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Rank, trace and determinant in Banach algebras:
generalized Frobenius and Sylvester theorems

by

Gareth Braatvedt, Rudolf Brits and
Francois Schulz (Johannesburg)

Abstract. As a follow-up to a paper of Aupetit and Mouton (1996), we consider
the spectral definitions of rank, trace and determinant applied to elements in a general
Banach algebra. We prove a generalization of Sylvester’s Determinant Theorem to Banach
algebras and thereafter a generalization of the Frobenius inequality.

1. Introduction. Determinants of infinite matrices were first investi-
gated by astronomers, more than 100 years ago. The notions of rank, trace
and determinant are well-established in operator theory. Recently, in their
paper entitled Trace and determinant in Banach algebras [2], Aupetit and
Mouton managed to show that these notions can be developed, without the
use of operators, in a purely spectral and analytic manner. This paper is fun-
damental to our discussion here, which can be viewed as a follow-up to their
pioneering work. We briefly summarize some of the theory before we proceed.

Throughout, A will denote a semisimple Banach algebra, with identity 1.
We will use σA(a) or simply σ(a) (if the context is clear) to denote the
spectrum of a; furthermore σ′(a) will denote the nonzero spectrum of a.
Finally, #K will denote the number of elements in a set K ⊂ C.

Let a ∈ A, and suppose σ(ax) is finite for all x in some open set U ⊂ A.
Fix x ∈ U and y ∈ A. If we consider the function λ 7→ a[(1−λ)x+λy] then,
by the Scarcity Principle, we deduce that σ(ay) is also finite. The category
argument in [2, p. 117] then shows that σ(ay) is uniformly finite as y runs
through A.

For each nonnegative integer m, let

Fm = {a ∈ A : #σ′(xa) ≤ m for every x ∈ A}.
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The rank of an element a of A is the smallest integer m such that a ∈ Fm,
if it exists; otherwise the rank is infinite. In other words,

rank(a) = sup
x∈A

#σ′(xa).

Obviously, by Jacobson’s Lemma [2, Lemma 3.1.2] (σ′(ab) = σ′(ba)), we
also have rank(a) = supx∈A #σ′(ax).

The socle, denoted SocA, is the sum of all minimal left ideals, or minimal
right ideals, of A, if they exist, otherwise it is zero. The socle of A is a
two-sided ideal of A and all of its elements are algebraic. Furthermore, it
coincides with the set of finite-rank elements [2, Corollary 2.9].

We mention a few elementary properties of the rank of an element [2,
p. 117]. Firstly, #σ′(a) ≤ rank(a) for all a ∈ A. Furthermore, rank(xa) ≤
rank(a) and rank(ax) ≤ rank(a) for all x, a ∈ A, with equality if x is invert-
ible. If p is a projection of A, then p has rank one if and only if p is a minimal
projection, that is, pAp = Cp. Moreover, the rank is lower semicontinuous
on SocA. Finally, if φ is an isomorphism of A onto a Banach algebra B,
then rankA(a) = rankB(φ(a)) for every a ∈ A.

If a ∈ A is a finite-rank element, then

E(a) = {x ∈ A : #σ′(xa) = rank(a)}
is a dense open subset of A [2, Theorem 2.2]. A finite-rank element a of A
is said to be a maximal finite-rank element if rank(a) = #σ′(a).

The following two results are fundamental to the theory developed in [2]:

Scarcity Theorem for Rank ([2, Theorem 2.3]). Let f be an analytic
function from a domain D of C into A. Then either the set of λ for which
the rank of f(λ) is finite has zero capacity, or there exist an integer N and
a closed discrete subset E of D such that rank(f(λ)) = N on D − E and
rank(f(λ)) < N on E.

Diagonalization Theorem ([2, Theorem 2.8]). Let a ∈ A be a non-
zero maximal finite-rank element and denote by λ1, . . . , λn its nonzero dis-
tinct spectral values. Then there exist n orthogonal minimal projections
p1, . . . , pn such that

a = λ1p1 + · · ·+ λnpn.

If a ∈ SocA we define the trace of a by

Tr(a) =
∑
λ∈σ(a)

λm(λ, a),

and the determinant of 1 + a by

Det(1 + a) =
∏

λ∈σ(a)

(1 + λ)m(λ,a),
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where m(λ, a) is the multiplicity of a at λ. A brief description of the notion
of multiplicity in the abstract case goes as follows (for details consult [2]):
Let a ∈ SocA and λ ∈ σ(a) and let B(λ, r) be an open disk centered at λ
such that B(λ, r) contains no other points of σ(a). It can be shown [2, pp.
119–120] that there exists an open ball, say U ⊂ A, centered at 1 such that
#[σ(ax) ∩ B(λ, r)] is constant as x runs through E(a) ∩ U . This constant
integer is the multiplicity of a at λ.

