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Abstract. We use ideas and machinery of effective algebra to investigate computable
structures on the space C[0, 1] of continuous functions on the unit interval. We show that
(C[0, 1], sup) has infinitely many computable structures non-equivalent up to a computable
isometry. We also investigate if the usual operations on C[0, 1] are necessarily computable
in every computable structure on C[0, 1]. Among other results, we show that there is a
computable structure on C[0, 1] which computes + and the scalar multiplication, but does
not compute the operation of pointwise multiplication of functions. Another unexpected
result is that there exists more than one computable structure making C[0, 1] a com-
putable Banach algebra. All our results have implications for the study of the number of
computable structures on C[0, 1] in various commonly used signatures.

1. Introduction. In the 1930’s, Turing, Kleene, Markov and others
gave different but actually equivalent formal definitions of what is meant
by an effective procedure. Remarkably, Turing immediately tested his new
formal approach in analysis. In his early papers [32, 33], Turing gave a formal
definition of a computable real. In modern terms, a real r is computable if
there is an effective procedure (Turing machine) which, on input s, outputs
a rational q such that |q − r| < 2−s. Clearly, not every real is computable,
because there are only countably many Turing machines.

Turing’s definition has a natural generalization to functions. We say
that a function f : [0, 1] → R is computable if there is an effective pro-
cedure which, on input s, outputs a tuple of rationals 〈q0, . . . , qn〉 such that
supx∈[0,1]{|f −

∑n
i=0 qix

i|} < 2−s. In fact, there are several equivalent ways
of saying that a function from reals to reals is computable [4]. We state
here some classical and recent results. Myhill [24] showed that there exists a
computable function which is differentiable, but does not have a computable
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derivative. In contrast, Pour-El and Richards [27] showed that if the second
derivative of a computable function f exists (but is not necessarily effec-
tive), then the derivative of f is computable. Results of this kind belong
to a field of mathematics called computable analysis [26, 4]. Recent studies
have uncovered an unexpected interaction of differentiability and algorith-
mic randomness (see Nies [25]). For further correlations of differentiability
of continuous functions and algorithmic randomness see [3, 5].

We would like to have a notion of computability for other common
spaces. Notice that we could use piecewise linear functions with rational
breakpoints, or some other effectively dense subset, instead of polynomials
over Q. In fact, if we have an effectively dense subset of an arbitrary metric
space, then we can develop computable analysis on the space:

Definition ([4, 26]). Let (M,d) be a complete separable metric space,
and let (qi)i∈N be a dense sequence without repetitions. The triple M =
(M,d, (qi)i∈N) is a computable metric space if d(qi, qk) is a computable real
uniformly in i, k. We say that (qi)i∈N is a computable structure on M. We
refer to the elements of the sequence (qi)i∈N as special points.

Example. The following metric spaces possess computable structures:

(i) The reals R with the usual distance metric.
(ii) The Cantor space {0, 1}N, consisting of the functions f : N→ {0, 1}

with the distance function d(f, g) = max{2−n : f(n) 6= g(n)} (where
max ∅ = 0).

(iii) The space C[0, 1] of continuous functions on the unit interval with
the pointwise supremum metric.

A Cauchy name for a point x is a sequence (qf(s))s∈N of special points
converging to x such that d(qf(s), qf(t)) ≤ 2−s for each t > s.

Definition. An element x of a computable metric space (M,d, (qi)i∈N)
is computable if there exists a computable function f such that (qf(s))s∈N is
a Cauchy name for x. To emphasize which computable structure on M is
considered, we say that x is computable with respect to (qi)i∈N.

1.1. Equivalent and isometric computable structures. As we will
see, separable spaces have many different computable structures, but not all
of these structures are essentially different. For instance, rational piecewise
linear functions and rational polynomials would lead us to the same notion
of a computable function. We have arrived at the following question:

Which computable structures can be considered as equal or similar?

Pour-El and Richards [26] were probably the first to give the most general
precise definition of “similar” computable structures:



Computable structures on continuous functions 103

Definition (Pour-El and Richards [26]). Computable structures (αi)i∈N
and (βi)i∈N on a complete separable metric space (M,d) are equivalent up to
a computable isometry, or computably isometric, if there exists a surjective
self-isometry φ of M and an effectively uniform algorithm which on input i
outputs a Cauchy name for φ(αi) in (βi)i∈N.

Computable structures (αi)i∈N and (βi)i∈N from the definition above
can be viewed as computable countable metric spaces. The definition says
that these spaces are computably isometric if there exists a computable
isomorphism from the closure of (αi)i∈N onto the closure of (βi)i∈N. The
motivation is clear and is typical to effective mathematics: it is natural
to study computable objets up to computable isomorphisms (1). The same
motivation led effective algebraists to the notions of computable categoricity
and computable dimension of a countable algebraic structure. Our intuition
is often based on these classical notions of effective algebra. We explain them
in the subsection below.

1.2. Computable algebraic structures and effective algebra. In
contrast to computable analysis, the main objects in effective algebra [2, 10,
13] are effectively presented countable algebraic structures:

Definition (Mal’tsev [21], independently Rabin [28]). A countable al-
gebra M is constructive (computable) if its elements can be numbered by N
so that all operations on M become computable functions on the respective
numbers of elements. The numbering of the universe making the operations
effective is often called a constructivization or a computable presentation
of M .

Examples of constructive algebras are countable groups with solvable
word problem, the field (Q,+,×), and the countable atomless Boolean al-
gebra. Mal’tsev and Rabin realized that constructive algebras should be
considered up to computable isomorphisms:

Definition (Mal’tsev, Rabin; 1960’s). A constructive algebraM is com-
putably categorical (or autostable) if any two constructivizations of it agree
up to a computable automorphism of the algebra. The computable dimen-
sion of M is the number of constructivizations of M non-equivalent up to a
computable automorphism of M .

(1) There is another non-equivalent approach motivated by numbering theory [9],
which we will not discuss here; see [26, 34, 14]. In this approach, computable structures are
considered not up to an arbitrary (computable) isometry φ but have to agree up to the fixed
self-isometry of the underlying space, namely up to the identity self-embedding. Following
this approach, the space of reals with the standard distance metric has uncountably many
non-equivalent computable strucures, while in our approach all these structures will be
computably isometric [17, 23, 26].
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The definition above says that in effective algebra objects should be
considered up to effective isomorphisms. Notice that the idea is the same as
in the definition of computably isometric structures on a metric space due
to Pour-El and Richards.

Computable categoricity has been completely described for abelian
p-groups [11, 31], linear orders [29], and Boolean algebras [13]. The theory
of computable dimension contains many deep and intriguing results [10].
Algebraic structures from many common classes have computable dimen-
sion 1 or ∞ [10, 11, 12], but for any n ∈ N there exists a structure having
computable dimension n (Goncharov [12]). Structures of finite non-trivial
(i.e. ≥ 2) computable dimension can be found in several natural classes
including two-step nilpotent groups [16].

Examples of algebraic structures having more than one constructiviza-
tion, up to a computable isomorphism, include the well-ordering (ω,<) and
the vector space V over Q of countably infinite dimension. It is well-known
that if we add the successor relation S to the signature of ω, then (ω,<, S)
becomes computably categorical. More specifically, if we restrict ourselves
to constructivizations which compute S, it is easy to construct an isomor-
phism from one constructivization to another starting from the left-most
point. Similarly, if we add predicates (Pi(x0, . . . , xi))i∈N to the signature
of V, where Pi(x0, . . . , xi) = 1 iff x0, . . . , xi are linearly independent, then
V becomes computably categorical in this new signature. Indeed, it is suffi-
cient to map a basis to a basis stage-by-stage. As we can see, the number of
non-equivalent constructivizations depends on the choice of the signature.

1.3. Computably categorical separable spaces. Interestingly, com-
putable analysis has been developing quite independently of effective alge-
bra. Combining ideas of Pour-El and Richards, Mal’tsev, and Rabin, we
obtain the following new definition:

Definition ([23]). A separable space is computably categorical if it has a
unique computable structure, up to computable isometries. The computable
dimension of a separable space is the number of computable structures on
it, up to computable isometries.

Following the general philosophy of effective mathematics, we ask:

Main Questions. Which common separable spaces are computably
categorical? If a space is not computably categorical, what is its computable
dimension? How does computable categoricity depend on signatures?

The fields of effective algebra and computable analysis contain similar
ideas, and one would expect that methods of one field can be adjusted to
yield similar results in the other. However, even adapting basic technical
ideas of effective algebra to computable analysis can be quite hard. In effec-
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tive algebra we could deal with elements of a given structure directly. For
example, we could effectively decide whether or not two elements are equal
or not. In contrast, equality on a computable separable space does not have
to be decidable. For instance, if two computable reals are not equal, then
we will eventually see it. However, if they are equal, then we may never
detect it in finite time. Since we have to deal with Cauchy names of points
rather than the points themselves, the complexity of usual arguments will
tend to increase by one jump. For example, a finite injury argument will
likely become an infinite injury argument, unless we do some specific work
to simplify it.

The difficulty of the task and the very little interaction of the fields par-
tially explain why, in contrast to effective algebra, not much is known about
computably categorical separable spaces. We list below virtually everything
that is known. The metric space l1 is not computably categorical [26],
while every separable Hilbert space is computably categorical [17, 23, 26, 6].
The Cantor space and the Urysohn space are computably categorical [23].
There is also a description of computably categorical compact subsets of
Rn [23], and two rather specific sufficient conditions of computable cate-
goricity [23, 17]. Also, the space C[0, 1] of continuous functions is not com-
putably categorical [23]. Nothing has been done so far on the computable
dimensions of uncountable spaces.

As we have discussed above, in computable algebra computable cate-
goricity tends to be dependent on the signature. However, very little is
known about this effect in uncountable metric spaces. In the following, we
will implicitly use the definition of a computable operation on a space; the
formal definition will be given in the preliminary section (see Definition 2.1).
The notion is technical but natural, and the reader can safely rely on her/his
intuitive understanding of this phenomenon in the discussion below.

It is not difficult to show that the operations + and (r·)r∈Q are com-
putable in every computable structure on a separable Hilbert space (H, d, 0),
where 0 is the distinguished point zero. This fact can be used to show that
separable Hilbert spaces are computably categorical [23]. On the other hand,
the operation x 7→ (1/2)x does not have to be computable in every com-
putable structure on (C[0, 1], sup, 0), and this implies that C[0, 1] is not
computably categorical [23] (the implication is not straightforward). More
generally, we arrive at:

Problem. Understand the algorithmic properties of the common oper-
ations (such as +) on classical Banach spaces and Banach algebras.

The problem above is interesting in its own right and has an analogy in
effective algebra (see [15] for degree spectra of relations). As we have seen,
it is also closely related to the Main Questions stated above.
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1.4. The space C[0, 1]. We test our notions on the space C[0, 1] of
continuous functions on the unit interval with the usual pointwise supremum
metric. Our choice is not arbitrary. First of all, this space is (classically) very
well understood (see, e.g., [8]). Also, as we have already mentioned, there is
a tradition of studying effective properties of continuous functions rooted in
the works of Turing. Logical aspects of C[0, 1] have been studied intensively
as well; this is a long tradition probably going back to the Polish school of
topology (see, e.g., Mazurkiewicz [22]). More recent investigations include
results on hierarchies of continuous functions in relation to descriptive set
theory and differentiability (see Kechris and Woodin [18]). Further results
can be found in, e.g., [20, 19, 1]. See also [35] for more about hierarchies of
continuous functions.

