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Abstract. Although Sarnak’s conjecture holds for compact group rotations (irra-
tional rotations, odometers), it is not even known whether it holds for all Jewett–Krieger
models of such rotations (1). In this paper we show that it does, as long as the model
is at the same a topological extension, via the same map that establishes the isomor-
phism, of an equicontinuous model. In particular, we recover (after [AKL]) that regular
Toeplitz systems satisfy Sarnak’s conjecture, and, as another consequence, so do all gen-
eralized Sturmian subshifts (not only the classical Sturmian subshift). We also give an
example of an irregular Toeplitz subshift which meets our criterion. We give an example
of a model of an odometer which is not even Toeplitz (it is weakly mixing), hence does
not meet our criterion. However, for this example, we manage to produce a separate proof
of Sarnak’s conjecture. Next, we provide a class of Toeplitz sequences which fail Sarnak’s
conjecture (in a weak sense); all these examples have positive entropy. Finally, we examine
the example of a Toeplitz sequence from [AKL] (which fails Sarnak’s conjecture in the
strong sense) and prove that it also has positive entropy (this proof has been announced
in [AKL]).

This paper can be considered a sequel to [AKL], it also fills some gaps of [D].

1. Introduction. This work results from the discussions the authors
held with Mariusz Lemańczyk about topological (in particular symbolic)
models of odometers in the context of Sarnak’s conjecture. We refer the
readers to the recent paper of Lemańczyk et al. [AKL] for results concerning
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(1) Recently, H. El Abdalaoui, M. Lemańczyk and T. de la Rue [ALR2] proved that
any topological model of an ergodic system with irrational discrete spectrum satisfies
Sarnak’s conjecture. So the problem remains open for odometers (pure rational spectrum)
and mixed (rational and irrational) spectra. In this paper we focus mainly on models of
odometers, so the interference with the above mentioned result is small.
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Sarnak’s conjecture for Morse systems, where some indispensable facts con-
cerning regular Toeplitz subshifts were obtained partly independently and
partly jointly, and inspired this work.

First of all, it has been discovered that although regular Toeplitz sub-
shifts are the best known symbolic models (see next page for definition) of
odometers, there are also other possibilities, the existence of which was not
fully understood before. In the preceding work of the first author [D] there
are some erroneous statements about regularity, and this paper fixes them;
there exist irregular Toeplitz models of their underlying odometers. For com-
pleteness, we also give examples of models which are not even Toeplitz, some
of them even topologically mixing. Sarnak’s conjecture can be briefly proved
for both regular and irregular Toeplitz models of odometers, as long as they
are isomorphic extensions (2) of the odometer. The method uses the sole
property of the Möbius function, that it is orthogonal to any periodic se-
quence, otherwise it relies on an easy spectral argument. As a digression,
we apply a similar spectral method (but a different property of the Möbius
function) to prove Sarnak’s conjecture for isomorphic extensions of other
equicontinuous systems, in particular for generalized Sturmian subshifts (3).
The method applies also to a large class of models of rotations which are
their topological extensions without being almost 1-1. The existence of this
class (which turns out to be quite large) has not been known until a recent
paper [DG].

Our method fails for models of equicontinuous systems which are not
their topological extensions (e.g. topologically weakly mixing) and the case
remains a challenge (4). Nonetheless, we are able to successfully apply it to
our specific topologically mixing example. On this occasion we also give rel-
atively simple examples of Toeplitz subshifts which massively fail Sarnak’s
conjecture (at many points of the system including those which are Toeplitz
sequences), showing that just being a union of periodic sequences is insuf-
ficient. We also copy from [AKL] an example in which a Toeplitz sequence
fails the conjecture so badly that the limit inferior of the absolute values
of the averages is positive. As one might expect, the counterexamples have
positive entropy, of which we give a detailed proof (which is intentionally
skipped in [AKL] and left to be given in this paper).

(2) A topological system (X,T ) is an isomorphic extension of another, (Y, S), if both
systems are uniquely ergodic, with invariant measures µ and ν, respectively, and there
exists a topological factor map from X onto Y which is, at the same time, an isomorphism
between (X,µ, T ) and (Y, ν, S). See [DG] for more information on isomorphic extensions.

(3) For generalized Sturmian subshifts this fact is covered by the still unpublished
result of [ALR2]. Our argument was established earlier.

(4) Now, by [ALR2], only when the spectrum contains a rational number.



Odometers and Toeplitz systems revisited 47

2. Preliminaries on Toeplitz systems. The notation and terminol-
ogy of this section is consistent with that of [D], to which we also refer for
references to earlier papers. To make this paper selfcontained, the most cru-
cial definitions will be repeated. By a scale we mean an increasing sequence
H = (pk)k≥1 of positive integers such that pk | pk+1 for every k. The adding
machine with scale H is the topological group G obtained as the inverse
limit of the cyclic groups Zpk = Z/pkZ:

G = lim←−
k

Zpk .

By an odometer we will mean the topological dynamical system (G, τ) where
τ is the homeomorphism g 7→ g + 1 of G into itself, where 1 = (1, 1, . . .) is
the topological generator of G. The odometer is minimal, equicontinuous and
zero-dimensional, and the conjunction of these three properties characterizes
odometers among topological dynamical systems. Odometers are uniquely
ergodic, with the Haar measure λ being the unique invariant measure. For
us, an odometer also means the ergodic system (G,λ, τ). By a (Jewett–
Krieger) model of an ergodic system we will understand any strictly ergodic
(minimal and uniquely ergodic) topological dynamical system isomorphic
(for its unique invariant measure (5)) to the given ergodic system. Note that
there may (and usually do) exist mutually nonconjugate models of the same
ergodic system. For instance, an odometer is a model for itself, but there
are other models as well, for example some symbolic systems over finite
alphabets (which are never equicontinuous, so they cannot be conjugate to
the odometer).

We will be mostly concerned with Toeplitz systems (6), understood as
specified in the theorem below. Note that, contrary to the traditional ter-
minology, we do not require that they are symbolic (nonetheless, all our
examples will be symbolic). Toeplitz systems can be defined in a multitude
of ways, which is captured in the following theorem. The relevant definitions
and proofs can be found in [D] (for the reader’s convenience, the definitions
are also given in footnotes).

Theorem 2.1. The following conditions are equivalent for a topologi-
cal dynamical system (X,T ). A system satisfying them is called a Toeplitz
system.

(1) (X,T ) is the orbit closure of a regularly recurrent point (7);

(5) Convention: isomorphism is measure-theoretic while conjugacy is topological.
(6) In the literature they are often called “Toeplitz flows”; we find this terminology

confusing, as they are discrete time systems.
(7) A point x is regularly recurrent if, for every open U 3 x, the set of return times

to U contains an arithmetic progression nZ.
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(2) (X,T ) is a minimal almost 1-1 extension (8) of an odometer (G, τ);
(3) (X,T ) is a semicocycle extension (9) of an odometer (G, τ).

Conditions (1) and (2) are additionally related:

Theorem 2.2. If π is the almost 1-1 factor map from a Toeplitz system
(X,T ) to an odometer (G, τ) then x ∈ X is regularly recurrent if and only
if π−1(π(x)) = {x}.

In Theorem 2.1, the odometer (G, τ) appearing in (2) is the maximal
equicontinuous factor (10) of (X,T ). The adding machine G appearing in (3)
(with the action of τ) is the maximal equicontinuous factor of (X,T ) if and
only if the semicocycle has the additional property of being invariant under
no rotations (11). Otherwise, the maximal equicontinuous factor of (X,T )
acts on a quotient group ofG (12) and (G, τ) is not even a factor of (X,T ) (let
alone maximal equicontinuous). We can strengthen condition (3) as follows:

Theorem 2.3. Every Toeplitz system is conjugate to a semicocycle ex-
tension of its maximal equicontinuous factor.