Let fλ be the holomorphic function which takes the value 1 on B(λ, r)
and the value 0 elsewhere. Let Γ0 = ∂B(λ, 3r/4). Then

p(λ, a) = fλ(a) =
1

2πi

�

Γ0

fλ(α)(α1− a)−1 dα

is referred to as the Riesz projection associated with a and λ. Moreover, for
λ 6= 0 we have m(λ, a) = rank(p(λ, a)) [2, Theorem 2.6], and

p(λ, a) =
a

2πi

�

Γ0

fλ(α)

α
(α1− a)−1 dα.

In the operator case, A = L(X) (bounded linear operators on a Ba-
nach space X), the “spectral” rank, trace (and determinant) all coincide
with the respective classical operator definitions. It should be noted that
the Aupetit–Mouton approach is not merely an alternative to the long es-
tablished theory of rank, trace and determinant for A = L(X)—it is an
improvement. The Aupetit-Mouton definition simultaneously takes care of
the matter in subalgebras of L(X) as well, since the notions of rank, trace
and determinant are clearly relative concepts.

2. Frobenius’ inequality and Sylvester’s theorem. We begin this
section with some preliminary results that will aid us in what follows:

Let p be a finite-rank projection of A. Then pAp is a closed semisimple
subalgebra of A with identity p and

(1) σ′pAp(pxp) = σ′A(pxp)

for each x ∈ A (see [1, Chapter 3, Exercise 6]). The following lemma shows
that rank is also preserved here.

Lemma 2.1. Let p be a finite-rank projection of A. Then

rankpAp(pxp) = rankA(pxp)

for each x ∈ A.

Proof. Let x ∈ A be arbitrary. From (1), Jacobson’s Lemma and the
fact that p = p2, it readily follows that
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rankpAp(pxp) = sup
y∈A

#σ′pAp((pyp)(pxp)) = sup
y∈A

#σ′A((pyp)(pxp))

= sup
y∈A

#σ′A(y(pxp)) = rankA(pxp),

as desired.

Lemma 2.2 gives us an invariance result for multiplicity under positive
scalar multiplication:

Lemma 2.2. Let a be a finite-rank element of A and let α > 0 be a real
number. Then m(λ, a) = m(αλ, αa) for each λ ∈ σ′(a).

Proof. Set λ0 = 0 and denote by λ1, . . . , λn the distinct nonzero spec-
tral values of a. Choose r > 0 so that the open disks B(λ0, r), B(λ1, r), . . . ,
B(λn, r) are all disjoint. By the Spectral Mapping Theorem it follows
that σ′(αa) = {αλ1, . . . , αλn}. Notice that B(αλ0, αr), B(αλ1, αr), . . . ,
B(αλn, αr) are also all disjoint, and for each i ∈ {0, 1, . . . , n}, we have
β ∈ B(λi, r) if and only if αβ ∈ B(αλi, αr). Fix i ∈ {1, . . . , n}. For j ∈ {1, α}
we let Uj be an open disk centered at 1 such that x ∈ Uj ∩ E(ja) implies
that

#(σ(jxa) ∩∆j
0) = m(jλi, ja),

where ∆j
0 is the interior of ∂B(jλi, jr). Since

#σ′(xa) = #σ′(αxa)

by the Spectral Mapping Theorem, and since rank(a) = rank(αa), it follows
that E(a) ⊆ E(αa). Moreover, since E(a) is open and dense in A, we have
U1 ∩Uα ∩E(a) 6= ∅. Pick an x0 ∈ U1 ∩Uα ∩E(a). Then x0 ∈ U1 ∩E(a) and
x0 ∈ Uα ∩ E(αa), so by the Spectral Mapping Theorem and our choice of
contours we obtain

m(λi, a) = #(σ(x0a) ∩∆1
0) = #(σ(αx0a) ∩∆α

0 ) = m(αλi, αa).

Since i was arbitrary, this completes the proof.

The following lemma gives us Sylvester’s Determinant Theorem as an
easy consequence:

Lemma 2.3. Let a ∈ SocA. Then m(λ, ab) = m(λ, ba) for all b ∈ A and
for each λ ∈ σ′(ab).

