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Unitarily invariant norms related to semi-finite factors

by

Junsheng Fang (Dalian) and Don Hadwin (Durham, NH)

Abstract. Let M be a semi-finite factor and let J (M) be the set of operators T in
M such that T = ETE for some finite projection E. We obtain a representation theorem
for unitarily invariant norms on J (M) in terms of Ky Fan norms. As an application,
we prove that the class of unitarily invariant norms on J (M) coincides with the class of
symmetric gauge norms on a classical abelian algebra, which generalizes von Neumann’s
classical 1940 result on unitarily invariant norms on Mn(C). As another application, Ky
Fan’s dominance theorem of 1951 is obtained for semi-finite factors.

1. Introduction. F. J. Murray and J. von Neumann [12, 13, 14, 21, 22]
introduced and studied certain algebras of Hilbert space operators. Those
algebras are now called “von Neumann algebras.” They are strong-operator
closed self-adjoint subalgebras of all bounded linear transformations on a
Hilbert space. Factors are von Neumann algebras whose centers consist of
scalar multiples of the identity operator. Every von Neumann algebra on a
separable Hilbert space is a direct sum (or “direct integral”) of factors. Thus
factors are the building blocks for general von Neumann algebras. Murray
and von Neumann [12] classified factors into type In, I∞, II1, II∞, III factors.
Type In and I∞ factors are full matrix algebras: Mn(C) and B(H). Type In
and II1 factors are called finite factors. There is a unique faithful normal
tracial state on a finite factor. Factors except type III factors are called semi-
finite factors. A semi-finite factor admits a faithful normal tracial weight.

The unitarily invariant norms on type In factors were introduced by von
Neumann [23] for the purpose of metrizing matrix spaces. Von Neumann,
together with his associates, established that the class of unitarily invariant
norms on type In factors coincides with the class of symmetric gauge norms
on Cn. These norms have now been variously generalized and utilized in
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several contexts. For example, Schatten [16, 17] defined unitarily invariant
norms on two-sided ideals of completely continuous operators in type I∞
factors; Ky Fan [6] studied Ky Fan norms and obtained his dominance the-
orem. For historical perspectives and surveys of unitarily invariant norms,
see [7, 11, 16, 17, 18, 19].

In [3], a structure theorem for unitarily invariant norms on finite factors is
obtained. The main purpose of this paper is to set up a structure theorem for
unitarily invariant norms related to semi-finite factors, which has a number
of applications. Notably, even for B(H), this structure theorem is new!

In this paper, a semi-finite von Neumann algebra (M, τ) means a von
Neumann algebra M with a faithful normal tracial weight τ , and a Hilbert
space H means the separable infinite-dimensional complex Hilbert space.
If (M, τ) is a finite von Neumann algebra, we assume that τ(1) = 1. If
M = B(H), we assume that τ = Tr, the classical tracial weight on B(H).
This paper is organized as follows.

In Section 2, we collect some basic facts on the s-numbers of operators
in a semi-finite von Neumann algebra (M, τ).

In Section 3, we study various norms related to a semi-finite von Neu-
mann algebra (M, τ). Let J (M) be the set of operators T in M such that
T = ETE for some finite projection E. Then J (M) is a hereditary self-
adjoint two-sided ideal of M. If M is a finite von Neumann algebra, then
J (M) = M. If M = B(H), we simply write J (H) instead of J (B(H)).
Note that J (H) is the set of bounded linear operators T on H such that
both T and T ∗ are finite rank operators.

A unitarily invariant norm ||| · ||| on J (M) is a norm on J (M) satisfying
|||UTV ||| = |||T ||| for all T ∈ J (M) and unitary operators U, V in M. For
a semi-finite von Neumann algebra (M, τ), let Aut(M, τ) be the set of
∗-automorphisms of M preserving τ . A symmetric gauge norm ||| · ||| on
J (M) is a norm on J (M) such that |||T ||| = ||| |T | ||| (gauge invariant) and
|||θ(T )||| = |||T ||| (symmetric) for all operators T ∈ J (M) and θ ∈ Aut(M, τ).
A norm ||| · ||| on J (M) is normalized if |||E||| = 1 for a projection E in M
such that τ(E) = 1. We will reserve the notation ‖ · ‖ for the operator norm
on a von Neumann algebra.

In Section 4, we define and study the normalized Ky Fan norms related
to semi-finite von Neumann algebras. To illustrate difficulties one may en-
counter in studying the unitarily invariant norms related to infinite factors,
we point out one example here. The following result plays a key role in the
study of unitarily invariant norms on finite factors: if ||| · ||| is a normalized
unitarily invariant norm on a finite factor (M, τ), then

‖T‖1 ≤ |||T ||| ≤ ‖T‖
for all T ∈ M, where ‖T‖1 = τ(|T |) (see [3, Corollary 3.31]). However, the
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above result is not true for infinite factors (see Proposition 4.6).
In Section 5, we study the dual norms of symmetric gauge norms on

J (M). Let (M, τ) be a semi-finite von Neumann algebra and let ||| · ||| be a
norm on J (M). For T ∈ J (M), define

|||T |||# = sup{|τ(TX)| : X ∈ J (M), |||X||| ≤ 1}.
In that section, we also compute the dual norms of Ky Fan norms and prove
that ||| · |||## = ||| · ||| under very general conditions.

A representation theorem (Theorem 6.4) for symmetric gauge norms on
J (M) is set up in Section 6; it is the main result of this paper. In Section 7,
we apply the representation theorem to two special cases: factors and abelian
von Neumann algebras. In the remaining sections, we give some applications
of the representation theorem.

In Section 8, we prove that there is a one-to-one correspondence between
unitarily invariant norms on J (M) for a semi-finite factorM and symmetric
gauge norms on J (A) for a classical abelian von Neumann algebra A, which
generalizes von Neumann’s classical result [23] on unitarily invariant norms
on type In factors. Furthermore, we establish the one-to-one correspondence
between the dual norms on J (M) for a semi-finite factor M and the dual
norms on J (A), which plays a key role in the study of duality and reflexivity
of the completion of J (M) with respect to unitarily invariant norms. As a
quick application, a very simple proof of Ky Fan’s dominance theorem for
general semi-finite factors is given in Section 9.

For the theory of von Neumann algebras we refer to [2, 10].
In our paper [3] on tracial gauge norms, we mistakenly failed to con-

sider, for a tracial gauge α, the case in which the α-closure Lα(M, τ) is
not the same as the set Lα(M, τ) of elements A in the measure-closure of
M with α(A) < ∞ (we refer to [1] for the definitions of Lα(M, τ) and
Lα(M, τ)). This led to incorrect results on dual spaces and reflexivity (The-
orems H and I in [3]). Nothing else in that paper was affected by this er-
ror. Recently, Yanni Chen [1, Section 11] proved the correct versions. She
called a symmetric gauge norm α strongly continuous if it is continuous and
Lα(M, τ) = Lα(M, τ). She proved that if α is continuous, then the dual
space of Lα(M, τ) is Lα′(M, τ), and she demonstrated that Lα(M, τ) is re-
flexive if and only if both α and α′ are strongly continuous. She also proved
that if α is continuous, then Lα(M, τ) = Lα(M, τ) if and only if Lα(M, τ)
is weakly sequentially complete.

2. Preliminaries

2.1. Nonincreasing rearrangements of functions. Throughout this
paper, we denote by m the Lebesgue measure on [0,∞). In the following,
a measurable function and a measurable set mean a Lebesgue measurable



16 J. Fang and D. Hadwin

function and a Lebesgue measurable set, respectively. Let f be a real mea-
surable function on [0,∞). The nonincreasing rearrangement, f∗, of f is
defined by

(2.1) f∗(x) = sup{y : m({f > y}) > x}, 0 ≤ x <∞.

We summarize some well-known properties of f∗ in the following proposi-
tion [8, 20].

Proposition 2.1. Let f, g, f1, f2, . . . be real measurable functions on
[0,∞), and c be a real number. Then

(1) f∗ is a nonincreasing, right-continuous function on [0,∞) such that
f∗(0) = ess sup f(x);

(2) (f + c)∗ = f∗ + c;
(3) (cf)∗ = cf∗ if c ≥ 0;
(4) if f is a simple function, then so is f∗;
(5) if f(x) ≤ g(x) for almost all x, then f∗(x) ≤ g∗(x) everywhere;
(6) ‖f∗ − g∗‖∞ ≤ ‖f − g‖∞;
(7) if limn→∞ fn(x) = f(x) uniformly, then limn→∞ f

∗
n(x) = f∗(x)

uniformly;
(8) if fn converges to f in measure, then lim infn→∞ f

∗
n(x) ≥ f∗(x) for

every x ∈ [0,∞);
(9) if fn converges to f in measure, then lim supn→∞ f

∗
n(x) ≤ f∗(x) for

every x ∈ [0,∞) such that f∗ is continuous at x;
(10) f and f∗ are equi-measurable, i.e., for any real y, m({f > y}) =

m({f∗ > y});
(11) f∗ = g∗ if and only f and g are equi-measurable;
(12) if f and g are bounded functions and

	∞
0 f(x)n dx =

	∞
0 g(x)n dx for

all n = 0, 1, 2, . . . , then f∗ = g∗;
(13)

	∞
0 f(x) dx =

	∞
0 f∗(x) dx when either integral is well-defined;

(14) if f, g are nonnegative measurable functions on [a, b] and f∗, g∗ are

their respective nonincreasing rearrangements, then
	b
a f(x)g(x) dx

≤
	b
a f
∗(x)g∗(x) dx.

2.2. s-numbers of operators in type II∞ factors. In [5], Fack
and Kosaki give a rather complete exposition of generalized s-numbers of
τ -measurable operators affiliated with semi-finite von Neumann algebras.
For the reader’s convenience and our purpose, in this section we provide
sufficient details on s-numbers of bounded operators in semi-finite von Neu-
mann algebras. We will define the s-numbers using nonincreasing rearrange-
ments, which is implicit in [5]. Recall that a von Neumann algebra A is called
diffuse if there is no nonzero minimal projection in A.
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Lemma 2.2. Let (A, τ) be a separable (i.e., with separable predual) dif-
fuse abelian von Neumann algebra with a faithful normal tracial weight τ on
A such that τ(1) = ∞. Then there is a ∗-isomorphism α from (A, τ) onto
(L∞[0,∞),

	∞
0 dx) such that τ =

	∞
0 dx · α.

Proof. Choose a sequence {En}∞n=1 of mutually orthogonal projections
in A such that

∑∞
n=1En = 1 and τ(En) = 1 for all n. By [3, Lemma 2.6],

there is a ∗-isomorphism αn from EnAEn onto L∞([n, n + 1]) such that

τ(EnTEn) =
	n+1
n αn(EnTEn)(x) dx for all T ∈ A. For T ∈ A, define

α(T ) =

∞∑
n=1

αn(EnTEn).