It is well-known that C[0, 1] is a universal metric space [30]. In fact,
Cherlin proved that the first-order theory of C[0, 1], in the signature of
rings, is not decidable [7]. Since C[0, 1] is a Banach space and a Banach
algebra, we have a plethora of signatures to play with.

As we have mentioned, (C[0, 1], sup) is not computably categorical [23].
What is its computable dimension? Will it become computably categorical
if we add + and (r·)r∈Q to its signature? If not, how many extra operations
should we add to the signature of C[0, 1] to make it computably categorical?
Which operations on C[0, 1] can be effectively reconstructed from the metric
and other operations? Our main results answer these questions.

1.5. Results. Recall that 0′ stands for the halting problem. Goncharov
(see, e.g., [10]) showed that if a countable algebra A has two constructiviza-
tions which are isomorphic relative to 0′ but not computably isomorphic,
then the computable dimension of A is infinite. In Theorem 3.4 we adapt
this machinery to separable spaces. The theorem below gives a sufficient
condition for a separable space to have infinitely many computable struc-
tures non-equivalent up to a computable isometry. Its proof is of some
technical interest because it is one of the rare applications of the prior-
ity method in classical computable analysis. As a corollary (see Corollary
3.12), we obtain:

Theorem. There exist infinitely many pairwise computably non-iso-
metric computable structures on (C[0, 1], sup).

The theorem above is not a straightforward consequence of Theorem 3.4.
For instance, in Theorem 3.10 we show that there exists a computable struc-
ture on (C[0, 1], sup) in which 0 is a computable point, but the operation
x 7→ (1/2)x is not computable. The proof is different from the one in [23]
mentioned above, because we need this structure to satisfy some further
properties required in Theorem 3.4.
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What if we add + and (r·)r∈Q (in particular, (1/2)·) to the signature of
(C[0, 1], sup)? Will the space have a unique structure then? The answer is
negative:

Theorem. (C[0, 1], sup) is not computably categorical in the signature
of Banach spaces.

We will prove this theorem by constructing a computable structure on
(C[0, 1], sup,+, (r·)r∈Q) having unusual properties (see Theorem 4.2), in-
cluding the one stated in the theorem above (see Corollary 4.3). Another
property is that the pointwise multiplication × is not computable with re-
spect to this structure (see Corollary 4.4). This fact is of an independent
interest to us.

What if we add even more symbols to the signature? Let us consider the
signature of Banach algebras with symbols for sup,+, (r·)r∈Q, as well as the
pointwise multiplication of functions× and the multiplicative identity 1. It is
not difficult to see that C[0, 1] in the signature of Banach algebras augmented
by a distinguished symbol for the linear function f(x) = x is computably
categorical. Clearly, every polynomial can be generated from the monomial
x using the usual operations of a Banach algebra. Since the monomial is
exactly the function f(x) = x added to the signature, we can conclude that
all polynomials with rational coefficients form a uniformly computable set.
Therefore, we can effectively map any computable structure to another, but
only when restricted to this signature.

Notice that a lot of classical and effective theory can be developed just
based on the signature of Banach algebras, without this extra symbol for
f(x) = x. It is rather unexpected that without this symbol for f(x) = x the
space C[0, 1] is not computably categorical:

Theorem. (C[0, 1], sup) is not computably categorical in the signature
of Banach algebras.

The strategy for the theorem above would be to construct a computable
structure on (C[0, 1], sup,+, (r·)r∈Q,×) such that f(x) = x is not a com-
putable point with respect to this structure (see Theorem 5.3). The theorem
is a consequence of this fact (see Corollary 5.4).

Informally, the theorem above shows that polynomials are essential and
intrinsic to the standard effective analysis.

1.6. The structure of the paper. In Section 2 we give a necessary
background and a careful elementary analysis of common operations on
C[0, 1]. For instance, we show that the complicated signatures of Banach
spaces and Banach algebras on (C[0, 1], sup) can be equivalently replaced
by 〈+〉 and 〈+,×〉, respectively. Section 3 studies the computable dimension
of C[0, 1]. In Section 4 we show that C[0, 1] is not computably categorical
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as a Banach space, and in Section 5 we prove that there is more than one
structure which makes C[0, 1] a computable Banach algebra.

2. Preliminaries. We give formal definitions of the notions informally
used in the introduction. Most of these, maybe in a slightly different termi-
nology, can be found in [26, 4].

2.1. Notation and conventions. Recall that, given a computable
structure (qi)i∈N on a metric space M , an element x of M is computable
if there exists a computable function f such that (qf(s))s∈N is a Cauchy
name for x. It is well-known that a point x from M = (M,d, (qi)i∈N) is
computable if, and only if, from a positive rational δ one can compute p
such that d(x, qp) ≤ δ. We will use this fact without explicit reference. Re-
call also that, to emphasize which computable structure on M is considered,
we say that x is computable with respect to (qi)i∈N.

We usually identify a special point αi with its number i and say “find a
special point such that . . .” instead of “find a number i such that αi . . .”.

Definition 2.1. Let M and N be computable metric spaces. A map
F : M → N is computable if there is a Turing functional Φ such that,
for each x in the domain of F and for every Cauchy name χ for x, the
functional Φ enumerates a Cauchy name for F (x) using χ as an oracle (2).

To emphasize which computable structures we consider, we say that a
map F is computable with respect to (αi)i∈N and (βi)i∈N. The composition
of two computable maps is computable.

In the special case of isometric (more generally, bi-Lipschitz) maps, Def-
inition 2.1 is equivalent to saying that for every special point αi in M the
point F (αi) is computable uniformly in i. We will use this observation with-
out explicit reference. For instance, the definition of computably isometric
structures that we used in the introduction is equivalent to:

Definition 2.2. Computable structures (αi)i∈N and (βi)i∈N on a Polish
space (M,d) are said to be equivalent up to a computable isometry, or (com-
putably) isometric, if there exists a surjective self-isometry U computable
with respect to (αi)i∈N and (βi)i∈N.

Note that if U is a computable surjective isometry, then U−1 is com-
putable as well. Therefore, equivalence up to a computable isometry is an
equivalence relation on computable metric spaces.

2.2. Computable operations on spaces. We follow [23] in our ter-
minology. An operation is a function which maps tuples of points to points
(such as the addition in a Banach space), or tuples of points to reals (such

(2) That is, (Φχ(n))n∈N is a Cauchy name for F (x).
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as the inner product in a Hilbert space). Also, we view a distinguished point
x as function Tx : M → {x} such that Tx(y) = x for every y. Thus, distin-
guished points are operations of a special kind.

In the following, we view a direct power Mk of (M,d) as a metric space
with the metric dk = supi≤k d(πix, πiy), where πi is the projection on the
ith component. Let (αi)i∈N be a computable structure on (M,d). The com-
putable structure [(αi)i∈N]k on (Mk, dk) is the effective listing of k-tuples of
special points from (αi)i∈N.

For convenience, if an operation X : Mk → M is computable with
respect to [(αi)i∈N]k and (αi)i∈N, we simply say that X is computable with
respect to (αi)i∈N. Similarly, instead of saying that an operation X :Mk→R
is computable with respect to [(αi)i∈N]k and (qi)i∈N, where (qi)i∈N is the
usual effective listing of rationals, we say that X is computable with respect
to (αi)i∈N.

Recall that every Turing functional Φe can be effectively identified with
its computable index e. Thus, we may also speak of uniformly computable
families of maps between computable metric spaces.

Definition 2.3. Let (M,d,(Xj)j∈J) be a metric space with distinguished
operations (Xj)j∈J , where J is a computable set. We say that (αi)i∈N
is a computable structure on (M,d, (Xj)j∈J) if (M,d, (αi)i∈N) is a com-
putable metric space and the operations (Xj)j∈J are computable with re-
spect to (αi)i∈N uniformly in their respective indices j ∈ J .

Example 2.4.

(1) A dense set (αi)i∈N is a computable structure on a Banach space B
if (B, d, (αi)i∈N) is a computable metric space and 0, +, and (r·)r∈Q
are uniformly computable operations with respect to (αi)i∈N.

(2) Similarly, a collection of points (αi)i∈N is a computable structure on a
Banach algebra B if the Banach space operations from (1) above, and
additionally, the operation × and the identity function 1 ∈ C[0, 1]
are computable with respect to (αi)i∈N.

Clearly, an isomorphism U of a space M1 onto M2, in the signature
augmented by (Xj)j∈J , should respect the operations (Xj)j∈J .

Definition 2.5. A space (M,d, (Xj)j∈J) is computably categorical if
any two computable structures (αi)i∈N and (βi)i∈N on (M,d, (Xj)j∈J) are
computably isometric via an isometry which respects Xj for every j ∈ J .

To emphasize which signature we consider, we frequently use the follow-
ing terminology:

Convention 2.6. We always assume that we have a metric, and we
often omit the symbol for the metric in the signature. (This convention is
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similar to omitting the equality in model theory.) We say that a metric
space is computably categorical as a Banach space if it is considered in the
signature 〈0,+, (r·)r∈Q〉 of Banach spaces. We say that it is computably
categorical as a Banach algebra if we use the signature 〈0,+, (r·)r∈Q, 1,×〉
of Banach algebras.

Definition 2.7. We say that operations (Yi)i∈I effectively determine
operations (X)j∈J on a metric space (M,d) if every isometry of M which
respects (Yi)i∈I respects (Xj)j∈J as well, and furthermore, for any given
structure (αi)i∈N on (M,d), the uniform computability of (Yi)i∈I with re-
spect to (αi)i∈N implies the uniform computability of (X)j∈J with respect
to (αi)i∈N.

In the definition above we could have omitted the part talking about
isometries respecting operations, but we wish to emphasize that we are not
computing some image of (X)j∈J , but there is only one image of (X)j∈J
which we can furthermore compute.

Fact 2.8. Suppose (M,d, (Xj)j∈J , (Yi)i∈I) is computably categorical,
where the operations (Yi)i∈I effectively determine the operations (Xj)j∈J .
Then (M,d, (Yi)i∈I) is computably categorical.

Proof. This follows at once from Definitions 2.5 and 2.7.

The fact above says that, if a certain operation is determined by other
operations, it can be omitted from the signature without any effect on the
effective properties of the space.

2.3. Operations on Banach spaces. Mazur and Ulam (see, e.g., [30])
showed that every isometry in a Banach space is affine. We will use an
effective version of this classical result:

Fact 2.9. Let B be a computable Banach space with computable struc-
ture (αi)i∈N. If (βi)i∈N is a computable structure on (B, d, 0), and (βi)i∈N
is computably isometric to (αi)i∈N, then + and (r·)r∈Q are uniformly com-
putable with respect to (βi)i∈N.

Note that a computable isometry does not have to preserve anything
except for the metric.

Proof. See the proof of [23, Fact 3.6].

In the following, + stands for the pointwise addition of functions, and ×
denotes the pointwise multiplication of functions. We begin with some easy
facts about computable structures on metric and Banach spaces (3).

(3) The authors thank David Diamondstone for pointing out Facts 2.10, 2.11 and 2.15.
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Fact 2.10. In a computably separable Banach space the operations +
and d(·, ·) effectively determine the operations (r·)r∈Q, − and the zero ele-
ment 0.

Proof. Fix a computable structure B on a Banach space where we are
only given + as a computable operation on B. In a Banach space the zero
element 0 is defined uniquely by the formula d(x, x + x) = 0. Given n we
search for some bn ∈ B such that d(bn, bn + bn) < 2−n−1. Then {bn}n∈N is a
fast converging sequence with limit 0.

