# On Bourgain's bound for short exponential sums and squarefree numbers 

by<br>Ramon M. Nunes (Orsay)

1. Introduction. As usual, let

$$
e(x):=e^{2 i \pi x} \quad \text { for } x \in \mathbb{R} .
$$

In a recent paper, Bourgain [2] proved a non-trivial bound for exponential sums such as

$$
\sum_{\substack{n \leq N \\(n, q)=1}} e\left(\frac{a \bar{n}^{2}}{q}\right)
$$

where $q>1$ is an integer and $\bar{n}$ denotes the multiplicative inverse of $n$ $(\bmod q)$. His result holds in the range $N \geq q^{\epsilon}$ for an arbitrarily small, but fixed, $\epsilon>0$. In his paper, Bourgain was interested in an application related to the size of fundamental solutions $\epsilon_{D}>1$ to the Pell equation

$$
t^{2}-D u^{2}=1
$$

He followed the lead of Fouvry [3, who suggested that such an upper bound could help improve the lower bounds for the counting function

$$
S^{f}(x, \alpha):=\#\left\{\left(\epsilon_{D}, D\right) ; 2 \leq D \leq x, D \text { is not a square, and } \epsilon_{D} \leq D^{1 / 2+\alpha}\right\}
$$

for small values of $\alpha$. In this article, we are interested in a different application of Bourgain's result (see Proposition 4.2 below) related to squarefree numbers in arithmetic progressions.

Let $X \geq 1$. Let $a$ and $q$ be coprime integers such that $q \geq 2$ and let

$$
\begin{equation*}
E(X, q, a):=\sum_{\substack{n \leq X \\ n \equiv a(\bmod q)}} \mu(n)^{2}-\frac{6}{\pi^{2}} \prod_{p \mid q}\left(1-\frac{1}{q^{2}}\right)^{-1} \frac{X}{q} . \tag{1.1}
\end{equation*}
$$

[^0]For fixed $q$, the last term is known to be asymptotically equivalent to

$$
\frac{1}{\varphi(q)} \sum_{\substack{n \leq X \\(n, q)=1}} \mu(n)^{2}
$$

as $X \rightarrow \infty$. So $E(X ; q, a)$ can be seen as an error term of the distribution of squarefree numbers in arithmetic progressions. One naturally has the trivial bound

$$
\begin{equation*}
|E(X, q, a)| \leq X / q+1 \tag{1.2}
\end{equation*}
$$

In a previous article, the author 5 proved
Theorem 1.1. There exists an absolute constant $C>0$, such that, for every $\epsilon>0$, we have

$$
\begin{equation*}
\sum_{\substack{a(\bmod q) \\(a, q)=1}} E(X, q, a)^{2} \sim C \prod_{p \mid q}\left(1+2 p^{-1}\right)^{-1} X^{1 / 2} q^{1 / 2} \tag{1.3}
\end{equation*}
$$

for $X \rightarrow \infty$, uniformly for integers $q$ satisfying $X^{31 / 41+\epsilon} \leq q \leq X^{1-\epsilon}$.
This theorem gives the asymptotic variance of the above mentioned distribution.

Inspired by an equivalent problem considered by Fouvry et al. 44, Theorem 1.5.], we study how $E(X, q, a)$ correlates with $E(X, q, \gamma(a))$ for suitable choices of $\gamma: \mathbb{Z} / q \mathbb{Z} \rightarrow \mathbb{Z} / q \mathbb{Z}$. It is natural to choose $\gamma$ to be an affine linear map, i.e.

$$
\begin{equation*}
\gamma_{r, s}(a)=r a+s, \tag{1.4}
\end{equation*}
$$

where $r, s \in \mathbb{Z}, r \neq 0$ are fixed. Thus our object of study is the correlation sum

$$
\begin{equation*}
C\left[\gamma_{r, s}\right](X, q):=\sum_{\substack{a(\bmod q) \\ a \neq 0, \gamma_{r, s}^{-1}(0)}} E(X, q, a) E\left(X, q, \gamma_{r, s}(a)\right) \tag{1.5}
\end{equation*}
$$

for $q$ prime. In [5], we already considered the case $s=0$, and we found that the correlation always existed for any non-zero value of $r$. In particular, there exists $C_{r} \neq 0$ such that for $X \rightarrow \infty$ and $X^{31 / 41+\epsilon} \leq q \leq X^{1-\epsilon}$, one has

$$
\begin{equation*}
C\left[\gamma_{r, 0}\right](X, q) \sim C_{r}\left(\sum_{\substack{a(\bmod q) \\(a, q)=1}} E(X, q, a)^{2}\right) . \tag{1.6}
\end{equation*}
$$

Our main result is the following theorem which exhibits a certain independence between the functions $a \mapsto E(X, q, a)$ and $a \mapsto E\left(X, q, \gamma_{r, s}(a)\right)$ considered as random variables on $\mathbb{Z} / q \mathbb{Z}$, which agrees with our intuition that $E(X, q, a)$ and $E(X, q, \gamma(a))$ should be asymptotically independent random variables when $\gamma$ is not a homothety.

TheOrem 1.2. There exists an absolute $\delta>0$ such that for every $\epsilon>0$ and every integer $r \neq 0$, there exists $C_{\epsilon, r}$ such that

$$
\begin{equation*}
\left|C\left[\gamma_{r, s}\right](X, q)\right| \leq C_{\epsilon, r}\left(q^{1+\epsilon}+X^{1 / 2} q^{1 / 2}(\log q)^{-\delta}+\frac{X^{5 / 3+\epsilon}}{q}+\left(\frac{X}{q}\right)^{2}\right) \tag{1.7}
\end{equation*}
$$ uniformly for $X \geq 2$, integers $s$ and prime numbers $q \leq X$ such that $q \nmid r s$.

A consequence of Theorems 1.1 and 1.2 is the following
Corollary 1.3. For every $\epsilon>0$ and $r \neq 0$, there exists a function $\Phi_{\epsilon, r}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, tending to zero at infinity, such that for every $X \geq 2$, every integer $s$ and every prime $q$ such that $q \nmid r s$ and $X^{7 / 9+\epsilon} \leq q \leq X^{1-\epsilon}$, one has

$$
\begin{equation*}
\left|C\left[\gamma_{r, s}\right](X, q)\right| \leq \Phi_{\epsilon, r}(X)\left(\sum_{\substack{a(\bmod q) \\(a, q)=1}} E(X, q, a)^{2}\right) \tag{1.8}
\end{equation*}
$$

Inequality (1.8) shows a behavior different from (1.6) corresponding to the case where $q \mid s$. Here, as in [5], we give results that are true for a general $r \neq 0$, but in order to simplify the presentation, we give proofs that are only complete when $r$ is squarefree (the case where $\mu(r)=0$ implies a more difficult definition of the $\kappa$ function in 4.10).
2. Notation. We define the Bernoulli polynomials $B_{k}(x)$ for $k \geq 1$, on $[0,1)$, in the following recursive way:

$$
B_{1}(x):=x-1 / 2, \quad \frac{d}{d x} B_{k+1}(x)=B_{k}(x), \quad \int_{0}^{1} B_{k}(x) d x=0
$$