Then α is as desired.

Let M be a type II∞ factor and let τ be a faithful normal trace on M.
For T ∈M, there is a separable diffuse abelian von Neumann subalgebra A
ofM containing |T |. By Lemma 2.2, there is a ∗-isomorphism α from (A, τ)
onto (L∞[0,∞),

	∞
0 dx) such that τ =

	∞
0 dx · α. Let f = α(|T |) and let f∗

be the nonincreasing rearrangement of f (see (2.1)). Then the s-numbers
of T , µs(T ), are defined as

µs(T ) = f∗(s), 0 ≤ s <∞.
Lemma 2.3. µs(T ) does not depend on A or α.

Proof. Let A1 be another separable diffuse abelian von Neumann subal-
gebra of M containing |T | and suppose β is a ∗-isomorphism from A1 onto
L∞[0,∞) such that τ =

	∞
0 dx · β. Let g = β(|T |). For n = 0, 1, 2, . . . , we

have
	∞
0 f(x)n dx = τ(|T |n) =

	∞
0 g(x)n dx. Since both f and g are bounded

positive functions, by Proposition 2.1(12), f∗(x) = g∗(x) for all x ∈ [0,∞).

Corollary 2.4. For T ∈M and p ≥ 0, τ(|T |p) =
	∞
0 µs(T )pds.

Lemma 2.5. Let E,F be two projections inM. If τ(E⊥) < τ(F⊥) <∞,
then τ(E ∧ F⊥) > 0.

Proof. By [10, Vol. 1, p. 119, Proposition 2.5.14], R(F⊥E⊥) = F⊥ −
E ∧ F⊥, where R(F⊥E⊥) is the range projection of F⊥E⊥. Therefore,

τ(E ∧ F⊥) = τ(F⊥)− τ(R(F⊥E⊥)) ≥ τ(F⊥)− τ(E⊥) > 0.

Let P(M) be the set of projections inM. The following lemma says that
the above definition of s-numbers coincides with the definition of s-numbers
given by Fack and Kosaki.

Lemma 2.6. Let M be a type II∞ factor and τ be a faithful normal trace
on M . For 0 ≤ s <∞,

µs(T ) = inf{‖TE‖ : E ∈ P(M), τ(E⊥) = s}.
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Proof. By polar decomposition and the definition of µs(T ), we may as-
sume that T is positive. Let A be a separable diffuse abelian von Neumann
subalgebra of M containing T and let α be a ∗-isomorphism from A onto
L∞[0,∞) such that τ =

	∞
0 dx · α. Let f = α(T ) and let f∗ be the nonin-

creasing rearrangement of f . Then µs(T ) = f∗(s). By the definition of f∗,

m({f∗ > µs(T )}) = lim
n→∞

m

({
f∗ > µs(T ) +

1

n

})
≤ s

and

m({f∗ ≥ µs(T )}) ≥ lim
n→∞

m

({
f∗ > µs(T )− 1

n

})
≥ s.

Since f∗ and f are equi-measurable, we have m({f > µs(T )}) ≤ s and
m({f ≥ µs(T )}) ≥ s. Therefore, there is a measurable set A of [0,∞) with
{f > µs(T )} ⊂ [0,∞) \ A ⊂ {f ≥ µs(T )} such that m([0,∞) \ A) = s and
‖fχA‖∞ = µs(T ) and ‖fχB‖∞ ≥ µs(T ) for every B ⊂ [0,∞) \ A such that
m(B) > 0. Let F = α−1(χA). Then τ(F⊥) = s, ‖TF‖ = ‖α−1(fχA)‖∞ =
µs(T ) and ‖TF ′‖ ≥ µs(T ) for any nonzero subprojection F ′ of F⊥. This
proves that

µs(T ) ≥ inf{‖TE‖ : E ∈ P(M), τ(E⊥) = s}.
Similarly, for any ε > 0, there is a projection Fε ∈M such that τ(F⊥ε ) =

s + ε, ‖TFε‖ = µs+ε(T ) and ‖TF ′‖ ≥ µs+ε(T ) for any nonzero subprojec-
tion F ′ of F⊥ε . Suppose E ∈ M is a projection such that τ(E⊥) = s. By
Lemma 2.5, τ(E ∧ F⊥ε ) > 0. Hence, ‖TE‖ ≥ ‖T (E ∧ F⊥ε )‖ ≥ µs+ε(T ). This
proves that inf{‖TE‖ : E ∈ P(M), τ(E⊥) = s} ≥ µs+ε(T ). Since µs(T ) is
right-continuous,

µs(T ) ≤ inf{‖TE‖ : E ∈ P(M), τ(E⊥) = s}.
Corollary 2.7. Let S, T ∈M. Then

µs(ST ) ≤ ‖S‖µs(T ) for s ∈ [0,∞).

We refer to [4, 5] for other interesting properties of s-numbers for oper-
ators in type II∞ factors.

2.3. s-numbers of operators in semi-finite von Neumann alge-
bras. An embedding of a semi-finite von Neumann algebra (M, τ) into an-
other semi-finite von Neumann algebra (M1, τ1) is a ∗-isomorphism α from
M to M1 such that τ = τ1 · α. Every semi-finite von Neumann algebra can
be embedded into a type II∞ factor.

Definition 2.8. Let (M, τ) be a semi-finite von Neumann algebra and
T ∈ M. If α is an embedding of (M, τ) into a type II∞ factor (M1, τ1),
then the s-numbers of T are defined as

µs(T ) = µs(α(T )), 0 ≤ s <∞.
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Similar to the proof of Lemma 2.3, we can see that µs(T ) is well defined,
i.e., does not depend on the choice of α or M1.

Let T ∈ (B(H),Tr) be a finite rank operator, where H is the separable
infinite-dimensional complex Hilbert space and Tr is the classical tracial
weight on B(H). Then |T | is unitarily equivalent to a diagonal operator
with diagonal elements s1(T ) ≥ s2(T ) ≥ · · · ≥ 0. In the classical operator
theory [7], s1(T ), s2(T ), . . . are also called the s-numbers of T . It is easy to
see that the relation between µs(T ) and s1(T ), s2(T ), . . . is the following:

(2.2) µs(T ) = s1(T )χ[0,1)(s) + s2(T )χ[1,2)(s) + · · · .
Since no confusion will arise, we will use both s-numbers for a finite rank
operator in (B(H),Tr). We refer to [5, 7] for properties of s-numbers for
finite rank operators in (B(H),Tr).

We end this section with the following definition.

Definition 2.9. Two positive operators S, T in a semi-finite von Neu-
mann algebra (M, τ) are equi-measurable if µs(S) = µs(T ) for 0 ≤ s <∞.

By Proposition 2.1(12) and Corollary 2.4, positive operators S and T in
a semi-finite von Neumann algebra (M, τ) are equi-measurable if and only
if τ(Sn) = τ(Tn) for all n = 0, 1, 2, . . . .

3. Semi-norms on J (M). In this section, (M, τ) is a semi-finite von
Neumann algebra with a faithful normal tracial weight τ . Recall that J (M)
is the set of operators T inM such that T = ETE for some finite projection
E. If M = B(H), we simply write J (H) instead of J (B(H)). Note that
J (H) is the set of bounded linear operators T on H such that both T and
T ∗ are finite rank operators.

3.1. Gauge invariant semi-norms on J (M)

Definition 3.1. Let (M, τ) be a semi-finite von Neumann algebra.
A semi-norm ||| · ||| on J (M) is gauge invariant if |||T ||| = ||| |T | ||| for all
T ∈ J (M). A semi-norm ||| · ||| on J (M) is called left unitarily invariant if
|||UT ||| = |||T ||| for all unitary operators U in M and all T in J (M).

Lemma 3.2. Let (M, τ) be a semi-finite von Neumann algebra and let
||| · ||| be a left unitarily invariant semi-norm on J (M). If T ∈ J (M) and
A ∈M, then AT ∈ J (M) and |||AT ||| ≤ ‖A‖ · |||T |||.

Proof. Note that by [10, Theorem 6.8.3], AT ∈ J (M) if T ∈ J (M) and
A ∈M. We need to prove that if ‖A‖ < 1, then |||AT ||| ≤ |||T |||. Since ‖A‖ < 1,
there are unitary operators U1, . . . , Uk such that A = 1

k (U1 + · · · + Uk)
(see [9, 15]). Since ||| · ||| is a left unitarily invariant semi-norm on J (M),

|||AT ||| =
∣∣∣∣∣∣∣∣∣∣∣∣1k (U1T + · · ·+ UkT )

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ |||U1T |||+ · · ·+ |||UkT |||
k

≤ |||T |||.
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Lemma 3.3. Let (M, τ) be a semi-finite von Neumann algebra and let
||| · ||| be a semi-norm on J (M). Then ||| · ||| is gauge invariant if and only if
||| · ||| is left unitarily invariant.

Proof. Note that |UT | = |T | for all T ∈ J (M) and unitary operators U
inM. If |||·||| is gauge invariant then |||·||| is left unitarily invariant. Conversely,
suppose ||| · ||| is left unitarily invariant. By Lemma 3.2, |||T ||| = |||V |T | ||| ≤
||| |T | ||| and ||| |T | ||| = |||V ∗T ||| ≤ |||T |||. Hence, ||| · ||| is gauge invariant.

Corollary 3.4. Let (M, τ) be a semi-finite von Neumann algebra and
let ||| · ||| be a gauge invariant semi-norm on J (M). If T ∈ J (M) and
0 ≤ S ≤ T , then S ∈ J (M) and |||S||| ≤ |||T |||.

Proof. Since 0 ≤ S ≤ T , there is an operator A ∈M such that S = AT
and ‖A‖ ≤ 1. By Lemmas 3.2 and 3.3, S ∈ J (M) and |||S||| = |||AT ||| ≤
‖A‖ · |||T ||| ≤ |||T |||.

3.2. Unitarily invariant semi-norms on J (M)

Definition 3.5. Let (M, τ) be a semi-finite von Neumann algebra.
A semi-norm ||| · ||| on J (M) is unitarily invariant if |||UTV ||| = |||T ||| for
all T ∈ J (M) and unitary operators U, V ∈M.

