(N) and its Jacobian variety J0(N) = Pic0(X0(N)). Let T (N)
denote the group of rational torsion points on J0(N) and let C(N) denote
the cuspidal group of J0(N). By Manin and Drinfeld [2, 3], we have C(N) ⊆
T (N) and they are both finite abelian groups.

When N is prime, Ogg conjectured that T (N) = C(N) [5, Conjecture 2].
In his article [4], Mazur proved this conjecture by studying the Eisenstein
ideal of level N . Recently, Ohta [6] proved a generalization of the result of
Mazur. More precisely, he proved the following.

Theorem 1.1 (Ohta). For a prime ` ≥ 5, we have T (N)[`∞]=C(N)[`∞].
Moreover, if 3 does not divide N , then T (N)[3∞] = C(N)[3∞].

(For a finite abelian group A, A[`∞] denotes its `-primary subgroup.)
We briefly sketch the proof of this theorem. Let Tr (resp. Up and wp)

denote the rth Hecke operator (resp. the pth Hecke operator and the Atkin–
Lehner operator with respect to p) acting on J0(N) for a prime r not dividing
N (resp. a prime divisor p of N). Let T(N) (resp. T(N)′) be the Z-subalgebra
of End(J0(N)) generated by the Tr’s and Up’s (resp. Tr’s and wp’s) for primes
r - N and p |N . Let

I0 := (Tr − r − 1 : r prime, r - N)

be the (minimal) Eisenstein ideal of T(N) (or T(N)′). Then I0 annihilates
T (N) and C(N) by the Eichler–Shimura relation. Thus, T (N)[`∞] is a mod-
ule over T(N)`/I0 (or T(N)′`/I0), where T(N)` := T(N) ⊗Z Z`. Note that
since w2

p = 1, for a prime ` ≥ 3 we have the decomposition

T(N)′`/I0 =
∏

M |N,M 6=N

T(N)′`/IM ,
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where IM := (wp − 1, wq + 1, I0 : p, q primes, p |M and q |N/M). Thus, we
have

T (N)[`∞] =
⊕
T (N)[`∞][IM ] and C(N)[`∞] =

⊕
C(N)[`∞][IM ].

Finally, he proved that T (N)[`∞][IM ] = C(N)[`∞][IM ] by computing the
index of IM (up to 2-primary parts).

In this paper, we discuss the case where N = pq for two distinct primes p
and q. In contrast to the discussion above, we use T(pq) instead of T(pq)′, and
hence the corresponding decomposition of T(pq)/I0 as above does not always
exist. (However, other computations are relatively easier than in the method
by Ohta.) When ` satisfies some conditions, we get a similar decomposition
of the quotient ring T(pq)/I0 and we can prove the following.

Theorem 1.2 (Main Theorem). For a prime ` not dividing 2pq gcd(p−
1, q−1), we have T (pq)[`∞] = C(pq)[`∞]. Moreover, T (pq)[p∞] = C(pq)[p∞]
if one of the following holds:

(1) p ≥ 5 and

{
either q 6≡ 1 (mod p) or

q ≡ 1 (mod p) and p(q−1)/p 6≡ 1 (mod q).

(2) p = 3 and

{
either q 6≡ 1 (mod 9) or

q ≡ 1 (mod 9) and 3(q−1)/3 6≡ 1 (mod q).

Note that most cases above are special cases of Theorem 1.1. The new
result is as follows:

Theorem 1.3. Let p be a prime greater than 3. Assume that either p 6≡ 1
(mod 9) or 3(p−1)/3 6≡ 1 (mod p). Then

T (3p)[3∞] = C(3p)[3∞].

1.1. Notation. For x = a/b ∈ Q, we denote by num(x) the numerator
of x, i.e.,

num(x) := a/(a, b).

From now on, we denote by `α := `α(p,q,`) (resp. `β := `β(p,q,`)) the exact
power of ` dividing

Mp := num

(
(p− 1)(q2 − 1)

3

) (
resp. Mq := num

(
(p2 − 1)(q − 1)

3

))
.

2. Eisenstein ideals of level pq. Throughout this section, we fix two
distinct primes p and q; and ` denotes a prime not dividing 2pq(q − 1). Let
T := T(pq) and T` := T(pq) ⊗Z Z`. We say that an ideal of T is Eisenstein
if it contains

I0 := (Tr − r − 1 : r prime, r - pq).
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Definition 2.1. We define Eisenstein ideals as follows:

I1 := (Up − 1, Uq − 1, I0),
I2 := (Up − 1, Uq − q, I0), I3 := (Up − p, Uq − 1, I0).

Moreover, we set mi := (`, Ii). They are all possible Eisenstein maximal
ideals in T` by the result in [9, §2]. For ease of notation, we set Ti := Tmi =
lim←n T/mn

i .