We can extend these functions to periodic functions defined on the whole real line by setting

$$
B_{k}(x):=B_{k}(\{x\})
$$

We further notice that $B_{1}(x)$ satisfies the relation

$$
\begin{equation*}
\lfloor x\rfloor=x-1 / 2-B_{1}(x), \tag{2.1}
\end{equation*}
$$

and $B_{2}(x)$ satisfies

$$
\begin{equation*}
B_{2}(x)=\frac{x^{2}}{2}-\frac{x}{2}+\frac{1}{12} \quad \text { for } 0 \leq x \leq 1 \tag{2.2}
\end{equation*}
$$

In the course of the proof of Theorem 1.2 we will make repeated use of the multiplicative function

$$
\begin{equation*}
h(d)=\mu(d)^{2} \prod_{p \mid d}\left(1-2 p^{-2}\right)^{-1} \tag{2.3}
\end{equation*}
$$

We also define the closely related product

$$
\begin{equation*}
C_{2}=\prod_{p}\left(1-\frac{2}{p^{2}}\right) \tag{2.4}
\end{equation*}
$$

We denote, as usual, by $d(n)$ and $d_{3}(n)$ the classical binary and ternary divisor functions, respectively.

We write $\omega(n)$ for the number of primes dividing $n$.
We write $n \sim N$ as an alternative to $N<n \leq 2 N$.
If $S$ is a finite set, $\# S$ denotes its cardinality. If $I \subset R$ is an interval, $|I|$ denotes its length.

We use indistinguishably the notation $f=O(g)$ and $f \ll g$ when there is an absolute constant $C$ such that $|f| \leq C g$, on a certain domain of the variables which will be clear from the context, and the same for the symbols $O_{\epsilon}, O_{r}, O_{\epsilon, r}$ and $<_{\epsilon}, \lll r_{r},<_{\epsilon, r}$, but with constants that may depend on the subscripted variables.
3. Initial steps. Let $X \geq 2$. Let $\gamma=\gamma_{r, s}$ be given by (1.4) and let $q$ be a prime number $\leq X$ such that $q \nmid r s$.

We start by completing the sum defining $C[\gamma](X, q)$ (see 1.5 ), and we bound trivially the additional terms. By 1.2 , we see that

$$
\begin{equation*}
C[\gamma](X, q)=\sum_{a=0}^{q-1} E(X, q, a) E(X, q, \gamma(a))+O\left(\left(\frac{X}{q}\right)^{2}\right) \tag{3.1}
\end{equation*}
$$

In what follows, for simplification, we shall write

$$
\begin{equation*}
C(q)=\frac{6}{\pi^{2}}\left(1-\frac{1}{q^{2}}\right)^{-1} \tag{3.2}
\end{equation*}
$$

As we develop the sum on the right-hand side of (3.1), we obtain

$$
\begin{equation*}
C[\gamma](X, q)=S[\gamma](X, q)-2 C(q) \frac{X}{q} \sum_{n \leq X} \mu(n)^{2}+C(q)^{2} \frac{X^{2}}{q}+O\left(\frac{X^{2}}{q^{2}}\right) \tag{3.3}
\end{equation*}
$$

where $S[\gamma](X, q)$ is defined by the double sum

$$
\begin{equation*}
S[\gamma](X, q)=\sum_{\substack{n_{1}, n_{2} \leq X \\ n_{2} \equiv \gamma\left(n_{1}\right)(\bmod q)}} \mu\left(n_{1}\right)^{2} \mu\left(n_{2}\right)^{2} \tag{3.4}
\end{equation*}
$$

We point out that $S[\gamma](X, q)$ is the only difficult term appearing in equation (3.3), since we have the well-known formula

$$
\begin{equation*}
\sum_{n \leq X} \mu^{2}(n)=\frac{6}{\pi^{2}} X+O(\sqrt{X})=C(q) X+O\left(\frac{X}{q^{2}}+\sqrt{X}\right) \tag{3.5}
\end{equation*}
$$

uniformly for $1 \leq q \leq X$. An asymptotic expansion of $S[\gamma](X, q)$ will be given in Proposition 5.1.
4. Useful lemmata. We start with a lemma concerning the multiplicative function $h(d)$ which follows easily from [5, Lemma 5.2]:

Lemma 4.1. Let $h(d)$ be as in (2.3) and let $\beta$ be the multiplicative function defined by

$$
h(d)=\sum_{m n=d} \beta(m), \quad d \geq 1
$$

Then

$$
\begin{align*}
\sum_{m \geq M} \frac{\beta(m)}{m} & \ll M^{-1 / 2}  \tag{4.1}\\
\sum_{m \leq M} \beta(m) & \ll M \tag{4.2}
\end{align*}
$$

uniformly for every $M \geq 1$.
Proof. By [5, Lemma 5.2], $\beta(m)$ is supported on cubefree numbers, and if we write $m=a b^{2}$ with $a, b$ squarefree and relatively prime, then

$$
\beta(m) \ll d(a) / a^{2}
$$

In particular, $\beta(m) \ll 1$, and it is sufficient to prove 4.2$)$. In order to prove (4.1), we notice that

The next proposition is the main result of [2], and it is crucial to our proof.

Proposition 4.2 (see [2, Proposition 4]). There exist constants $c, C, C^{\prime}$ such that for every $N, q \geq 2$ and $1 / \log 2 N<\beta<1 / 10$, there exists a subset $E_{N} \subset\{1, \ldots, N\}$ (independent of $q$ ) satisfying

$$
\begin{equation*}
\left|E_{N}\right| \leq C^{\prime} \beta\left(\log \frac{1}{\beta}\right)^{C} N \tag{4.3}
\end{equation*}
$$

and such that, uniformly for $(a, q)=1$,

$$
\begin{equation*}
\left|\sum_{\substack{n \leq N \\ n \notin E_{N},(n, q)=1}} e\left(\frac{a \bar{n}^{2}}{q}\right)\right| \leq C^{\prime}(\log 2 N)^{C} N^{1-c\left(\beta \frac{\log N}{\log q}\right)^{C}} \tag{4.4}
\end{equation*}
$$

In fact we need the following corollary.

Corollary 4.3. There exists an absolute $\delta>0$ such that, for every $\epsilon>0$, we have

$$
\sum_{\substack{n \leq N \\(n, q)=1}} e\left(\frac{a \bar{n}^{2}}{q}\right)<_{\epsilon} N(\log q)^{-\delta}
$$

uniformly for $N, q \geq 2$ and $N \geq q^{\epsilon}$.
Remark 4.4. More generally, we may consider the sum

$$
\Sigma(I, q)=\sum_{\substack{n \in I \\(n, q)=1}} e\left(\frac{a \bar{n}^{2}}{q}\right)
$$

where $I$ is a general interval of length $N(\bmod q)$. It is well-known that

$$
\begin{equation*}
\Sigma(I, q) \ll q^{1 / 2} \log q \tag{4.5}
\end{equation*}
$$

for prime numbers $q$. Hence, (4.5) is non-trivial as soon as $N \geq q^{1 / 2+\epsilon}$ (for any $\epsilon>0$ ). Obviously, Bourgain's result is much stronger than 4.5), but it only applies, roughly speaking, to intervals starting at 1.

