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Preperiodic dynatomic curves for z 7→ zd + c

by

Yan Gao (ChengDu)

Abstract. The preperiodic dynatomic curve Xn,p is the closure in C2 of the set of
(c, z) such that z is a preperiodic point of the polynomial z 7→ zd+c with preperiod n and
period p (n, p ≥ 1). We prove that each Xn,p has exactly d − 1 irreducible components,
which are all smooth and have pairwise transverse intersections at the singular points
of Xn,p. We also compute the genus of each component and the Galois group of the
defining polynomial of Xn,p.

1. Introduction. Fix d ≥ 2. For c ∈ C, set fc(z) = zd + c. For p ≥ 1,
define

X̌0,p := {(c, z) ∈ C2 | fpc (z) = z and for all 0 < k < p, fkc (z) 6= z},
X0,p := the closure of X̌0,p in C2.

It is known that all X0,p are affine algebraic curves, called the periodic dy-
natomic curves. These curves have been the subject of several studies in
algebraic and holomorphic dynamical systems. The known results for these
curves mainly concern smoothness (Douady–Hubbard [DH1], Milnor [Mil1],
Buff–Tan [BT]); irreducibility (Bousch [B], Buff–Tan [BT], Morton [Mo],
Lau–Schleicher [LS], Schleicher [S]); the genus (Bousch [B]) and the associ-
ated Galois groups (Bousch [B], Morton [Mo], Lau–Schleicher [LS], Schlei-
cher [S]).

In the present work, we study some topological and algebraic properties
of preperiodic dynatomic curves.

Definition 1.1. For n ≥ 0 and p ≥ 1, a point z is called a p-periodic
point of fc if f

p
c (z) = z but fkc (z) 6= z for 0 < k < p, and an (n, p)-preperiodic
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point of fc if fnc (z) is a p-periodic point of fc but f lc(z) is not periodic for
any 0 ≤ l < n.

Now, for any n, p ≥ 1, define

X̌n,p := {(c, z) ∈ C2 | z is an (n, p)-preperiodic point of fc},
Xn,p := the closure of X̌n,p in C2.

In fact, as we shall see below, all Xn,p are also affine algebraic curves,
called the preperiodic dynatomic curves. Not much work has been done for
this kind of curves. The special case d = 2 has been previously studied
by Bousch [B], who established in this case that for any integers n, p ≥ 1,
the curve Xn,p is also smooth and irreducible (like the periodic dynatomic
curves), and computed its associated Galois group.

The main purpose of this work is to extend these results to arbitrary
d ≥ 2. An obvious difference with the previous case is that, for d > 2, the
curve Xn,p is no longer irreducible: it consists of d−1 irreducible components.
We may understand this by a simple observation. Consider the curve X1,p of
(1, p)-preperiodic points, that is, the points z which are not p-periodic, but
whose image z0 = f(z) is. The periodic point zp−1 = fp−1(z0) is another
preimage of z0. Because fc(z) = zd + c, we have z = ωzp−1, where ω is a
dth root of unity. According to the value of ω, we can partition the (1, p)-
preperiodic points into d − 1 classes, and this decomposition is of algebraic
nature: it corresponds to a factorization of fp+1

c (z)− fc(z).
We show that these d − 1 components are smooth and irreducible. Our

approach to smoothness is by using elementary calculations on quadratic
differentials and Thurston’s contraction principle, following the method of
Buff–Tan [BT]. The approach to irreducibility is based on the connectedness
of periodic dynatomic curves and then using induction on the preperiodic
index n. Moreover, we study the features of the singular points of Xn,p.

Following Bousch, we compute the genus of each irreducible component
and the associated Galois group of the curve Xn,p.

Here is a list of our main results. They should be compared with the
results on periodic dynatomic curves.