To show that we can effectively determine the operation −, it is suffi-
cient to show that given b0, b1 ∈ B we can effectively get a fast converging
sequence {cn}n∈N with limit b0−b1, where cn ∈ B for all n. We can compute
a Cauchy name for −b1, since the latter is uniquely defined by the formula
b1 +x = 0. Now it is straightforward to compute a Cauchy sequence rapidly
converging to b0 + (−b1).

Given n ∈ N and b ∈ B, the element b
n is uniquely defined by the formula

x+ · · ·+ x︸ ︷︷ ︸
n times

= b.

Thus given n,m ∈ N − {0} and b ∈ B we can compute a Cauchy name for
m
n · b.

Fact 2.11. In a computably separable Banach space the operations −
and d(·, ·) effectively determine the operations (r·)r∈Q and +.

Proof. Given − we can compute 0 using b− b for any b ∈ B. The opera-
tion + is then computed using b0 + b1 = b0 − (0− b1). Once we have + and
the metric d(·, ·), we can compute (r·)r∈Q as above.

Remark 2.12. From the facts above we conclude that, for our purposes,
the signature of Banach spaces can be replaced by either 〈+〉 or 〈−〉, the
latter two being equivalent.

We will not touch the question below:

Question 2.13. In a computably separable Banach space do the opera-
tions (r·)r∈Q and d(·, ·) effectively determine the operation +?

We now turn to Banach algebras. The multiplicative identity in a Banach
algebra is denoted by 1. In C[0, 1] this is defined by the rule 1(x) = 1 for
each x ∈ [0, 1].

Convention 2.14. In the following, when we consider C[0, 1], we write
d for the supremum metric.

In fact, it is known that a Banach space automorphism of C[0, 1] is
already a Banach algebra automorphism if it maps 1 to 1 (see, e.g., [8]). We
need more:
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Fact 2.15. In C[0, 1] the operations ×, + and d(·, ·) effectively deter-
mine the elements 0 and 1, and the operation (r·)r∈Q.

Proof. By Fact 2.10 we can effectively obtain 0 and (r·)r∈Q. In the stan-
dard structure consisting of rational polynomials on C[0, 1] (and hence in
every isometric structure), the set {0,1} is isolated by the formula x×x−x
= 0, since for every function f satisfying this formula, f(x) = 0 or 1 at
each x ∈ [0, 1]. Given a structure Y on C[0, 1] and a special point a ∈ Y we
can compute a × a − a up to any degree of accuracy. To show that 1 is a
computable point of Y we seek, for any given e, a special point ce ∈ Y such
that ‖ce× ce− ce‖ < 2−e and

∣∣‖ce‖− 1
∣∣ < 2−e. This search is effective since

the norm ‖ · ‖ is computable, and is easy to check that this procedure will
return a special point ce such that d(ce,1) < 2−e.

Remark 2.16. The signature of Banach algebras can be equivalently
replaced by 〈+,×〉 when considering C[0, 1].

The reader may notice that Fact 2.15 holds for a large class of com-
putable Banach algebras, but this is not important for us. There are several
signatures and further questions which we leave untouched since they seem
less natural. For instance: Does 1 effectively determine the operation (1/2)·
(in the presence of the metric)? We believe that the proof of Theorem 3.10
can be modified to answer this question in the negative.

Conclusion. The main signatures of interest for (C[0, 1], d) are 〈+〉
and 〈+,×〉, the former being equivalent to the signature of Banach spaces,
and the latter to the signature of Banach algebras.

3. Limit equivalent computable structures. We now investigate
the analogue of a classical result of Goncharov. The main definition is the
following.

Definition 3.1. Two computable structures L and L′ on a separable
metric space (M,d) are said to be limit equivalent if there is a total com-
putable function g(x, s) : L×N→ L′ such that f(x) = lims→∞ g(x, s) is an
isometric bijection of L onto L′, where the limit is taken with respect to the
standard metric on N (i.e. the sequence (g(x, s))s∈N is eventually stable on
every x).

Notice that we require the number of changes in g(x,0), g(x,1), g(x,2), . . .
to be finite for every x. Thus, the function f(x) = lims g(s, x) induces a self-
isometry of (M,d) onto itself under which the image of every special point
from L is a special point in L′. Notice that (d(g(x, s), g(x, s + 1)))s∈N does
not have to be rapidly converging. Consequently, f(x) need not be equal to
a computable isometry with respect to L and L′. We prefer to write gs(x)
instead of g(x, s).
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In the following, we identify an element vn from a computable structure
(vn)n∈N on a space with the number n. Under this identification, the function
f from Definition 3.1 can be viewed as a ∆0

2 permutation of natural numbers
with a special property.

Definition 3.2. A computable structure L on a separable metric space
(M,d) is rational-valued if d(x, y) ∈ Q for every x, y ∈ L, and the distance
d is represented by a computable function of two arguments mapping each
pair (x, y) of special points to the corresponding rational number d(x, y).

Note that every rational-valued computable structure L can be viewed
as a computable countable relational model 〈N, (Dr)r∈Q〉, where for each
r ∈ Q and x, y ∈M we have Dr(x, y) = 1 if, and only if, d(x, y) = r.

Remark 3.3. Not every computable structure on a separable metric
space is computably isometric to a rational-valued computable structure. In
fact, there are computable spaces which do not have rational-valued dense
subsets at all. The simplest Polish space with this property is the Cantor
space with the usual ultrametric d(f, g) = max{2−n : f(n) 6= g(n)} replaced
by d1(f, g) =

√
2 d(f, g).

The main result of the section is:

Theorem 3.4. Suppose L and L′ are two computable rational-valued
structures on a separable metric space (M,d) which are not computably iso-
metric. If L and L′ are limit equivalent, then (M,d) has infinitely many
computable structures which are pairwise non computably isometric (4).

The proof is organized as follows. First, we state the notation and the
requirements. Next, we give an informal description which is followed by the
formal construction and its verification.

3.1. Notation and conventions. We fix an effective listing (Ψe)e∈N
of all partial computable functions of two arguments, which includes all
computable isometries from L to cl(L′). Here, for each S ⊆M , cl(S) stands
for the completion of S in M . For every x and n such that Ψe(x, n)↓, the
number Ψe(x, n) will be interpreted as an element of L′. The listing (Ψe)e∈N
satisfies the following conditions:

(1) for any e, t, x, we have d(Ψe(x, t), Ψe(x, t+ 1)) < 2−t−1 if Ψe(x, t) and
Ψe(x, t+ 1) converge,

(4) As we mentioned above, L and L′ can be viewed as computable structures that are
isomorphic relative to 0′ but not computably isomorphic. By the Goncharov theorem there
are infinitely many computable versions that are pairwise not computably isomorphic.
However, these copies may be computably isometric as computable metric spaces, just
not by an isometry that takes special points to special points (recall we need to care
about their completions). Thus, the original result of Goncharov cannot be applied.
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(2) for every stage s and any e, t, x, we have Ψe,s(x, t)↓ only if Ψe,s(x, n)↓
for each n ≤ t, and

(3) if Θ : L 7→ cl(L′) is a computable isometry then there exists some e
such that for every x ∈ L we have Θ(x) = limn→∞ Ψe(x, n).

To see that (Ψe)e∈N exists, we start with some universal listing of all par-
tial computable functions of two variables, and limit ourselves to those which
satisfy (1)–(3). Since d(Ψe(x, t), Ψe(x, t+1)) is a computable fast converging
sequence of rational numbers (in this case d(Ψe(x, t), Ψe(x, t + 1)) is in fact
rational), we will always be able to tell whenever d(Ψe(x, t), Ψe(x, t + 1)) <
2−t−1.

For any e and x, set Θe(x) = limn→∞ Ψe(x, n) if the limit exists (where
the limit is taken with respect to the metric onM), and setΘe(x)↑ otherwise.
The range of Θe, of course, does not have to be included in L′.

Notation 3.5. At stage s we set Θe,s(x) equal to Ψe,s(x,m) if m is the
largest such that Ψe,s(x,m)↓; otherwise we leave Θe,s(x) undefined. In the
former case we let θe,s(x) = m. Thus, Θe,s(x) is our stage s guess about
Θe(x), and θe,s(x) indicates the error between Θe,s(x) and Θe(x).

Let f = lims gs be a ∆0
2 permutation of natural numbers witnessing the

limit equivalence of L and L′. As mentioned above, L and L′ are essentially
countable models. Thus we can safely assume that gs is an isometry when
restricted to the first s elements of its domain.

Note that if the assumption of being rational-valued were removed then
we can no longer assume that gs�s is an isometry of finite metric spaces. At
each stage s we only see gs�s as an isometry “with an error of at most ε” for
some ε > 0. In this more general setting we do not know if any reasonable
analogue of Goncharov’s theorem holds.

3.2. Requirements. We are going to produce a countably infinite fam-
ily {Am : m ∈ N} of computable structures on (M,d) which are pairwise not
computably isometric. For everym, the structure Am will be rational-valued.

We need to satisfy, for every n > m and e, the following requirements:

Ne,m,n : Θe does not induce an isomorphism from cl(Am) onto cl(An),

Rm : Am is isometric (in fact, limit equivalent) to L and L′.
To meet Rm we will construct surjective isometries between computable
structures. Thus, Am will be a rational-valued computable structure iso-
morphic to L and L′ as a relational model (recall the discussion after Defi-
nition 3.2).

3.3. Informal description. We first describe the strategy for Rm. To
meet Rm we construct ∆0

2 surjective isometric maps ξm : Am → L and
ηm : Am → L′. This is done via the approximations ξm,s and ηm,s where
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ξm = lims ξm,s and ηm = lims ηm,s. Additionally, we ensure that at each
stage s, we have gs(ξm,s) = ηm,s on their domains:

L gs // L′

Am,s

ξm,s

OO
ηm,s

77

The main strategy for Rm is to copy either L or L′, which is carried out
via the surjective isometric maps ξm and ηm built by the strategy. The use
of two maps rather than a single one will enable us to organize the activity
of switching back and forth between copying L and copying L′ during the
construction. Since g(x) may change several times before stabilizing on a
value, it may become necessary for us to redefine ξm and ηm during the
construction in order to maintain the equality illustrated above.

To be more specific, suppose at stage s we have defined ξm,s(y) and
ηm,s(y) such that gs(ξm,s(y)) = ηm,s(y). Suppose now that gs+1(x) 6= gs(x)
where x = ξm,s(y). To keep the equality we have to do one of two things:
either maintain ξm,s+1(y) = ξm,s(y) and redefine ηm,s+1(y) = gs+1(x), or
maintain ηm,s+1(y) = ηm,s(y) and redefine ξm,s+1(y) = z where gs+1(z) =
gs(x) (we speed up the approximation for gs until such a z is found). In the
former case we say that Rm corrects via ηm, and in the latter case we say
thatRm corrects via ξm. Each timeRm needs to correct, it will choose one of
the two sides to preserve; this choice will be made so that the highest priority
N -requirement with a current restraint larger than x is not injured. Since
the approximation to gs(x) will eventually stabilize, at the end, ηm and ξm
will be witnesses to the limitwise equivalence of Am and L, and the limitwise
equivalence of Am and L′, respectively.

An Ne,m,n-strategy in isolation will define a computable isometry be-
tween L and L′ using the approximation Θe,s : Am → An and the maps ξm
and ηn. Recall that Θe(x), if defined, is equal to the limit of the fast con-
verging sequence (Ψe(x, n))n∈N of points in L′. Recall also that for every s,
Θe,s is a (partial) function from L to L′, but the range of Θe itself may be
outside L′.