Proof of Corollary 4.3. We use Proposition 4.2 and choose $\beta=(\log N)^{-\delta_{1}}$, where $\delta_{1}=\min \left(\frac{1}{2}, \frac{1}{2 C}\right)$. We add (4.3) and 4.4) to obtain

$$
\sum_{n \leq N,(n, q)=1} e\left(\frac{a \bar{n}^{2}}{q}\right) \ll N \frac{(\log \log N)^{C}}{(\log N)^{-\delta_{1}}}+N \frac{(\log N)^{C}}{\exp \left(c \epsilon^{C}(\log N)^{1 / 2}\right)}
$$

The corollary now follows by taking, for example, $\delta=\delta_{1} / 2$.
Remark 4.5. Corollary 4.3 will be essential to the proof of Proposition 5.1. in which we use it for values of $N$ which are roughly of size $\sqrt{X / q}$. Since we want to take $q$ as large as $X^{1-\epsilon}$, it is important that Bourgain's result holds for $N$ as small as $q^{\epsilon}$.

The next lemma is similar in essence to many others to be found in the literature: see for example [7, Theorem 1], [1, Proposition 1.4] or [6, Theorem 3]. The proof, for instance, follows the lines of [1, Proposition 1.4].

Lemma 4.6. Let $X \geq 1$ and let $\ell, r$ be integers such that $r$ is squarefree. Let

$$
\begin{align*}
I(X, \ell, r) & :=\{u \in \mathbb{R} ; u, r u+\ell \in(0, X)\},  \tag{4.6}\\
S(\ell, r) & :=\sum_{n \in I(X, \ell, r)} \mu(n)^{2} \mu(r n+\ell)^{2} \tag{4.7}
\end{align*}
$$

Then, for every $r>0$,

$$
\begin{equation*}
S(\ell, r)=f(\ell, r)|I(X, \ell, r)|+O_{r}\left(d_{3}(\ell) X^{2 / 3}(\log 2 X)^{7 / 3}\right) \tag{4.8}
\end{equation*}
$$

uniformly for $X \geq 2$ and integers $\ell$, where

$$
\begin{equation*}
f(\ell, r)=C_{2}\left(\prod_{p \mid r} \frac{p^{2}-1}{p^{2}-2}\right)\left(\prod_{\substack{p^{2} \mid \ell \\ p \nmid r}} \frac{p^{2}-1}{p^{2}-2}\right) \kappa\left(\left(\ell, r^{2}\right)\right) \tag{4.9}
\end{equation*}
$$

where $\kappa$ is the multiplicative function defined by

$$
\kappa\left(p^{\alpha}\right)= \begin{cases}\frac{p^{2}-p-1}{p^{2}-1} & \text { if } \alpha=1  \tag{4.10}\\ \frac{p^{2}-p}{p^{2}-1} & \text { if } \alpha=2 \\ 0 & \text { if } \alpha \geq 3\end{cases}
$$

We recall that $C_{2}$ is defined in (2.4.
Proof. We start by defining

$$
\sigma(n)=\prod_{p^{2} \mid n} p, \quad n \neq 0
$$

and

$$
\begin{equation*}
\xi(n)=\sigma(n) \sigma(r n+\ell) \tag{4.11}
\end{equation*}
$$

Notice that the right-hand side of 4.11 actually depends on $\ell$ and $r$, but since these numbers will be held fixed in the following calculations, we omit this dependence. Since $\xi(n)$ is an integer $\geq 1$ and

$$
\mu(n)^{2} \mu(r n+\ell)^{2}=1 \Leftrightarrow \xi(n)=1
$$

we deduce that

$$
\begin{equation*}
S(\ell, r)=\sum_{n \in I(X, \ell, r)} \sum_{d \mid \xi(n)} \mu(d)=\sum_{d \geq 1} \mu(d) N_{d}(\ell, r) \tag{4.12}
\end{equation*}
$$

where

$$
N_{d}(\ell, r)=\#\{n \in I(X, \ell, r) ; \xi(n) \equiv 0(\bmod d)\}
$$

Notice that, for fixed $\ell$ and $r$, the condition $p \mid \xi(n)$ only depends on the congruence class of $n$ modulo $p^{2}$. We let

$$
\begin{align*}
u_{p}(\ell, r) & :=\#\left\{0 \leq v \leq p^{2}-1 ; \xi(v) \equiv 0(\bmod p)\right\}  \tag{4.13}\\
U_{d}(\ell, r) & :=\prod_{p \mid d} u_{p}(\ell, r)
\end{align*}
$$

By the Chinese remainder theorem, we have

$$
\begin{equation*}
N_{d}(\ell, r)=U_{d}(\ell, r) \frac{|I(X, \ell, r)|}{d^{2}}+O\left(U_{d}(\ell, r)\right) \tag{4.14}
\end{equation*}
$$

for every positive squarefree integer $d$. We also notice that if $(p, r)=1$ then $\left|u_{p}(\ell, r)\right| \leq 2$, and $\left|u_{p}(\ell, r)\right| \leq p^{2}$ in general. Therefore

$$
U_{d}(\ell, r)<_{r} 2^{\omega(d)} .
$$

Let $2 \leq y \leq X$ be a parameter which will be chosen later to be a power of $X$. We multiply 4.14) by $\mu(d)$ and sum over $d \leq y$ to obtain

$$
\begin{equation*}
\sum_{d \leq y} \mu(d) N_{d}(\ell, r)=\sum_{d \leq y} \mu(d) U_{d}(\ell, r) \frac{|I(X, \ell, r)|}{d^{2}}+O_{r}\left(\sum_{d \leq y} 2^{\omega(d)}\right) . \tag{4.15}
\end{equation*}
$$

By completing the first sum on the right-hand side of 4.15), we get

$$
\begin{equation*}
\sum_{d \leq y} \mu(d) N_{d}(\ell, r)=\prod_{p}\left(1-\frac{u_{p}(\ell, r)}{p^{2}}\right)|I(X, \ell, r)|+O_{r}\left(\frac{X \log y}{y}+y \log y\right) . \tag{4.16}
\end{equation*}
$$

For large $d$, formula (4.14) is useless. Instead, we will estimate by different means the sum

$$
N_{>y}(\ell, r):=\sum_{d>y} \mu(d) N_{d}(\ell, r),
$$

from which we will deduce the result.
We notice that $d \mid \xi(n)$ if and only if there exist $j, k \geq 1$ such that $d=j k$, $j^{2} \mid n$ and $k^{2} \mid r n+\ell$. Moreover, since $n, r n+\ell<X$ we have $j, k<\sqrt{X}$. From this observation we deduce

$$
\begin{align*}
& \left|N_{>y}(\ell, r)\right|  \tag{4.17}\\
& \quad=\left|\sum_{y<d \leq X} \mu(d)\right|\{n \in I(X, \ell, r) ; \xi(n) \equiv 0(\bmod d)\}| | \\
& \quad \leq \sum_{\substack{j, k \leq \sqrt{X} \\
j k>y}} \mid\left\{n \in \mathbb{Z} ; 0<n, r n+\ell<X \text { and } j^{2}\left|n, k^{2}\right| r n+\ell\right\} \mid \\
& \quad=\sum_{\substack{j, k \leq \sqrt{X} \\
j k>y}} N(j, k),
\end{align*}
$$

say. We shall divide the possible values of $j$ and $k$ into sets of the form

$$
\mathcal{B}(J, K):=\left\{(j, k) \in \mathbb{Z}^{2} ; j \sim J, k \sim K\right\} .
$$