Denote by {νd(p)}p≥1 the unique sequence of positive integers satisfying
the recursive relation

(1.1) dp =
∑
k|p

νd(k), d ≥ 2 integer,

and let ϕ(m) be the Euler totient function (i.e., the number of positive
integers less than m and coprime to m). For n, p ≥ 1, define

Mn,p := νd(p)d
n−2(d− 1)

(
n− 1−

[(n−1)/p]∑
t=1

d−tp
)
,
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where [x] denotes the maximal integer less than or equal to x, and

Kn,p := νd(p)(d
p−1 − 1)dn−1−p

( [(n−1)/p]−1∑
t=1

d−t(p−1) −
[(n−1)/p]−1∑

t=1

d−pt
)

+ (d[(n−1)/p] − 1)νd(p)d
n−2−[(n−1)/p]p

(see (5.3) and (5.4) for the computation of them). For n, p ≥ 1, set

gp(d) := 1 +
dp− d− p− 1

2d
νd(p)−

d− 1

2d

∑
k|p,k<p

ϕ
(p
k

)
k · νd(k),

gn,p := 1 + 1
2νd(p)d

n−2(pd− d− p− 1) + 1
2(Mn,p +Kn,p)

− 1
2d

n−2(d− 1)
∑

k|p,k<p

ϕ
(p
k

)
k · νd(k).

Theorem 1.2. For any d ≥ 2 and n, p ≥ 1, the preperiodic dynatomic
curve Xn,p has the following properties:

(1) Xn,p is an affine algebraic curve. It has d− 1 irreducible components
and each one is smooth. Moreover, the components pairwise intersect
at the singular points of Xn,p. In particular, if d = 2, the curve Xn,p
is smooth and irreducible.

(2) The genus of every irreducible component of Xn,p (in some kind of
compactification) is gn,p(d), and all irreducible components are mu-
tually homeomorphic.

(3) The Galois group associated with Xn,p is the same as that associated
with X≤n,p :=

⋃n
l=0Xl,p; it consists of all permutations of the roots

of the defining polynomial of X≤n,p that commute with fc and with
the rotation of argument 1/d.

Here is a table comparing these various curves, where Sm denotes the
group of permutations of {1, . . . ,m}, and Gn,p(d) is the Galois group of Xn,p.

periodic X0,p d = 2 d > 2

irreducible irreducible
smooth smooth

genus gp(2) gp(d)

Galois group Sν2(p)/p n Zν2(p)/pp Sνd(p)/p n Zνd(p)/pp

preperiodic Xn,p, n ≥ 1 d = 2 d > 2

irreducible d− 1 irreducible components
smooth not smooth, but each component smooth

componentwise genus gn,p(2) gn,p(d)

Galois group Gn,p(2) Gn,p(d)

pairwise intersection empty Cn,p(singular) : singularity set of Xn,p
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This article is organized as follows:
In Section 2, we gather some preliminaries.
In Section 3, we prove that every Xn,p is an affine algebraic curve, and

find its defining polynomial.
In Section 4, we give the irreducible factorization of Xn,p, and prove that

each irreducible factor is smooth and the irreducible components pairwise
intersect at the singular points of Xn,p.

In Section 5, we calculate the genus of each irreducible component.
In Section 6, we describe Xn,p from the algebraic point of view by calcu-

lating its Galois group.

2. Preliminaries

1. Filled-in Julia set and Multibrot set. This material can be found
in [DH1, DH2] and [Eb].

For c ∈ C, we denote by Kc the filled-in Julia set of fc, that is, the set
of points z ∈ C whose orbit under fc is bounded. We denote by Md the
Multibrot set in the parameter plane, that is, the set of c ∈ C for which the
critical point 0 belongs to Kc. It is known that Md is connected.

Assume c ∈ Md. Then Kc is connected. There is a conformal isomor-
phism φc : C r Kc → C r D satisfying φc ◦ fc = (φc)

d and φ′c(∞) = 1
(i.e., φc(z)/z →z→∞ 1). The dynamical ray of angle θ ∈ T is defined by

Rc(θ) := {z ∈ CrKc | arg(φc(z)) = 2πθ}.