An important class of Toeplitz systems, called regular (13), is described
by the conditions given below:

Theorem 2.4. Let π be the almost 1-1 factor map from a Toeplitz system
(X,T ) to an odometer (G, τ). The following conditions are equivalent:

(1) The set of points g ∈ G such that #π−1(g) = 1 has full λ measure.
(2) The set of regularly recurrent points in (X,T ) has full measure for

every invariant measure on X.
(3) The set of discontinuities Df of the relevant semicocycle f on G has

λ measure zero.

The following is obvious by (1):

Theorem 2.5. A regular Toeplitz system (X,T ) is strictly ergodic and
it is an isomorphic extension of its maximal equicontinuous factor (G, τ).

(8) The factor map π : X → G is almost 1-1 if π−1(π(x)) = {x} holds on a residual
(i.e., containing a dense Gδ) subset of X.

(9) A semicocycle is a function f : G→ K into a compact space, which is continuous
on a residual subset of G. Let F denote the multifunction defined by the closure of the
graph of f . Let XF = {x ∈ KZ : (∃g ∈ G)(∀n ∈ Z) x(n) ∈ F (g + n)}. This set is closed
and shift-invariant, and has a unique minimal subset which we denote by Xf ; Xf with
the action of the shift is called the semicocycle extension (associated with f).

(10) Any other equicontinuous system which is a factor of (X,T ) factors through
(G, τ).

(11) A semicocycle f on an adding machine G is invariant under no rotations if
F ◦ (·+ g) = F ⇒ g = 0.

(12) This quotient group is G/H, where H = {g : F ◦ (·+ g) = F}.
(13) Note that the term “regular recurrence” was coined independently.
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In particular, a regular Toeplitz system is a model for the underlying
odometer. Unless π is 1-1 everywhere, (X,T ) is not conjugate to (G, τ).

In [D, Theorem 13.1(5) and (6)] it is claimed that a strictly ergodic
Toeplitz system isomorphic to its maximal equicontinuous factor is neces-
sarily regular. Moreover, it is claimed that strict ergodicity need not be as-
sumed if an isomorphism exists for some invariant measure. Unfortunately,
the statement (even with strict ergodicity assumed) is false. A relevant coun-
terexample is provided in the following sections.

Let us return to the general case. In symbolic systems regularly recurrent
points are called Toeplitz sequences (14). Toeplitz subshifts (and Toeplitz se-
quences) were the first examples of almost 1-1 extensions of odometers and
they are the most important. In this class we have an additional simplifica-
tion:

Theorem 2.6. Every Toeplitz subshift over a finite alphabet Λ is con-
jugate to a semicocycle extension of its maximal equicontinuous factor with
the semicocycle taking values in Λ.

The advantage of having the finite-valued semicocycle is that its set of
discontinuities Df ⊂ G is then closed. The elements of Toeplitz subshifts
have specific structure, as described below.

Definition 2.7. Let (X,T ) be a Toeplitz subshift and let (G, τ) be the
maximal equicontinuous factor of (X,T ). For x ∈ X and p ∈ N we denote

Perp(x) = {n ∈ Z : (∀m ∈ Z) x(n) = x(n+mp)}, Aper(x) = Z\
⋃
p∈N

Perp(x),

and call these sets the p-periodic part and aperiodic part, respectively.

The union of periodic parts will not change if we unite over a scale (pk)k∈N
of the adding machine G (then the union is increasing). It is important to
know that Perpk(x) and Aper(x) depend only on π(x). Clearly, x is a Toeplitz
sequence if and only if its aperiodic part is empty.

Recall that for a set A ⊂ Z the forward and backward densities of A are
defined as

dens+(A) = lim
n

1

n
#(A ∩ [0, n− 1]), dens−(A) = lim

n

1

n
#(A ∩ [−n,−1]),

respectively (provided the limits exist) and in case they coincide we call them
the density of A and denote by dens(A).

Theorem 2.8. Let (X,T ) be a Toeplitz subshift. Then, for every p ∈ N,
dens(Perp(x)) exists and is constant throughout X.

Let d = 1− supk dens(Perpk(x)). Then

(14) Regular recurrence takes the form (∀n ∈ Z)(∃p ∈ N)(∀m ∈ Z) x(n) = x(n+mp).
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(1) d = λ(Df );
(2) dens(Aper(x)) ≤ d for every x ∈ X;
(3) dens(Aper(x)) = d for µ-almost every x ∈ X, for every invariant

measure µ on X.

In particular, regularity of (X,T ) is equivalent to d = 0, and to the
condition dens(Aper(x)) = 0 at every point x.

Let (X,T ) be an irregular Toeplitz subshift. Consider the set of x ∈ X
such that dens(Aper(x)) = d (by (3) above, this set has full invariant mea-
sure). Since Aper(x) is common for all points in the same fiber of π, our set
equals π−1(E) for some E ⊂ G. For x ∈ π−1(E) we enumerate Aper(x) =
{ni}i∈Z assuming that the sequence (ni) is increasing and letting n0 be the
smallest nonnegative element of the sequence. We let yx = (x(ni))i∈Z ∈ ΛZ

and call it the aperiodic readout of x. For g ∈ E we define Yg = {yx :
x ∈ π−1(g)}.

Definition 2.9. We say that the Toeplitz subshift (X,T ) satisfies con-
dition SAR (same aperiodic readouts) if Yg is the same for every g ∈ E. We
then denote the common space Yg by Y .

It is easy to see that in this case Y is closed and shift invariant. The
following theorem plays a crucial technical role in most of our examples (for
proofs see [D]):

Theorem 2.10. Let (X,T ) be an irregular Toeplitz subshift satisfying
condition SAR. Let Tf be the skew product acting on G× Y given by

Tf (g, y) = (τ(g), Sg(y)),

where Sg equals the shift or the identity, depending on whether g ∈ Df or not
(Tf is not continuous, but in what follows, we can ignore this fact). Then:

(1) There is a bijection between invariant measures of (X,T ) and invari-
ant measures of (G× Y, Tf ).

(2) Every invariant measure on (X,T ) yields a system isomorphic to that
given by its corresponding measure on the skew product.

(3) Every invariant measure on the skew product has marginals λ on G
and some shift-invariant measure ν on Y .

(4) Every shift-invariant measure ν on Y appears as the marginal for
at least one invariant measure on the skew product (for example for
λ× ν).

(5) The entropy of the skew product with respect to an invariant measure
equals d times the entropy of the corresponding marginal on Y .

(6) The topological entropy of the skew product (which equals the topolog-
ical entropy of (X,T )) equals d times the topological entropy of the
shift on Y .
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We will invoke the above facts several times.

3. Preliminaries on the Möbius function and Sarnak’s conjec-
ture. The Möbius function denoted by µ is defined on the positive integers
as follows:

µ(n) =


1 if n = 1,
0 if n has a repeated prime factor,
(−1)r if n is a product of r distinct primes.

This function was introduced by A. F. Möbius [M] to obtain inversion for-
mulas for arithmetic functions [CDM]. It plays an important role in number
theory. The reader is referred for more information to the rich literature in
that area; let us only mention two fundamental monographs, [P] and [W].

Definition 3.1. Let ξ(n) and η(n) be two bounded complex-valued se-
quences over N. We say that these sequences are uncorrelated if

lim
n

1

n

n∑
i=1

ξ(i)η(i) = 0.

One of the intriguing properties of the Möbius function is its apparent
randomness in the distribution of its values. It is well known that the forward
density of square-free numbers (i.e., of the set {n : |µ(n)| = 1}) exists
and equals 6/π2 (see [N, Thm. 21.8 and Corollary]). On the other hand,
the densities of positive and negative values are equal, implying that µ is
uncorrelated to the constant sequence (see [P, Thm. 5.1]).

Moreover, it is uncorrelated to any periodic function (an elementary proof
can be found in [GL]), a fact which is connected with the laws of the distri-
bution of primes along arithmetic progressions (see [Sa]). Let us remark that
a more detailed analysis of this phenomenon, more precisely, of the behavior
of the partial sums of the Möbius function, is an important area of study,
connected with many fundamental number-theoretical problems: see e.g. the
classical works [W], [Sch] and more recent papers [RR], [HS].