We can use at most $O\left((\log X)^{2}\right)$ such sets since we are summing over $j, k \leq$ $X^{1 / 2}$. For every $J, K \geq 1$, let

$$
\begin{align*}
& \mathcal{N}(J, K):=\sum_{j \sim J, k \sim K} N(j, k)  \tag{4.18}\\
= & \#\left\{(j, k, u, v) ; j \sim J, k \sim K, 0<j^{2} u, k^{2} v<X \text { and } k^{2} v=r j^{2} u+\ell\right\} .
\end{align*}
$$

By dyadic decomposition we can find $1 \leq J, K \leq X^{1 / 2}$ such that $J K \geq y / 4$, and we have the upper bound

$$
\begin{equation*}
N_{>y}(\ell, r) \ll \mathcal{N}(J, K)(\log X)^{2} \tag{4.19}
\end{equation*}
$$

Finally, we estimate

$$
\mathcal{N}(J, K) \leq \sum_{k \sim K} \sum_{u \leq X J^{-2}} \sum_{\substack{j \sim J \\ j^{2} r u \equiv-\ell\left(\bmod k^{2}\right)}} 1
$$

For $j, k$ relevant to the sum above, we write $f=(j, k)$. From the congruence condition in the inner sum, we have $f^{2} \mid \ell$. So we write

$$
j_{0}=j / f, \quad k_{0}=k / f, \quad \ell_{0}=\ell / f^{2}
$$

The congruence then becomes

$$
j_{0}^{2} r u \equiv-\ell_{0}\left(\bmod k_{0}^{2}\right)
$$

Now, for $g=\left(k_{0}^{2}, r\right)$ as above we have $g \mid \ell_{0}$. We write

$$
k_{1}=k_{0}^{2} / g, \quad s=r / g, \quad t=\ell_{0} / g
$$

That transforms the congruence into

$$
j_{0}^{2} s u \equiv-t\left(\bmod k_{1}\right)
$$

Finally, let $h=\left(k_{1}, t\right)$. From the considerations above, we must have $h \mid u$. We write

$$
k^{\prime}=k_{1} / h, \quad t^{\prime}=t / h, \quad u^{\prime}=u / h
$$

So the congruence becomes

$$
j_{0}^{2} s u^{\prime} \equiv-t^{\prime}\left(\bmod k^{\prime}\right)
$$

and since $\left(t^{\prime}, k^{\prime}\right)=1$, it has at most $2 \cdot 2^{\omega\left(k^{\prime}\right)} \leq 2 d\left(k_{0}\right)$ solutions in $j_{0}\left(\bmod k^{\prime}\right)$. Therefore

$$
\begin{aligned}
\mathcal{N}(J, K) & \leq \sum_{g \mid r} \sum_{f^{2} h \mid \ell} \sum_{\substack{k_{0} \sim K / f \\
g h \mid k_{0}^{2}}} \sum_{u^{\prime} \leq X J^{-2} h^{-1}} 1 \\
& \leq 2 \sum_{g \mid r} \sum_{\substack{j_{0}^{2} \sim J / f \\
j_{0}^{2} s u^{\prime} \equiv-t^{\prime}\left(\bmod k_{0}^{2} / g h\right)}} \sum_{k_{0} \sim K / f} X J^{-2} h^{-1}\left\{\frac{J g h}{f k_{0}^{2}}+1\right\} d\left(k_{0}\right) \\
& \ll r \sum_{f^{2} h \mid \ell} \sum_{k_{0} \sim K / f} X J^{-2}\left\{\frac{J}{f k_{0}^{2}}+1\right\} d\left(k_{0}\right) \\
& \ll \sum_{f^{2} h \mid \ell} X J^{-2}\left\{\frac{J}{K^{2}}+\frac{1}{f}\right\} K \log K \\
& \ll d_{3}(\ell) X J^{-2}\left\{\frac{J}{K^{2}}+1\right\} K \log X .
\end{aligned}
$$

Hence

$$
\mathcal{N}(J, K) \ll_{r} d_{3}(\ell)\left\{X y^{-1}+X J^{-2} K\right\} \log X
$$

A similar inequality with the roles of $J$ and $K$ interchanged on the right-hand side can be obtained in an analogous way. Combining the two formulas, we deduce

$$
\begin{align*}
\mathcal{N}(J, K) & \lll r d_{3}(\ell)\left\{X y^{-1}+X(J K)^{-1 / 2}\right\} \log X  \tag{4.20}\\
& \ll d_{3}(\ell) X y^{-1 / 2} \log X
\end{align*}
$$

Replacing (4.20) in 4.19) and adding the result to 4.16) gives
$S(\ell, r)=\prod_{p}\left(1-\frac{u_{p}(\ell, r)}{p^{2}}\right)|I(X, \ell, r)|+O_{r}\left(y \log y+d_{3}(\ell) X y^{-1 / 2}(\log X)^{3}\right)$.
We make the choice $y=X^{2 / 3}(\log X)^{4 / 3}$, obtaining

$$
\begin{equation*}
S(\ell, r)=\prod_{p}\left(1-\frac{u_{p}(\ell, r)}{p^{2}}\right)|I(X, \ell, r)|+O_{r}\left(d_{3}(\ell) X^{2 / 3}(\log X)^{7 / 3}\right) \tag{4.21}
\end{equation*}
$$

We finish by a study of $u_{p}(\ell, r)$. We distinguish five cases (recall that $r$ is squarefree):

- If $p \mid r$ and $p^{2} \mid \ell$ then $u_{p}(\ell, r)=p$.
- If $p \mid r$ and $p \mid \ell$ but $p^{2} \nmid \ell$ then $u_{p}(\ell, r)=p+1$.
- If $p \mid r$ and $p \nmid \ell$ then $u_{p}(\ell, r)=1$.
- If $p \nmid r$ and $p^{2} \mid \ell$ then $u_{p}(\ell, r)=1$.
- If $p \nmid r$ and $p^{2} \nmid \ell$ then $u_{p}(\ell, r)=2$.

The lemma is now a consequence of (4.21) and of the different values of $u_{p}(\ell, r)$.
4.1. Sums involving the $B_{2}$ function. In the following we study certain sums involving the Bernoulli polynomials $B_{2}(x)$. In the next lemma, we deal with the simplest case

$$
\begin{equation*}
A(Y ; q, a)=\sum_{\substack{n \geq 1 \\(n, q)=1}}\left\{B_{2}\left(\frac{Y^{2}}{n^{2}}+\frac{a \bar{n}^{2}}{q}\right)-B_{2}\left(\frac{a \bar{n}^{2}}{q}\right)\right\} \tag{4.22}
\end{equation*}
$$

where $Y$ is a positive real number and $a, q$ are coprime integers. The sum above will serve as an archetype for more complicated sums appearing in the proof of Proposition 4.10, which in turn will be central to estimating $C[\gamma](X, q)$.