Proposition 3.6. Let |||·||| be a semi-norm on J (M). Then the following
statements are equivalent:

(1) ||| · ||| is unitarily invariant;
(2) ||| · ||| is gauge invariant and unitarily conjugate invariant, i.e.,
|||UTU∗||| = |||T ||| for all T ∈ J (M) and unitary operators U ∈M;

(3) ||| · ||| is gauge invariant and |||T ||| = |||T ∗||| for all T ∈ J (M);
(4) |||ATB||| ≤ ‖A‖ · |||T ||| · ‖B‖ for all A,B ∈M and T ∈ J (M).

Proof. (1)⇒(4) is similar to the proof of Lemma 3.2.

(4)⇒(3). Let T = V |T |. Then T ∗ = |T |V ∗. By (4) and simple arguments,
|||T ||| = |||T ∗|||.

(3)⇒(2). By Lemma 3.3 and (3), we have |||UTU∗||| = |||TU∗||| = |||UT ∗||| =
|||T ∗||| = |||T |||.

(2)⇒(1). Suppose ||| · ||| is gauge invariant and unitarily conjugate invari-
ant. Let U, V ∈ M be unitary operators and T ∈ J (M). By Lemma 3.3,
|||UTV ||| = |||V ∗V UTV ||| = |||V UT ||| = |||T |||.

Corollary 3.7. Let ||| · ||| be a unitarily invariant semi-norm on J (M)
and let E,F be two equivalent projections in J (M). Then |||E||| = |||F |||.

3.3. Symmetric gauge semi-norms on J (M)

Definition 3.8. Let (M, τ) be a semi-finite von Neumann algebra and
let Aut(M, τ) be the set of ∗-automorphisms on M preserving τ . A semi-
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norm ||| · ||| on J (M) is called symmetric (with respect to τ) if

|||θ(T )||| = |||T |||, ∀T ∈ J (M), θ ∈ Aut(M, τ);

a semi-norm ||| · ||| on J (M) is called a symmetric gauge semi-norm if it is
both symmetric and gauge invariant on J (M).

Example 3.9. The abelian von Neumann algebra Cn is a finite von
Neumann algebra with the classical tracial state τ((x1, . . . , xn)) = (x1 +
· · · + xn)/n. In this case, J (Cn) = Cn. A norm ||| · ||| on Cn is a symmetric
gauge norm if and only if for every (x1, . . . , xn) ∈ Cn,

• |||(x1, . . . , x2)||| = |||(|x1|, . . . , |xn|)||| and
• |||(x1, . . . , xn)||| = |||(xπ(1), . . . , xπ(n))||| for every permutation π of
{1, . . . , n}.

Example 3.10. The abelian von Neumann algebra l∞(N) is a semi-finite
von Neumann algebra with the classical tracial weight τ((x1, x2, . . . )) =
x1 + x2 + · · · . It is easy to see that J (l∞(N)) = c00 consists of (x1, x2, . . . )
with xn = 0 except for finitely many n. A norm ||| · ||| on J (l∞(N)) is a
symmetric gauge norm if and only if for every (x1, x2, . . .) ∈ c00,
• |||(x1, x2, . . .)||| = |||(|x1|, |x2|, . . .)||| and
• |||(x1, x2, . . .)||| = |||(xπ(1), xπ(2), . . .)||| for every permutation π of N.

Example 3.11. The abelian von Neumann algebra L∞[0, 1] is a finite

von Neumann algebra with the classical tracial state τ =
	1
0 dx. In this case

J (L∞[0, 1]) = L∞[0, 1]. A norm ||| · ||| on L∞[0, 1] is a symmetric gauge norm
if and only if for every f ∈ L∞[0, 1],

• |||f ||| = ||| |f | ||| and
• |||f ||| = |||f ◦ φ||| for every invertible measure preserving map φ of [0, 1].

Example 3.12. The abelian von Neumann algebra L∞[0,∞) is a semi-
finite von Neumann algebra with the classical tracial weight τ =

	∞
0 dx.

A norm ||| · ||| on J (L∞[0,∞)) is a symmetric gauge norm if and only if for
every f ∈ J (L∞[0,∞)),

• |||f ||| = ||| |f | ||| and
• |||f ||| = |||f ◦φ||| for every invertible measure preserving map φ of [0,∞).

The following lemma follows from Proposition 3.6.

Lemma 3.13. Let (M, τ) be a semi-finite von Neumann algebra and let
||| · ||| be a symmetric gauge semi-norm on J (M). Then ||| · ||| is a unitarily
invariant semi-norm on J (M).

3.4. Symmetric gauge norms on (ME , τE). In this paper we are
interested in symmetric gauge semi-norms on J (M), where (M, τ) is one
of the following semi-finite von Neumann algebras:
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• M = B(H) and τ = Tr on B(H), where H is the separable infinite-
dimensional complex Hilbert space;
• M = l∞(N) and τ((x1, x2, . . .)) = x1 + x2 + · · · ;
• M is a type II∞ factor and τ is a faithful normal tracial weight onM;
• M = L∞[0,∞) and τ =

	∞
0 dx.

Note that in each case, Aut(M, τ) acts on M strongly ergodically in the
following sense: for two projections E and F inM with τ(E) ≤ τ(F ), there
is a θ ∈ Aut(M, τ) such that θ(E) ≤ F . Furthermore, if ||| · ||| is a symmetric
gauge semi-norm on J (M), then |||E||| = |||F |||. A symmetric gauge semi-norm
||| · ||| on J (M) is called a normalized symmetric gauge semi-norm if |||E||| = 1
whenever τ(E) = 1.

Let (M, τ) be one of the above semi-finite von Neumann algebras. For
every (nonzero) finite projection E in M, let

ME = EME and τE(ETE) =
τ(ETE)

τ(E)
.

Then (ME , τE) is a finite von Neumann algebra satisfying the weak Dixmier
property (see [3, Definition 3.22]), i.e., for every positive operator T ∈ME ,
τE(T )E is in the operator norm closure of the convex hull of {S ∈ ME :
S and T are equi-measurable}. So in the following sections we will always
assume that (M, τ) satisfies the following conditions:

A. (M, τ) is a semi-finite von Neumann algebra such that Aut(M, τ)
acts on M strongly ergodically;

B. for every nonzero finite projection E in M, (ME , τE) is a finite von
Neumann algebra satisfying the weak Dixmier property.

With the above assumptions, it is easy to show that if E is a finite
projection of M, then Aut(ME , τE) acts on ME ergodically.

A simple operator in a semi-finite von Neumann algebra (M, τ) is an
operator T = a1E1 + · · ·+ anEn, where E1, . . . , En are mutually orthogonal
projections.

Lemma 3.14. Let (M, τ) be a semi-finite von Neumann algebra satis-
fying conditions A and B and let ||| · ||| be a symmetric gauge semi-norm
on J (M). If E ∈ M is a finite projection, then the restriction of ||| · ||| to
(ME , τE) is also a symmetric gauge semi-norm on (ME , τE).

Proof. It is obvious that the restriction of |||·||| to (ME , τE) is also a gauge
semi-norm on (ME , τE). Let θ ∈ Aut(ME , τE). Define |||S|||2 = |||θ(S)||| for
S ∈ME . We need to prove ||| · ||| = ||| · |||2 on ME .

Let T = a1E1 + · · ·+ anEn be a simple positive operator in ME , where
E1 + · · · + En = E. Then θ(T ) = a1θ(E1) + · · · + anθ(En). Since θ ∈
Aut(ME , τE), we have τ(Ek) = τ(θ(Ek)) for 1 ≤ k ≤ n. By assumption,
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Aut(M, τ) acts onM ergodically. Therefore, there is a θ′ ∈ Aut(M, τ) such
that θ′(Ek) = θ(Ek) for 1 ≤ k ≤ n. Hence, θ′(T ) = θ(T ). Since ||| · ||| is a
symmetric gauge semi-norm on J (M), |||T ||| = |||θ′(T )||| = |||θ(T )||| = |||T |||2. By
[3, Corollary 3.6], ||| · ||| = ||| · |||2 on (ME , τE). This implies that the restriction
of ||| · ||| to (ME , τE) is also a symmetric gauge semi-norm on (ME , τE).

The following lemma is [3, Theorem 3.27].

Lemma 3.15. Let N be a finite von Neumann algebra with a faithful
normal tracial state τN . Then N has the weak Dixmier property if and only
if N satisfies one of the following conditions:

(1) N is finite-dimensional (hence atomic) and for any two nonzero min-
imal projections E,F ∈ N , τ(E) = τ(F ), or equivalently (N , τN )
can be identified as a von Neumann subalgebra of (Mn(C), τn) that
contains all diagonal matrices;

(2) N is diffuse.

Corollary 3.16. Let (M, τ) be a semi-finite von Neumann algebra sat-
isfying conditions A and B and let ||| · ||| be a normalized symmetric gauge
semi-norm on M. If F is a finite projection in M such that τ(F ) ≥ 1, then
|||F ||| ≥ 1.

Proof. Let E1 ∈ M be a finite projection such that τ(E1) = 1 and
|||E1||| = 1. There exists a finite projection E ∈ M such that E1, F ≤ E. By
Lemma 3.14, the restriction of ||| · ||| to (ME , τE) is also a symmetric gauge
semi-norm on (ME , τE). SinceME has the weak Dixmier property, there is a
projection F1 ∈ME such that F1 ≤ F and τ(F1) = 1 by Lemma 3.15. Since
Aut(ME , τE) acts on ME ergodically, |||F1||| = |||E1||| = 1. By Corollary 3.4,
|||F ||| ≥ |||F1||| = 1.

Corollary 3.17. Let (M, τ) be a semi-finite von Neumann algebra
satisfying conditions A and B. If ||| · ||| is a normalized symmetric gauge
semi-norm on J (M), then ||| · ||| is a symmetric gauge norm on J (M).

Proof. Let T ∈ J (M). Then there is a finite projection E inM such that
T = ETE ∈ (ME , τE). We may assume that τ(E) ≥ 1. By Lemma 3.14, the
restriction of |||·||| to (ME , τE) is also a symmetric gauge semi-norm. If T 6= 0,
then by [3, Theorem 3.30] and Corollary 3.16, |||T ||| ≥ τE(|T |) · |||E||| > 0. So
||| · ||| is a symmetric gauge norm on J (M).

Lemma 3.18. Let (M, τ) be a semi-finite von Neumann algebra satisfy-
ing conditions A and B. Suppose ||| · |||1 and ||| · |||2 are two symmetric gauge
norms on J (M). Then ||| · |||1 = ||| · |||2 on J (M) if |||T |||1 = |||T |||2 for every
simple positive operator T in J (M) such that T = a1E1 + · · · + anEn and
τ(E1) = · · · = τ(En).
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Proof. Suppose |||T |||1 = |||T |||2 for every simple operator T in J (M). Let
S ∈ J (M). Then there is a finite projection E in M such that S =ESE
∈ME . By Lemma 3.14, the restrictions of ||| · |||1 and ||| · |||2 to (ME , τE) are
symmetric gauge norms. Since |||T |||1 = |||T |||2 for every simple operator T in
ME such that T = a1E1+ · · ·+anEn and τ(E1) = · · · = τ(En), we conclude
that ||| · |||1 = ||| · |||2 by [3, Corollary 4.6].

