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A NOTE ON REPRESENTATION FUNCTIONS
WITH DIFFERENT WEIGHTS

BY

ZHENHUA QU (Shanghai)

Abstract. For any positive integer £ and any set A of nonnegative integers, let
r1,6(A,n) denote the number of solutions (a1, az2) of the equation n = a1 + kaz with
ai,az € A. Let k,1 > 2 be two distinct integers. We prove that there exists a set A C N
such that both 71 x(A,n) = r1 k(N\ A,n) and r1,(A,n) = r1,;;(N\ A, n) hold for all n > ng
if and only if log k/log! = a/b for some odd positive integers a, b, disproving a conjecture
of Yang. We also show that for any set A C N satisfying r (A4, n) = r1 x(N\ A4, n) for all
n > no, we have 11 x(A,n) — oo as n — oco.

1. Introduction. We use N to denote the set of nonnegative integers.
For a set A C Nand n € N, let R1(A,n), R2(A,n) and R3(A,n) be the
number of solutions (a1, as) of n = a; + ag with ay, as € A; with a1, a2 € A,
a1 < ag; and with a1,a2 € A, a1 < ao, respectively. These representation
functions have been studied by many authors. The reader may refer to the
excellent survey paper [SS| for many results concerning representation func-
tions.

For i = 1,2, 3, Sarkozy asked whether there exist sets A, B C N with in-
finite symmetric difference such that R;(A,n) = R;(B,n) for all sufficiently
large integers n. Dombi [D] observed that the answer is negative for i = 1,
and affirmative for ¢ = 2. Chen and Wang [CW] constructed a set A C N
with R3(A,n) = R3(N\ A,n) for all n > 1. Later Lev [L], Sdndor [S] and
Tang [T] characterized all sets A C N such that R;(A,n) = R;(N\ A, n) for
n >N and i = 2,3.

One may extend these problems by considering the representation func-
tions in a more general form. Let ki, ko be positive integers. For A C N and
n € N, denote by 7y, k, (A4, n) the number of solutions (a1, az) of k1ai + kaas
= n with a1,a2 € A. Yang and Chen [YC] determined all pairs (ki, k2) of
positive integers for which there exists a set A C N such that ry, 1, (A, n) =
Tk ko (N'\ A,n) for all n > ng. Let 1 < k1 < ko, and (k1,k2) = 1. They
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proved that there exists A C N such that ry, x,(A,n) = rg, 4 (N\ A4,n) for
all n > ng if and only if k& = 1.

From now on, we denote by ¥, the set of all A C N such that r ;(A4,n) =
r1 1 (N\A, n) for all sufficiently large integers n. Yang [Y] studied the problem
of when ¥, N, is nonempty, where k,l > 2 are distinct integers.

THEOREM A ([Y]). Let k,l > 2 be two distinct integers. If k,l are
multiplicatively independent (equivalently, logk/logl is irrational), then
U.NY = 0.

The proof in [Y] also works for log k/log ! = a/b with a, b positive integers
of different parities. It is conjectured in [Y] that ¥, N¥; = () also for a, b both
odd. However, this is not the case. In this paper we will prove the following
theorem.

THEOREM 1.1. Let k,1 > 2 be two distinct integers. Then W, NW; # (0 if
and only if logk/logl = a/b for some odd positive integers a,b.

Theorem [A] proves one direction of Theorem [I.1] We provide a new proof
here since an ingredient in the proof is also needed for the other direction.
Motivated by [ClICT], Yang and Chen asked about the asymptotic behavior
of r1 x(A,n) for sets A € .

ProBLEM 1.2 ([YC]). For any set A € Wy, is it true that ri z(A,n) > 1
for all sufficiently large integers n? Is it true that ry y(A,n) — oo asn — 00 ?

We give an affirmative answer to this problem.