One elementary bound for $A(Y ; q, a)$ can be given by noticing that we have both

$$
\begin{equation*}
B_{2}\left(\frac{Y^{2}}{n^{2}}+\frac{a \bar{n}^{2}}{q}\right)-B_{2}\left(\frac{a \bar{n}^{2}}{q}\right) \ll 1 \tag{4.23}
\end{equation*}
$$

since $B_{2}$ is bounded, and

$$
\begin{equation*}
B_{2}\left(\frac{Y^{2}}{n^{2}}+\frac{a \bar{n}^{2}}{q}\right)-B_{2}\left(\frac{a \bar{n}^{2}}{q}\right)=\int_{a \bar{n}^{2} / q}^{Y^{2} / n^{2}+a \bar{n}^{2} / q} B_{1}(v) d v \ll \frac{Y^{2}}{n^{2}} \tag{4.24}
\end{equation*}
$$

since $B_{1}$ is also a bounded function. Gathering 4.23 and 4.24 , we obtain

$$
\begin{equation*}
A(Y ; q, a) \ll \sum_{n \leq Y} 1+\sum_{n>Y} \frac{Y^{2}}{n^{2}} \ll Y \tag{4.25}
\end{equation*}
$$

In the following lemma we give a non-trivial bound for the sum above by means of Bourgain's bound, via Corollary 4.3. What we obtain is better than trivial by just a small power of $\log q$, but it is sufficient to obtain Theorem 1.2 .

Lemma 4.7. There exists $\delta>0$ such that for every $\epsilon>0$,

$$
\begin{equation*}
A(Y ; q, a) \ll_{\epsilon} Y(\log q)^{-\delta} \tag{4.26}
\end{equation*}
$$

uniformly for integers $a$ and $q$ such that $q \geq 2,(a, q)=1$ and for real numbers $Y>q^{\epsilon}$.

Proof. By Corollary 4.3, there exists $\delta_{1}>0$ such that

$$
\begin{equation*}
\sum_{\substack{n \leq Y \\(n, \bar{q})=1}} e\left(\frac{a \bar{n}^{2}}{q}\right)<_{\epsilon} Y(\log q)^{-\delta_{1}} \tag{4.27}
\end{equation*}
$$

uniformly for $(a, q)=1$ and $Y>q^{\epsilon / 10}$. For simplification, we write

$$
\begin{equation*}
\Delta_{Y}(n ; q, a)=B_{2}\left(\frac{Y^{2}}{n^{2}}+\frac{a \bar{n}^{2}}{q}\right)-B_{2}\left(\frac{a \bar{n}^{2}}{q}\right) \tag{4.28}
\end{equation*}
$$

The sum in 4.27) appears naturally once we use the Fourier series development

$$
\begin{equation*}
B_{2}(x)=\sum_{h \neq 0} \frac{1}{4 \pi^{2} h^{2}} e(h x) \tag{4.29}
\end{equation*}
$$

in formula 4.22. Let

$$
\begin{equation*}
\theta(q)=(\log q)^{\delta_{1} / 2} \tag{4.30}
\end{equation*}
$$

By 4.23) and 4.29, we have

$$
\begin{equation*}
\sum_{\substack{n \leq Y \theta(q) \\(n, q)=1}} \Delta_{Y}(n ; q, a)=\sum_{\substack{Y \theta(q)^{-1} \leq n \leq Y \theta(q) \\(n, q)=1}} \Delta_{Y}(n ; q, a)+O\left(Y \theta(q)^{-1}\right) \tag{4.31}
\end{equation*}
$$

$$
=\sum_{h \neq 0} \frac{1}{4 \pi^{2} h^{2}} \sum_{\substack{Y \theta(q)^{-1} \leq n \leq Y \theta(q) \\(n, q)=1}}\left(e\left(\frac{h Y^{2}}{n^{2}}\right)-1\right) e\left(\frac{a h \bar{n}^{2}}{q}\right)+O\left(Y \theta(q)^{-1}\right)
$$

$$
=\sum_{\substack{1 \leq|h| \leq \theta(q)^{3}}} \frac{1}{4 \pi^{2} h^{2}} \sum_{\substack{Y \theta(q)^{-1} \leq n \leq Y \theta(q) \\(n, q)=1}}\left(e\left(\frac{h Y^{2}}{n^{2}}\right)-1\right) e\left(\frac{a h \bar{n}^{2}}{q}\right)+O\left(Y \theta(q)^{-1}\right) .
$$

Summing by parts, we see that the inner sum on the right-hand side is

$$
\left.\ll \sum_{Y \theta(q)^{-1} \leq m \leq Y \theta(q)} \frac{|h| Y^{2}}{m^{3}}\right|_{\substack{Y \theta(q-1 \leq n \leq m \\(n, q)=1}} e\left(\frac{a h \bar{n}^{2}}{q}\right)\left|+\left.\right|_{\substack{Y \theta(q)-1 \leq n \leq Y \theta(q) \\(n, q)=1}} e\left(\frac{a h \bar{n}^{2}}{q}\right)\right| .
$$

Now, if $q$ is prime and sufficiently large, then any integer $h$ satisfying $1 \leq$ $|h| \leq \theta(q)^{3}$ is coprime to $q$. Then, by (4.27), the above expression is

$$
\begin{equation*}
\ll \sum_{Y \theta(q)^{-1} \leq m \leq Y \theta(q)} \frac{|h| Y^{2}}{m^{2}}(\log q)^{-\delta_{1}}+Y \theta(q)^{-1} \ll|h| Y \theta(q)^{-1} . \tag{4.32}
\end{equation*}
$$

If we insert this upper bound in 4.31), we obtain

$$
\begin{equation*}
\sum_{\substack{n \leq Y \theta(q) \\(n, q)=1}} \Delta_{Y}(n ; q, a) \ll Y \theta(q)^{-1} \log \log q \ll Y(\log q)^{-\delta_{1} / 4} \tag{4.33}
\end{equation*}
$$

For the remainder terms we use the trivial upper bound (4.24) to deduce

$$
\begin{equation*}
\sum_{\substack{n>Y \theta(q) \\(n, q)=1}} \Delta_{Y}(n ; q, a) \ll \sum_{n>Y \theta(q)} \frac{Y^{2}}{n^{2}} \ll Y \theta(q)^{-1} . \tag{4.34}
\end{equation*}
$$

Combining (4.33) and (4.34), we obtain

$$
\sum_{\substack{n \geq 1 \\(n, q)=1}} \Delta_{Y}(n ; q, a) \ll Y(\log q)^{-\delta_{1} / 4}
$$

uniformly for $(a, q)=1$ and $Y>q^{\epsilon}$. The proof of Lemma 4.7 is now complete.

Remark 4.8. Among the hypotheses of Lemma 4.7, it is essential that $(a, q)=1$. In the case where $q \mid a$, one cannot improve on 4.25). Indeed, it is possible to show that (see [5, Lemma 4.3])

$$
A(Y ; q, 0)=-\frac{\varphi(q)}{q} \frac{\zeta(3 / 2)}{2 \pi} Y+O\left(d(q) Y^{2 / 3}\right) \quad(Y \geq 1)
$$

4.2. A consequence of Lemma 4.7. In order to evaluate $S[\gamma](X, q)$ (see (3.4)), it is important to consider the sum below.