If Θe is defined but does not induce an isometry, we will eventually see
it because Θe,s will reflect it at some stage s. (This can only happen if
for some x, y ∈ L we have d(x, y) 6= d(Θe(x), Θe(y)).) The slightly more
difficult case to handle is if Θe is not total, or Θe induces an isometry
which is not onto. This, however, can be measured in a Π0

2-way, and so
to circumvent this difficulty, we use expansionary stages combined with a
continuous version of Goncharov’s original preservation strategy, as follows:
A stage s is called (e,m, n)-expansionary if Θe,s “looks like an isometry from
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Am to An with a certain precision” on a larger initial segment of its domain,
with a better precision than at the previous expansionary stage, and with
a further element of L′ covered by a sufficiently small neighborhood of the
range of Θe,s. (The formal definition of an expansionary stage will be given
later.) We will show that there are infinitely many (e,m, n)-expansionary
stages iff Θe induces an onto isometry from cl(Am) to cl(An).

We allow the strategyNe,m,n to act only at (e,m, n)-expansionary stages.
At an (e,m, n)-expansionary stage s of the construction, Ne,m,n will define
the length of agreement between Θe(Am) and An (this will be formally
defined later) and will attempt to preserve ξm,s on the domain of Θe,s and
ηn,s on the range of Θe,t for t ≤ s. It is crucial that at every finite stage
the domain and the (approximation to) range are both finite sets. If the
restraint of this strategy Ne,m,n eventually covers all of An and Am then we
would force both ξm and ηn to be computable functions. This would allow
us to argue that (contrary to the assumption of Theorem 3.4) L and L′ are
computably isometric via the composition of ξ−1m , Θe and ηn.

The preservation strategy of Ne,m,n described above potentially conflicts
with the Rm-strategy when gs(ξm(x)) changes value for x in the domain
of Θe,s. Similarly, the preservation strategy of Ne,m,n will potentially conflict
with the Rn-strategy when gt(ξn(y)) changes value for y in the range of Θe,t.
This is illustrated in the diagram

L gs // L′

Am,s

ξm,s

OO

Θe,s
//

ηm,s

66

An,s

ηn,s

OO

To prevent injuring Ne,m,n, the Rm-strategy would redefine ηm instead
of ξm, while the Rn-strategy would redefine ξn instead of ηn. In this way
the Rm- and Rn-strategies can maintain their equalities while not injuring
Ne,m,n. Each Ne,m,n eventually has finite restraint, and since the approxi-
mation (gs)s∈N will eventually settle on each finite subset of L, the overall
construction involves only finite injury.

Definition 3.6 ((e,m, n)-Expansionary stages). Recall that the ele-
ments of computable structures are identified with natural numbers. Hence
in the following, Θe,s : Am → An is viewed as a map from N to N. Given
any stage s and e,m, n, we let s∗ be the largest t < s such that t is an
(e,m, n)-expansionary stage (set s∗ = 0 if such a t does not exist).

We say that a stage s is (e,m, n)-expansionary if s = 0 or

(1) the domain of Θe,s contains a longer initial segment of N up to s∗,
and for each x ≤ s∗, Θe,s(x) > s∗;
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(2) for every x, y ≤ s∗, |d(x, y)− d(Θe,s(x), Θe,s(y))| ≤ 2−s
∗+1;

(3) the 2−s
∗
-neighborhood of the range of Θe,s contains the initial seg-

ment of N of length at least s∗.

Notice that every (e,m, n)-expansionary stage is associated with an ini-
tial segment of the domain of Θe,s (see (1)) and also with an initial seg-
ment of its range (see (3)). We denote these initial segments by σe,m,n,s and
τe,m,n,s, respectively. To reduce cumbersome notation we drop e,m, n from
the subscript when the context is clear.

3.4. Strategies. We describe the strategies for each requirement.

Strategy for Ne,m,n: If stage s is not (e,m, n)-expansionary then the
strategy does nothing. Otherwise it sets the following restraints on the maps
ξm and ηn until the next (e,m, n)-expansionary stage: Preserve the compu-
tation of ξm(x) for every x ≤ σe,m,n,s and the computation of ηn(y) for
every

y ∈ Le,m,n,s = {Θe,t(z) : z ≤ |σe,m,n,t|, t ≤ s}

(notice it is a finite set of points).

Strategy for Rm: At stage s of the construction, we define isometric
partial maps ξm,s : Am,s → L and ηm,s : Am,s → L′. By the choice of L
and L′, we can safely assume that gs is an isometry when restricted to the
first s elements of its domain. We also assume that for every y mentioned
before in the construction, there is an element x such that gs(x) = y. The
Rm-strategy does the following:

1. Correction: For each x such that ξm(x) and ηm(x) are currently de-
fined, but gs(ξm(x)) 6= ηm(x), we correct via either (i) or (ii):

(i) Correction via ηm: Maintain ξm(x) and redefine ηm(x) = gs(ξm(x)).
(ii) Correction via ξm: Maintain ηm(x) and redefine ξm(x) = z where

gs(z) = ηm(x).

For each x where correction has to be done we pick the highest priority
N -requirement such that ξm(x) or ηm(x) is restrained. We correct via ηm
if N wants to restrain ξm, otherwise we correct via ξm. Initialize all lower
priority N -strategies. (If no N -strategy restrains x then we correct via ηm.)

2. Extension: Let k be the least number which is not in the range of ξm.
Find an element y in Am such that ξm(y) can be set equal to k, and ηm(y)
equal to gs(k) (i.e. we have to ensure that ηm, ξm are isometries of finite
metric spaces). If such an element does not exist, introduce a new element y0
to Am, and for each y ∈ Am declare the distances d(y0, y) correspondingly,
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i.e. set d(y0, y) = d(k, ξm(y)) = d(gs(k), ηm(y)). The extension substage is
finished (5).

3.5. Construction. We fix an effective priority ordering of theN-strate-
gies. The R-strategies are global strategies and are not assigned a priority,
and will not be injured during the construction.

At stage 0 of the construction, initialize all N -strategies. At stage s, let
the first s many N -strategies act according to their instructions described
above. Next let the first s many R-strategies act.

3.6. Verification. We first show that each Rm is met, i.e. Am is limit-
wise equivalent to L via ξm, and to L′ via ηm.

Lemma 3.7. For every m, the maps ξm = lims ξm,s and ηm = lims ηm,s
are well-defined, bijective, and isometric.

Proof. The strategy for Rm cannot be injured. Fix an x; we argue that
lims ξm,s(x) and lims ηm,s(x) exist. Let N be the highest priority strategy
that at some stage of the construction wants to preserve the computation of
either ξm or ηm. Suppose N wishes to preserve the computation of ξm, say at
some earliest stage s0 (note that in this case N will never want to preserve
the computation of ηm). The extension step in the construction ensures that
when x is first enumerated in the structure Am, we immediately define ξm(x)
and ηm(x). Since these values are only redefined but never canceled, we have
ξm,s0(x)↓ and ηm,s0(x)↓. Clearly ξm,s0(x) is never again redefined after s0,
since the correction step for x will always respect the requirementN after s0.
Since gs(ξm,s0(x)) will be eventually stable, this means that ηm,s(x) will be
eventually stable. If N wishes to preserve ηm instead, we proceed as above,
but since g is onto we see that gs

−1(ηm,s0(x)) will be eventually stable.

The correction step ensures that gs(ξm,s(x)) = ηm,s(x) for all x and s.
Hence this equality holds for the stable final values as well. Now it is easy
to verify that since gs�s is an isometry of finite metric spaces for each s, the
construction ensures that ξm,s is an isometry of finite metric spaces at each
step of the construction. Clearly ξm is injective because it is an isometry.
Now the fact that ξm is onto follows easily from the fact that the gs(y)
approximation is eventually stable, and by the action in the extension step.
Since ηm = g ◦ ξm it follows that ηm is bijective and an isometry.

(5) Recall that we assume that gs is an isometry on the first s elements, for every s.
Therefore, we can always fix a k ≤ s and the corresponding gs-image of k. The distances
will agree, and we can safely set d(y0, y) = d(k, ξm(y)). Obviously, since both L and L′
are subsets of M , and in fact one is a permutation of the other, there is no further tension
here. We also note that (due to the other strategies acting) Am may already have many
elements outside the domain of ξm, and in this case we will not have to introduce new
elements to Am at this particular stage.
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Note that the lemma implies at once that all the sets Am are computable
structures on (isomorphic images of) M .

Lemma 3.8. For any e,m, n, there are infinitely many (e,m, n)-expan-
sionary stages iff Θe induces a computable isometry mapping Am onto An.

Proof. It is straightforward to check that the right to left direction
holds. Suppose there are infinitely many (e,m, n)-expansionary stages. In
this case condition (1) of Definition 3.6 ensures that for each x, Θe(x) =
limt→∞ Ψe(x, t) exists. It suffices to check the following:

(i) For any x, y, we have d(x, y) = lims d(Θe,s(x), Θe,s(y)), since the
latter is the distance d(Θe(x), Θe(y)) in cl(An).

(ii) For any y and any i, there exist some x and s such that θe,s(x) > i
and d(Θe,s(x), y) < 2−i.

Item (i) ensures that Θe induces an isometry in the closures, while (ii)
ensures that Θe maps onto cl(An). It is easy to see that (i) and (ii) follow
respectively from conditions (2) and (3) of Definition 3.6.

Lemma 3.9. For any e,m, n, lim supt |σe,m,n,t| <∞ and Ne,m,n is satis-
fied.

Proof. We proceed by induction on 〈e,m, n〉. Suppose the lemma holds
for all smaller indices. Hence there is a stage s0 after which N = Ne,m,n is
never initialized, i.e. never injured by a higher priority requirement. Suppose
that limt>s0 |σe,m,n,t| =∞. Then by Lemma 3.8, Am and An are computably
isometric. Since Θe induces an onto map, for each z ∈ ω there is a first
(e,m, n)-expansionary stage ŝz > s0 such that z ∈ Le,m,n,s for every s ≥ ŝz.
This means that for all x, z, the first definition for ξm(x) received after
stage s0 and the first definition for ηn(z) received after stage ŝz are stable and
final. Hence ξm and ηn are computable functions. By Lemma 3.7 this means
that L is computably isometric to Am, and L′ is computably isometric to An,
a contradiction. Since limt |σe,m,n,t| <∞, by Lemma 3.8, N is satisfied.

The verification is finished, and Theorem 3.2 is proved.

We now apply Theorem 3.4 to C[0, 1]. For the rest of this paper, d will
stand for the pointwise supremum metric on C[0, 1]:

d(f, g) = sup
x∈[0,1]

{|f(x)− g(x)|},

and L = (li)i∈N will denote an effective sequence of all continuous piecewise
linear functions with finitely many rational breakpoints (written rational
p.l. functions), without repetitions. Clearly, (li)i∈N is a computable structure
which makes C[0, 1] a computable Banach space.
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Theorem 3.10. There exists a rational-valued computable structure X
on (C[0, 1], d) which is limit equivalent to L, and such that the constant zero
function 0 is computable with respect to X but the operation that takes each
function f to 1

2f is not computable with respect to X.

Remark 3.11. Strictly speaking, we have to be careful with what we
mean by “the operation that takes each function f to 1

2f”, because the

operation 1
2 · is not in the signature. In fact, the theorem of Mazur and

Ulam ensures that φ
(
1
2f
)

= 1
2φ(f) for every isometry which maps 0 to 0.