Proposition 3.19. Let (M, τ) be a semi-finite factor and let ||| · ||| be a
norm on J (M). Then the following conditions are equivalent:

(1) ||| · ||| is a symmetric gauge norm;
(2) ||| · ||| is a unitarily invariant norm.

Proof. (1)⇒(2) is obvious. We only prove (2)⇒(1). We need to prove
that for every positive operator T ∈J (M) and θ∈Aut(M, τ), |||θ(T )|||= |||T |||.

Let S = θ(T ). Then S ∈ J (M), so there is a finite projection E in M
such that S, T ∈ ME . By the spectral decomposition theorem, there is a
sequence of simple positive operators Tn ∈ME such that Sn = θ(Tn) ∈ME

and limn→∞ ‖Tn − T‖ = limn→∞ ‖Sn − S‖ = 0. By Lemma 3.3,

|||T − Tn||| ≤ ‖T − Tn‖ · |||E||| and |||S − Sn||| ≤ ‖S − Sn‖ · |||E|||.
Hence, limn→∞ |||T − Tn||| = limn→∞ |||S − Sn||| = 0. We need only prove

|||Tn||| = |||Sn||| for all n = 1, 2, . . . .

Suppose Tn = a1E1 + · · ·+ amEm. Then Sn = θ(Tn) = a1F1 + · · ·+ amFm,
where θ(Ek) = Fk for 1 ≤ k ≤ m. Since θ ∈ Aut(M, τ), τ(Ek) = τ(Fk) for
1 ≤ k ≤ m. SinceM is a factor, there is a unitary operator U ∈M such that
Ek = UFkU

∗ for 1 ≤ k ≤ m. Therefore, Sn = UTnU
∗ and |||Tn||| = |||Sn|||.

3.5. Semi-norms associated to von Neumann algebras

Definition 3.20. Let M be a von Neumann algebra (not necessarily
semi-finite). A (generalized) semi-norm associated to M is a map ||| · ||| from
M to [0,∞] satisfying the following properties:

• |||λT ||| = |λ| · |||T |||,
• |||S + T ||| ≤ |||S|||+ |||T |||

for all S, T ∈ M and λ ∈ C. To make the definition nontrivial, we always
assume that 0 < |||T ||| <∞ for some nonzero T ∈M.

Let I = {T ∈ M : |||T ||| < ∞}. Then I is called the domain of the
semi-norm ||| · |||.

Definition 3.21. Let (M, τ) be a semi-finite von Neumann algebra.
A semi-norm ||| · ||| associated toM is called gauge invariant if for all T ∈M,
|||T ||| = ||| |T | |||; a semi-norm ||| · ||| associated to M is unitarily invariant if
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|||UTV ||| = |||T ||| for all T ∈ M and unitary operators U, V ∈ M; a semi-
norm ||| · ||| associated to a semi-finite von Neumann algebra (M, τ) is called
symmetric if

|||θ(T )||| = |||T |||, ∀T ∈M, θ ∈ Aut(M, τ);

a semi-norm |||·||| associated to (M, τ) is called a symmetric gauge semi-norm
if it is both symmetric and gauge invariant.

Similar to the proof of Proposition 3.6, we can prove the following propo-
sition.

Proposition 3.22. Let ||| · ||| be a semi-norm associated to M. Then the
following statements are equivalent:

(1) ||| · ||| is unitarily invariant;
(2) |||·||| is gauge invariant and unitarily conjugate invariant, i.e., |||UTU∗|||

= |||T ||| for all T ∈M and unitary operators U ∈M;
(3) ||| · ||| is gauge invariant and |||T ||| = |||T ∗||| for all T ∈M;
(4) for all operators T,A,B ∈M, |||ATB||| ≤ ‖A‖ · |||T ||| · ‖B‖.

Corollary 3.23. Let |||·||| be a semi-norm associated toM. If S, T ∈M
and 0 ≤ S ≤ T , then |||S||| ≤ |||T |||.

Corollary 3.24. Let ||| ·||| be a unitarily invariant semi-norm associated
to M and let E,F be two equivalent projections in M. Then |||E||| = |||F |||.

Lemma 3.25. Let ||| · ||| be a unitarily invariant semi-norm associated to
M and let T ∈M be a nonzero element such that |||T ||| <∞. Then there is
a nonzero projection E in M such that |||E||| <∞.

Proof. Since ||| · ||| is unitarily invariant, we may assume T > 0. By the
spectral decomposition theorem, there exist a λ > 0 and a nonzero projec-
tion E in M such that T ≥ λE. By Corollary 3.23, |||E||| <∞.

The following theorem shows that, up to a scale a > 0, the operator
norm ‖ · ‖ is the unique unitarily invariant semi-norm associated to a type
III factor.

Theorem 3.26. Let M be a type III factor and let ||| · ||| be a unitarily
invariant semi-norm associated to M. Then there exists a > 0 such that
||| · ||| = a‖ · ‖, i.e., |||T ||| = a‖T‖ for all T ∈M.

Proof. By Lemma 3.25, there is a nonzero projection E inM such that
|||E||| <∞. If |||E||| = 0, then |||1||| = 0 by Corollary 3.24. By Proposition 3.22,
for every T in M, |||T ||| ≤ ‖T‖ · |||1||| = 0. In our definition of semi-norm, we
assume that |||T ||| > 0 for some T ∈ M. Hence |||E||| 6= 0 for some projection
E in M. We may assume that |||E||| = 1. By Corollary 3.24, |||F ||| = 1 for
every nonzero projection inM. In particular, |||1||| = 1. By Proposition 3.22,
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for every T in M,
|||T ||| ≤ ‖T‖ · |||1||| = ‖T‖.

On the other hand, let T ∈ M be a positive operator and ε > 0. By the
spectral decomposition theorem, there is a nonzero projection F inM such
that T ≥ (‖T‖ − ε)F . By Corollary 3.23,

|||T ||| ≥ (‖T‖ − ε) · |||F ||| = ‖T‖ − ε.
This proves that |||T ||| = ‖T‖ for every positive operator T inM and therefore
for every T in M.

We end this section with the following lemma.

Lemma 3.27. Let (M, τ) be a semi-finite von Neumann algebra such that
Aut(M, τ) acts onM strongly ergodically. If |||·||| is a normalized symmetric
gauge semi-norm associated to M with domain I, then I ⊇ J (M) and ||| · |||
is a normalized symmetric gauge semi-norm on J (M).

Proof. Let E be a finite projection in M such that τ(E) = 1. Then
|||E||| = 1. Suppose that F is a finite projection in M such that n ≤ τ(F ) <
n + 1. Since τ(E) ≤ τ(F ) and Aut(M, τ) acts on M strongly ergodically,
there is a θ1 ∈ Aut(M, τ) such that θ1(E) ≤ F . Let E1 = θ1(E) ≤ F . If
τ(F−E1) ≥ τ(E), then there is a θ2 ∈ Aut(M, τ) such that θ2(E) ≤ F−E1.
Let E2 = θ2(E) ≤ F − E1. Then E1 + E2 ≤ F . By induction, there are
mutually orthogonal finite projections E1, . . . , En inM with τ(E1) = · · · =
τ(En) = 1 such that E1 + · · · + En ≤ F . Let En+1 = F − E1 − · · · − En.
Now τ(F − E1 − · · · − En) < τ(E). So there is a θ ∈ Aut(M, τ) such
that θ(En+1) ≤ E. By Corollary 3.23, |||En+1||| = |||θ(En+1)||| ≤ |||E||| = 1.
Therefore,

|||F ||| ≤ |||E1 + · · ·+ En+1||| ≤ n+ 1.

So every finite projection is in I. Hence I ⊇ J (M).

4. Ky Fan norms associated to semi-finite von Neumann al-
gebras. Let (M, τ) be a semi-finite von Neumann subalgebra of a type
II∞ factor (M1, τ1) and let 0 ≤ t ≤ ∞. For T ∈ M, define |||T |||(t), the Ky
Fan t-th norm of T , by

|||T |||(t) =



‖T‖, t = 0,

1

t

t�

0

µs(T ) ds, 0 < t ≤ 1,

t�

0

µs(T ) ds, 1 < t ≤ ∞.

Let U(M) be the set of unitary operators in M, and P(M) be the set
of projections in M.
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Lemma 4.1. For 0 < t ≤ 1,

t|||T |||(t) = sup{|τ1(UTE)| : U ∈ U(M1), E ∈ P(M1), τ1(E) = t}.
Proof. First we assume that T is a positive operator. Let A be a sep-

arable diffuse abelian von Neumann subalgebra of M1 containing T and
let α be a ∗-isomorphism from (A, τ1) onto (L∞[0,∞),

	∞
0 dx) such that

τ1 =
	∞
0 dx ·α. Let f = α(T ) and let f∗ be the nonincreasing rearrangement

of f . Then µs(T ) = f∗(s). By the definition of f∗ (see (2.1)),

m({f∗ > f∗(t)}) = lim
n→∞

m

({
f∗ > f∗(t) +

1

n

})
≤ t

and

m({f∗ ≥ f∗(t)}) ≥ lim
n→∞

m

({
f∗ > f∗(t)− 1

n

})
≥ t.

Since f∗ and f are equi-measurable, we have m({f > f∗(t)}) ≤ t and
m({f ≥ f∗(t)}) ≥ t. Therefore, there is a measurable subset A of [0,∞) with
{f > f∗(t)} ⊂ A ⊂ {f ≥ f∗(t)} such that m(A) = t. Since f and f∗ are equi-

measurable, we have
	
A f(s) ds =

	t
0 f
∗(s) ds. Let E′ = α−1(χA). Then

τ1(E
′) = t and

τ1(TE
′) =

�

A

f(s) ds =

t�

0

f∗(s) ds = t|||T |||(t).

Hence,

t|||T |||(t) ≤ sup{|τ1(UTE)| : U ∈ U(M1), E ∈ P(M1), τ1(E) = t}.
We need to prove that if E is a projection in M1 with τ1(E) = t, and

U ∈ U(M1), then

t|||T |||(t) ≥ |τ1(UTE)|.
By the Schwarz inequality,

|τ1(UTE)| = |τ1(EUT 1/2T 1/2E)| ≤ τ1(U∗EUT )1/2τ1(ET )1/2.