Definition 4.9. For integers $q, r, s$ such that $q \geq 1$ and $q \nmid r s$, let

$$
\mathfrak{S}\left[\gamma_{r, s}\right](X, q):=\sum_{\ell \equiv s(\bmod q)} f(\ell, r)|I(X, \ell, r)|
$$

Note that this sum is actually finite since whenever $|\ell|>2|r| X$, we have $I(X, \ell, r)=\emptyset$.

The purpose of this subsection is to prove the following.
Proposition 4.10. There exists $\delta>0$ such that for every $\epsilon>0$ and every $r \neq 0$ such that $r$ is squarefree, one has

$$
\begin{align*}
\mathfrak{S}\left[\gamma_{r, s}\right](X, q)= & \left(\frac{6}{\pi^{2}}\right)^{2}\left(1+\frac{1}{q^{2}\left(q^{2}-2\right)}\right)^{-1} X^{2} / q  \tag{4.35}\\
& +O_{\epsilon, r}\left(q^{1+\epsilon}+X^{1 / 2} q^{1 / 2}(\log q)^{-\delta}\right)
\end{align*}
$$

uniformly for $X \geq 2$, for integers $s$ and prime numbers $q$ such that $q \nmid r$.
The special case $r=1$ simplifies many of the calculations in the proof below. For instance, the sums over $\rho, \sigma$ and $\tau$ disappear. This simpler result is, however, equally deep, and it might be helpful on a first reading to think of $r=1$, in order to see more clearly the connection between the upper bound 4.26) and the error term in 4.35.

Proof of Proposition 4.10. We start by recalling (4.9):

$$
f(\ell, r)=C_{2}\left(\prod_{p \mid r} \frac{p^{2}-1}{p^{2}-2}\right)\left(\prod_{\substack{p^{2} \mid \ell \\ p \nmid r}} \frac{p^{2}-1}{p^{2}-2}\right) \kappa\left(\left(\ell, r^{2}\right)\right)
$$

where $C_{2}$ is as in (2.4). We notice that the term

$$
C_{2} \prod_{p \mid r} \frac{p^{2}-1}{p^{2}-2}
$$

is independent of $\ell$. We consider the sum

$$
\begin{align*}
\mathfrak{S}^{\prime}\left[\gamma_{r, s}\right](X, q) & =C_{2}^{-1}\left(\prod_{p \mid r} \frac{p^{2}-1}{p^{2}-2}\right)^{-1} \mathfrak{S}\left[\gamma_{r, s}\right](X, q)  \tag{4.36}\\
& =\sum_{\ell \equiv s(\bmod q)}|I(X, \ell, r)|\left(\prod_{\substack{p^{2} \mid \ell \\
p \nmid r}} \frac{p^{2}-1}{p^{2}-2}\right) \kappa\left(\left(\ell, r^{2}\right)\right)
\end{align*}
$$

We expand the last product as follows:

$$
\prod_{\substack{p^{2} \mid \ell \\ p \nmid r}} \frac{p^{2}-1}{p^{2}-2}=\sum_{\substack{d^{2} \mid \ell \\(d, r)=1}} \frac{h(d)}{d^{2}},
$$

from which we deduce

$$
\begin{align*}
& \mathfrak{S}^{\prime}\left[\gamma_{r, s}\right](X, q):=\sum_{\rho \mid r^{2}} \kappa(\rho) \sum_{\substack{\ell \equiv s(\bmod q) \\
\left(\ell, r^{2}\right)=\rho}}|I(X, \ell, r)| \sum_{\substack{d^{2} \mid \ell \\
(d, r)=1}} \frac{h(d)}{d^{2}}  \tag{4.37}\\
& =\sum_{\rho \sigma \mid r^{2}} \kappa(\rho) \mu(\sigma) \sum_{\ell_{0} \equiv \overline{\rho \sigma s}(\bmod q)}\left|I\left(X, \rho \sigma \ell_{0}, r\right)\right| \sum_{\substack{d^{2} \mid \ell_{0} \\
(d, r)=1}} \frac{h(d)}{d^{2}} \\
& =\sum_{\rho \sigma \mid r^{2}} \kappa(\rho) \mu(\sigma) \sum_{(d, q r)=1} \frac{h(d)}{d^{2}} \sum_{\ell_{1} \equiv \overline{\left(\rho \sigma d^{2}\right) s}(\bmod q)}\left|I\left(X, \rho \sigma d^{2} \ell_{1}, r\right)\right|,
\end{align*}
$$

where in the second line we used the Möbius inversion formula for detecting the condition $\left(\ell, r^{2}\right)=\rho$, and we noticed that the congruence satisfied by $\ell_{0}$ implies $(d, q)=1$.

We write the inner sum as an integral:

$$
\begin{align*}
& \sum_{\ell_{1} \equiv\left(\rho \sigma d^{2}\right) s(\bmod q)}\left|I\left(X, \rho \sigma d^{2} \ell_{1}, r\right)\right|  \tag{4.38}\\
&=\int_{0}^{X} \sum_{\ell_{1} \equiv \overline{\left(\rho \sigma d^{2}\right) s}(\bmod q)} \mathbf{1}_{(0, X)}\left(r u+\rho \sigma d^{2} \ell_{1}\right) d u
\end{align*}
$$

where $\mathbf{1}_{(0, X)}$ is the characteristic function of the interval $(0, X)$. Hence the inner sum above equals

$$
\begin{aligned}
& \left\lfloor\frac{X-r u}{\rho \sigma d^{2} q}-\overline{\frac{\left(\rho \sigma d^{2}\right)}{}} \frac{q}{}\right\rfloor-\left\lfloor\frac{-r u}{\rho \sigma d^{2} q}-\frac{\overline{\left(\rho \sigma d^{2}\right) s}}{q}\right\rfloor \\
& \quad=\frac{X}{\rho \sigma d^{2} q}-B_{1}\left(\frac{X-r u}{\rho \sigma d^{2} q}-\frac{\overline{\left(\rho \sigma d^{2}\right) s}}{q}\right)+B_{1}\left(\frac{-r u}{\rho \sigma d^{2} q}-\frac{\overline{\left(\rho \sigma d^{2}\right)} s}{q}\right)
\end{aligned}
$$

for almost all $u \in(0, X)$ in the sense of Lebesgue measure. If we apply this formula in 4.38), we get

$$
\begin{align*}
& \quad \sum_{\ell_{1} \equiv \overline{\left(\rho \sigma d^{2}\right)} s(\bmod q)}\left|I\left(X, \rho \sigma d^{2} \ell_{1}, r\right)\right|  \tag{4.39}\\
& =\frac{X^{2}}{\rho \sigma d^{2} q}-\frac{\rho \sigma d^{2} q}{r}\left\{B_{2}\left(\frac{X^{2}}{\rho \sigma d^{2} q}-\frac{\overline{\left(\rho \sigma d^{2}\right)} s}{q}\right)-B_{2}\left(-\frac{\overline{\left(\rho \sigma d^{2}\right)} s}{q}\right)\right. \\
& \left.\quad-B_{2}\left(\frac{(1-r) X}{\rho \sigma d^{2} q}-\frac{\overline{\left(\rho \sigma d^{2}\right)} s}{q}\right)+B_{2}\left(\frac{-r X}{\rho \sigma d^{2} q}-\frac{\overline{\left(\rho \sigma d^{2}\right)} s}{q}\right)\right\} .
\end{align*}
$$