Sarnak [Sa] conjectures that µ is uncorrelated to any sequence obtained
by reading any continuous function along any orbit in any topological dy-
namical system with topological entropy zero:

Conjecture 3.2. Let (X,T ) be a topological dynamical system with
topological entropy zero. Let f : X → C be a continuous function. Fix an
x ∈ X and let ξ(n) = f(Tnx) (for n ≥ 1). Then ξ and µ are uncorrelated.

The conjecture is known to hold for relatively few types of dynamical
systems, in particular for odometers, irrational rotations, nilsequences [GT]
and horocycle flows [BSZ]. See also [B1], [B2], [ALR1], [G], [KL], [LS], [MR]
for other results. We remark that the validity of Sarnak’s conjecture for
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odometers follows directly from the fact that the Möbius function is uncor-
related to any periodic sequence. The validity for irrational rotations can
be proved by a criterion from [BSZ] or by a completely different property
of the Möbius function, discovered by Davenport [Da]. It is a folklore fact
that the conjecture holds for the classical Sturmian subshift; the proof uses
heavily the fact that this subshift has complexity (15) c(n) = n+ 1 ([MH]).
Recently, in [AKL] Sarnak’s conjecture has been proved for some Morse sub-
shifts. Every continuous function on such a system decomposes as the sum
of a function depending on the Toeplitz factor and an orthogonal one. Thus
the method relies on two ingredients. For continuous functions orthogonal to
the Toeplitz factor some specific spectral and disjointness methods are used.
To handle the other ingredient, the authors simply prove the conjecture for
regular Toeplitz subshifts.

In this note we extend the latter proof (in fact, we only notice that
essentially the same proof applies) to a class slightly larger than regular
Toeplitz systems, that of isomorphic extensions of minimal equicontinuous
systems. This includes some not necessarily regular Toeplitz systems and
generalized Sturmian subshifts.

4. Sarnak’s conjecture for isomorphic extensions. The following
fact has been observed jointly by the first author and M. Lemańczyk.

Theorem 4.1. Let (X,T ) be an isomorphic extension of (Y, S) (i.e. the
systems are uniquely ergodic and there exists a topological factor map π :
X → Y which is, at the same time, an isomorphism for the corresponding
ergodic systems). If Sarnak’s conjecture holds for (Y, S) then it also holds for
(X,T ).

Proof. Let f : X → C be continuous. Then f ∈ L2(µ) and f ′ = f ◦π−1 ∈
L2(ν) (f ′ is defined ν-almost everywhere on Y ). Since C(Y ) is dense in L2(ν),
there exists a continuous g′ : Y → C such that

	
|f ′ − g′|2 dν < ε2, hence	

|f ′− g′| dν < ε. The function g = g′ ◦ π is continuous on X and
	
|f − g| dµ

< ε. Because in uniquely ergodic systems every point is generic (16), we have
limn n

−1∑n
i=1 |f(T ix)− g(T ix)| < ε for any x ∈ X. Now, we write∣∣∣∣ 1n

n∑
i=1

f(T ix)µ(i)

∣∣∣∣ ≤ ∣∣∣∣ 1n
n∑
i=1

g(T ix)µ(i)

∣∣∣∣+ 1

n

n∑
i=1

|f(T ix)− g(T ix)| |µ(i)|.

The first average on the right hand side equals |n−1
∑n

i=1 g
′(Siy)µ(i)|, where

y = π(x), and is small for large n, because Sarnak’s conjecture holds on
(Y, S). The last average does not exceed, for large n, the arbitrarily small ε.

(15) The number of words of length n in the subshift.
(16) That is, satisfies the ergodic theorem for every continuous function.
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Thus the left hand side tends to zero with growing n.

In [AKL] the reader will find a slightly different statement, in which (Y, S)
is assumed to be coalescent (17) and the assumption that the isomorphism
between (X,T ) and (Y, S) is realized by the same topological factor map
π is dropped (it is then fulfilled automatically). Recall that odometers and
other ergodic group rotations are coalescent.

We now draw conclusions concerning particular types of topological dy-
namical systems. It seems that items (1b) (18), (2) and (3) below are new.
Notice that for the classical Sturmian subshift we have obtained a new proof
not relying on the exact complexity.

Corollary 4.2. Sarnak’s conjecture holds for all minimal isomorphic
extensions of equicontinuous systems (19), in particular for:

(1) regular semicocycle extensions of any minimal equicontinuous sys-
tem (20), in particular
(1a) regular Toeplitz systems (see also [AKL]);
(1b) generalized Sturmian subshifts (21);

(2) irregular Toeplitz subshifts which nevertheless are isomorphic exten-
sions of odometers (22) (existence of such subshifts is proved in Ex-
ample 5.1 below);

(3) isomorphic extensions of odometers (and other minimal equicontinu-
ous systems) which are not their almost 1-1 extensions (existence of
such systems is proved in [DG]).

Proof. To be absolutely clear, let us argue why the conjecture holds for
minimal equicontinuous systems. By the Halmos–von Neumann Theorem,
every such system is uniquely ergodic and the space L2(µ) is spanned by
(at most countably many) continuous eigenfunctions. Thus every continuous
function can be approximated in L2(µ) (hence also in L1(µ)) by a finite sum

(17) That is, such that every endomorphism of the system is an isomorphism.
(18) This fact follows also from [ALR2].
(19) In a recent paper [DG] these systems are characterized as minimal mean equicon-

tinuous systems as defined by Li, Tu and Ye [LTY].
(20) Notice that semicocycle extensions can be equally well defined on any strictly er-

godic system, not necessarily an odometer. Regularity means that the set of discontinuities
of the semicocycle has measure zero.

(21) A classical Sturmian subshift is obtained as the semicocycle extension of the
irrational rotation by an angle α, where the semicocycle is precisely the characteristic
function of [0, α). In generalized Sturmian subshifts the semicocycle is allowed to be the
characteristic function of any nondegenerate subinterval or even a finite union of intervals.

(22) Note that if a system is an isomorphic extension of an equicontinuous system,
then the latter is necessarily the maximal equicontinuous factor of the former. In the case
of Toeplitz systems, the extension is then almost 1-1.
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of continuous eigenfunctions. Now, by an argument as in the preceding proof,
it suffices to verify the conjecture for continuous eigenfunctions. But every
such function arises as a continuous function defined on either an odometer
(if the eigenvalue is rational) or an irrational rotation (otherwise).

5. Examples of models of odometers

Example 5.1. There exist irregular Toeplitz subshifts which, neverthe-
less, are isomorphic extensions of odometers (for these Sarnak’s conjecture
holds).

Sketch of the construction. An explicit example of such a system is gen-
erated (as the shift-orbit closure) by the (unilateral) Toeplitz sequence de-
scribed below.

Pick a block B1 = 000 . . . 01000 . . . 0 of some length r1 consisting of zeros
but one symbol 1 (somewhere). We place this block p1-periodically (for some
= p1 > r1, we also let q1 = p1) (see Figure 1).

0100∗∗∗0100∗∗∗0100∗∗∗0100∗∗∗0100∗∗∗0100∗∗∗0100∗∗∗0100∗∗∗0100∗∗∗0100 . . .

Fig. 1. In this figure B1 = 0100, r1 = 4 and p1 = 7.

The unfilled places (the stars) come in blocks of length Q1 = q1− r1. We
pick a block B2 of some length r2Q1, consisting of zeros but one symbol 1. We
write this block into r2 consecutive empty blocks and repeat p2-periodically,
where p2 = q2p1, for some q2 > r2 (see Figure 2).

0100000 0100100 0100000 0100∗∗∗ 0100∗∗∗ 0100∗∗∗ 0100000 0100100 0100000 0100 . . .

Fig. 2. In this figure B2 = 000100000, r2 = 3 and q2 = 6.

Now the unfilled positions come in clusters of q2 − r2 blocks of length
q1 − r1.