Since T` is a semi-local ring, we have

T` =
∏

`∈mmaximal

Tm.

Using the above description of Eisenstein maximal ideals, we prove the
following.

Theorem 2.2. The quotient T`/I0 is isomorphic to T`/I2 × T`/I3.
This theorem is crucial to deduce our Main Theorem. In general, the

author expects that T`/I0 should be isomorphic to

{(x, y, z) ∈ T`/I1×T`/I2×T`/I3 : x ≡ y (mod p−1) and x ≡ z (mod q−1)}.
To prove the theorem above, we need several lemmas.

Lemma 2.3. We have (Up − 1)(Up + 1) ∈ I0T`.
Proof. Since q 6≡ 1 (mod `), no maximal ideal containing I0 can be p-old.

Therefore T`/I0 ' Tp-new` /I0. Since U2
p = 1 in Tp-new` , the result follows.

Lemma 2.4. Suppose that m2 is maximal. Then

T2/I0 = T2/I2 ' T`/I2.
If m1 is maximal, then p ≡ 1 (mod `) and hence m1 = m3; moreover,
T1/I0 = T3/I0 ' T`/I3. If p 6≡ 1 (mod `), then m1 is not maximal and
T3/I0 ' T`/I3.

Proof. Since Up−1 ∈ m2 and ` is odd, Up+1 6∈ m2 and hence it is a unit
in T2. By the lemma above, (Up−1)(Up+1) ∈ I0T` and hence Up−1 ∈ I0T2.
Similarly, Uq− q ∈ I0T2 because q 6≡ 1 (mod `) and (Uq− 1)(Uq− q) ∈ I0T2

by the next lemma. Thus, we have T2/I0 = T2/I2. Since the index of I2
in T is finite (cf. [7, Lemma 3.1]), we have mn

2 ⊆ I2 for large enough n.
Therefore T`/(mn

2 , I2) ' T`/I2 and hence T2/I2 ' T`/I2.
If m1 is maximal, the index of I1 in T is divisible by `. By [9, Theorem

1.4], it is num((p− 1)(q − 1)/3) up to powers of 2 and hence p ≡ 1 (mod `).
Assume that p ≡ 1 (mod `). Let α be the number in §1.1. Since ` does

not divide (p+ 1)(q− 1), `α divides (p− 1). Note that the index of I3 in T`
is equal to `α (cf. [9, Theorem 1.4]) and hence I3T` contains p − 1. Thus,
Up − 1 = (Up − p) + (p− 1) ∈ I3T`. In other words, I1T` ⊆ I3T`. Similarly,
I3T` ⊆ I1T`. Therefore I1T` = I3T`. By the same argument as above, I0T3
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contains Up− 1 and (Uq − 1)(Uq − q). Since q 6≡ 1 (mod `) and Uq − 1 ∈ m3,
we have Uq − q 6∈ m3 and hence T3/I0 = T3/I3. By the same argument as
above, we get T3/I3 ' T`/I3.

If p 6≡ 1 (mod `), then m3 is neither p-old nor q-old. If p 6≡ −1 (mod `),
then m3 is not maximal. Thus, T`/I3 = T3/I0 = 0. If p ≡ −1 (mod `), then
the result follows by [8, Proposition 2.3].

Lemma 2.5. Let I := (Up − 1, I0) ⊆ T`. Then (Uq − 1)(Uq − q) ∈ I.
Proof. We closely follow the argument in [4, §II.5].
Let f(z) :=

∑
n≥1(Tn mod I)xn be the Fourier expansion (at ∞) of a

cusp form of weight 2 and level pq over T`/I, where x = e2πiz. (Here, we often
denote by Tp (resp. Tq) the Hecke operator Up (resp. Uq).) Let E := Ep, pq
be an Eisenstein series of weight 2 and level pq in [7, §2.3]. Note that

(f − E)(z) ≡ (Uq − q)
∑
n≥1

anx
qn (mod I),

where ap = 1 and ar = 1 + r for all primes r 6= pq; and aq = Uq + q. If
Uq − q 6∈ I, then by Ohta [6, Lemma 2.1.1], there is a cusp form g(z) =∑

n≥1 bnx
n of weight 2 and level p such that

(f − E)(z) ≡ (Uq − q)
∑
n≥1

anx
qn ≡ (Uq − q)g(qz) (mod I).

Therefore p ≡ 1 (mod `) and br ≡ 1 + r (mod I ′) for primes r 6= p, where
I ′ is the Eisenstein ideal of level p. Thus, we have (Uq − q)(aq − bq) ≡
(Uq − q)(Uq − 1) ∈ I.

Proof of Theorem 2.2. If p ≡ 1 (mod `), then m1 = m3. Otherwise m1 is
not maximal. Therefore,

T`/I0 ' T2/I0 × T3/I0 = T2/I2 × T3/I3 ' T`/I2 × T`/I3.