By Corollary 2.4, τ1(ET ) =
	1
0 µs(ET ) ds. By Corollary 2.7, µs(ET ) ≤

min{µs(T ), µs(E)‖T‖}. Note that µs(E) = 0 for s ≥ τ1(E) = t. Hence,

τ1(ET )≤
	t
0 µs(T ) ds= t|||T |||t. Similarly, τ1(U

∗EUT )≤ t|||T |||t. So |τ1(UTE)|
≤ t|||T |||t. This proves that

t|||T |||(t) ≥ sup{|τ1(UTE)| : U ∈ U(M1), E ∈ P(M1), τ1(E) = t}.
Now we prove the general case. By the polar decomposition theorem,

there is an isometry or a co-isometry V in M1 such that T = V |T |.
We first show that if V is an isometry in M1, then there is a sequence

of unitary operators Un in M1 that converges to V in the strong operator
topology.
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To see this, let {En} be a sequence of mutually orthogonal projections
in M1 such that

∑
nEn = I and τ1(En) = 1 for all n. Let Fn = V EnV

∗.
Then Fn is a sequence of mutually orthogonal projections in M1 such that∑

n Fn = V V ∗ and τ1(Fn) = 1 for all n. Now both I −
∑n

k=1Ek and I −∑n
k=1 Fk are infinite projections in M1. So there is a partial isometry Wn

in M1 such that the initial space of Wn is I −
∑n

k=1Ek and the final space
of Wn is I −

∑n
k=1 Fk. Define

Un = V
( n∑
k=1

Ek

)
+Wn.

Then Un is a unitary operator in M1 and Un converges to V in the strong
operator topology.

On the other hand, if V is a co-isometry inM1, then there is a sequence
of unitary operators Un that converges to V ∗ in the strong operator topology.
So U∗n converges to V in the weak operator topology. Thus in either case (V
is an isometry or co-isometry), there is a sequence of unitary operators in
M1 that converges to V in the weak operator topology.

Now we show that t|||T |||(t) ≤ sup{|τ1(UTE)| : U ∈ U(M1), E ∈ P(M1),
τ1(E) = t}. Since

t|||T |||(t) = t||| |T | |||(t)
= sup{|τ1(U |T |E)| : U ∈ U(M1), E ∈ P(M1), τ1(E) = t},

for any ε > 0 there is a unitary operator U ∈ M1 and E ∈ P(M1) with
τ1(E) = t satisfying t|||T |||(t) ≤ |τ1(U |T |E)| + ε/2. Let T = V |T |, where
V ∈ M1 is an isometry or a co-isometry. Then |T | = V ∗T . Since UV ∗ is
an isometry or a co-isometry, by the above arguments, there is a sequence
of unitary operators Un inM1 that converges to UV ∗ in the weak operator
topology. Thus

|τ1(U |T |E)| = |τ1(UV ∗TE)| = lim
n→∞

|τ1(UnTE)|.

Therefore, there is an N ∈ N such that t|||T |||(t) ≤ |τ1(UNTE)| + ε. This
implies

t|||T |||(t) ≤ sup{|τ1(UTE)| : U ∈ U(M1), E ∈ P(M1), τ1(E) = t}.
Next we show the opposite inequality. Let T = V |T | be such that V ∈ M1

is an isometry or a co-isometry. Then UV is an isometry or a co-isometry.
So there is a sequence of unitary operators Un in M that converges to UV
in the weak operator topology. Thus

|τ1(UTE)| = |τ1(UV |T |E)| = lim
n→∞

|τ1(Un|T |E)| ≤ t||||T ||||(t) = t|||T |||(t).

Similarly, we can prove the following lemma.
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Lemma 4.2. For 1 ≤ t ≤ ∞,

|||T |||(t) = sup{|τ1(UTE)| : U ∈ U(M1), E ∈ P(M1), τ1(E) = t}.

Theorem 4.3. For 0 ≤ t ≤ ∞, ||| · |||(t) is a normalized symmetric gauge
norm associated to (M, τ).

Proof. By the definition of s-number, µs(T ) = µs(θ(T )) for T ∈M and
θ ∈ Aut(M, τ). To prove that ||| · |||(t) is a normalized symmetric gauge norm
associated to (M, τ), we need only prove the triangle inequality since other
parts are obvious.

Let S, T ∈M. If 0 < t ≤ 1, then by Lemma 4.1,

t|||S + T |||(t) = sup{|τ1(U(S + T )E)| : U ∈ U(M1), E ∈ P(M1), τ1(E) = t}
≤ sup{|τ1(USE)| : U ∈ U(M1), E ∈ P(M1), τ1(E) = t}

+ sup{|τ1(UTE)| : U ∈ U(M1), E ∈ P(M1), τ1(E) = t}
= t|||S|||(t) + t|||T |||(t).

The proof of the case t > 1 is similar.

Corollary 4.4. Let T ∈M and δ > 0. If |||T |||(1) < δ, then

τ(χ(δ,∞)(|T |)) ≤ |||T |||(1)/δ.

Proof. We may assume that M is a type II∞ factor and T ≥ 0. By the
proof of Lemma 4.1,

|||T |||(1) = sup{|τ(UTE)| : U ∈ U(M), E ∈ P(M), τ(E) ≤ 1}.

If τ(χ(δ,∞)(T )) > 1, then there is a subprojection E of χ(δ,∞)(T ) such that
τ(E) = 1. Then TE ≥ δE. Hence, |||T |||(1) ≥ τ(TE) ≥ τ(δE) = δ. This
contradicts the assumption that |||T |||(1) < δ. Therefore, τ(χ(δ,∞)(T )) ≤ 1.
So

|||T |||(1) ≥ τ(Tχ(δ,∞)(T )) ≥ τ(δχ(δ,∞)(T )) ≥ δτ(χ(δ,∞)(T )).

This implies the corollary.

Proposition 4.5. Let (M, τ) be a semi-finite von Neumann algebra and
T ∈ (M, τ). Then |||T |||(t) is a nonincreasing continuous function on [0, 1]
and a nondecreasing continuous function on [1,∞].

Proof. Let 0 < t1 < t2 ≤ 1. Then

|||T |||(t1) − |||T |||(t2) =
1

t1

t1�

0

µs(T ) ds− 1

t2

t2�

0

µs(T ) ds

=
1
t1

	t1
0 µs(T ) ds− 1

t2−t1

	t2
t1
µs(T ) ds

t2(t2 − t1)
≤ 0.
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Since µs(T ) is right-continuous, |||T |||(t) is a nonincreasing continuous func-
tion on [0, 1]. Since µs(T ) ≥ 0 for s ∈ [0,∞), |||T |||(t) is a non-decreasing
continuous function on [1,∞].

Proposition 4.6. Let (M, τ) be a semi-finite von Neumann algebra
satisfying conditions A and B of Section 3.4, and let ||| · ||| be a normalized
symmetric gauge norm on J (M). Then for every T ∈ J (M),

|||T |||(1) ≤ |||T |||.
Proof. We can assume that T is a positive operator in J (M). Then

there is a finite projection F in M such that T = FTF ∈ MF . We can
assume that τ(F ) = k is a positive integer. By assumption, (MF , τF ) has
the weak Dixmier property. By Lemma 3.15, either (MF , τF ) is a diffuse
von Neumann algebra, or it is ∗-isomorphic to a von Neumann subalgebra
of (Mn(C), τn) that contains all diagonal matrices. In either case, there is a
projection E inM with E ≤ F such that τ(E) = 1 and |||T |||(1) = |||ETE|||(1).
By Lemma 3.13 and Proposition 3.6, |||ETE||| ≤ |||T |||. By [3, Corollary 3.36],
|||ETE|||(1) ≤ |||ETE||| ≤ |||T |||.

Example 4.7. The Ky Fan nth norm of a compact operator T in
(B(H),Tr) is

|||T |||(n) = s1(T ) + · · ·+ sn(T ),

and
|||T |||(∞) = s1(T ) + s2(T ) + · · · .

Corollary 4.8. Let ||| · ||| be a normalized unitarily invariant norm on
B(H). Then for every T ∈ J (H),

s1(T ) ≤ |||T ||| ≤ s1(T ) + s2(T ) + · · · .
Proof. By Proposition 4.6, s1(T ) = |||T |||(1) ≤ |||T |||. On the other hand,

we may assume that T is a positive operator in J (H). Then T is unitarily
equivalent to a diagonal operator s1(T )E1 + · · ·+ sn(T )En. Hence,

|||T ||| = |||s1(T )E1 + · · ·+ sn(T )En||| ≤ s1(T ) + · · ·+ sn(T ).

5. Dual norms of symmetric gauge norms on J (M). Throughout
this section, we assume that (M, τ) is a semi-finite von Neumann algebra
satisfying conditions A and B of Section 3.4. Recall that J (M) is the subset
of M consisting of operators T in M such that T = ETE for some finite
projection E ∈M. Note that for any two operators S, T in J (M), there is
a finite projection F in M such that S, T ∈MF = FMF .

5.1. Dual norms. Let ||| · ||| be a norm on J (M). For T ∈ J (M), define

|||T |||#M,τ = sup{|τ(TX)| : X ∈ J (M), |||X||| ≤ 1}.

When no confusion arises, we simply write ||| · |||# or ||| · |||#M instead of ||| · |||#M,τ .
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Lemma 5.1. ||| · |||# is a norm on J (M).

Proof. Note that if T ∈ J (M) is not 0, then |||T |||# ≥ τ(TT ∗)/|||T ∗||| > 0.
It is easy to check that ||| · |||# satisfies the other conditions for a norm.

Definition 5.2. ||| · |||# is called the dual norm of ||| · ||| on J (M) with
respect to τ .

The following lemma follows simply from the definition of dual norm.

Lemma 5.3. Let ||| · ||| be a norm on J (M) and ||| · |||# be the dual norm
on J (M). Then for S, T ∈ J (M),

|τ(ST )| ≤ |||S||| · |||T |||#.
For T ∈ M, define ‖T‖1 = τ(|T |). Then ‖T‖1 = |||T |||(∞). The following

corollary is the Hölder inequality for operators in J (M).

Corollary 5.4. Let |||·||| be a gauge invariant norm on J (M) and |||·|||#
be the dual norm. Then for S, T ∈ J (M),

‖ST‖1 ≤ |||S||| · |||T |||#.
Proof. Let ST = V |ST | be the polar decomposition. Then |ST | =

V ∗ST . By Lemmas 5.3, 3.2, and 3.3,

‖ST‖1 = τ(|ST |) = τ(V ∗ST ) ≤ |||V ∗S||| · |||T |||# ≤ |||S||| · |||T |||#.
Let E be a (nonzero) finite projection in M. Recall that ME = EME

is a finite von Neumann algebra with a faithful normal tracial state τE such
that τE(T ) = τ(T )/τ(E) for T ∈ ME . If ||| · ||| is a norm on ME , the dual
norm of T ∈ME with respect to τE is defined by

|||T |||#ME ,τE
= sup{|τE(TX)| : X ∈ME , |||X||| ≤ 1}.