Thus, the operation can classically be added to the signature with no effect
on the isometries of the space. We show that this mathematical fact does
not hold effectively.

We obtain the following important corollary:

Corollary 3.12. There exist infinitely many computable structures on
(C[0, 1], d) which are pairwise not computably isometric.

Proof. By Theorem 3.4, it is sufficient to prove that there exist two
limit equivalent rational-valued computable structures on (C[0, 1], d) which
are not computably isometric. The corollary then follows from [23, Fact 3.6]
and Theorem 3.10.

Proof of Theorem 3.10. The proof combines the proof of [23, Theo-
rem 5.2] with an extra requirement to make the structure limit equiva-
lent to L. We build a computable structure X = (hi)i∈N on (C[0, 1], d)
which consists of rational p.l. functions, and in which h0 is the constant
zero function. At every stage s of the construction, we introduce an in-
terpretation hi,s of hi for every i ≤ s. The interpretation is an element
of L. At a later stage t, we may change our interpretation to be another
element of L. Thus, in general, hi,s 6= hi,t for s 6= t. However, at each
stage s of the construction and for all i, j ≤ s, we maintain the equal-
ity d(hi,s, hj,s) = d(hi,s+1, hj,s+1), which will ensure that the structure X
is computable, and isometric to L via {lims→∞ hi,s}. We also ensure that
h0,0 = h0,s is the constant zero function for every s, which ensures that 0
is computable with respect to X. Let {Ψe}e∈N and {Θe}e∈N be as in Nota-
tion 3.5 (with (hi)i∈N instead of L′). To ensure that the operation hi 7→ 1

2hi
is not computable, we need to ensure that for each totally defined Θe, there
is some p such that lims→∞ hΘe,s(p) 6=

1
2hp, where the limit is of course taken

in cl(L).

The modification needed to Theorem 5.2 of [23]. The “ugly” rational-
valued computable structure from [23, Theorem 5.2] is not limit equivalent
to L. The technical reason is that the interpretation of a single element of
that structure could be changed infinitely often, i.e. hi,s is changed infinitely
often. The construction still works because these changes become smaller at
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later stages, and so the interpretations converge to an element of cl(L),
i.e. lims→∞ hi,s exists in cl(L). If we wish to keep the number of changes
to each hi,s finite, we need to modify the diagonalization strategy slightly.
Suppose we are diagonalizing against Θe. We will use a witness hp which has
constant value 16e on some small interval Ie (reserved exclusively for this
requirement). The basic strategy will wait for Θe(p) to converge with high
accuracy. We then adjust hp on the interval Ie by lowering its value hp(z)
by 8e for some z ∈ Ie. This will ensure that Θe is killed. To ensure that
distances are preserved, we need to adjust hm similarly on Ie for every hm
which takes on values larger than 8e on Ie. This new modified construction
will leave functions with norm ≤ 8e untouched after some stage, and ensure
that X is limit equivalent to L.

The formal requirements. We need to ensure the following global require-
ments:

(1) For every i, there is some si such that hi,si = hi,t for every t ≥ si.
(2) For any i, j and s, we have d(hi,s, hj,s) = d(hi,s+1, hj,s+1).
(3) For each m, there is exactly one k such that lims hk,s = lm.

These three requirements clearly imply that X is a computable structure
which is limit equivalent to L. We need to satisfy, for every e, the requirement

Ne : Θe does not represent hi 7→ 1
2hi in X.

In the following, (Ie)e∈N stands for some effective listing of disjoint com-
putable closed subintervals of [0, 1]. We ensure that for each strategy Ne and
each hi, Ne is only allowed to modify hi on the interval Ie. More specifically,
when Ne requests for the interpretation of hi to be changed at a stage s, we
always ensure that hi,s(z) = hi,s+1(z) for every z 6∈ Ie. The requirements Ne

all act independently and at most once during the construction.

The detailed strategy for Ne is as follows. It will have its own witness,
a rational p.l. function we ∈ X. The function we, when first defined at stage
2e, is equal to 16e on the interval Ie, is zero at the end-points of [0, 1], and
is linear outside Ie.

Let p be such that we = hp,2e. The strategy Ne does nothing until it sees
a computation Θe,s(p) where θe,s(p) > e. If

sup
z∈Ie

∣∣1
2hp,s(z)− hΘe,s(p),s(z)

∣∣ = sup
z∈Ie
|hΘe,s(p),s(z)− 8e| > 2−e+1,

then the strategy does nothing for the rest of the construction, and we win
Ne simply because

sup
z∈Ie
|hΘe,s(p),s(z)− f(z)| ≤ d(hΘe,s(p), f) < 2−e,
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16e

we = hp,2e

0 Ie 1

Fig. 1. The function hp,2e = we

and thus

d
(
1
2hp(z), f(z)

)
≥ sup

z∈Ie

∣∣1
2hp(z)− f(z)

∣∣ = sup
z∈Ie

∣∣1
2hp,s(z)− f(z)

∣∣ ≥ 2−e,

where f = lims→∞ hΘe,s(p). Thus we assume that at stage s,

(3.1) sup
z∈Ie
|hΘe,s(p),s(z)− 8e| ≤ 2−e+1.

The strategy Ne will then act as follows. Introduce a new interpretation hp,t
as described below. (Notice that hp,s is equal to hp,2e on the interval Ie, but
not necessarily outside this interval.) Choose a (small) subinterval J of Ie
such that for all current interpretations hi,s and hj,s of X introduced so far,
we have:

(i) hi,s is linear within J , i.e. hi,s has no breakpoints residing in J .
(ii) There is no pair z1, z2 ∈ J such that hi,s(z1) = 8e and hi,s(z2) 6= 8e.

(iii) If there is some z ∈ J such that hi,s(z) = hj,s(z) then hi,s�Ie =
hj,s�Ie .

It is clear that J can be found effectively, since the construction has
only looked at finitely many interpretations so far. Hence each hi,s when
restricted to J is either strictly monotonic and does not take value 8e, or
else it is constant on J . Furthermore, each pair hi,s and hj,s is either equal
or non-intersecting in the interval J .

Now pick z to be the midpoint of J . For every interpretation hi,s such
that hi,s�Ie is strictly above 8e, we set hi,s+1(z) = 8e, hi,s+1(min J) =
hi,s(min J) and hi,s+1(max J) = hi,s(max J). We linearly interpolate hi,s+1

within J and keep hi,s+1 = hi,s unchanged outside J . This is illustrated by
Figure 2.

Notice that this action only modifies each hi,s on the interval Ie.

Lemma 3.13. Distances between the approximations are preserved.
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16e

8e

0 J 1

Fig. 2. The dashed lines indicate the modifications needed to get hi,s+1.

Proof. Fix i, j. We will show that d(hi,s, hj,s) = d(hi,s+1, hj,s+1). Let
m = |hi,s(min J)− hj,s(min J)| and M = |hi,s(max J)− hj,s(max J)|. Since
there are no breakpoints of hi,s and hj,s in J , we clearly have

sup
v∈J
|hi,s(v)− hj,s(v)| = max{m,M},

and therefore it is sufficient to see that

sup
v∈J
|hi,s+1(v)− hj,s+1(v)| = max{m,M}.

If both hi,s and hj,s are modified then this last equality follows easily from
the fact that for every min J ≤ v ≤ z we have |hi,s(v) − hj,s(v)| ≤ m, and
for every z ≤ v ≤ max J we have |hi,s(v) − hj,s(v)| ≤ M . Suppose, on the
other hand, that hi,s 6= hi,s+1 and hj,s = hj,s+1. Then for every v ∈ J we
have hi,s(v) ≥ hi,s+1(v) ≥ 8e ≥ hj,s+1(v) = hj,s(v). So we conclude that
supv∈J |hi,s+1(v)− hj,s+1(v)| = max{m,M}.

Lemma 3.14. Ne is satisfied.

Proof. If Ne never acts, it is clearly satisfied, so we assume it acts at stage
s as above. Since no approximation will ever be changed again within Ie after
Ne acts, we have hp(z) = hp,s+1(z) = 8e and hΘe,s(p)(z) = hΘe,s(p),s+1(z) =

min{8e, hΘe,s(p),s(z)}. By (3.1) we have hΘe,s(p),s(z) ≥ 8e − 2−e+1, and so

hΘe,s(p)(z) ≥ 8e − 2−e+1 > 7e. Now since θe,s(p) > e, we see that f(z) >

7e− 2−e > 6e > 1
2hp(z). Hence f 6= 1

2hp.
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Construction. We fix some effective ordering of the N -requirements. At
stage s of the construction, we simply let the strategies of the first s require-
ments act according to their instructions. Next, if we do not see lm among
(hi,s)i≤s at stage s ≥ m, we pick n least such that hn has no approximation
so far, and set hn,s = lm. This ends the construction.

Verification. We first show that the global requirements are met. For (1),
fix i, and let t be the first stage at which hi gets its first-ever approxima-
tion (namely hi,t). Let D be such that ‖hi,t‖ = d(0, hi,t) < 8D. Only the
strategies Ne where e ≤ D can possibly change the approximation at a later
stage. Furthermore, if t > s is such that hi,t 6= hi,s, then ‖hi,t‖ ≤ ‖hi,s‖.
Every N -strategy acts at most once. Thus, there is a stage after which hi
will be set to its final value, and so (1) is met. By Lemma 3.13, (2) is met.
Moreover, (3) holds because for each lm, after a stage where N0, . . . , ND no
longer act, where ‖lm‖ < 8D, any fresh assignment of lm to an hi must be
stable. Finally, notice that h0,s is never modified during the construction, so
the interpretation of 0 is computable.

This ends the proof of Theorem 3.10.

4. C[0, 1] is not computably categorical as a Banach space. Recall
that the signature of Banach spaces contains 0, +, and (r·)r∈Q. By Fact 2.10
we will assume that the signature only contains +, as all the other operations
can be reconstructed effectively from +. Fact 2.10, Theorem 3.10 or [23,
Theorem 5.2] provide us with a corollary which is interesting in its own right:

Corollary 4.1. There is a computable structure on (C[0, 1], sup) in
which + is not computable.

In the following theorem we show that vector space operations do not
effectively determine the multiplicative identity 1 in C[0, 1]. Similarly to
Remark 3.11, we need to be careful in our terminology. We will build a com-
putable structure Y on (C[0, 1], d,+). Let L stand for the computable struc-
ture consisting of rational p.l. functions on the same copy of (C[0, 1], d,+).
Since cl(L) = cl(Y ) = C[0, 1], every computable Banach space isomorphism
ψ of cl(L) onto cl(Y ), if it existed, would correspond to an automorphism
of (C[0, 1], d,+). It is well-known (6) that classically every automorphism ψ
of (C[0, 1], sup,+) is of the form

ψf(x) = δ(x)f(g(x)),

where x ∈ [0, 1], f ∈ C[0, 1], the function δ(x) is either the constant function
1 or the constant function −1, and the map g is a homeomorphism of [0, 1]
onto itself. In fact, in the former case, ψ is a Banach algebra automorphism.

(6) See, e.g., Dunford–Schwartz [8, Th. IV.6.26, p. 278].



Computable structures on continuous functions 125

Since the automorphism orbit of 1 is {1,−1}, we would have ψ1 ∈ {1,−1}.
The function 1 is clearly a computable point with respect to L. Also, notice
that + effectively determines −, thus 1 is computable if, and only if, −1 is.
Therefore, if we make sure that Y is a computable structure on (C[0, 1], d,+)
such that 1 is not computable with respect to Y , then we will see that Y is
not computably isometric to L (in the signature of Banach spaces).