We continue in this manner: in step k+1 we use a block Bk+1 consisting
of all zeros but one symbol 1, whose length equals rk+1 (a freely chosen
number) times Qk = (p1 − r1) . . . (pk − rk) (the number of unfilled positions
in [0, pk − 1] in the sequence constructed so far); we use this block to fill all
unfilled places in [0, rk+1pk−1]; then we repeat it with a period pk+1 = qkpk
for some freely chosen qk > rk. Two more details must be taken care of:
the products

∏N
k=1(1− rk/qk), representing the density of unfilled positions

after step N , must converge to a number d > 0. The second requirement is
that for each k the symbol 1 appears in the future blocks Bk′ (k′ > k) at
positions whose remainders modulo Qk take every possible value infinitely
many times. With such an arrangement it is not hard to see that:
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(1) the generated (bilateral) Toeplitz subshift (X,T ) is an almost 1-1
extension of the odometer (G, τ) with scale H = (pk);

(2) (X,T ) is irregular and satisfies condition SAR with the space Y of
aperiodic readouts consisting of all {0, 1}-valued sequences having at
most one symbol 1.

Clearly, Y supports only one invariant measure ν, the point mass at the
fixpoint (. . . 000 . . . ). Theorem 2.10(1)–(3) implies that (X,T ) is uniquely
ergodic; the unique invariant measure µ is isomorphic to the only measure
with marginals λ and ν, which is λ × ν. Since ν is supported by one point,
the factor map π provides an isomorphism between µ and λ, as required.

There exist strictly ergodic systems (also subshifts) isomorphic to an
odometer (G, τ), yet whose maximal equicontinuous factor (G′, τ ′) is a proper
factor of (G, τ), and Theorem 4.1 does not apply to such systems. For G
which is not simple (23), such examples are easily obtained with G′ being an
adding machine and the system is an almost 1-1 extension of (G′, τ ′), while
the remaining eigenvalues of G are realized by discontinuous eigenfunctions
(see [DL]). There also exist models for which the maximal equicontinuous
factor is trivial (hence all eigenvalues of (G, τ) are realized by discontin-
uous eigenfunctions and the system is topologically weakly mixing). Such
examples can be produced for all odometers, including the simple ones.
Below we give an example with the even stronger property of topological
mixing (24).

Example 5.2. Given an odometer (G, τ), there exists a strictly ergodic
topologically mixing subshift (X,T ) isomorphic to (G, τ).

Sketch of the construction. Since we will be dealing with subshifts, T
will always denote the shift transformation, regardless of the domain. Let
H = (pk) denote the scale of the odometer. Let (X0, T ) be a regular Toeplitz
subshift with maximal equicontinuous factor (G, τ), and let x0 ∈ X0 be a
Toeplitz sequence. We will produce a sequence of topological conjugacies of
(X0, T ), converging almost everywhere to an isomorphism with the desired
subshift (X,T ).

In Step 1, choose some r1 ∈ N and find all periodic repetitions in x0
of the central block C1 = x0[−r1, r1]. The period of the repetitions is some
p1 ∈ H. Choose q1 such that p1q1 ∈ H and choose every q1th periodic
occurrence of C1 in x0 (avoiding the central one). Let us call these places
1-windows. Now comes the modification: within each 1-window we shift the

(23) An odometer is simple when its scale is (pk) for a prime number p. Simple
odometers have no infinite proper factors, others do.

(24) It is known ([L]) that every aperiodic ergodic system has a topologically mixing
strictly ergodic model. Here we provide a particular example.



56 T. Downarowicz and S. Kasjan

contents one position to the left (sending the leftmost symbol to the right
end). The modification passes over, in an obvious way, to all elements of
X0 and is invertible if q1 is large enough (25). This is our conjugacy Φ1 :
X0 → X1 between two Toeplitz subshifts. We denote by x1 the Toeplitz
sequence Φ1(x0).

In Step 2 we choose some r2 and we denote C2 = x1[−r2, r2]. We must
take care of two details: C2 must be long enough to include several 1-windows,
and moreover its ends must fall far from the 1-windows, for instance, approx-
imately in the middle between two of them. In the future this will prevent
an accumulation of the end-irregularities. We find all periodic occurrences of
C2 in x1, and their period p2 ∈ H. Next we choose some large q2 such that
p2q2 ∈ H and we call every q2th copy of C2 in x2 (avoiding the central one)
a 2-window. As before, we shift the contents of each 2-window one position
to the left, sending the leftmost symbol to the right end. This modification
spreads naturally to a conjugacy Φ2 : X1 → X2 between Toeplitz subshifts.
We let x2 = Φ2(x1) = Φ2Φ1(x0).

We proceed in this manner infinitely many times, ensuring that the den-
sities of the positions affected by consecutive modifications (i.e., the ratios
ρk = 2rk + 1/(pkqk)) are summable, and that the ends of the k-windows fall,
for every k′ < k, approximately in the middle between a pair of k′-windows
(see Figure 3).

Fig. 3. The figure show the k-windows (i.e., areas affected by Φk): original—black, 1-
windows—dark grey (above black), 2-windows—gray, 3-windows—light grey (the next
3-window is too far to be shown). The displacements by one position of dark grey within
grey, and of grey and dark grey (by two positions) within light grey are too small to be
seen.

Let x∞ denote the sequence obtained as the limit of xk (which exists
because every position in x0 is affected by the modifications at most finitely
many times), and we let X∞ be the shift orbit closure of x∞ and finally we
letX be a minimal subset ofX∞ (26). Notice that the maps Ψk = Φk . . . Φ2Φ1

converge at every point of X0 whose coordinates are each affected at most
finitely many times. We let Ψ be the (partially defined) limit map on X0.

The following observations are standard and we skip their proofs:

(1) (X∞, T ) is topologically mixing (can be checked directly by the def-
inition).

(25) q1 must be long enough so that the p1-periodic part of any x ∈ X0 can be
determined by viewing any block of length p1q1 − 2r1 − 1.

(26) This step allows us to avoid verifying whether X∞ is minimal.
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(2) Ψ is defined almost everywhere on X0 and acts into X∞.
(3) For each k, on X we can define the following map ψk: in each el-

ement of X we can easily identify and reverse the consequences of
the modification Φ1, . . . , Φk (although we “invert” Φk in a seemingly
wrong order, these inverses commute). Caution: the maps ψk are not
precisely the inverses of Ψk; they are defined on X∞, not on Xk.

(4) The limit of the above maps ψk (call it ψ) is defined almost every-
where on X∞ for every invariant measure.

(5) The range of ψ is contained in X0 and ψ inverts Ψ wherever the latter
is defined.

The last four facts imply that (X∞, T ) is uniquely ergodic and isomorphic
to (X0, T ). Since the minimal subset X ⊂ X∞ supports an invariant mea-
sure, it supports the unique one, hence (X,T ) is isomorphic to (X0, T ), and
additionally minimal. Thus (X,T ) is the desired example.

Although we have no general proof of Sarnak’s conjecture for all models
of odometers, interestingly, it does hold in the above topologically mixing
example. Since this example escapes any existing general method of proving
Sarnak’s conjecture (including the recent result of [ALR2]), the fact that we
can still prove it (using a specific method) seems to be of particular interest.
Again, we will only sketch the argument.

Sketch of proof of Sarnak’s conjecture in Example 5.2. Since every contin-
uous function on X can be approximated in L1(µ) by a (continuous) linear
combination of characteristic functions of cylinders corresponding to finite
blocks, it suffices to verify the conjecture for such characteristic functions.
We will do that for blocks of length 1, i.e., for the occurrences of the symbol 1.
The argument for longer blocks is identical.

Fix an ε > 0 and let k be such that the density of places where x∞
differs from xk (i.e.,

∑∞
k′=k+1 ρk′) is less than ε. Since xk is regular Toeplitz,

there are l and N such that the pl-periodic part occupies at least a 1 − ε
fraction in every block of length N appearing in any element of Xk. The
problem we are facing is that the (slightly perturbed) pl-periodic part in
x ∈ X does not come from a continuous function on X any more, and we
have no guarantee that all points realize the ergodic theorem for it. We need
more subtle observations.