Lemma 5.5. Suppose ||| · ||| is a unitarily invariant norm on J (M). Let
E be a nonzero finite projection in M and T ∈ME. Then

|||T |||#M,τ = τ(E) · |||T |||#ME , τE
.

Proof. Since T = ETE, for every X ∈ J (M) we have

τ(TX) = τ(ETEX) = τ(ETEEXE) = τ(E) · τE(ETEEXE).

If |||X||| ≤ 1, then |||EXE||| ≤ |||X||| by Proposition 3.6. This implies that

|||T |||#M,τ = sup{|τ(TX)| : X ∈ J (M), |||X||| ≤ 1}
= sup{|τ(TX)| : X ∈ME , |||X||| ≤ 1}
= τ(E) · sup{|τE(TX)| : X ∈ME , |||X||| ≤ 1}

= τ(E) · |||T |||#ME , τE
.

The next lemma follows from [3, Propositions 6.5 and 6.6, and Theorem
6.10].
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Lemma 5.6. Let N be a finite von Neumann algebra with a faithful nor-
mal tracial state τN .

(1) If ||| · ||| is a unitarily invariant norm on N , then so is ||| · |||#N ,τN .

(2) If ||| · ||| is a symmetric gauge norm on N , then so is ||| · |||#N ,τN . Fur-

thermore, if |||1||| = 1, then |||1|||#N ,τN = 1.

Combining Lemmas 5.5 and 5.6, we obtain the following proposition.

Proposition 5.7. Let ||| · ||| be a norm on J (M).

(1) If ||| · ||| is a unitarily invariant norm on J (M), then so is ||| · |||#.
(2) If ||| · ||| is a symmetric gauge norm on J (M), then so is ||| · |||#.

Furthermore, if ||| · ||| is a normalized norm, i.e., |||E||| = 1 whenever
τ(E) = 1, then ||| · |||# is also a normalized norm.

Lemma 5.8. Let ||| · ||| be a symmetric gauge norm on J (M). If T =
a1E1 + · · ·+ anEn is a positive simple operator in J (M), then

|||T |||# = sup
{ n∑
k=1

akbkτ(Ek) : S = b1E1 + · · ·+ bnEn ≥ 0, |||S||| ≤ 1
}
.

Proof. Let E = E1 + · · ·+ En. By Lemma 5.5 and [3, Lemma 6.8],

|||T |||# = τ(E) · |||T |||#ME , τE

= τ(E) sup
{ n∑
k=1

akbkτE(Ek) : S = b1E1 + · · ·+ bnEn ≥ 0, |||S||| ≤ 1
}

= sup
{ n∑
k=1

akbkτ(Ek) : S = b1E1 + · · ·+ bnEn ≥ 0, |||S||| ≤ 1
}
.

5.2. Dual norms of Ky Fan norms

Theorem 5.9. For T ∈ J (H) and k = 1, 2, . . . ,∞,

|||T |||#(k) = max

{
‖T‖, 1

k
‖T‖1

}
,

where |||T |||(k) = s1(T ) + · · ·+ sk(T ), ‖T‖1 = Tr(|T |) = s1(T ) + s2(T ) + · · ·
and 1

∞ = 0.

Proof. For T ∈ J (H), there is a finite rank projection E such that
T = ETE ∈ B(H)E . Let Tr(E) = n. Then B(H)E ∼= Mn(C). First assume
k < ∞. We may assume that n ≥ k. Then |||T |||(k) = k|||T |||(k/n),τn . By
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Lemma 5.5 and [3, Lemma 6.14],

|||T |||#(k) = Tr(E) · (k|||T |||#(k/n),Mn(C), τn) =
n

k
max

{
k

n
‖T‖, ‖T‖1, τn

}
= max

{
‖T‖, 1

k
‖T‖1

}
.

If k =∞, then |||T |||#(∞) = |||T |||#(n) by Lemma 5.8. Since 1
n‖T‖1 ≤ ‖T‖, we

obtain |||T |||#(∞) = |||T |||#(n) = max
{
‖T‖, 1n‖T‖1

}
= ‖T‖.

Theorem 5.10. Let M be a type II∞ factor and 0 ≤ t ≤ ∞. Then for
all T ∈ J (M),

|||T |||#(t) =

{
max{t‖T‖, ‖T‖1} if 0 ≤ t ≤ 1,

max
{
‖T‖, 1t ‖T‖1

}
if 1 < t ≤ ∞.

Proof. Let T ∈ J (M) and 0 < t <∞. There is a finite projection E in
M such that T = ETE is in ME . We can assume that τ(E) = n > t. Let
τE(ESE) = τ(ESE)/τ(E). Then (ME , τE) is a type II1 factor and τE is
the unique tracial state on ME . If 0 < t ≤ 1, then by Lemma 4.1,

t|||T |||(t) = sup{|τ(UTE′)| : U ∈ U(ME), E′ ∈ P(ME), τ(E′) = t}
= τ(E) · sup{|τE(UTE′)| : U ∈U(ME), E′∈P(ME), τE(E′)= t/n}

= τ(E)
t

n
|||T |||(t/n),ME ,τE = t|||T |||(t/n),ME ,τE ,

where |||T |||(t/n),ME ,τE means the Ky Fan (t/n)th norm of T ∈ ME with
respect to the tracial state τE .

Hence, |||T |||(t) = |||T |||(t/n),ME ,τE . By Lemma 5.5 and [3, Theorem 6.17],

|||T |||#(t) = τ(E) · (|||T |||#(t/n),ME ,τE
) = nmax

{
t

n
‖T‖, ‖T‖1,τE

}
= max{t‖T‖, ‖T‖1}.

If 1 < t <∞, then |||T |||(t) = t|||T |||(t/n),ME ,τE . By Lemma 5.5 and [3, Theorem
6.17],

|||T |||#(t) = τ(E) · (t|||T |||#(t/n),ME ,τE
) =

n

t
max

{
t

n
‖T‖, ‖T‖1,τE

}
= max

{
‖T‖, 1

t
‖T‖1

}
.

Similar to the proof of Theorem 5.9, |||T |||#(∞) = ‖T‖.
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5.3. Second dual norms

Theorem 5.11. Let (M, τ) be a semi-finite von Neumann algebra satis-
fying conditions A and B of Section 3.4. If ||| · ||| is a symmetric gauge norm
on J (M), then so is ||| · |||#, and ||| · |||## = ||| · ||| on J (M).

Proof. By Proposition 5.7, ||| · |||# is a symmetric gauge norm on J (M).
Furthermore, both ||| · |||## and ||| · ||| are symmetric gauge norms on J (M).
We need to prove that |||T ||| = |||T |||## for every positive operator T ∈ J (M).
Let E be a finite projection in M such that T ∈ ME . By Lemma 5.5 and
[3, Theorem C],

|||T |||##
M,τ = sup{|τ(TX)| : X ∈ J (M), |||X|||#M,τ ≤ 1}

= sup{τ(E) · |τE(TX)| : X ∈ME , |||X|||#M,τ ≤ 1}

= sup{|τE(T (τ(E)X))| : X ∈ME , |||τ(E)X|||#ME , τE
≤ 1}

= |||T |||##
ME , τE

= |||T |||ME , τE = |||T |||.

6. Main result. Throughout this section, we assume that (M, τ) is a
semi-finite von Neumann algebra.

Lemma 6.1. Let f(x) =
∑n

k=1 akχ[αk−1,αk)(x), where a1 ≥ · · · ≥ an ≥ 0
(= an+1) and 0 = α0 < α1 < · · · < αn <∞. For T ∈M, define

|||T |||f =

∞�

0

f(s)µs(T ) ds.

Then

|||T |||f =
n∑
k=1

min{αk, 1}(ak − ak+1)|||T |||(αk).

Proof. Since t|||T |||(t) =
	t
0 µs(T ) ds for 0 ≤ t ≤ 1 and |||T |||(t) =

	t
0 µs(T ) ds

for 1 ≤ t <∞, summation by parts shows that

|||T |||f =

∞�

0

f(s)µs(T ) ds

= a1

α1�

0

µs(T ) ds+ a2

α2�

α1

µs(T ) ds+ · · ·+ an

αn�

αn−1

µs(T ) ds

=
n∑
k=1

min{αk, 1}(ak − ak+1)|||T |||(αk).

Corollary 6.2. ||| · |||f is a symmetric gauge norm associated to M and
therefore a symmetric gauge norm on J (M). Furthermore, if τ(E) = 1 then

|||E|||f =
	1
0 f(x) dx.
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Lemma 6.3. Let (M, τ) be a semi-finite von Neumann algebra and E
in M be a (nonzero) finite projection. Suppose ME is a diffuse von Neu-
mann algebra and T,X ∈ ME are positive operators such that T = a1E1 +
· · · + anEn, E1 + · · · + En = E, and τ(E1) = · · · = τ(En). Then there is
a sequence of simple positive operators Xn ∈ ME satisfying the following
conditions:

(1) 0 ≤ X1 ≤ X2 ≤ · · · ≤ X and hence 0 ≤ µs(X1) ≤ µs(X2) ≤ · · · ≤
µs(X) for all s ∈ [0,∞);

(2) limn→∞ µs(Xn) = µs(X) for almost all s ∈ [0,∞);
(3) there exists an rn ∈ N such that T = an,1En,1 + · · · + an,rnEn,rn

and Xn = bn,1Fn,1 + · · · + bn,rnFn,rn, where En,1 + · · · + En,rn =
Fn,1 + · · ·+ Fn,rn = E and τ(En,i) = τ(Fn,j) for 1 ≤ i, j ≤ rn.

Proof. SinceME is diffuse, there is a separable diffuse abelian von Neu-
mann subalgebra A ofME such that X ∈ A. Let θ be a ∗-isomorphism from
A onto L∞[0, 1] such that τE =

	1
0 dx · θ. Let f(x) = θ(X). We can choose a

sequence of simple functions fn in L∞[0, 1] such that 0 ≤ f1(x) ≤ f2(x) ≤
· · · ≤ f(x) and limn→∞ fn(x) = f(x) for almost all x. Let Xn = θ−1(fn).
Then Xn ∈ME and 0 ≤ X1 ≤ X2 ≤ · · · ≤ X. By Lemma 2.6,

µs(X) = inf{‖XF‖ : F ∈ P(M), τ(F⊥) = s}
= inf{‖XF‖ : F ∈ P(ME), τE(F⊥) = sτ(E)} = f∗(τ(E)s),

where f∗ is the nonincreasing rearrangement of f . Similarly, µs(Xn) =
f∗n(τ(E)s), where f∗n is the nonincreasing rearrangement of fn. Therefore, we
obtain (1) and (2). To obtain (3), we need only take fn(x) = αn,1χIn,1(x) +
· · · + αn,rnχIn,rn

(x) such that m(In,1) = · · · = m(In,rn) = τE(E1)/kn for
some kn ∈ N.