Assume c /∈Md. Then Kc is a Cantor set and all periodic points of fc are
repelling, that is, |(fp)′(z)| > 1 for p ≥ 1 and all p-periodic points z. There
is a conformal isomorphism φc : Uc → Vc between neighborhoods of ∞ in C
which satisfies φc ◦ fc = (φc)

d on Uc. We may choose Uc so that Uc contains
the critical value c, and Vc is the complement of a closed disk. For each
θ ∈ T, there is a minimal rc(θ) ≥ 1 such that φ−1c extends analytically along
R0(θ) ∩ {z ∈ C | rc(θ) < |z|}. We denote by ψc this extension and by Rc(θ)
the dynamical ray

Rc(θ) := ψc
(
R0(θ) ∩ {z ∈ C | rc(θ) < |z|}

)
.

As |z| ↘ rc(θ), the point ψc(re2πiθ) converges to some x∈C [DH2, Prop. 8.3].
If rc(θ) > 1, then x ∈ C r Kc is an iterated preimage of 0 and we say
that Rc(θ) bifurcates at x. If rc(θ) = 1, then x belongs to Kc and we say
that Rc(θ) lands at x.

There are three kinds of important parameters in Md: superattracting,
parabolic, and Misiurewicz parameters. Recall that a point z is said to be
p-periodic if fpc (z) = z but fkc (z) 6= z for 0 < k < p. We call a parametr c ∈ C
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• p-superattracting if 0 is p-periodic by fc;
• p-parabolic if fc has a p-periodic point z0 with (fp)′(z0) = 1 or
m-periodic point z0 such that m | p and (fm)′(z0) is a (p/m)th root
of unity;
• (n, p)-Misiurewicz if 0 is an (n, p)-preperiodic point of fc.

A well-known result in complex dynamics says that any parabolic cycle
of a rational map has a critical point in its basin, whose orbit eventually
converges to but is disjoint from the cycle (see [Mil2, Thm. 10.15]). So for
the family {fc | c ∈ C} of unicritical polynomials, the three classes of pa-
rameters above are pairwise disjoint. We write this as a lemma, since it will
be repeatedly used throughout the paper.

Lemma 2.1. If the critical point 0 is (pre)periodic for fc, then c is not a
parabolic parameter.

2. Affine algebraic curve and singularity. This material can be
found in [G].

A polynomial f ∈ C[x, y] is called squarefree if it is not divisible by
h(x, y)2 for any non-constant h(x, y) ∈ C[x, y]. An affine algebraic curve
over C is defined as

C = {(x, y) ∈ C2 | f(x, y) = 0},
where f is a non-constant squarefree polynomial in C[x, y], called the defining
polynomial of C. If f =

∏m
i=1 fi, where fi are the irreducible factors of f , we

say that the affine curve defined by fi is an irreducible component of C.
Let f ∈ C[x, y]. The total degree of f(x, y) as a multivariate polynomial

is the highest degree of its terms, denoted by Deg(f). Correspondingly, we
denote by degx(f) and degy(f) the degrees of f when considered as a poly-
nomial in x and y respectively. The following lemma is repeatedly used in
this paper.

Lemma 2.2.

(1) If f = f1f2 with f1, f2 ∈ C[x, y], then Deg(f) = Deg(f1) + Deg(f2),
degx(f) = degx(f1) + degx(f2) and degy(f) = degy(f1) + degy(f2).

(2) For f1, f2 ∈ C[x, y], if f(x, y) = f1(x, f2(x, y)), then

degy(f) = degy(f1) · degy(f2).

(3) For f1, f2 ∈ C[x, y], if f(x, y) = f1(x, f2(x, y)) and Deg(f1) =
degy(f1) ≥ 1, Deg(f2) > 1, then Deg(f) = Deg(f1) ·Deg(f2).