Theorem 4.2. There is a computable structure Y on (C[0, 1], d,+) such
that 1 is not a computable point with respect to this structure.

Theorem 4.2 implies:

Corollary 4.3. The space (C[0, 1], d,+) is not computably categorical.
Equivalently, C[0, 1] is not computably categorical as a Banach space.

By Fact 2.15, we have:

Corollary 4.4. There is a computable structure Y on (C[0, 1], d,+)
such that × is not a computable operation with respect to this structure.

We now prove the theorem.

4.1. Proof idea. We briefly explain the main intuitive idea behind the
proof of Theorem 4.2. We will be building a computable structure Y con-
taining 0 as a special point. The reader may visualize the idea as follows.
At every stage of the construction we will have finitely many special points
enumerated into Y . At stage s, we think of each point from Y as a ratio-
nal p.l. function. This will be our current interpretation of Ys in the usual
copy of C[0, 1]. At a later stage we may, however, be forced to change our
current interpretation due to the diagonaliazation requirements. We make 1
non-computable with respect to the new computable structure we are build-
ing. The main diagonaliazation strategy is illustrated in Figure 4 below. We
change the previous interpretation “slightly”, but this time preserving +
(making sure that if the second element plus the 5th gave us the 7th, say,
then the same will be true after the “slight” change). Because we will change
our interpretation less and less at later stages, in the limit the interpretations
will converge to some elements of C[0, 1] which do not have to be rational
p.l. functions. We will make sure that the structure is dense, and the usual
operation + on C[0, 1] is a computable operation with respect to this struc-
ture. Consequently, the closures of the standard computable structure and
the new one will be (non-computably) isomorphic as Banach spaces via the
identity map on C[0, 1].

4.2. Formal proof. The rest of this section is devoted to the formal
proof of Theorem 4.2. The argument has the same flavor as that for Theo-
rem 3.10, but the main analytic strategy is different.
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Notation 4.5. We fix a dense computable listing of rational p.l. func-
tions L̂ = (l̂n)n∈N on [0, 1] satisfying the following additional property:

(4.1) There is a computable sequence of pairwise disjoint closed intervals

{Jm}m∈N such that for every m and every i≤m, l̂i is constant on Jm.

To arrange for this, we also construct an auxiliary sequence of inter-
vals {Im}m∈N. For each m, we pick an interval I∗m ⊂ Im−1 such that lm
has no breakpoints in I∗m, and that |I∗m| < 2−m/C, where C is the max-
imum absolute value of the slope of any linear component of lm. We also
require that if lm is constant on any subinterval of Im−1 then lm is con-
stant on I∗m. Now we can modify lm on I∗m as follows. Let a = min I∗m and

b = max I∗m. Set l̂m(z) = lm(a) for every z ∈ [a, (a+ b)/2] and join the
points ((a+ b)/2, lm(a)) and (b, lm(b)) by a straight line. This is illustrated
in Figure 3.

0 1

Fig. 3. The dashed lines indicate the modifications to lm and lm−1.

Clearly if lm is constant on I∗m then l̂m = lm. Now let Im be the left half
of I∗m, and Jm−1 be any interval disjoint from Im with Jm−1 ⊂ Im−1. Since
{Jm}, {Im} and {I∗m} are computable sequences of closed intervals, we see

that {l̂i} is a computable listing of rational p.l. functions (note that we can

easily make {l̂i} a computable listing without repetition). Clearly (4.1) is
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satisfied since l̂i is constant on Ii which contains Jm as a subinterval for
every m ≥ i.

Lemma 4.6.

(i) Suppose lm is constant on some interval Ik. Then l̂m = lm.

(ii) The set L̂ is effectively closed under addition. That is, there is a
computable function h such that given any m0 and m1, we have
l̂m0 + l̂m1 = l̂h(m0,m1).

Proof. (i) Suppose that lm is constant on Ik. If k < m then lm is constant

on I∗m ⊂ Ik and so l̂m = lm. If k ≥ m then Ik ⊆ Im−1, and since lm is constant
on a subinterval of Im−1 we would pick I∗m disjoint from Ik or contained in Ik.
The former is impossible.

(ii) Given l̂m0 and l̂m1 we can effectively find m such that lm = l̂m0 + l̂m1 .
Assuming that Im0 ⊆ Im1 we find that lm is constant on Im0 , so by (i) we
can take h(m0,m1) = m.

By Lemma 4.6(ii), L̂ is a computable structure on C[0, 1] in the signature

of Banach spaces. Notice that 1 is a special point in L̂.

Lemma 4.7. The computable structures L and L̂ are computably isomet-
ric in the signature of Banach spaces via the identity map.

Proof. Clearly, sup |li(z) − l̂i(z)| < 2−i for each i, by the choice of |I∗i |.
It is then straightforward to check that each ln is a computable point of L̂
(uniformly in n). Hence the identity map from L̂ to L is an onto isometry
(in the closure) preserving +.

We will henceforth, in this proof, use L̂ instead of L as the “nice” struc-
ture on C[0, 1]; due to Lemma 4.7, the proof of Theorem 4.2 will still work

with L̂ instead of L.

4.3. Strategies. We build a computable double sequence of rational
p.l. functions (hi,s)i,s∈N from L̂. We define Y = (hi)i∈N. We ensure that the

map hi = lims hi,s is an isometry taking Y to L̂. To this end we need to
maintain the following global requirements:

(1) For every i, lims hi,s exists in cl(L̂).
(2) For any i, j and s, we have d(hi,s, hj,s) = d(hi,s+1, hj,s+1).
(3) For any i, j, k and s, we have hi,s + hj,s = hk,s ⇒ hi,s+1 + hj,s+1 =

hk,s+1.

(4) For each m and each e, there is k such that d(lims hk,s, l̂m) ≤ 2−e.

It will also be explicit in the construction that Y is effectively closed un-
der +. These global requirements ensure that Y is a computable structure
on (C[0, 1], d,+), and φ is an onto isometry preserving +, since φ is an onto
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isometry of finite structures preserving + at each finite stage. For simplic-
ity, we abuse our notation and (notationally) identify hi with its limiting

L̂-interpretation hi = lims hi,s.
Recall Notation 3.5. The main diagonalization requirement is

Ne : Θe(0) does not represent 1 in Y with respect to (hi)i∈N.

If we meet Ne for every e, then 1 will not be computable in Y .

Strategy for Ne. Wait for a stage s at which Θe,s(0) outputs a number
x such that

d(hx,s,1) ≤ 2−e+1

and θe,s(0) > e. Notice that at every stage we are dealing with elements

of L̂ in which 1 is a special point of L̂. Thus, the inequality above can be
checked effectively at every stage. If we ever see such s and x, we effectively
choose a closed subinterval J = Jk0 , for some fresh k0 we have never before
used, at which all interpretations we have introduced so far are constant
functions (recall Notation 4.5). We moreover assume k0 is large enough so
that all interpretations are constant on Ik0 as well.

Let h0,s, . . . , hn,s be all interpretations we have introduced so far. We now
modify them as follows. Let a = min J , b = max J and z be the midpoint of
J . For each i we set hi,s+1(z) = (1 − 2−e+3)hi,s(a), hi,s+1(a) = hi,s(a) and
hi,s+1(b) = hi,s(b), and make hi,s+1 linear on J − {z}. We keep hi,s+1 = hi,s
outside J . This is illustrated in Figure 4.

Fig. 4. The dashed lines indicate the modifications needed to obtain hi,s+1.

For each i we can effectively obtain an index m such that lm = hi,s+1.

Since lm is constant on Ik0+1, we apply Lemma 4.6(i) to get l̂m = lm. We

then let l̂m be the new interpretation of hi.
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In this case we say that the strategy Ne acts. We will never modify any
hi within J = Jk0 again.

Lemma 4.8. Distances and the operation + are preserved under this
action.

Proof. Let c = 1− 2−e+3. For any i, we have

hi,s+1(x) =


(c− 1)hi,s(a)

z − a
(x− a) + hi,s(a) if a ≤ x ≤ z,

(1− c)hi,s(a)

b− z
(x− b) + hi,s(a) if z < x < b.

Fix i, j. We argue that d(hi,s, hj,s) = d(hi,s+1, hj,s+1). Suppose that hi,s(a) ≥
hj,s(a). It is straightforward to check that for every x ∈ J , we have 0 ≤
hi,s+1(x)−hj,s+1(x) ≤ hi,s(a)−hj,s(a). Hence distances are preserved. Next
we fix i, j, k and assume that hi,s(a)+hj,s(a) = hk,s(a). It is routine to check
that for any x ∈ J we have hi,s+1(x) + hj,s+1(x) = hk,s+1(x).

4.4. Construction. At stage s = 〈p, q, r〉, let the first s many N -
strategies act according to their instructions. Next, if q is odd we set q′ = p,
and if q is even we set q′ to be a number such that l̂q′ = hr0,s + hr1,s, where

r = 〈r0, r1〉. Now for this q′ we check whether l̂q′ is among (hi,s)i≤s. If it
is not, we pick n least such that hn has no approximation so far and set
hn,s = l̂q′ .

Declare distances and + on the finite set {hi}i≤n accordingly; that is,
if hi,s + hj,s = hk,s for some i, j, k ≤ n, we declare that hi +Y hj = hk if
such a definition does not already exist in the structure Y . This ends the
construction.

4.5. Verification

Lemma 4.9. Y = (hi)i∈N is a computable structure.

Proof. For any i 6= j, the distance d(hi, hj) is declared at the first stage s
where both hi,s and hj,s are defined, and it is non-zero because, by construc-
tion, hi,s 6= hj,s. Now consider a stage s where both hi,s and hj,s are defined,

and let p be such that l̂p = hi,s + hj,s (this p exists by Lemma 4.6(ii)).
Now by the construction hi +hj must receive a definition at or before stage
〈p, 2s, 〈i, j〉〉.

Lemma 4.10. The global requirements are satisfied.

Proof. For each i let Mi = ‖hi,t0‖ where t0 is the first stage where hi
is given an interpretation. Requirement Ne acts at most once during the
construction, and if it acts at some stage s then d(hi,s, hi,s+1) ≤ 2−e+3Mi

for each i. Now it follows that for each e there is a stage se of the construction
such that for every t > t′ ≥ se, and every i, we have d(hi,t, hi,t′) < 2−eMi.
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This means that the global requirement (1) is satisfied, since the sequence

{hi,t}t∈N is a Cauchy sequence in cl(L̂). The global requirements (2) and (3)
follow from Lemma 4.8. For (4) we fix m, e. Let e′ be large enough so that

2−e
′‖l̂m‖ < 2−e, and consider a stage of the form s′ = 〈m, 2q+1, r〉 > se′ for

some q, r. The construction at this stage ensures that l̂m = hk,s′ for some k.

Then d(lims hk,s, l̂m) = d(lims hk,s, hk,s′) ≤ 2−e
′
Mk < 2−e.

Lemma 4.11. The requirement Ne is satisfied.

Proof. Clearly if Ne never acts then it is satisfied, so we assume that
Ne acts at a stage s, when it sees that d(hx,s,1) ≤ 2−e+1, and θe,s(0) > e.
The requirement then proceeds to adjust hx,s+1 on the interval J . We have
hx,s(a) ≤ 1 + 2−e+1, and so hx,s+1(z) = (1 − 2−e+3)hx,s(a) < 1 − 2−e+2.
Since hx,t is never again modified in J , we have d(hx,1) > 2−e+2. Since
θe,s(0) > e, we have d(limt hΘe,t(0), hx) ≤ 2−e+1 (in the closures of both

structures Y and L̂, since they are isometric). Thus in cl(L̂) we must have
d(limt hΘe,t(0),1) > 2−e+1, and so we cannot have limt hΘe,t(0) = 1 in cl(Y ).