THEOREM 1.3. Let k > 2 be an integer, and A € Wi.. Then

lim ry (A, n) = occ.
n—oo

2. Proofs. For the proof of Theorem we first obtain a criterion for
A € ¥, in terms of generating functions. We use [z,y) to denote the set of
all integers n satisfying © < n < y. Noting that both A and N\ A are infinite
sets for A € ¥, it is convenient for us to write A in “blocks”, that is,

o0
(2.1) A= U [toi, t2it1),
i=0
where 0 < tg < t; < to < --- is an increasing sequence of integers. Let
fal@) = Yot Jal <1,
acA

LEMMA 2.1. Let k > 1 be a given integer. With the notation above,
A € ¥ if and only if there exists an odd positive integer a such that
tiva = kt; for all i > ig, and the polynomial
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io+a—1 10—1

14 ) (CDi 4> (—1)iath
i=0 j=0

is divisible by (1 — x)(1 — z*).
Proof. Let B =N\ A. First note that
fA(x)fA(xk) _ Z xa1+ka2 — Zrl,k(A7n)xn-

a1,a2€A n>0
Thus A € ¥, if and only if

(2.2) P(z) := fa(x) fa(a®) — fo(2) [ (")
is a polynomial. Substituting fp(z) =1/(1 —z) — fa(z) in 2.2), we get

1 fa(z) | fa(z®)

DN + ’

Plz) = - 11—k 1—x

hence
(2.3) (1—2)(1—2")P(z) = =1+ fa(x)(1 — z) + fala®)(1 —2F).
Writing A in the form of yields

[e.e]

(2.4) fa(@)(1 =) = (~1)'z".
=0
Substituting in , we obtain
(2.5) 1-2)1-2"Px) = -1+ (-1)a" +> (-1,
i=0 j=0

Since the right hand side of ([2.5)) is a polynomial, there exist positive integers
10, jo such that
(_1)j0+mxtj0+m + (_1)i0+m$kti0+m =0

for all m > 0. This means that t;,;,, = ktj;4m and jo — ip is odd. Set
a = jo —ig. Clearly jo > 40, thus a is an odd positive integer, and t;1, = kt;
for all ¢ > ip. Consequently,

io+a—1 10—1

1-2)(1—a")P@)=-14+ > (=12 + > (-1)a*
i=0 J=0

is a polynomial divisible by (1 — z)(1 — z¥).

The other half of the statement of the lemma is now trivial. m

Proof of Theorem[I.1l Suppose A € ¥, N¥;. By Lemma there exist
odd positive integers a, b such that t;,, = kt; and ¢, = lt; for all ¢ > 4g. It

follows that
kPt = tiap = 1%;

for all ¢ > iy, hence log k/logl = a/b with a,b odd positive integers.
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Assume now that logk/logl = a/b with a,b odd and (a,b) = 1; then
k =m® and | = m® for some positive integer m. Without loss of generality,
we may assume that a > b. Let to = 0, t1 = m®, to = (m + 1)t;, and
tir1 = mt; for all i« > 2. We prove that A € ¥, NY;. In view of Lemma
(with ig = 2), it remains to show that

a+1

(2.6) —gFt 4y (-
=0

is divisible by (1 — z)(1 — z*), and
b+1

_xltl + Z(_
=0

is divisible by (1 — x)(1 — z!). We prove the case for k, and the case for [ is
similar. Since

2" =1 (mod 1 — z*)
for k|n, and k|t; for all ¢ > 0, it follows that
a+1 a+1

—zkt 4 Z(—l)ixti =-1+ Z(_l)i =0 (mod 1 —zP),
i=0 =0

thus 1 — 2% divides (2.6)). Taking derivative of (2.6) and setting 2 = 1, we
get

a+1 1— (_m)a
—kty + Z —(k+ 1)t +to— — =

Thus x = 1 is a double root, hence (1 — z)(1 — 2*) divides (2.6).
This completes the proof of Theorem .

Proof of Theorem[1.3 Let A € ¥y. It follows from Lemma that A
can be written in the form of such that t;, = kt; for some odd positive
integer a and all ¢ > 4. All we need is this condition, thus Theorem is
actually valid for a larger class of sets A C N.

For i > ig + a, we have

tiv1 —ti = k(tig1—a — ti—a) > k.
By eliminating the first several blocks of A, we may assume without loss of
generality that t;,, = kt; and t,44 — t; > k for all ¢ > 0.