Proof. (1) Refer to [F, Section 1.1].
(2) This is straightforward by a simple computation.
(3) Set d1 := Deg(f1) and d2 := Deg(f2). By assumption, degy(f1) =

d1 ≥ 1 and d2 > 1. On the one hand, since Deg(f1) = degy(f1) = d1, there
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is a unique term in f1 of the form a1y
d1 , where a1 is a non-zero constant. So,

from (1) and d1 ≥ 1, it follows that Deg(a1f
d1
2 ) = d1d2. On the other hand,

any other term of f1 has the form axsyt, where a is a non-zero constant and
either s+ t < d1, or s+ t = d1 and s ≥ 1. From (1) and d2 > 1,

Deg(xsf t2(x, y)) = s+ td2 < d1d2.

So we get Deg(f) = d1d2.

Let C be an affine algebraic curve for C defined by f ∈ C[x, y], and let
P = (a, b) ∈ C. The multiplicity of C at P , denoted by multP (C), is defined
as the order s of the first non-vanishing term in the Taylor expansion of f
at P , i.e.,

f(x, y) =
∞∑
s=0

1

s!

s∑
t=0

(
s

t

)
(x− a)t(y − b)s−t ∂sf

∂xt∂ys−t
(a, b).

If multP (C) = 1, the point P is called a smooth point of C. If multP (C) =
r > 1, then we say that P is a singular point of multiplicity r. We say
that multC or f is smooth if any point of C is smooth. Note that the first
non-vanishing term is a homogeneous polynomial of x − a and y − b, so
all its irreducible factors are linear and they are called the tangents of C
at P .

A singular point P of multiplicity r on an affine plane curve C is called
ordinary if the r tangents to C at P are distinct.

The following result provides a topological interpretation of the irre-
ducibility of polynomials.

Lemma 2.3. A squarefree polynomial f ∈ C[x, y] is irreducible if and
only if the set of smooth points of f is connected.

3. Periodic dynatomic curves. In this paper, some of the proofs and
statements rely on the work concerning the periodic curves X0,p. We list the
related results in the following lemma. Their proofs can be found in [B], [BT],
[Eb], [GO], [LS], [Mil1], [S].

By abuse of notation, we will identify polynomials in C[c, z] as polyno-
mials in C[z] with C = C[c]. Denote by K a fixed algebraically closed field
containing C.

Let f ∈ C[c, z]. By the zeros of f ∈ C[c, z], we mean the points (c, z) ∈ C2

with f(c, z) = 0. By the roots of f ∈ C[z], we mean the roots of f in K
when f is considered as a polynomial in C[z].

Recall that {νd(p)}p≥1 is a unique sequence of positive integers satisfying
the recursive relation dp =

∑
k|p νd(k), Deg(f) denotes the total degree of f ,

and degz(f) denotes the degree of f as a polynomial in C[z].
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Lemma 2.4. Let X0,p be a periodic dynatomic curve. Then:

(i) ([B, BT]) There exists a unique sequence {Q0,p ∈ C[z]}p≥1 of monic
polynomials such that for all p ≥ 1,

Φ0,p(c, z) := f◦pc (z)− z =
∏
k|p

Q0,k(c, z).

Moreover, Deg(Q0,p) = degz(Q0,p) = νd(p).
(ii) ([BT]) Let c0 ∈ C. Then a point z0 is a root of Q0,p(c0, z) ∈ C[z] if

and only if one of the following three mutually exclusive conditions
is satisfied:
(1) z0 is a p-periodic point of fc0 and [f◦pc0 ]′(z0) 6= 1,
(2) z0 is a p-periodic point of fc0 and [f◦pc0 ]′(z0) = 1,
(3) z0 is an m-periodic point of fc0, where m is a proper factor of

p, and [f◦mc0 ]′(z0) is a primitive (p/m)th root of unity.