Notice that the convergence of the interpretations (hi,s)s∈N is not nec-
essarily effectively rapid. For instance, we can assign Cauchy names to the
points 1 and −1 only with the help of the Halting problem.

This concludes the proof of Theorem 4.2.

5. C[0, 1] is not computably categorical as a Banach algebra.
Recall that the signatures of Banach algebras include the symbol for the
metric, the usual vector space operations, the multiplication symbol, and
symbols for the additive identity 0 and the multiplicative identity 1.

By Fact 2.15, we can replace the usual Banach algebra signature by
the simple one including only + and × (and the metric). Suppose we wish
to show that C[0, 1] is computably categorical in the language of Banach
algebras. Then, given any computable structure Y and the nice structure L
on C[0, 1], we have to be able to effectively and uniformly map each special
point of L to a computable point of cl(Y ). However, the trouble with doing
so is that, even if we know that all the operations in the signature of Banach
algebras are computable with respect to Y , it is still not clear how we can
effectively approximate, say, an isomorphic image of the rational polynomial
x3 − 1/2 with respect to Y .

However, if we add a distinguished element representing the monomial
f(x) = x to the signature, then we can simply write down images of the
polynomials over Q using the symbols of our signature. Thus, we have:

Fact 5.1. The space C[0, 1] is computably categorical in the language of
Banach algebras with an extra distinguished symbol for the function f(x) = x.
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Proof. Given the nice computable structure P of all rational-valued poly-
nomials, and a computable structure Y on C[0, 1], we can define an isome-
try φ : P → Y mapping

∑
n rnz

n ∈ P to
∑

n rnφ(x)n ∈ cl(Y ). The image
φ(
∑

n rnz
n) can be uniformly rapidly approximated with respect to Y .

In fact, we will show that the space C[0, 1] is not computably categorical
in the language of Banach algebras, by constructing a computable structure
Z in which, roughly speaking, the “identity function f(x) = x” is a non-
computable point of Z.

We have already mentioned the description of automorphisms of (C[0, 1],
d,+,×). As a consequence of this description, the automorphism orbit of the
identity function f(x) = x contains exactly the homeomorphisms of [0, 1]
onto itself. (The image of f(x) is δ(x)f(g(x)) = δ(x)g(x), where g(x) is a
homeomorphism of [0, 1] onto itself, but because 1 is in the signature and
1(x) = δ(x)1(g(x)) = δ(x), we can omit δ.) In other words, it contains
exactly the strictly monotonic continuous functions of norm 1 and equal to
zero at one of the end-points.

Definition 5.2. Let Q = (qi)i∈N be a dense effective sequence of contin-
uous piecewise polynomial functions with rational coefficients (abbreviated
to p.p. functions) with finitely many rational breakpoints, without repeti-
tions. That is, each qi ∈ C[0, 1] is defined piecewise on intervals I1, . . . , Ini
where [0, 1] = I1 ∪ · · · ∪ Ini , and for each interval Im, qi = pmi on Im, where
(pmi )i,m is a computable collection of rational-valued polynomials.

It is clear that Q is a computable structure on C[0, 1] in the language
of Banach spaces. Furthermore, the set Q = (qi)i∈N is effectively closed

under addition and multiplication (unlike the structures L and L̂, where

multiplication is only computable in the limit structures cl(L) and cl(L̂)).

It follows from the theorem below that the difficulty discussed before
Fact 5.1 cannot be circumvented, and adding a constant symbol for the
identity function is necessary in Fact 5.1.

Theorem 5.3. There is a computable structure Z on (C[0, 1],+,×) and
an onto isometry φ : cl(Z) → cl(Q) (preserving all Banach algebra opera-
tions) such that given any strictly monotonic function f ∈ C[0, 1], φ−1(f)
is not a computable point with respect to Z.

In contrast to all our previous results, the map φ in the above theorem
is not simply the identity map. In fact, cl(Z) = C[0, α] for some positive
left-c.e. real α, and φ is the Banach algebra isomorphism induced by a certain
homeomorphism of [0, α] onto [0, 1]. In the proof, we will be constructing a
computable structure on (C[0, α],+,×) which will of course correspond to
a computable structure on (C[0, 1],+,×) via the map φ. (More specifically,
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consider the collection of all φ-images of special points of the structure.) We
obtain the following important corollary:

Corollary 5.4. The space C[0, 1] is not computably categorical as a
Banach algebra.

Proof. The computable structure Z from the preceding theorem cannot
be computably isometric to Q. Suppose ψ : cl(Q) → cl(Z) were a com-
putable isometry. Let f(x) = x be the identity function. Then φψf would
have to be a strictly monotonic function. Since f is a special point of Q
and ψ is a computable isometry, this means that ψf is a computable point
of Z, contradicting Theorem 5.3.

The rest of this section is devoted to the proof of Theorem 5.3.

5.1. Proof idea. Notice that the vector space operations together with
pointwise multiplication compute the constant function r for every r ∈ Q
(which outputs r at every point x ∈ [0, 1]). Thus, there is little hope to
do any local vertical “distortion” of functions as we have done in Theo-
rems 4.2 and 3.10, because any such strategy will cause φ−1(r) to be a
non-computable point of Z. Therefore we will have to use a strategy which
is quite different from the previous arguments.

The key idea is in “going horizontal” instead. As usual, we are building
a computable structure Z = (hi)i∈N and maintaining a stage by stage in-
terpretation hi,s of hi in some nice structure. We wait for the eth potential
approximation to declare that it is an isometric preimage of a monotonic
function with a good precision. The strategy will retarget hi,s so that this eth
potential approximation is incorrect. The reader might first try the following
naive strategy: Pick some interval [1− δ, 1] and “reflect” hi,s on the interval
[1− 2δ, 1− δ] to the interval [1− δ, 1] for every interpretation introduced so
far. That is, define

hi,s+1(x) =

{
hi,s(x) if x < 1− δ,
hi,s(2− 2δ − x) if x ≥ 1− δ,

which is illustrated in Figure 5.

This naive strategy clearly kills off the eth potential approximation, since
hs+1 does not look close to any strictly monotonic function, and will preserve
the computability of constant functions. In fact, this strategy preserves at
each stage the operations + and ×. Unfortunately it does not preserve dis-
tances, in the sense that d(hi,s, hj,s) need not be the same as d(hi,s+1, hj,s+1).

We modify this naive strategy as follows. Notice that for each real α ≥ 1,
the space C[0, α] is isometric to C[0, 1] via the natural map which stretches
or compresses the x-axis, i.e. the map φα that maps each f ∈ C[0, α] to
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Fig. 5. The naive strategy: The dashed lines indicate the modifications needed to get
hi,s+1.

f(·α) ∈ C[0, 1], and which clearly preserves all pointwise properties of func-
tions. So we could construct Z to be a subspace of C[0, α] instead of C[0, 1].
To wit, we would allow the diagonalization strategy to enlarge the interval
by increasing αs+1 > αs, and reflecting the graph of hi,s on the interval
[2αs − αs+1, αs] to the interval [αs, αs+1]:

hi,s+1(x) =

{
hi,s(x) if x ≤ αs,
hi,s(αs − z) if x = αs + z for z > 0.

This is illustrated in Figure 6.

Fig. 6. The main strategy: The dashed lines indicate the modifications needed to get
hi,s+1.
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This strategy now clearly preserves all Banach algebra operations, since
all operations are evaluated pointwise, and it kills off the eth potential ap-
proximation for a strictly monotonic function.

Since our construction has to be effective and we require the structure Z
we build to be computable, we need to be somewhat careful with how we
set up the construction. Given any (index for a) left-c.e. increasing approx-
imation {αs}s∈N of a c.e. real 1 ≤ α ≤ 2, we can effectively obtain (an
index for) the computable structure Qα = (qαi )i∈N on C[0, α] which consists
of all rational p.p. functions on [0, α] which are constant on some interval
[α − δ, α] for some δ > 0. This is because each time αs increases we can
begin enumerating rational p.p. functions with breakpoints αs−1 ≤ r < αs.
Each function enumerated in the structure Qα is computably specified even
though we never know the actual value of α to any reasonable precision,
because each function is declared constant on the rightmost piece. Further-
more, it is easy to see that distance d(qαi , q

α
j ) is computable, and that the

set (qαi )i∈N is effectively closed under + and ×.

In the formal construction we will build a structure Z and an approxima-
tion {αs} of the left-c.e. real α. Let Q̂ = Qα. For completeness we mention a
technical issue here; the less recursion-theoretic inclined reader may ignore
the subsequent comment:

Remark 5.5. We could build {αs} and Q̂ simultaneously during the

construction, because to compute distances, + and × on elements of Q̂ = Qα
seen at stage s will only require the value of αs, and we never need to look
ahead. Alternatively, for a slicker approach we can build {αs} and assume
by the Recursion Theorem that we are given, during the construction, an
index for Q̂ = Qα.

In this proof we will take Q̂ instead of Q as the nice structure. We build
Z = (hi)i∈N and a stage by stage interpretation hi,s ∈ Q̂ of hi. At the end
we take hi = lims hi,s.

Before we begin the formal proof, we mention that there will be several
technical issues in the verification of the construction. The first difficulty is
that for each hi we will have infinitely many strategies enlarging the interval
and retargetting hi as described in Figure 6. Suppose the eth strategy is
allowed to enlarge the interval by εe. If we are not careful, we may end up
with hi(x) having no limit as x → α, for instance, if the total variation
is too large. To get around this difficulty we have to choose

∑
j>e εj to be

much smaller than εe, and argue using a careful analysis of the total possible
variation. The second difficulty is to show that φ is a map onto the closure
cl(Q̂). We will again use the notion of variation to show that the construction

makes φ(Y ) dense in cl(Q̂).
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5.2. Strategies. As before, d stands for the supremum metric. We fix
a computable sequence (εe)e∈N of positive rationals such that

2−e >
∑
j>e

εj .

The strategy for each Ne (to be defined) will be to act at most once during
the construction. Let E = {e : Ne acts at some stage} and Es = {e :
Ne acts at a stage < s}. We set α = 1 +

∑
e∈E εe and αs = 1 +

∑
e∈Es εe.

The real α = lims αs is left-c.e.

We fix an enumeration (q̂m)m∈N of Q̂. At stage s we may assume, by
Remark 5.5, that the functions q̂m for m ≤ s all have breakpoints smaller
than αs and are constant on [αs, α]. At every stage s we have hi,s ∈ Q̂s =

(q̂m)m≤s, but hi = lims hi,s does not have to be an element of Q̂. However
we will ensure that at every i and s, hi,s�[0,αs] = hi,s+1�[0,αs]. That is, every
modification made at stage s is on the interval (αs, αs+1].

We have to meet the following global requirements:

(1) For every i, hi = lims hi,s exists in cl(Q̂).
(2) For any i, j and s, we have d(hi,s, hj,s) = d(hi,s+1, hj,s+1).
(3) For any i, j, k and s, we have hi,s + hj,s = hk,s ⇒ hi,s+1 + hj,s+1 =

hk,s+1.
(4) For any i, j, k and s, we have hi,s × hj,s = hk,s ⇒ hi,s+1 × hj,s+1 =

hk,s+1.
(5) For each m and each e, there is some k such that d(lims hk,s, q̂m)
≤ 2−e.