Let F be the set of nonincreasing, nonnegative, right continuous simple
functions f on [0,∞) with compact support such that

	1
0 f(x) dx ≤ 1. For

every f ∈ F , we have f(x) =
∑n

k=1 akχ[αk−1,αk)(x), where a1 ≥ · · · ≥ an ≥ 0
(= an+1) and 0 = α0 < α1 < · · · < αn <∞.

Recall that a normalized norm ||| · ||| on J (M) of a semi-finite von Neu-
mann algebraM is a norm on J (M) such that |||E||| = 1 for some projection
E with τ(E) = 1. The following theorem is the main result of this paper.

Theorem 6.4. Let (M, τ) be a semi-finite von Neumann algebra satis-
fying conditions A and B of Section 3.4. If ||| · ||| is a normalized symmetric
gauge norm on J (M), then there is a subset F ′ of F containing the char-
acteristic function of [0, 1] such that for all T ∈ J (M),

|||T ||| = sup{|||T |||f : f ∈ F ′}.
Proof. Suppose ||| · ||| is a normalized symmetric gauge norm on M. Let

F ′ = {µs(X) : X is a simple positive operator in J (M), |||X|||# ≤ 1}.
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For every positive operator X ∈ J (M) such that |||X|||# ≤ 1, by Proposi-
tion 4.6,

1�

0

µs(X) ds = |||X|||(1) ≤ |||X|||# ≤ 1.

If E is a projection such that τ(E) = 1, then |||E|||# = 1 by Proposition 5.7.
Note that µs(E) = χ[0,1](s). Therefore, F ′ ⊂ F and χ[0,1] ∈ F ′. For T
in J (M), define

|||T |||′ = sup{|||T |||f : f ∈ F ′}.
By Corollary 6.2, |||·|||′ is a symmetric gauge norm on J (M). By Lemma 3.18,
to prove that ||| · |||′ = ||| · |||, we need to prove |||T |||′ = |||T ||| for every positive
simple operator T ∈ J (M) such that T = a1E1 + · · ·+ anEn and τ(E1) =
· · · = τ(En) = c > 0.

By Lemma 5.8 and Theorem 5.11,

|||T ||| = sup
{
c

n∑
k=1

akbk : X = b1E1 + · · ·+ bnEn ≥ 0, |||X|||# ≤ 1
}
.

Note that if X = b1E1 + · · ·+ bnEn is a simple positive operator in J (M)
and |||X|||# ≤ 1, then µs(X) ∈ F ′ and

|||T |||µs(X) =

∞�

0

µs(X)µs(T ) ds = c
n∑
k=1

a∗kb
∗
k,

where {a∗k} and {b∗k} are the nondecreasing rearrangements of {ak} and {bk},
respectively. By the Hardy–Littlewood–Pólya Theorem [8],

n∑
k=1

akbk ≤
n∑
k=1

a∗kb
∗
k.

Hence,

|||T ||| = sup
{
c

n∑
k=1

akbk : X = b1E1 + · · ·+ bnEn ≥ 0, |||X|||# ≤ 1
}

≤ sup{|||T |||f : f ∈ F ′} = |||T |||′.

Now we need to prove that |||T |||′ ≤ |||T |||. Let X ∈ J (M) be a posi-
tive simple operator such that |||X|||# ≤ 1. We need to show that |||T |||µs(X)

≤ |||T |||. Since T,X ∈ J (M), there is a finite projection E ∈ M such that
T,X ∈ME .

Since (ME , τE) has the weak Dixmier property, by Lemma 3.15, either
ME is a finite-dimensional von Neumann algebra such that τ(F ) = τ(F ′)
for any two minimal projections F and F ′, orME is a diffuse von Neumann
algebra. For the first case, both T and X belong to ME . Therefore, X =
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a1E1 + · · ·+ anEn and T = b1F1 + · · ·+ bnFn with τ(E1) = · · · = τ(En) =
τ(F1) = · · · = τ(Fn) = c > 0. Thus

|||T |||µs(X) =

∞�

0

µs(X)µs(T ) ds = c
n∑
k=1

a∗kb
∗
k,

where {a∗k} and {b∗k} are the nondecreasing rearrangements of {ak} and {bk},
respectively. We may assume that a1 ≥ · · · ≥ an. Let Y = b∗1E1+ · · ·+b∗nEn.
Then X and Y are unitarily equivalent in ME . So µs(X) = µs(Y ) and
|||Y |||# = |||X|||# ≤ 1. Therefore,

|||T ||| = sup
{
c

n∑
k=1

akck : Z = c1E1 + · · ·+ cnEn ≥ 0, |||Z|||# ≤ 1
}

≥ |||T |||µs(Y ) = |||T |||µs(X).

IfME is a diffuse von Neumann algebra, by Lemma 6.3 we can construct
a sequence of simple positive operators Xn ∈ J (M) satisfying the following
conditions:

(1) 0 ≤ X1 ≤ X2 ≤ · · · ≤ X and hence 0 ≤ µs(X1) ≤ µs(X2) ≤ · · · ≤
µs(X) for all s ∈ [0,∞);

(2) limn→∞ µs(Xn) = µs(X) for almost all s ∈ [0,∞);
(3) there exists an rn ∈ N such that T = an,1En,1 + · · · + an,rnEn,rn

and Xn = bn,1Fn,1 + · · · + bn,rnFn,rn , where En,1 + · · · + En,rn =
Fn,1 + · · ·+ Fn,rn = E and τ(En,i) = τ(Fn,j) for 1 ≤ i, j ≤ rn.

By (1) and Corollary 3.4, |||Xn|||# ≤ |||X|||# ≤ 1 for all n = 1, 2, . . . . We may
assume that an,1 ≥ · · · ≥ an,rn and bn,1 ≥ · · · ≥ bn,rn . Let Yn = bn,1En,1 +
· · · + bn,rnEn,rn . Since τ(En,i) = τ(Fn,j) for 1 ≤ i, j ≤ rn and Aut(M, τ)
acts on M ergodically, there is a θ ∈ Aut(M, τ) such that θ(En,i) = Fn,i
for 1 ≤ i ≤ rn. Hence θ(Yn) = Xn. Since ||| · |||# is a symmetric gauge norm,
|||Yn|||# = |||Xn|||# ≤ 1. By Corollary 5.4,

|||T ||| ≥ τ(TYn) = τ(En,1)

rn∑
k=1

an,kbn,k =

∞�

0

µs(Yn)µs(T ) ds

=

∞�

0

µs(Xn)µs(T ) ds = |||T |||µs(Xn).

By (1), (2) and the monotone convergence theorem,

|||T |||µs(X) =

∞�

0

µs(X)µs(T ) ds = lim
n→∞

∞�

0

µs(Xn)µs(T ) ds

= lim
n→∞

|||T |||µs(Xn) ≤ |||T |||.



38 J. Fang and D. Hadwin

Corollary 6.5. Let (M, τ) be a semi-finite von Neumann algebra as in
Theorem 6.4 and let ||| · ||| be a normalized symmetric gauge norm on J (M).
Then ||| · ||| can be extended to a normalized symmetric gauge norm ||| · |||′
associated to M.

Proof. For T ∈M, define |||T |||′ = max{|||T |||f : f ∈ F ′}. Then ||| · |||′ is an
extension of ||| · |||.

Remark 6.6. In Corollary 6.5, the extension is not unique. Indeed, de-
fine ||| · ||| on B(H) by |||T ||| = ‖T‖ if T is a finite rank operator and |||T ||| =∞
if T is an infinite rank operator. It is easy to see that ||| · ||| defines a unitarily
invariant norm associated to B(H) such that the restriction of ||| · ||| on J (H)
is the operator norm.

7. Unitarily invariant norms related to semi-finite factors. As
the first application of Theorem 6.4, we set up a structure theorem for
unitarily invariant norms related to semi-finite factors. Recall that F is the
set of nonincreasing, nonnegative, right continuous simple functions f on
[0,∞) with compact supports such that

	1
0 f(x) dx ≤ 1.

Theorem 7.1. Let M be a semi-finite factor and let ||| · ||| be a unitar-
ily invariant norm on J (M). Then there is a subset F ′ of F containing
the characteristic function of [0, 1] such that for all T ∈ J (M), |||T ||| =
sup{|||T |||f : f ∈ F ′}.

Proof. Combine Theorem 6.4 and Proposition 3.19.

The next corollary also follows from Theorem 6.4.

Corollary 7.2. Let ||| · ||| be a normalized symmetric gauge norm on
J (L∞[0,∞)). Then there is a subset F ′ of F containing the characteristic
function of [0, 1] such that for all T ∈ J (L∞[0,∞)),

|||T ||| = sup{|||T |||f : f ∈ F ′}.
Let M = B(H) and τ = Tr. By the proof of Theorem 6.4, if f ∈ F ′,

then f(s) = µs(X) for some finite rank operator X ∈ B(H) with X ≥ 0
and |||X|||# ≤ 1. Write µs(X) = s1(X)χ[0,1)(s) + s2(X)χ[1,2)(s) + · · · , where

s1(X), s2(X), . . . are the s-numbers of X. Since
	1
0 µs(X) ds ≤ 1, s1(X) ≤ 1.

By Lemma 6.1 and simple computations, for every T ∈ J (H),

|||T |||µs(X) = s1(X)s1(T ) + s2(X)s2(T ) + · · · ,
where s1(T ), s2(T ), . . . are the s-numbers of T .

Let

G = {(a1, a2, . . .) : 1 ≥ a1 ≥ a2 ≥ · · · ≥ 0 and

an = 0 except for finitely many terms}.
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For (a1, a2, . . .) ∈ G and T ∈ J (H), define

(7.1) |||T |||(a1,a2,...) = a1s1(T ) + a2s2(T ) + · · · .
Then |||T |||(a1,a2,...) = |||T |||f is a unitarily invariant norm on J (H), where

f(x) = a1χ[0,1)(x) + a2χ[1,2)(x) + · · · .
By identifying µs(X) with (s1(X), s2(X), . . .) in G, we obtain the following
corollary.