Proof. Let λ ∈ σ′(ab) and let α ∈ (0, 1]. By the Spectral Mapping The-
orem we have

αλ ∈ σ′(αab) = σ′(αba).

Consider the Riesz projections p(αλ, αab) and p(αλ, αba). Let

Γ =
⋃

β∈σ(αab)∪{0}

∂B(β, r/2),
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where r > 0 is chosen sufficiently small to ensure that B(β1, r)∩B(β2, r) = ∅
for all β1, β2 ∈ σ(αab)∪{0} with β1 6= β2. Moreover, let g be the holomorphic
function which takes on the value 1 on B(αλ, r) and the value 0 elsewhere
on
⋃
β∈σ(αab)∪{0}B(β, r). Notice that r, Γ and g all depend on α, but the

contours of integration can be chosen such that their lengths are not longer
than that of the contour surrounding σ(ab) ∪ {0}. Then

p(αλ, αab) =
1

2πi

�

Γ

g(z)(z1− αab)−1 dz,

p(αλ, αba) =
1

2πi

�

Γ

g(z)(z1− αba)−1 dz.

Now observe that for each z ∈ Γ we have

(z1− αab)−1 − (z1− αba)−1 = (z1− αab)−1(αab− αba)(z1− αba)−1.

Moreover, by the continuity of the mappings z 7→ ‖(z1− αab)−1‖ and z 7→
‖(z1−αba)−1‖, and the compactness of Γ , we can find positive real numbers
K1 and K2 such that ‖(z1−αab)−1‖ ≤ K1 and ‖(z1−αba)−1‖ ≤ K2 for all
z ∈ Γ and α ∈ [0, 1]. Consequently, if we choose α sufficiently small, then

‖p(αλ, αab)− p(αλ, αba)‖

=

∥∥∥∥ 1

2πi

�

Γ

g(z)[(z1− αab)−1 − (z1− αba)−1] dz

∥∥∥∥
=

∥∥∥∥ 1

2πi

�

Γ

g(z)[(z1− αab)−1(αab− αba)(z1− αba)−1] dz

∥∥∥∥
≤ 1

2π

�

Γ

|g(z)| · ‖(z1− αab)−1‖ · α · ‖ab− ba‖ · ‖(z1− αba)−1‖ d|z|

≤ 1

2π

�

Γ

K1 · α · ‖ab− ba‖ ·K2 d|z| < 1.

For two nonzero projections p and q, we have rank(p) = rank(q) whenever
‖p− q‖ < 1 (see [3]). This together with Lemma 2.2 gives us

m(λ, ab) = m(αλ, αab) = rank(p(αλ, αab)) = rank(p(αλ, αba))

= m(αλ, αba) = m(λ, ba).

Since λ was arbitrary, the theorem is proved.

If a ∈ SocA and ab is quasinilpotent then, from Jacobson’s Lemma,
clearly Tr(ab) = Tr(ba) and Det(1 + ab) = Det(1 + ba) for all b ∈ A. If
σ(ab) 6= {0}, then as an immediate consequence of Lemma 2.3, we obtain
the same. Hence, we provide a generalization of Sylvester’s Determinant
Theorem for matrices:
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Theorem 2.4. Let a ∈ SocA. Then Tr(ab) = Tr(ba) and Det(1+ ab) =
Det(1 + ba) for all b ∈ A.

We now proceed to prove a generalization of the well-known Frobenius
inequality for matrices. Firstly, however, we verify the finite-dimensional
case.

Lemma 2.5. Let A be finite-dimensional. For all a, b, c ∈ A we have

rank(ab) + rank(bc) ≤ rank(b) + rank(abc).

Proof. Because A is semisimple and finite-dimensional, we apply [1,
Lemma 5.4.1] and conclude that A is isomorphic as an algebra to

B = Mn1(C)⊕ · · · ⊕Mnk
(C).

Hence, since isomorphisms preserve rank, it suffices to prove that the in-
equality holds in B. Let x = (x1, . . . , xk), where xj ∈ Bj = Mnj (C) for each
j ∈ {1, . . . , k}. Firstly,

σB((x1, . . . , xk)) =

k⋃
j=1

σBj (xj).

Hence, if y = (y1, . . . , yk) ∈ B, then

#σ′B(yx) = #σ′B((y1x1, . . . , ykxk)) ≤
k∑
j=1

#σ′Bj
(yjxj) ≤

k∑
j=1

rankBj (xj),

so that

rankB(x) ≤
k∑
j=1

rankBj (xj).