We will also explicitly make the structure closed under the operations +
and ×. These global requirements ensure that cl(Z) and cl(Q̂) are isometric
via φ preserving + and×, since these operations are preserved at every stage.
Hence cl(Z) and cl(Q) are isometric in the language of Banach algebras.

The key set of requirements to meet are:

Ne: Θe(0) is not a fast Cauchy name in Z for (the preimage of) a strictly
monotonic function in C[0, 1].

Collectively the requirements Ne clearly imply that for any strictly mono-
tonic function f ∈ C[0, 1], (φαφ)−1(f) is not a computable point of Z. The
strategy for Ne will ensure that lims hΘe,s(0) is not a strictly monotonic func-
tion in C[0, α]. This ensures that Ne is met because φα is simply a scaling
of the x-axis.

Strategy for Ne. Wait for a stage s such that for some t ≤ s, Θe,t(0)
outputs a number n where

|hn,s(αs − εe)− hn,s(αs)| > 2−θe,t(0)+3.
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That is, at stage s we find that Θ outputs an index n (possibly at a past
stage t < s) for which hn,s(αs − εe) and hn,s(αs) now look sufficiently far
apart. Note that d(hn, lims hΘe,s(0)) < 2−θe,t(0).

If such a stage s is found, we set αs+1 = αs + εe and for every interpre-
tation hi,s introduced so far, redefine it as in Figure 6. That is, we set

hi,s+1(x) =

{
hi,s(x) if x ≤ αs,
hi,s(αs − z) if x = αs + z for z ∈ (0, εe].

We say in this case that the strategy acts. This strategy will never have to
act again. Notice that any modification to hi,s at stage s leaves the values
of hi,s(x) for x ≤ αs untouched.

Lemma 5.6. Distances and the operations + and × are preserved under
this action.

Proof. Fix i, j. Since hi,s, hj,s are constant on the interval [αs, α], we
have

d(hi,s, hj,s) = sup
x∈[0,αs]

|hi,s(x)− hj,s(x)|.

Since supx∈[αs,αs+1] |hi,s+1(x)− hj,s+1(x)| ≤ supx∈[0,αs] |hi,s(x)− hj,s(x)|, we
clearly have d(hi,s+1, hj,s+1) = d(hi,s, hj,s). It is also straightforward to check
that the operations + and × (being evaluated pointwise) are preserved under
this action.

5.3. Construction. At stage s = 〈p, q, r〉, let the strategy Ne for the
least e < s which requires action act according to the strategy above.

Next, if q ≡ 0 (mod 3) we set m = p, and if q ≡ 1 (mod 3) we set m
to be a number such that q̂m = hr0,s + hr1,s, where r = 〈r0, r1〉. Finally,
if q ≡ 2 (mod 3) we set m to be a number such that q̂m = hr0,s × hr1,s,
where r = 〈r0, r1〉. Note that this m can be found at stage s, since the finite

structure Q̂s is effectively closed under + and ×. Now for this m we check
whether q̂m is among (hi,s)i≤s. If it is not, we pick n least such that hn has
no approximation so far and set hn,s = q̂m.

Declare distances, + and × on the finite set {hi}i≤n accordingly; that
is, if hi,s + hj,s = hk,s for some i, j, k ≤ n, we declare that hi +Y hj = hk if
such a definition does not already exist in the structure Y . Similarly for ×.
This ends the construction.

5.4. Verification

Lemma 5.7. Z = (hi)i∈N is a computable structure.

Proof. This is proved the same way as Lemma 4.9.

The tedious part of the verification is to estimate, for each i and each s,
the distance d(hi,s, hi,s+1). To do so we have to analyze carefully the actions
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taken during the construction. For each i we let si be the first stage such
that hi is given an interpretation. Given a closed interval J ⊆ [0, αsi ] we let
D(J, i) = supz∈J hi,si(z)−infz∈J hi,si(z). Since hi,si is piecewise continuously
differentiable (with only finitely many pieces), we let Ci = sup |h′i,si(z)|,
where the supremum is taken over all points z ∈ [0, αsi ] such that z is not a
breakpoint. It is easy to check, by the Mean Value Theorem, that:

Fact 5.8. For any J ⊆ [0, αsi ], we have D(J, i) ≤ Ci|J |.
Now we prove the following technical lemma about the construction:

Lemma 5.9. Given any i, and any s ≥ si, there exists a sequence of
closed intervals Js0 , . . . , J

s
ks

such that the following conditions hold:

(i) For every j ≤ ks, we have Jsj ⊂ [0, αsi ] and
∑

j≤ks |J
s
j | = αs.

(ii) For every j ≤ ks−1, we have Jsj = Js−1j .
(iii) For each j ≤ ks, either

(1) hi,s�Ĵsj
= hi,si�Jsj , in the sense that

hi,s(min Ĵsj + z) = hi,si(min Jsj + z) for every z ≤ |Jsj |,
or

(2) hi,s�Ĵsj
is the mirror image of hi,si�Jsj , in the sense that

hi,s(min Ĵsj + z) = hi,si(max Jsj − z) for every z ≤ |Jsj |,

where Ĵsj =
[∑

j′<j |Jsj′ |,
∑

j′≤j |Jsj′ |
]
.

Proof. Fix i. We proceed by a straightforward induction on s ≥ si. For
s = si simply take Js0 = [0, αsi ]. The induction step then follows easily
because hi,s+1 is obtained from hi,s by keeping hi,s�[0,αs] unchanged and
then reflecting hi,s�[2αs−αs+1] over to [αs, αs+1].

Specifically, assume that at stage s we have the sequence Js0 , . . . , J
s
ks

.

Suppose the construction at s increases αs to αs+1, where 2αs − αs+1 ∈ Ĵsj0
for some j0 ≤ ks. We may assume that 2αs−αs+1 is not an end-point of Ĵsj0 ;

the other case is easy. Now let ks+1 = ks + (ks − j0 + 1). Let Js+1
j = Jsj

for every j ≤ ks and Js+1
ks+j+1 = Jsks−j for each j < ks − j0. Finally, we

will set Js+1
ks+1

equal to the right subinterval of Jsj0 of the appropriate length

(= max Ĵsj0 − (2αs − αs+1)) if hi,s�Ĵsj0
= hi,si�Jsj0

. On the other hand, if

hi,s�Ĵsj0
is the mirror image of hi,si�Jsj0

then we set Js+1
2ks−j0+1 equal to the

left subinterval of Jsj0 of the same length (= max Ĵsj0 − (2αs − αs+1)).

Lemma 5.10. Suppose Ne acts at some stage s. Then for each i where
si ≤ s, we have d(hi,s, hi,s+1) ≤ εeCi.
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Proof. Let zj = min Ĵs+1
j . Since the functions are continuous, let z̃ ≥

αs be the point where d(hi,s, hi,s+1) = |hi,s+1(zks+1) − hi,s+1(z̃)|. Hence
d(hi,s, hi,s+1) ≤ |hi,s+1(zks+1)−hi,s+1(zks+2)|+|hi,s+1(zks+2)−hi,s+1(zks+3)|
+ · · ·+ |hi,s+1(zks+p)− hi,s+1(z̃)|, where z̃ ∈ Ĵs+1

p . Now by Lemma 5.9 this
is bounded by ∑

ks<r≤ks+1

D(Js+1
r , i).

By Fact 5.8 this in turn is bounded by∑
ks<r≤ks+1

Ci|Js+1
r | = Ciεe.

Lemma 5.10 provides the necessary upper bound to proceed with the
rest of the verification.

Lemma 5.11. The global requirements are satisfied.

Proof. The global requirements (2)–(4) follow from Lemma 5.6. To
check (1), fix i. For every e there is a stage s′ after which no requirement
Ne′ for e′ ≤ e acts. Then for every stage t > t′ ≥ s′, we deduce by Lemma
5.10 that d(hi,t, hi,t′) < 2−eCi. For (5) we now proceed as in Lemma 4.10.

Lemma 5.12. The requirement Ne is satisfied.

Proof. Fix e. Assume for a contradiction that (hΘe,s(0))s∈N is a fast con-
verging sequence which converges to a strictly monotonic function H in
C[0, α]. Since H is continuous, let e′ be a number large enough that for
all large enough stages s we have |H(αs) −H(αs − εe)| > 2−e

′
. Fix t such

that Θe,t(0) outputs a number n such that θe,t(0) > e′ + 5, and such that

|hn(αs) − hn(αs − εe)| > 2−e
′−1 for almost every stage s > t. It is easy to

see that at almost every stage s > t, Ne will satisfy the conditions for it
to act.

Now let Ne act at stage s. Let t < s be the stage where Θe,t(0) outputs
a number n satisfying |hn,s(αs − εe) − hn,s(αs) | > 2−θe,t(0)+3. Recall that
d(hn, H) < 2−θe,t(0). Without loss of generality assume that hn,s(αs − εe) <
hn,s(αs). The action at stage s ensures that hn(αs−εe)+2−θe,t(0)+3 < hn(αs)
and hn(αs + εe) + 2−θe,t(0)+3 < hn(αs).

Finally, examining the values of H(αs−εe), H(αs) and H(αs+εe) reveals
a contradiction: H(αs − εe) < H(αs) and H(αs + εe) < H(αs).

This finishes the proof of Theorem 5.3.

6. A short conclusion. As already mentioned in the preliminaries,
we have not touched several combinations of the symbols +, (r·)r∈Q,×, 1, 0,
or some other operations such as lattice operations, since not all of these
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combinations are found natural as signatures, and because we wished to
keep the paper shorter. However, if we consider the relation “to effectively
determine” on the family of signature symbols, we get a reduction. A pure
theoretical curiosity could lead us to a further study of this reduction.

There are lots of problems related to our results which have not been
touched so far. We could pick any other classical space such as L3[0, 1] and
ask the same questions we were addressing in our paper. Also, it is not clear
if there is a Banach space which is computably categorical, but whose asso-
ciated metric space is not computably categorical. Similarly, can we find a
Banach algebra which is computably categorical, but the associated Banach
space is not? What can be said about the computable dimension of classical
Banach spaces and algebras, including C[0, 1]? Can we find a Banach space
of finite computable dimension 6= 1? We expect that new computability-
analytic methods are needed to answer these and similar questions.
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[22] S. Mazurkiewicz, Über die Menge der differenzierbaren Funktionen, Fund. Math. 27

(1936), 244–249.

[23] A. G. Melnikov, Computably isometric spaces, J. Symbolic Logic 78 (2013), 1055–

1085.

[24] J. Myhill, A recursive function, defined on a compact interval and having a contin-

uous derivative that is not recursive, Michigan Math. J. 18 (1971), 97–98.

[25] A. Nies, Interactions of computability and randomness, in: Proc. Int. Congress of

Mathematicians, Vol. II, Hindustan Book Agency, New Delhi, 2010, 30–57.

[26] M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics, Perspect.

Math. Logic, Springer, Berlin, 1989.

[27] M. B. Pour-El and I. Richards, Computability and noncomputability in classical

analysis, Trans. Amer. Math. Soc. 275 (1983), 539–560.

[28] M. O. Rabin, Computable algebra, general theory and theory of computable fields,

Trans. Amer. Math. Soc. 95 (1960), 341–360.

[29] J. B. Remmel, Recursively categorical linear orderings, Proc. Amer. Math. Soc. 83

(1981), 387–391.
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