We can assume that N is large enough so that∣∣∣ n∑
i=1

ξ(i)µ(i)
∣∣∣ < nε

for every {0, 1}-valued pl-periodic sequence ξ and every n ≥ N . Let x ∈ X
and consider the initial block x[1, n] for n ≥ N/ε (this is an arbitrary block
B of length n appearing in x∞). We will argue that there are (at most)
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three blocks B1, B2, B3 appearing in Xk, with lengths summing to n, such
that x[1, n] nearly equals the concatenation B1B2B3 in the sense that the
fraction of disagreements is at most 2ε. Once this is proved, we can write
B1 = x′[1,m], B2 = x′′[m+1,m′], B3 = x′′′[m′+1, n] for some x′, x′′, x′′′ ∈ Xk

and m,m′ ∈ [1, n], m ≤ m′, and then have the following estimation:∣∣∣ n∑
i=1

x(i)µ(i)
∣∣∣ 2nε≈ ∣∣∣ m∑

i=1

x′(i)µ(i) +

m′∑
i=m+1

x′′(i)µ(i) +

n∑
i=m′+1

x′′′(i)µ(i)
∣∣∣

=
∣∣∣ m∑
i=1

x′(i)µ(i) +
m′∑
i=1

x′′(i)µ(i)−
m∑
i=1

x′′(i)µ(i)

+
n∑
i=1

x′′′(i)µ(i)−−
m′∑
i=1

x′′′(i)µ(i)
∣∣∣ < 10nε,

because

• the sums shorter than N contribute at most sN < snε (s ≤ 4 is the
number of such sums),
• in each sum not shorter than N :

– x′, x′′ or x′′′ can be replaced by a pl-periodic sequence and this
will change the sum by less than ε times the summing length,

– once the above replacement is done, the absolute value of the
sum does not exceed ε times the summing length,

• the sum of the summing lengths equals (5− s)n.
Clearly, this estimation ends the proof.
So, it remains to break a block B of length n appearing in x∞ into at most

three subblocks, as desired. We can think of B as of a block B0 appearing
somewhere in xk, affected by some finitely many modifications Φk+1, . . . , ΦK .
If B is entirely contained in a K-window without its endpoints, then ΦK
shifts the entire contents one position to the left, so that the result is the
same as if we started from the block B′0 lying in xk one position to the left
with respect to B0 and pretended that ΦK did not affect it. In this manner,
we can ignore all such cases and move on to the largest index (and denote
it by K) for which only part of B is affected by ΦK , that is, B contains an
endpoint of a K-window. Now there are three possibilities:

(1) B intersects two or more K-windows,
(2) B contains one or both endpoints of just one K-window.

In case (1) the fraction of modifications introduced by ΦK in B is at most
2ρK (and ρk′ for earlier modifications with k′ = k + 1, . . . ,K − 1), so B
differs from B0 on at most 2ε places and there is no need to partition it (we
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put B1 = B0, there is no B2 or B3). In case (2) we cut B at the endpoints of
the K-window. This produces two or three subblocks B′1, B′2, B′3. Notice that
ΦK affects only one of these subblocks and only by shifting it “in one piece”.
So, we only need to see how much each subblock is affected by the earlier
modifications. Recall that for each k′ < K the endpoints of the k′-windows
fall approximately pk′qk′/2 places away from the endpoints of theK-window.
This implies that if a modification Φk′ does affect a subblock B′i (i = 1, 2 or
3), then the fraction of the modifications in this subblock is at most 2ρk′ . So
each B′i differs from a subblock of xk on at most 2ε places. This completes
the argument.

6. Toeplitz sequences which fail Sarnak’s conjecture. We will say
that sequences ξ and η are weakly (resp. strongly) correlated if the upper
(resp. lower) limit of n−1

∑n
i=1 ξ(i)η(i) is positive.

6.1. Weak failure

Example 6.1. There exists an irregular {−1, 1}-valued Toeplitz subshift
X such that some x ∈ X are strongly correlated with µ. The set of such points
x is dense in X. Moreover, weak correlation holds on a residual subset of X.

The example is very simple, once the general construction of Toeplitz
systems is understood: Consider an irregular Toeplitz subshift satisfying con-
dition SAR and such that Y (the space of aperiodic readouts) is the full shift
on two symbols {−1, 1} (we skip the detailed construction of such a subshift;
it is done by a “standard method”, e.g., the Oxtoby technique, see [D]). Let
π : X → G denote the maximal equicontinuous factor map onto the underly-
ing adding machine and let λ be the Haar measure on G. Then, by Theorem
2.8 (and the explanations following that theorem), there is a set G′ ⊂ G with
λ(G′) = 1 which satisfies the following two conditions:

(1) all points x in the fiber π−1(g) agree along a common periodic part
whose density equals 1− d,

(2) as x ranges over π−1(g), all possible {−1, 1}-valued sequences occur
along the aperiodic part of x.

In particular, if we arrange that d > 1− 3/π2 (≈ 0.7) (which is easily done
within the “standard method”) then for every g ∈ G′ and x ∈ π−1(g) the
set A = Aper(x) ∩ {n ≥ 0 : µ(n) 6= 0} has lower forward density at least
d0 = d + 6/π2 − 1 > 3/π2. There exists x0 ∈ π−1(g) such that for n ∈ A,
x0(n) equals µ(n). It is obvious that (even in the “worst case scenario”, when
x(i) = −µ(i) and |µ(i)| = 1 everywhere on the periodic part of x) we still
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have

(6.1) lim inf
n

1

n

n∑
i=1

x0(i)µ(i) ≥ d0 − (1− d) > 0.

Next, we will show that points x0 as constructed above (satisfying (6.1))
lie densely in X. Consider a basic open set U in X, i.e., a cylinder cor-
responding to a block B ∈ {−1, 1}2k+1 occurring in X at the coordinates
[−k, k]. By minimality, the same block occurs (perhaps at a different place)
in the generating Toeplitz sequence, which implies that the same block oc-
curs somewhere in the periodic part of every element ofX, in particular in an
element x ∈ π−1(G′). Notice (directly from the definition) that the set G′ is
invariant (equivalently, π−1(G′) is shift-invariant). Thus, by an appropriate
shifting, we obtain a new point x such that B occurs in x at the coordinates
[−k, k] and still belongs to the periodic part of x, and g = π−1(x) belongs
to G′. Using this particular g in the above construction of x0 we produce
the point x0 such that x0[−k, k] = B (x0 belongs to the same fiber as x and
thus agrees with x along the periodic part, which includes the coordinates
[−k, k]). In other words, we have constructed a point x0 ∈ U satisfying (6.1).

Next we observe that if we weaken (6.1) by requiring that the upper limit
is larger than or equal to a positive ε < d0 − (1 − d), then this holds on a
residual set. Indeed, we can write{

x : lim sup
n

1

n

n∑
i=1

x(i)µ(i) > ε

}
⊂
⋂
m≥1

⋃
n≥m

{
x :

1

n

n∑
i=1

x(i)µ(i) > ε

}

⊂
{
x : lim sup

n

1

n

n∑
i=1

x(i)µ(i) ≥ ε
}
.

The first set contains the dense set of points satisfying (6.1), the middle set
is of type Gδ (hence it is a dense Gδ), and thus the last set is residual. The
example is thus constructed.

Since the Toeplitz sequences form a residual subset inside a Toeplitz
subshift, we obtain

Corollary 6.2. There exist (irregular) Toeplitz sequences weakly cor-
related with the Möbius function.

We remark that the Toeplitz subshift of the above example has posi-
tive entropy (equal to d ln 2), hence it stands in no collision with Sarnak’s
conjecture.