Corollary 7.3. Let ||| · ||| be a unitarily invariant norm on J (H). Then
there is a subset G′ of G with (1, 0, . . .) ∈ G′ such that for all T ∈ J (H),

|||T ||| = sup{a1s1(T ) + a2s2(T ) + · · · : (a1, a2, . . . ) ∈ G′},
where s1(T ), s2(T ), . . . are the s-numbers of T .

Similar to the proof of Corollary 7.3, we have the following corollary.

Corollary 7.4. Let ||| · ||| be a normalized symmetric gauge norm on
c00 = J (l∞(N)). Then there is a subset G′ of G with (1, 0, . . .) ∈ G′ such
that for all (x1, x2, . . .) ∈ c00,

|||(x1, x2, . . .)||| = sup{a1x∗1 + a2x
∗
2 + · · · : (a1, a2, . . .) ∈ G′},

where (x∗1, x
∗
2, . . .) is the nonincreasing rearrangement of (|x1|, |x2|, . . .).

8. Unitarily invariant norms and symmetric gauge norms

Lemma 8.1. Let θ1, θ2 be two embeddings from (L∞[0,∞),
	∞
0 dx) into

a type II∞ factor (M, τ). If ||| · ||| is a unitarily invariant norm on J (M),
then |||θ1(f)||| = |||θ2(f)||| for every positive function f ∈ J (L∞[0,∞)).

Proof. For f ∈ J (L∞[0,∞)), let |||f |||1 = |||θ1(f)||| and |||f |||2 = |||θ2(f)|||.
Then ||| · |||1 and ||| · |||2 are gauge norms on J (L∞[0,∞)). By Lemma 3.18,
to prove ||| · |||1 = ||| · |||2 on J (L∞[0,∞)), we need to prove |||f |||1 = |||f |||2
for every simple function f in J (L∞[0,∞)). If f is such a function, then
there is a unitary operator U in M such that Uθ1(f)U∗ = θ2(f). Hence
|||f |||1 = |||f |||2.

The following theorem generalizes von Neumann’s classical result [23] on
unitarily invariant norms on Mn(C).

Theorem 8.2. There are one-to-one correspondences between

(1) unitarily invariant norms on Mn(C) and symmetric gauge norms
on Cn,

(2) unitarily invariant norms on a type II1 factor and symmetric gauge
norms on L∞[0, 1],

(3) unitarily invariant norms on J (H) and symmetric gauge norms on
c00 = J (l∞(N)),
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(4) unitarily invariant norms on J (M) of a type II∞ factor M and
symmetric gauge norms on J (L∞[0,∞)).

More precisely, let M be a semi-finite factor and A be the corresponding
abelian von Neumann algebra as above.

• If ||| · ||| is a unitarily invariant norm on J (M) and θ is an embedding
from A into M, then the restriction of ||| · ||| to J (θ(A)) defines a
symmetric gauge norm on J (A).
• Conversely, if ||| · |||′ is a symmetric gauge norm on J (A) and T ∈
J (M), then |||µs(T )|||′ defines a unitarily invariant norm on J (M),
where µs(T ) is the classical s-number of T if M = Mn(C) or M =
B(H), and µs(T ) is defined as in [3] if M is a type II1 factor.

Proof. We refer to [3, Theorem D] for the proof of cases (1) and (2). We
only handle case (4); the proof of case (3) is similar.

We may assume that both norms on J (M) and J (L∞[0,∞)) are nor-
malized. By the definition of Ky Fan norms, Theorem 4.3 and Lemma 8.1,
there is a one-to-one correspondence between Ky Fan tth norms on J (M)
and Ky Fan tth norms on J (L∞[0,∞)). By Theorem 7.1 and Corollary 7.2,
there is a one-to-one correspondence between normalized unitarily invariant
norms on J (M) and normalized symmetric gauge norms on J (L∞[0,∞))
as in the theorem.

Example 8.3. For 1 ≤ p ≤ ∞, the Lp-norm on (L∞[0,∞),
	∞
0 dx) de-

fined by

‖f‖p =


(∞�

0

|f(x)|p dx
)1/p

, 1 ≤ p <∞,

ess sup |f |, p =∞,

is a normalized symmetric gauge norm on (L∞[0,∞),
	∞
0 dx). By Theo-

rem 8.2, the induced norm for T ∈ J (M) of a type II∞ factor M defined
by

‖T‖p =

 (τ(|T |p))1/p =
(1�
0

|µs(T )|p ds
)1/p

, 1 ≤ p <∞,

‖T‖, p =∞,

is a unitarily invariant norm on J (M). The norms {‖ · ‖p : 1 ≤ p ≤ ∞} are
called the Lp-norms on J (M).

Example 8.4. For 1 ≤ p ≤ ∞, the lp-norm defined on J (l∞(N)) by

‖(x1, x2, . . .)‖p =

{
(|x1|p + |x2|p + · · ·)1/p, 1 ≤ p <∞;

sup{|xn| : n = 1, 2, . . .}, p =∞,



Unitarily invariant norms 41

is a normalized symmetric gauge norm on J (l∞(N)). By Theorem 8.2, the
induced norm for T in J (H) defined by

‖T‖p =

{
(τ(|T |p))1/p = (s1(T )p + s2(T )p + · · ·)1/p, 1 ≤ p <∞,

‖T‖, p =∞,

is a unitarily invariant norm on J (H). The norms {‖ · ‖p : 1 ≤ p ≤ ∞} are
called the Lp-norms on J (H).

Theorem 8.2 establishes the one-to-one correspondence between unitarily
invariant norms on J (M) of an infinite semi-finite factorM and symmetric
gauge norms on J (A) of an abelian von Neumann algebra A. The following
theorem further establishes the one-to-one correspondence between the dual
norms on J (M) and the dual norms on J (A), which plays a key role in the
study of duality and reflexivity of the completion of J (M) with respect to
unitarily invariant norms.

Theorem 8.5. Let M be a type II∞ factor (or B(H)). If ||| · ||| is a
unitarily invariant norm on J (M) corresponding to the symmetric gauge
norm ||| · |||1 on J (L∞[0,∞)) (or J (l∞(N)) respectively) as in Theorem 8.2,
then ||| · |||# is the unitarily invariant norm on J (M) corresponding to the

symmetric gauge norm ||| · |||#1 on J (L∞[0,∞)) (or J (l∞(N)) respectively)
as in Theorem 8.2.

Proof. We only prove the theorem for type II∞ factors; the case of type
I∞ factors is similar. Let ||| · |||2 be the unitarily invariant norm on J (M)

corresponding to the symmetric gauge norm ||| · |||#1 on J (L∞[0,∞)) as in
Theorem 8.2. By Lemma 3.18, to prove ||| · |||2 = ||| · |||# on J (M), we need
to prove |||T |||2 = |||T |||# for every simple positive operator T = a1E1 + · · ·+
anEn in J (M) such that τ(E1) = · · · = τ(En) = c. We may assume that
a1 ≥ · · · ≥ an ≥ 0. Then µs(T ) = a1χ[0,c)(s) + · · · + anχ[(n−1)c,nc)(s). By
Lemma 5.8,

|||T |||# = sup
{
c

n∑
k=1

akbk : X = b1E1 + · · ·+ bnEn ≥ 0, |||X||| ≤ 1
}
.

Since
∑n

k=1 akbk ≤
∑n

k=1 akb
∗
k, where b∗1, . . . , b

∗
n is the nondecreasing rear-

rangement of b1, . . . , bn, we have

|||T |||# = sup
{
c

n∑
k=1

akbk : X = b1E1 + · · ·+ bnEn ≥ 0,

b1 ≥ · · · ≥ bn ≥ 0, |||X||| ≤ 1
}
.
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By Theorem 8.2 and Lemma 5.8,

|||T |||2 = |||µs(T )|||#1

= sup
{
c

n∑
k=1

akbk : g(s)=b1χ[0,c)(s)+· · ·+bnχ[(n−1)c,nc)(s)≥0, |||g(s)|||1≤1
}
.

Again since
∑n

k=1 akbk ≤
∑n

k=1 akb
∗
k, we have

|||T |||2 = |||µs(T )|||#1

= sup
{
c

n∑
k=1

akbk : g(s) = b1χ[0,c)(s) + · · ·+ bnχ[(n−1)c,nc)(s) ≥ 0,

b1 ≥ · · · ≥ bn ≥ 0, |||g(s)|||1 ≤ 1
}
.

Note that if b1 ≥ · · · ≥ bn ≥ 0, then µs(b1E1 + · · · + bnEn) = b1χ[0,c)(s) +
· · · + bnχ[(n−1)c,nc)(s). Since ||| · ||| is the unitarily invariant norm on J (M)
corresponding to the symmetric gauge norm ||| · |||1 on J (L∞[0,∞)) as in
Theorem 8.2, |||b1E1 + · · · + bnEn||| ≤ 1 if and only if |||b1χ[0,c)(s) + · · · +
bnχ[(n−1)c,nc)(s)|||1 ≤ 1. Therefore, |||T |||2 = |||T |||#.

Example 8.6. If p = 1, let q = ∞. If 1 < p < ∞, let q = p/(p− 1).
Then the Lq norm on J (L∞[0,∞)) defined in Example 8.3 is the dual norm
of the Lp-norm on J (L∞[0,∞)). By Theorem 8.5, the Lq-norm on J (M)
of a type II∞ factor M is the dual norm of the Lp-norm on J (M).

Example 8.7. If p = 1, let q = ∞. If 1 < p < ∞, let q = p/(p− 1).
Then the lq-norm on J (l∞(N)) defined in Example 8.4 is the dual norm of
the lp-norm on J (l∞(N)). By Theorem 8.5, the Lq-norm on J (H) is the
dual norm of the Lp-norm on J (H).

9. Ky Fan’s dominance theorem. The following theorem generalizes
Ky Fan’s dominance theorem.

Theorem 9.1. Let M be a semi-finite factor and S, T ∈ J (M). If
|||S|||(t) ≤ |||T |||(t) for all Ky Fan t-th norms, 0 ≤ t ≤ ∞, then |||S||| ≤ |||T ||| for
all unitarily invariant norms ||| · ||| on J (M).

Proof. Let ||| · ||| be a unitarily invariant norm on M. By Lemma 6.1,
|||S|||f ≤ |||T |||f for every f ∈ F . By Theorem 7.1, |||S||| ≤ |||T |||.

Corollary 9.2. Let S, T ∈ J (H). If |||S|||(n) ≤ |||T |||(n) for all Ky Fan
nth norms, n = 1, 2, . . ., then |||S||| ≤ |||T ||| for all unitarily invariant norms
||| · ||| on J (H).
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