From this point on, we suppose that $r<0$. The case $r>0$ requires only minor modifications. With this hypothesis, both

$$
\frac{(1-r) X}{\rho \sigma d^{2} q} \text { and } \frac{-r X}{\rho \sigma d^{2} q}
$$

are positive for every $\rho, \sigma \geq 1$.
We insert 4.39) in 4.37) and define

$$
B(D ; q, a ; r):=\sum_{(d, q r)=1} h(d) \Delta_{D}(d, q ; a),
$$

where $\Delta_{D}(d, q ; a)$ is as in (4.28). From (4.37) and 4.39) we deduce that

$$
\begin{align*}
\mathfrak{S}^{\prime}\left[\gamma_{r, s}\right](X, q)= & \lambda(q, r) \frac{X^{2}}{q}  \tag{4.40}\\
- & \frac{q}{r}\left\{G\left(\frac{X}{q} ; q,-s ; r\right)-\right. \\
& G\left(\frac{(1-r) X}{q} ; q,-s ; r\right) \\
& \left.+G\left(\frac{-r X}{q} ; q,-s ; r\right)\right\},
\end{align*}
$$

where

$$
\begin{aligned}
G(Y ; q, s ; r) & =\sum_{\rho \sigma \mid r^{2}} \sum \kappa(\rho) \mu(\sigma) \rho \sigma B\left(\sqrt{\frac{Y}{\rho \sigma}}, q, \overline{\rho \sigma} s ; r\right), \\
\lambda(q, r) & =\sum_{\rho \sigma \mid r^{2}} \frac{\kappa(\rho) \mu(\sigma)}{\rho \sigma} \times \sum_{(d, q r)=1} \frac{h(d)}{d^{4}} .
\end{aligned}
$$

Let $\beta(m)$ be the function defined in Lemma 4.1. We observe that for all $D>0$,

$$
\begin{aligned}
B(D ; q, a ; r) & =\sum_{(m, q r)=1} \beta(m) \sum_{(n, q r)=1} \Delta_{D}(m n ; q, a) \\
& =\sum_{(m, q r)=1} \beta(m) \sum_{(n, q r)=1} \Delta_{D / m}\left(n ; q, \bar{m}^{2} a\right) \\
& =\sum_{(m, q r)=1} \beta(m) \sum_{\tau \mid r} \mu(\tau) \sum_{(n, q)=1} \Delta_{D /(\tau m)}\left(n ; q, \bar{\tau}^{2} \bar{m}^{2} a\right) \\
& =\sum_{(m, q r)=1} \beta(m) \sum_{\tau \mid r} \mu(\tau) A\left(D /(\tau m), q ; \bar{\tau}^{2} \bar{m}^{2} a\right) .
\end{aligned}
$$

We apply the equality above with $D=\sqrt{Y /(\rho \sigma)}$ and $a=\overline{\rho \sigma} s$, multiply by $\kappa(\rho) \mu(\sigma) \rho \sigma$ and sum over $\rho, \sigma$ such that $\rho \sigma \mid r^{2}$. We obtain

$$
\begin{equation*}
=\sum_{\rho \sigma \mid r^{2}} \sum_{\tau \mid r} \sum_{(m, q r)=1} \kappa(\rho) \mu(\sigma) \mu(\tau) \rho \sigma \beta(m) A\left(\sqrt{\frac{Y}{\rho \sigma \tau^{2} m^{2}}} ; q, \overline{\rho \sigma \tau^{2} m^{2}} s\right) . \tag{4.41}
\end{equation*}
$$

Our discussion depends on the size of $Y$ :

- If $Y \leq q^{\epsilon}$, we have the trivial bound (see 4.25)

$$
A\left(\sqrt{\frac{Y}{\rho \sigma \tau^{2} m^{2}}} ; q, \overline{\rho \sigma \tau^{2} m^{2}} s\right) \ll \sqrt{\frac{Y}{\rho \sigma \tau^{2} m^{2}}} \leq \frac{Y^{1 / 2}}{m}
$$

for every $\rho, \sigma, \tau \geq 1$. Summing over $\rho, \sigma, \tau$ and $m$ gives

$$
\begin{equation*}
G(Y ; q, s ; r)<_{r} Y^{1 / 2} \sum_{m \geq 1} \frac{\beta(m)}{m} \ll q^{\epsilon / 2} \tag{4.42}
\end{equation*}
$$

as a consequence of the upper bound (4.1).

- If $Y>q^{\epsilon}$, we decompose the quadruple sum of (4.41) as

$$
\sum \sum_{\substack{m \leq q^{\epsilon / 2} \\ \rho \sigma \tau^{2} m^{2}>Y / q^{\epsilon}}} \sum+\sum \sum_{\substack{m \leq q^{\epsilon / 2} \\ \rho \sigma \tau^{2} m^{2} \leq Y / q^{\epsilon}}} \sum_{m>q^{\epsilon / 2}}+\sum \sum_{i} \sum_{i} \sum
$$

For the first sum we use again the trivial bound

$$
\begin{equation*}
A\left(\sqrt{\frac{Y}{\rho \sigma \tau^{2} m^{2}}} ; q, \overline{\rho \sigma \tau^{2} m^{2}} s\right) \ll \sqrt{\frac{Y}{\rho \sigma \tau^{2} m^{2}}} \leq q^{\epsilon / 2} . \tag{4.43}
\end{equation*}
$$

The most delicate is the second sum, for which we appeal to 4.26). This gives

$$
\begin{equation*}
A\left(\sqrt{\frac{Y}{\rho \sigma \tau^{2} m^{2}}} ; q, \overline{\rho \sigma \tau^{2} m^{2}} s\right)<_{\epsilon} \sqrt{\frac{Y}{\rho \sigma \tau^{2} m^{2}}}(\log q)^{-\delta} . \tag{4.44}
\end{equation*}
$$

For the third sum, we use the trivial bound

$$
\begin{equation*}
A\left(\sqrt{\frac{Y}{\rho \sigma \tau^{2} m^{2}}} ; q, \overline{\rho \sigma \tau^{2} m^{2} s}\right) \ll \sqrt{\frac{Y}{\rho \sigma \tau^{2} m^{2}}} . \tag{4.45}
\end{equation*}
$$

Applying inequalities (4.43)-4.45) in (4.41), we obtain

$$
\begin{aligned}
& G(Y ; q, s ; r) \\
& \quad<_{\epsilon, r} q^{\epsilon / 2} \sum_{m \leq q^{\epsilon / 2}}|\beta(m)|+\sqrt{Y}(\log q)^{-\delta} \sum_{m \leq q^{\epsilon / 2}} \frac{|\beta(m)|}{m}+\sqrt{Y} \sum_{m>q^{\epsilon / 2}} \frac{|\beta(m)|}{m},
\end{aligned}
$$

and finally, by Lemma 4.1,

$$
\begin{equation*}
G(Y ; q, s ; r) \ll_{\epsilon, r} q^{\epsilon}+\sqrt{Y}(\log q)^{-\delta} \quad\left(Y>q^{\epsilon}\right) \tag{4.46}
\end{equation*}
$$