6.2. Strong failure. The following example is replicated from [AKL].

Example 6.3. There exists a one-sided Toeplitz sequence strongly corre-
lated with the Möbius function.
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We begin by describing a general scheme (used in [AKL]) of producing
a one-sided Toeplitz sequence from another symbolic sequence. Let y =
(yn)n≥1 be a one-sided sequence over a finite alphabet Λ. Let H = (pk)
be a scale of an adding machine such that p1 ≥ 3. Since pk+1 ≥ 2pk for every
k, this condition implies that ρ =

∑
k≥1 1/pk < 1. We define the associated

one-sided Toeplitz sequence x as follows:

xy(n) =



y1, n = 1 mod p1,

y2, n = 2 mod p2,
...

yp1 , n = p1 mod pp1 ,

yp1+1, n = p1 + 2 mod pp1+1,

yp1+2, n = p1 + 3 mod pp1+2,
...

y2p1−1, n = 2p1 mod p2p1−1,

y2p1 , n = 2p1 + 3 mod p2p1 ,
...

We refrain from further detailed listing, as it becomes too complicated. The
simple rule behind the scheme is that yk is placed at the first position avail-
able after steps 1, . . . , k−1 and then it is repeated periodically with period pk.
This concludes the description of the scheme.

For further considerations, it will be convenient to highlight, for each k,
the first placement of yk in xy (it is shown in boldface, while its further
periodic repetitions are printed in normal font). While reading the following
text and diagrams it is important to distinguish between boldface symbols
yk and normal font symbols yk. The diagram below shows the filling scheme
in case pk = 3k with the boldface terms marked.

y1y2y3y1y4y5y1y6y7y1y2y8y1y9y10y1y11y12y1y2y13y1y14y15y1y16y17y1y2y3y1y18y19y1y20...

The authors of [AKL] show that the lower density of the boldface symbols
(which they call initials) is at least 1−ρ (combining this with Lemma 7.1(3)
below we see that in fact these symbols have density 1−ρ), which can be made
arbitrarily close to 1. They select y so that xy(n) = µ(n) whenever xy(n) is
a boldface symbol. If 1− ρ > 1− 3/π2 then, for the same reasons as in (6.1)
(with 1−ρ in the role of d), they find that x is strongly correlated with µ. Of
course, in view of Sarnak’s conjecture, one has to compute the topological
entropy of the generated Toeplitz subshift (at least to check whether it is
positive). We will do so in Section 8.
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7. Properties of the scheme. We are interested in properties of Toe-
plitz sequences obtained through the above scheme for general sequences y.
In particular, we would like to know whether positive entropy follows au-
tomatically from positive entropy of the orbit closure Y of y. As we soon
show, the answer is negative. This is quite unfortunate, because it forces
us to estimate the entropy of the example of [AKL] using tedious methods
adapted to the particular example.

So, consider a general sequence y and the associated Toeplitz sequence
xy with the boldface symbols marked. The following lemma addresses the
distribution of the boldface symbols in xy. Statement (5) will be used im-
mediately in Example 7.3, while statement (4) only in Section 8. Statements
(1) and (2) are necessary to prove (4), while (3) is just a digression noted in
passing.

Lemma 7.1. Let z be the {0, 1}-valued sequence given by z(n) = 1 ⇔
xy(n) is a boldface symbol. Then:

(1) The frequency of zeros in the block Bk,0 = z[1, pk] converges to ρ from
below as k →∞.

(2) For every k, every block of the form

Bk,j = Bk,j [1, pk] = z[jpk + 1, (j + 1)pk] (n ≥ 0)

can be obtained from Bk,0 by only replacing some 1’s by 0’s.
(3) The symbols 0 in z have lower Banach density ρ.
(4) Given ε > 0 there are δ > 0 and n0 ∈ N such that, for any n ≥ n0,

the cardinality of different blocks B of length n, appearing in z and
in which the frequency of 0’s is at most ρ+ δ, does not exceed 2nε.

(5) For every natural m, z contains a block consisting of m single 1’s
separated by blocks of zeros of lengths at least m. In particular, the
upper Banach density of zeros in z is 1.

Remark 7.2. (3) and (5) imply that the subshift generated by z is not
uniquely ergodic; at least one invariant measure assigns to the cylinder of 0
the value ρ, and at least one – the value 1 (perhaps there are more possibil-
ities). (4) implies that every measure of the first kind has entropy zero. We
have not verified whether this subshift has topological entropy zero (regard-
less of the scale H = (pk)).

Proof of Lemma 7.1. For (1) it suffices to observe that the frequency of
zeros in Bk,0 equals

1

pk

∑
k′<k

(
pk
pk′
− 1

)
=
∑
k′<k

1

p′k
− k − 1

pk
.

Indeed, in step k′ ≤ k, in xy[1, pk] we have placed pk/pk′ symbols, of which
one was boldface. Hence the formula.
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For (2) note that Bk,0(i) = 0 if and only if xy(i) is a normal font (i.e.,
repeated) symbol yk′ for some k′. This is possible only when pk′ < pk. But
then pk is a multiple of pk′ , which implies that Bk,j(i) = 0 for every j.

Clearly, (1) implies that the lower density (and lower Banach density) of
zeros is at most ρ. By (2), the frequency of 0’s in any Bk,j may only be larger
than that in Bk,0 (which is close to ρ). Every sufficiently long block B in z
is a concatenation of the blocks Bk,j and a negligibly small prefix and suffix,
so the frequency of 0’s in B is not less than ρ minus a negligibly small error
term. This proves (3).

For (4) we argue as above: every block B of large length n, after re-
moving a negligibly small prefix and suffix, becomes a concatenation of the
blocks Bk,j (with a large parameter k). By (2), this concatenation can be
viewed as a periodic repetition of Bk,0 with some 1’s replaced by 0’s. But
the number of replaced symbols 1 cannot substantially exceed nδ, otherwise
the overall frequency of 0’s would be too large. Such a replacement can be
performed in approximately en(−δ ln δ−(1−δ) ln(1−δ)) different ways, which, for
an appropriately small δ, is smaller than 2nε.

For (5), we will need the following (somewhat lengthy)

Claim. For every m ≥ 1, after some number km of steps of filling xy
(i.e., after having placed the periodic repetitions of y1, . . . , ykm), xy starts with
the following configuration (later referred to as C): a continuous entirely filled
block (with both boldface and normal font symbols) ending with the boldface
ykm followed by a single unfilled coordinate, next a continuous block filled
with normal font terms followed by a single unfilled position, next again a
continuous block filled with normal font terms followed by a single unfilled
position, and so on. The continuous filled blocks (including the first one) have
strictly decreasing lengths and there are m of them (see the diagram below
for m = 6, most of the indices are omitted). We do not require that the last
unfilled position is single (it may be followed by more unfilled positions).

y1y y yy y yykm y y y y y y y y y y y y y y y y y y y y

Proof of the Claim. For m = 1 the condition is fulfilled after k1 = 1
steps, so the induction starts. Suppose the claim holds for some m ≥ 1.
The pattern C is repeated periodically with period pkm and the repetitions
cannot overlap (because the lengths of the filled blocks are all different).
This implies that the pattern C is contained in xy[1, pkm ]. Let us turn to
the first repetition of the pattern C further to the right (call it C ′). It starts
at position pkm + 1 and clearly, here all symbols are printed in normal font.
Notice that at least two preceding positions: pkm and pkm−1 are not occupied
(because pkm = 0 mod pk and pkm−1 = pk−1 mod pk for any k ≤ km, while
the positions filled with the symbol yk have values modulo pk positive and
much smaller than pk). Now we perform the construction steps km + 1,
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km + 2, etc., of filling in xy, until we fill position pkm − 1 (with a boldface
symbol yk′ for some k′ > km). Notice that the pattern C ′ extends at most
to position 2pkm , which is smaller than pkm+1 + 1, so the repeated (normal
font) symbols added in these new steps fall to the right of C ′ (i.e., they
do not affect it). In this manner we fill all the unfilled positions within
xy[1, pkm − 1] creating (together with C ′) a pattern as required for m+ 1 in
the induction (with km+1 = k′). Note that the new initial continuously filled
block xy[1, pkm − 1] has length pkm − 1, larger than or equal to the length of
the pattern C ′ (perhaps without counting its last empty cell), in particular,
for m > 1, it is strictly longer than the first completely filled block of C ′.
For m = 1 this also holds, because, in this case, the length of the first (and
unique) filled block of C ′ is 1, while p1 − 1 > 1. The claim is thus proved.