To see that the other inequality also holds true, consider any xj . Let uj
be an element in Bj such that #σ′Bj

(ujxj) = rankBj (xj) = mj . Then, from

the properties of rank, we see that ujxj is a maximal finite-rank element.
Thus, by the Diagonalization Theorem we can write ujxj = λj,1pj,1 + · · ·+
λj,mjpj,mj , where pj,1, . . . , pj,mj are orthogonal minimal projections in Bj
and λj,1, . . . , λj,mj ∈ C− {0}. Hence, by the orthogonality of the pj,r, if we
let

vj =
1

λj,1
pj,1 +

2

λj,2
pj,2 + · · ·+ mj

λj,mj

pj,mj ,

then
vjujxj = pj,1 + 2pj,2 + · · ·+mjpj,mj .

Moreover, σ′Bj
(vjujxj) = {1, . . . ,mj} (see [1, Chapter 3, Exercise 9]). Fi-

nally, let αj be any nonzero complex number with Arg(αj) = π/j. Now,
if we take z = (α1v1u1, . . . , αkvkuk), then, in particular, σ′Bj

(αjvjujxj) ∩
σ′Br

(αrvrurxr) = ∅ for j 6= r, so
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#σ′B(zx) = #
( k⋃
j=1

σ′Bj
(αjvjujxj)

)
=

k∑
j=1

#σ′Bj
(αjvjujxj) =

k∑
j=1

rankBj (xj),

and the result follows. This shows that

(2) rankB(x) =

k∑
j=1

rankBj (xj)

for each x = (x1, . . . , xk) ∈ B. Let a = (a1, . . . , ak), b = (b1, . . . , bk) and
c = (c1, . . . , ck) be arbitrary elements from B. Then, from (2) and Frobenius’
inequality for matrices, it follows that

rankB(ab) + rankB(bc) =
k∑
j=1

rankBj (ajbj) +
k∑
j=1

rankBj (bjcj)

≤
k∑
j=1

rankBj (bj) +
k∑
j=1

rankBj (ajbjcj)

= rankB(b) + rankB(abc),

so the lemma is proved.

Theorem 2.6 (Frobenius inequality for Banach algebras). For any a, b, c
∈ A, we have

rank(ab) + rank(bc) ≤ rank(b) + rank(abc).

Proof. Let a, b, c ∈ A. We may assume that rankA(b) = n, where 1 ≤
n < ∞, for otherwise the inequality is trivially true. Consequently, ab, bc
and abc are all of finite rank in A.

We firstly assume that b is a maximal finite-rank element. By the Diag-
onalization Theorem there are orthogonal minimal projections p1, . . . , pn in
A and nonzero complex numbers λ1, . . . , λn so that b = λ1p1 + · · · + λnpn.
Because the projections are all orthogonal, it follows that p = p1 + · · ·+ pn
is a finite-rank projection, and moreover

(3) pbp = pb = bp = b.

Let B = pAp. Then B is a semisimple, finite-dimensional and closed subal-
gebra of A with identity p. Since E(a) is open and dense for every finite-
rank a, there exist invertible x, y ∈ A such that

#σ′A(xab) = rankA(ab) and #σ′A(bcy) = rankA(bc).

Moreover, by Jacobson’s Lemma, (1) and (3) we have

σ′A(xab) = σ′A(xabp) = σ′A(pxabp) = σ′B(pxabp),

and similarly

σ′A(bcy) = σ′B(pbcyp).



180 G. Braatvedt et al.

Consequently, rankA(ab) ≤ rankB(pxabp) and rankA(bc) ≤ rankB(pbcyp).
Thus, by Lemmas 2.1 and 2.5, we obtain

rankA(ab) + rankA(bc) ≤ rankB(pxabp) + rankB(pbcyp)

= rankB(pxab) + rankB(bcyp)

≤ rankB(b) + rankB(pxabcyp)

= rankA(b) + rankA(pxabcyp)

≤ rankA(b) + rankA(abc),

where the last inequality follows from the properties of rank.
If b is not a maximal finite-rank element, then let u be an invertible

element in A such that ub is a maximal finite-rank element. We then apply
the preceding argument to the elements au−1, ub and c, and use the rank
properties to obtain

rankA(ab) + rankA(bc) = rankA(au−1ub) + rankA(ubc)

≤ rankA(ub) + rankA(au−1ubc)

= rankA(b) + rankA(abc),

as desired.
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