3. Case where ` does not divide pq. From now on, let C := C(pq)
and T := T (pq) be the cuspidal group of J0(pq) and the group of rational
torsion points on J0(pq), respectively. For a prime r and a finite abelian
group A, we denote by A[r∞] the r-primary subgroup of A. In this section,
we prove the following theorem.

Theorem 3.1. For a prime ` not dividing 2pq(q − 1), we have T [`∞]
= C[`∞].

Before proving this theorem, we introduce some cuspidal divisors.
Let Pn be the cusp of X0(pq) corresponding to 1/n ∈ P1(Q). Let Cp :=

P1−Pp and Cq := P1−Pq denote the cuspidal divisors in C. Let Mp = `α×x
and Mq = `β × y as in §1.1. (Thus, (`, xy) = 1.) We define

Dp := xCp and Dq := yCq.
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Then 〈Dp〉 (resp. 〈Dq〉) is a free module of rank 1 over T`/I2 ' Z/`αZ (resp.
T`/I3 ' Z/`βZ) (cf. [9, Theorem 1.4]).

Proof of Theorem 3.1. By the Eichler–Shimura relation, T [`∞] is a mod-
ule over T`/I0. Therefore T [`∞] decomposes into T [`∞][I2] × T [`∞][I3]
by Theorem 2.2. Hence it suffices to show that T [`∞][I2] = 〈Dp〉 and
T [`∞][I3] = 〈Dq〉.

If α = 0, then T`/I2 = 0 and hence T [`∞][I2] = 〈Dp〉 = 0. Thus, we
may assume that α ≥ 1. Note that

T [`∞][I2] '
t∏
i=1

Z/`aiZ,

where 1 ≤ ai ≤ α because T`/I2 ' Z/`αZ (and T is finite). Since Dp is
in T [`∞], we have 〈Dp〉 ⊆ T [`∞][I2] and hence t ≥ 1; and T [`∞][`, I2] '
(Z/`Z)⊕t ⊆ J0(N)[m2]. By the same argument in [4, §II, Corollary 14.8]
(cf. [7, Theorem 4.2]), we have t = 1 and T [`∞][I2] = 〈Dp〉. By symmetry,
T [`∞][I3] = 〈Dq〉, and the result follows.

4. Case where ` = p or ` = q. Throughout this section, we set P := p
if p ≥ 5, and P := 9 if p = 3. Suppose that

(4.1) ` = p and

{
either q 6≡ 1 (mod P ) or

q ≡ 1 (mod P ) and p(q−1)/p 6≡ 1 (mod q).

Theorem 4.1. We have T [p∞] = C[p∞].

Proof. We divide the problem into three cases:

(1) Suppose that q 6≡ 1 (mod P ) and q ≡ 1 (mod p). This happens
when ` = p = 3. In this case, the indices of I1, I2 and I3 are not divisible
by 3 (cf. [9, Theorem 1.4]). Therefore there are no Eisenstein maximal ideals
containing 3, and Tp/I0 = 0. Thus, T [3∞] = C[3∞] = 0.

(2) Suppose that q ≡ 1 (mod P ) and p(q−1)/p 6≡ 1 (mod q). Then m1 = m2

is not new by [8, Theorem 3.1]. Since Up ≡ p ≡ 0 (mod m3), m3 is not new.
Therefore Tp/I0 ' Told

p /I0. Consider the exact sequence

0→ Jold(Q)[p∞]→ J(Q)[p∞]→ Jnew(Q)[p∞].

If Jnew(Q)[p∞] 6= 0, then there is a new Eisenstein maximal ideal contain-
ing p, a contradiction. Therefore Jold(Q)[p∞] = J(Q)[p∞]. Now, the result
follows from [1, Theorem 2] because p does not divide 2(p− 1, q − 1).

(3) Suppose that q 6≡ 1 (mod p). First, assume that q 6≡ −1 (mod P ).
Then the indices of I1, I2 and I3 are not divisible by p, so there is no
Eisenstein maximal ideal. Thus, Tp/I0 = 0 and T [p∞] = C[p∞] = 0.

Next, assume q ≡ −1 (mod P ). For the same reason as above, m1 and
m3 are not maximal (but m2 is). Note that m2 is neither p-old nor q-old
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by Mazur. Therefore we obtain T2/I0 ' Tnew
m2

/I0. Since (Up − 1)(Up + 1)
= (Uq − 1)(Uq + 1) = 0 in Tnew, we get T2/I0 = T2/I2 ' Tp/I2 by [8,
Proposition 2.3]. As in the proof of Theorem 3.1, we conclude that

T [p∞] = T [p∞][I2] = C[p∞][I2] = C[p∞].

Remark 4.2. If p > q, then the assumption above holds and hence
T [p∞] = C[p∞]. Since C[p∞] = 0, there are no rational torsion points of
order p on J0(pq).
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