In the following construction steps, the unfilled positions in the pattern C
are filled with the boldface symbols ykm+1, . . . ,ykm+m. Because the lengths
of the separating normal font blocks strictly decrease, and there are m − 1
of them, the first one has length at least m − 1, the next one m − 2 and
so on. Thus, taking for simplicity m to be even, we deduce that each of the
boldface terms ykm+1, . . . ,ykm+m/2 is followed (and preceded) by a block of
normal font symbols of length at least m/2. Renaming m/2 as m ends the
proof.

It follows from the construction (or can be easily arranged by choosing a
subsequence) that km+1 > km +m for each m ≥ 1.

Example 7.3. There exists a one-sided symbolic sequence y whose or-
bit closure Y has positive topological entropy and supports many invariant
measures, yet the associated Toeplitz subshift Xy (the orbit closure of xy) is
strictly ergodic with entropy zero.

We just need to decide about the contents of the sequence y. Denote
Λ = {0, 1}. For each m ≥ 1 we let y[km + 1, km + m] be a block Am and
y[km + m + 1, km+1] be the block consisting entirely of zeros. We arrange
that the sequence (Am)m≥1 of blocks generates a positive entropy subshift Y0
with many invariant measures (for example, the full shift on two symbols). It
is clear that the orbit closure Y of y contains Y0, hence has positive entropy
and many invariant measures.

Let us ignore “accidental” periodic repetitions of symbols in xy. That is,
we will denote by Perk(xy) the set of positions of the pk′-periodic repeti-
tions of the symbols yk′ for k′ ≤ k. The density of Perk(xy) so defined is∑k

k′=1 1/pk′ .
It follows from the general facts concerning Toeplitz subshifts that if µ

is an invariant measure on Xy, then µ-almost every x ∈ Xy has the “non-
accidental” periodic part of density ρ < 1 and the remaining part (which we
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denote by Aper(x), although at the moment we only know it contains the
true aperiodic part). Clearly, Aper(x) is infinite as it has density 1− ρ.

Suppose Aper(x) contains two positions n and n +m such that x(n) =
x(n+m) = 1. This implies that in xy there are infinitely many positions n′
such that x(n′) = x(n′+m) = 1 and n′ and n′+m both belong to arbitrarily
high periodic parts. That is, xy(n′) = yk′ (or yk′) and xy(n′ +m) = yk′′ (or
yk′′), where k′, k′′ are arbitrarily large, for instance larger than both k and km
and such that pk′ , pk′′ > m. Suppose k′ < k′′ (the other case is symmetric).
Shift (if necessary) the window [n′, n′ +m] to the left by a multiple of pk′
so that it starts with the boldface symbol yk′ . Say, this is now [n′′, n′′ +m].
Position n′′ + m cannot be occupied by yk′′′ with k′′′ ≤ k′ because then
n′ + m would also be occupied by the same yk′′′ (while it is occupied by
yk′′ or yk′′ with k′′ > k′). This implies that n′′ + m is occupied by some
yk′′′ or yk′′′ with k′′′ > k′. But in that case, since m is smaller than pk′′′ , it
must be the first occurrence, i.e., yk′′′ . Since yk′ = 1, k′ must belong to an
interval [km′ , km′ +m′] for some m′, and since k′ > km, m′ must be larger
than or equal to m. This implies that the occurrence of yk′ in xy (it occurs
as xy(n′′)) is followed by a block of at least m normal font symbols. This
is a contradiction since we have just shown that xy(n′′ + m) is a boldface
symbol.

We have proved that if x has an infinite aperiodic part, this part is
filled with zeros except perhaps one 1. This immediately implies that Xy has
entropy zero and is strictly ergodic (in fact, it is isomorphic to the odometer,
like the system of Example 5.1).

Although the above statement already captures the most important prop-
erties of the Toeplitz subshift Xy, we have not yet guaranteed that

(1) the sequence xy is irregular with the density of a “true” aperiodic
part equal to 1− ρ,

(2) the odometer (G, τ) is a factor of Xy.

All these features must be arranged separately, by delicate modifications
of y, yet without destroying what we have already achieved. We will only
outline what needs to be done, skipping the tedious and not very interesting
details.

We must realize that the construction steps of filling in xy corresponds to
successively defining the associated semicocycle as constant on some clopen
subsets Ck ⊂ G. The positions of these subsets are determined by the scheme;
they form a dense subset of G and have jointly Haar measure ρ.

For (1) we need to ensure that the cocycle is discontinuous at every point
of the complementary set D ⊂ G. This can be done by making sure that we
assign at least two different values in every neighborhood of every point of D,
which can be achieved by modifying (if necessary) the values of y along a



66 T. Downarowicz and S. Kasjan

very sparse subsequence, so sparse that it would not affect other properties.
Notice that every neighborhood of every point in D contains infinitely many
sets Ck, so we can choose an arbitrarily sparse subsequence of these sets
which visits all such neighborhoods.

Likewise, for (2) we need the semicocycle to be invariant under no ro-
tation. For this is suffices that we arrange a discontinuity point “unlike any
other”. This can also be done by very sparse modifications of y.

8. Entropy of Example 6.3. We have eliminated the possibility of an
“automatic” proof that the entropy in Example 6.3 is positive just based on
the fact that µ generates a subshift with positive topological entropy. On the
other hand, in view of Sarnak’s conjecture, we have to check the positivity
of its topological entropy.

Proof of positivity of the entropy of Example 6.3. For short, we will call
the squares of prime numbers p-squares. They will be denoted by d1, d2, . . . .

Let B denote an arbitrary block appearing in the subshift generated
by |µ|. Let n denote the length of B, which we assume is large. Our goal is
to indicate a place (an interval of n consecutive coordinates) where B occurs
in |µ|, and in the Toeplitz sequence xy the number of boldface symbols
is close to n(1 − ρ) (i.e., nearly realizes the upper Banach density of such
symbols). Recall that ρ is the sum of the inverses of the periods pk, and is
smaller than 3/π2. First we will argue that finding such places (for all long
enough blocks B) suffices for positivity of the topological entropy of Xy.

Indeed, let C denote the block appearing in xy over this interval. Then B
can be reconstructed knowing C and two additional data: the positions of all
the normal font symbols in xy in the interval considered, and the contents of
|µ| at these positions. Since the number of normal font symbols is not larger
than n(ρ + δ), Lemma 7.1 implies that there are at most 2nε possibilities
for the distribution of the normal font symbols, and then there are at most
2n(ρ+δ) possibilities for their contents in |µ|. This produces the estimate

#{B} ≤ #{C} · 2nε · 2n(ρ+δ),

where #{B} and #{C} denote the cardinalities of blocks of length n in |µ|
and in xy, respectively. Since |µ| generates a subshift of entropy (6/π2) log 2,
i.e.,#{B} is nearly 26n/π2 , the cardinality#{C} is (ignoring the small terms)
nearly 2n(6/π

2−ρ), which yields positive topological entropy of Xy whenever
ρ < 6/π2 (while we have even assumed it is smaller than half of that number).

So, we focus on finding an interval as specified at the start of the proof.
Find an interval I of length n where B occurs in |µ| (such an interval exists).
The positions of zeros in I can be divided into two classes: first class, coor-
dinates divisible by any of the p-squares d1, . . . , dL, where dL is the largest
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p-square smaller than n, and second class—the remaining ones (divisible by
larger p-squares). Note that for each p-square ≥ n only one of its multi-
ples can occur in I. Now, by the Chinese Remainder Theorem (see e.g. [N,
Chap. I]) we can shift the interval I (and call the shifted interval I ′) so that

(1) the shift is by a multiple of d1 · · · dK , where dK is the largest p-square
smaller than 4n2, and

(2) zeros of the second class become (after shifting) divisible by some
a priori selected large p-squares e1, . . . , eq (to be specified shortly).