Let s be an arbitrary positive integer. Fix a € (1/2,1). It is clear that

the sequence {t;+1/t;}i>0 is periodic with period a, hence

R N 7 A5 | 24
lim inf = min >1=lim 14 *-.

i—oo 1 0<i<a t; i—00 t;
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It follows that

tiv1 t
>1+ -+
ti tz
for 7 > 41, that is,
(2.7) tivy1 —t; > t?

for ¢ > 4. Since
- e

> — 00
Vi +k okt +k  VEi+E

as i — 00, we have

(2.8) tf > kP (i1 + k)
for i > i5. Finally,
(2.9) t; > kT2l

for i > i3. Let m = max{4i1,42,i3} + 1. We show that ry ;(A,n) > s for all
n > t.,, which would then imply our result.
Let I; = [tj,tj41); then I; C Aif j is even. For a set I C N, write
kxI={kx:zel}.
Since t;11 — t; > k, it follows that
tjy1—1
L+ k x Ij = U [ti + ku,tip1 + k:u) = [ti + ktj,ti+1 + kthrl - k‘)
u=t;
Let n > t,,. Assume that n € I; for some i > m. We shall distinguish
four cases.
CASE 1: i is even and n — t; < /t;. Since {t4}i>0 is a geometric pro-
gression with common ratio &k, and

Vii im1

E2s+1 O p2s+1

to <
by , at least 2s of the t;’s satisfy
(2.10) ty € (881 JRPTL18).
Indeed, let ji; be the largest with ¢; < t& ,/k?*™! and j, be the smallest
with ¢;, >t ;. Then

tipy t?—l/k25+1 7
thus jo > j1 4+ (25 + 1)a > j1 + 2s + 1. Hence

2541
b1y tjgas € (B /K28 ).

ts @ 1
J2 11— — k25+1
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For each t; satisfying (2.10) with j even (there are at least s of them), we
claim that

nelj+kxli1_q=1[tj+ti—1,tjq1 +t; — k).
By and , we have
ti+ti1 < o+t <ti—tii+tici =t <n.
On the other hand, by , and the assumption on n, we have

«a
ti—l

tj+1+ti—kztj+1+n—\/a—k>tj+n—w

> n,

hence the claim follows.

For each t; satisfying with j even, the equation = + ky = n has a
solution with x € I; and y € I,_1_,. Noting that j and i — 1 — a are both
even, we have z,y € A, thus r; z(A,n) > s.

CASE 2: i is even and n — t; > /#;. Since v/%;/k > k*ty by (2.9), it
follows that at least 2s of the ¢;’s satisfy
(2.11) £ € lto VE /).
For each such t; with j even (there are at least s of them), we claim that

nel;+kx Ij = [ti + ktj,ti_H + k‘tj_H — k)
It is clear that
tiv1 +ktjp1 —k >t > n.
On the other hand, by (2.11]) and the assumption on n,
ti + kt; < t; +/t <n,

hence the claim follows.

For each t¢; satisfying (2.11]) with j even, the equation x + ky = n has a

solution with x € I; and j € I;. Noting that 7 and j are both even, we have
z,y € A, thus r ;(A4,n) > s.

CASE 3: i is odd and n — t; < v/;. By (2.7)—(2.9), we have
t; —ti—1 > t?—l > k25+1(\/t:‘+ k) > ki,

hence at least 2s of the ¢;’s satisfy

t; k t; —ti_
(2.12) qe(*ﬁlj S 1).

For each such t; with j odd (there are at least s of them), we claim that
nel_;+kx Ij—l = [ti—l + ktj_l,ti + /{t]’ — k)
It is clear, by (2.12)), that

tici+ktj1 <t +kty <tiog+ (i —tic) =t < n.
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On the other hand, by (2.12) and the assumption on n,
ti—f-k‘tj—k>ti+(\/t>i+k)—k‘:ti+\/5'2n,
hence the claim follows.

For each t; satisfying (2.12) with j odd, the equation = 4+ ky = n has a
solution with € I;_1 and j € I;_;. Noting that ¢« — 1 and j — 1 are both
even, we have z,y € A, thus r; ;(A4,n) > s.

CASE 4: i is odd and n — t; > \/f;. Since /f; > k2**1ty by (2.9), at least
2s of the t;’s satisfy
(2.13) 1 € [to, V).

For each such t; with j even (there are at least s of them), we claim that
n e Ij +kxl_,= [tj + ti,tj_H +tiy1 — k)
It is clear that
tiv1 +tip1 — k>t >n.
On the other hand, by (2.13)) and the assumption on n,
ti+t <t +t <n,
hence the claim follows.

For each t; satisfying (2.13|) with j even, the equation  + ky = n has a

solution with x € I; and y € I;,_,. Noting that j and 7 — a are both even,

we have z,y € A, thus r; y(A,n) > s.
This completes the proof of Theorem .
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