Comparing with 4.42 , we see that 4.46 is true for any $Y \geq 1$.
Combining 4.46) and 4.40, one has

$$
\begin{equation*}
\mathfrak{S}^{\prime}\left[\gamma_{r, s}\right](X, q)=\lambda(q, r) \frac{X^{2}}{q}+O_{\epsilon, r}\left(q^{1+\epsilon}+X^{1 / 2} q^{1 / 2}(\log q)^{-\delta}\right) \tag{4.47}
\end{equation*}
$$

If we multiply the above formula by $C_{2} \prod_{p \mid r} \frac{p^{2}-1}{p^{2}-2}$ (recall 4.36) , we deduce

$$
\begin{equation*}
\mathfrak{S}\left[\gamma_{r, s}\right](X, q)=\Lambda(q, r) \frac{X^{2}}{q}+O_{\epsilon, r}\left(q^{1+\epsilon}+X^{1 / 2} q^{1 / 2}(\log q)^{-\delta}\right) \tag{4.48}
\end{equation*}
$$

where

$$
\Lambda(q, r)=C_{2}\left(\prod_{p \mid r} \frac{p^{2}-1}{p^{2}-2}\right) \sum_{\rho \sigma \mid r^{2}} \frac{\kappa(\rho) \mu(\sigma)}{\rho \sigma} \times \sum_{(d, q r)=1} \frac{h(d)}{d^{4}} .
$$

Since for $r$ squarefree, we have

$$
\sum_{\rho \sigma \mid r^{2}} \frac{\kappa(\rho) \mu(\sigma)}{\rho \sigma}=\prod_{p \mid r} \frac{p^{2}-1}{p^{2}},
$$

standard calculations show that $\Lambda(q, r)$ does not depend on $r$. More precisely, since $q$ is prime and $(q, r)=1$, we have

$$
\Lambda(q, r)=\left(\frac{6}{\pi^{2}}\right)^{2}\left(1+\frac{1}{q^{2}\left(q^{2}-2\right)}\right)^{-1} .
$$

Now, formula (4.48) completes the proof of Proposition 4.10.
5. Study of $S\left[\gamma_{r, s}\right](X, q)$. We rewrite $S\left[\gamma_{r, s}\right](X, q)$ (see (3.4) as

$$
\begin{equation*}
S\left[\gamma_{r, s}\right](X, q)=\sum_{\ell \equiv s(\bmod q)} \sum_{n \in I(X, \ell, r)} \mu(n)^{2} \mu(r n+\ell)^{2} . \tag{5.1}
\end{equation*}
$$

Recall that for $|\ell|>2|r| X$ we have defined $I(X, \ell, r)$. Hence, by 4.8) (recall Definition 4.9,

$$
\begin{aligned}
S\left[\gamma_{r, s}\right](X, q) & =\sum_{\substack{\ell \equiv s(\bmod q) \\
|\ell| \leq 2|r| X}} f(\ell, r)|I(X, \ell, r)|+O_{r}\left(\frac{X}{q} X^{2 / 3+\epsilon}\right) \\
& =\mathfrak{S}\left[\gamma_{r, s}\right](X, q)+O_{r}\left(\frac{X^{5 / 3+\epsilon}}{q}\right) .
\end{aligned}
$$

From Proposition 4.10, we deduce that

$$
\begin{align*}
S\left[\gamma_{r, s}\right](X, q)= & \left(\frac{6}{\pi^{2}}\right)^{2}\left(1+\frac{1}{q^{2}\left(q^{2}-2\right)}\right)^{-1} \frac{X^{2}}{q}  \tag{5.2}\\
& +O_{\epsilon, r}\left(q^{1+\epsilon}+X^{1 / 2} q^{1 / 2}(\log q)^{-\delta}+\frac{X^{5 / 3+\epsilon}}{q}\right)
\end{align*}
$$

By the definition (3.2) for $C(q)$, one can easily see that

$$
\left(\frac{6}{\pi^{2}}\right)^{2}\left(1+\frac{1}{q^{2}\left(q^{2}-2\right)}\right)^{-1}=C(q)^{2}+O\left(\frac{1}{q^{2}}\right) .
$$

In conclusion, we have proved

Proposition 5.1. Let $C(q)$ be as in (3.2). There exists $\delta>0$ such that for every $\epsilon>0$ and every $r \neq 0$, one has the asymptotic formula

$$
\begin{align*}
& S\left[\gamma_{r, s}\right](X, q)  \tag{5.3}\\
& \quad=C(q)^{2} \frac{X^{2}}{q}+O_{\epsilon, r}\left(q^{1+\epsilon}+X^{1 / 2} q^{1 / 2}(\log q)^{-\delta}+\frac{X^{5 / 3+\epsilon}}{q}+\frac{X^{2}}{q^{3}}\right)
\end{align*}
$$

uniformly for $X \geq 2$, for integers $s$ and prime numbers $q$ such that $q \nmid r s$ and $q \leq X$.
6. Proof of the main theorem. We start by recalling (3.3):

$$
C\left[\gamma_{r, s}\right](X, q)=S\left[\gamma_{r, s}\right](X, q)-2 C(q) \frac{X}{q} \sum_{n \leq X} \mu(n)^{2}+C(q)^{2} \frac{X^{2}}{q}+O\left(\frac{X^{2}}{q^{2}}\right)
$$

By Proposition 5.1 and formula (3.5), we deduce the inequality

$$
C[\gamma](X, q) \ll_{\epsilon, r} q^{1+\epsilon}+X^{1 / 2} q^{1 / 2}(\log q)^{-\delta}+\frac{X^{5 / 3+\epsilon}}{q}+\frac{X^{2}}{q^{2}}
$$

The proof of Theorem 1.2 is now complete.
Acknowledgements. I am grateful to my advisor Étienne Fouvry for all his support and valuable help.

This work was partially supported by the labex LMH through grant no. ANR-11-LABX-0056-LMH in the "Programme des Investissements d'Avenir".

## References

[1] V. Blomer, The average value of divisor sums in arithmetic progressions, Quart. J. Math. 59 (2007), 275-286.
[2] J. Bourgain, A remark on solutions of the Pell equation, Int. Math. Res. Notices 2015, 2841-2855.
[3] É. Fouvry, On the size of the fundamental solution of the Pell equation, J. Reine Angew. Math. (2014) (online).
[4] É. Fouvry, S. Ganguly, E. Kowalski and Ph. Michel, Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progression, Comment. Math. Helv. 89 (2014), 979-1014.
[5] R. M. Nunes, Squarefree numbers in arithmetic progressions, J. Number Theory 153 (2015), 1-36.
[6] T. Reuss, Pairs of $k$-free numbers, consecutive square-full numbers, arXiv:1212.3150v1 [math.NT] (2012).
[7] K.-M. Tsang, The distribution of r-tuples of square-free numbers, Mathematika 32 (1985), 265-275.

Ramon M. Nunes
Laboratoire de Mathématiques
Université Paris Sud
Campus d'Orsay
91405 Orsay Cedex, France
E-mail: ramon.moreira@math.u-psud.fr


[^0]:    2010 Mathematics Subject Classification: Primary 11N37; Secondary 11L05.
    Key words and phrases: squarefree integers, arithmetic progressions, exponential sums. Received 11 August 2014; revised 31 March 2015 and 22 September 2015. Published online 3 December 2015.