The zeros of the first class appearing in |µ| over the interval I ′ are precisely
the shifted zeros of the first class over I. All zeros of the second class occur-
ring over I correspond (via the shift) to zeros of the second class occurring
over I ′, but the latter interval can have more zeros of the second class (some
new zeros divisible by p-squares larger than 4n2 and different from e1, . . . , eq
can occur here). The configuration of zeros inherited from I is repeated in
|µ| in every interval I ′′ along an arithmetic progression starting with I ′ and
advancing with step

M = d1 · · · dK · e1 · · · eq
(this need not be the smallest step, just one which is sure). From now on
we will observe only the intervals I ′′ appearing along this progression. In
every such interval the additional zeros (if there are any) must be divisible
by p-squares ≥ 4n2. Using Lemmas 8.2 and 8.3, provided at the end of the
paper, one easily sees that the fraction (among the observed intervals) of
intervals where there are additional zeros does not exceed

n

(
1−

∏
j>K

(
1− 1

dj

))
≤ n√

dK+1

≤ 1

2
.

In other words, in at least around 1/2 of the observed intervals in |µ| there
occurs precisely the block B.

It now suffices to arrange that most (a bit over 1/2 is enough) of these
intervals are such that in the Toeplitz sequence xy there are nearly n(1− ρ)
boldface symbols.

Recall thatH = (pk) is the scale used to construct xy, and for each k ≥ 1,
pk+1 is a proper multiple of pk (at least times 2). We are going to mark three
“important points” k1, k2, k3 on the axis of the parameter k (these points
bear hidden dependence on n, not visible in the notation).

k1: Let k1 be the largest k such that pk < n. Notice that pk ≥ 2k implies
k1 < lnn/ln 2, which (for large enough n) is smaller than [n/lnn].

Next “important points” require auxiliary functions. Let Nk be the num-
ber of prime factors (counted with multiplicities) of the largest common
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divisor of pk and d1 · · · dK . The function k 7→ Nk is nondecreasing and be-
comes constant before it reaches 2K+1. This implies it eventually lies below
the line k/2.

k2: Let k2 be the largest k (if any) for which Nk ≥ k/2. Notice that
Nk ≤ 2K implies k2 ≤ 4K, which (for n large) is small compared
to n (equal to four times the number of primes smaller than 2n,
i.e., approximately 8n/ln 2n). At this point we assume that if k2 <
8n/ln 2n (or does not exist at all), then we set k2 = [8n/ln 2n]. In
particular, this guarantees that k2 > k1.

k3: Let k3 be some place, not smaller than k2, where the function Nk

has already reached its maximum. At this moment we define the
numbers e1, . . . , eq to be relatively prime to pk3+4q. We can do it
now, because the particular values of e1, . . . , eq have not been used
in defining the preceding points.

Now consider a similar auxiliary function Mk defined analogously to Nk

with M in place of d1 · · · dK . Note that to the right of k3 + 4q the function
Nk does not grow, while Mk may increase by at most 2q (possibly even in
one jump); however, thanks to the specific choice of e1, . . . , eq, this function
will never again cross the line k/2.

The “important points” are shown in the figure below.

k1 k2 k3 k +4q

maxNk

maxMk

3

k/2

Fig. 4. The function Nk is shown in grey, and Mk in light grey.

We divide the positions of normal font symbols in xy (equivalently, of
zeros in z) into arithmetic progressions with periods pk (along such a pro-
gression xy(i) = yk) and we classify these progressions in three groups:

(1) k = 1, . . . , k1,
(2) k = k1 + 1, . . . , k2,
(3) k > k2.

(The number k3 is needed only to define e1, . . . , eq and is not used to sep-
arate the groups.) We will now analyze the progressions according to this
classification.
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1. Each progression from the first group occupies in every interval of
length n approximately n/pk positions (at most 2n/pk) for the largest k in
the group. The union of these progressions occupies not more than n(ρ+ ε)
positions (for large enough n).

2. Every progression from the second group is represented in every inter-
val of length n by at most one coordinate. Jointly these groups occupy at
most 4K positions, which does not essentially exceed 8n/ln 2n, i.e., negligibly
little compared to n.

So far we have been estimating the number of normal font symbols in an
interval of length n, and so far it came out close to nρ (i.e., as we need it).
From now on we will estimate the percentage of the “observed” intervals I ′′
which are disjoint from the progressions belonging to the third class.

3. Consider a k in the third group. The period pk has with M no more
than k/2 common prime divisors. However, pk has at least k prime factors,
each at least 2. This implies that pk/gcd(pk,M) ≥ 2k/2. Applying Lemma
8.1 we conclude that the fraction of intervals I ′′ intersecting the progressions
from the third group does not exceed n

∑
k>k2

2−k/2. Since k2 ≥ 8n log 2n,
this bound is arbitrarily small for large n.

To summarize, we can arrange that more than half of the observed inter-
vals I ′′ do not intersect any of the progressions from the third group. In such
intervals |µ| reads B. Combining this with a previous estimate we conclude
that there exist intervals in which both |µ| reads B and in xy there are nearly
n(1− ρ) boldface symbols, as required. This completes the proof.

Now the missing lemmas.

Lemma 8.1. Consider a collection of arithmetic progressions Aj =
{kpj + rj : k ∈ N} of natural numbers, where rj ≥ 0 and pj/j → ∞ as
j →∞. Let M be a natural number and r a nonnegative integer. The upper
density of the set {

k ∈ N : kM + r ∈
⋃
j≥1

Aj

}
is less than or equal to

∑
j≥1 1/p

′
j, where p

′
j = pj/gcd(pj ,M) for j ≥ 1.

Proof. Given n let Jn denote the maximal j such that nM+r ≥ pj . Note
that for any n and j,

|{k ∈ N : k ≤ n, kM + r ∈ Aj}| ≤
n

p′j
+ 1

and the set on the left hand side is empty if j > Jn. It follows that
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1

n

∣∣∣{k ∈ N : k ≤ n, kM + r ∈
⋃
j≥1

Aj

}∣∣∣
=

1

n

∣∣∣{k ∈ N : k ≤ n, kM + r ∈
Jn⋃
j=1

Aj

}∣∣∣
≤ 1

n

Jn∑
j=1

|{k ∈ N : k ≤ n, kM + r ∈ Aj}|

≤ 1

n

( Jn∑
j=1

n

p′j
+ Jn

)
.

Thanks to our assumption on pj , Jn/n → 0 as n → ∞, thus the assertion
follows.

Lemma 8.2. In the family of all subsets of N (or of Z) which have well
defined density, the density can be viewed as a finitely additive probability
measure. Then any finite collection of periodic sets with relatively prime pe-
riods is stochastically independent.

Proof. Since every periodic set with period p decomposes as a disjoint
union of finitely many arithmetic progressions with step p, it suffices to
prove the lemma for arithmetic progressions (notice that the density of a
progression with step p equals 1/p). So, let A1, . . . , Ak be arithmetic pro-
gressions with steps p1, . . . , pk. We need to show that the density of their
intersection equals 1/p1 . . . pk. This, however is obvious, because due to the
relative primeness, this intersection is an arithmetic progression with step
p1 . . . pk.

Lemma 8.3. For any k ≥ 1 we have∏
j≥k

(
1− 1

dj

)
≥ 1− 1√

dk
.

Proof. Recall that dj = q2j , where qj denote the consecutive primes. Thus

∏
j≥k

(
1− 1

dj

)
=
∏
j≥k

(
1− 1

q2j

)
= lim
N→∞

N∏
j=k

(
1− 1

q2j

)
≥ lim

N→∞

N∏
n=qk

(
1− 1

n2

)
= lim

N→∞

qk − 1

qk
· N + 1

N
= 1− 1

qk
= 1− 1√

dk
.
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