(iii) ([B, BT, GO, LS, S]) The polynomial Q0,p is smooth and irreducible
for all p ≥ 1 and

X0,p = {(c, z) ∈ C | Q0,p(c, z) = 0}.
(iv) ([B, BT, GO]) The projection π0,p : X0,p → C defined by π0,p(c, z)

= c is a degree νd(p) (given in (1.1)) branched covering with two
kinds of critical points:

(1) C0,p(primitive) = {(c, z) ∈ X0,p | (c, z) satisfies (ii)(2)}. In this
case, (c, z) is a simple critical point.

(2) C0,p(satellite) = {(c, z) ∈ X0,p | (c, z) satisfies (ii)(3)}. In this
case, the multiplicity of the critical point (c, z) is p/m− 1.

The critical value set of π0,p consists of the parabolic parameters of
period p.

(v) ([Eb, Mil1]) The projection $0,p : X0,p → C defined by $0,p(c, z) =
z is a degree νd(p)/d branched covering, which is injective near each
point (c0, 0) ∈ X0,p.

(vi) ([B]) The Galois group G0,p for the polynomial Q0,p ∈ C[z] consists
of the permutations of roots of Q0,p ∈ C[z] that commute with fc.

3. The defining polynomial for Xn,p. The objective of this section is
to show that Xn,p is an affine algebraic curve, and find its defining polyno-
mial.

Recall that C denotes the ring C[c]. For n ≥ 0 and p ≥ 1, set Φn,p(c, z) =

f
◦(n+p)
c (z)− f◦nc (z).

Lemma 3.1. The polynomial Φn,p ∈ C[z] has no multiple roots. Conse-
quently, it is squarefree.
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Proof. It is enough to show that there exists c0 ∈ C such that all roots
of Φn,p(c0, z) are simple. In fact, given c0 ∈ C \Md, a point z0 is a root of
Φn,p(c0, z) ∈ C[z] if and only if z0 is an (l, k)-preperiodic point of fc0 , where
0 ≤ l ≤ n and k | p. For such a c0, the critical point 0 goes to infinity and all
periodic points of fc0 are repelling. It follows that

(∂Φn,p/∂z)(c0, z0) = [f◦nc0 ]′(z0)([f
◦p
c0 ]′(z0)− 1) 6= 0,

which completes the proof.

Lemma 3.2. There exists a unique doubly indexed sequence {Qn,p ∈
C[z]}n,p≥1 of squarefree monic polynomials such that for all n, p ≥ 1,

(3.1) Φn,p(c, z) = Φn−1,p(c, z)
∏
k|p

Qn,k(c, z).

Moreover, Deg(Qn,p) = degz(Qn,p) = νd(p)(d− 1)dn−1.

Proof. The definition of {Qn,p}n,p≥1 is based on the polynomials {Q0,p}p≥1
of Lemma 2.4(i). We first show that Q0,p(c, z) divides Q0,p(c, fc(z)) for any
p ≥ 1. Since the polynomials Q0,p(c, fc(z)) ∈ C[z] are monic, we may per-
form Euclidean division to find a monic quotient Q ∈ C[z] and a remainder
R ∈ C[z] with deg(R) < deg(Q0,p) such that Q0,p(c, fc(z)) = Q0,pQ+R. We
need to show that R = 0, which will enable us to set Q1,p(c, z) := Q.

By Lemmas 3.1 and 2.4(i), the polynomial Q0,p ∈ C[z] has no repeated
factors. So its discriminant∆0,p ∈ C[c] does not identically vanish, and hence
∆0,p(c) 6= 0 outside a finite set. Fix c0 ∈ C such that ∆0,p(c0) 6= 0. Then any
root z0 of Q0,p(c0, z) is simple. By Lemma 2.4(ii), the point z0 is also a root
of Q0,p(c0, fc0(z)). As a consequence, R(c0, z) = 0 for all z ∈ C. Since this is
true for every c0 outside a finite set, we have R = 0 as required.

For n, p ≥ 1, we define Qn,p(c, z) := Q1,p(c, f
n−1
c (z)). It is clear that each

Qn,p ∈ C[z] is monic. Note that Φn,p(c, z) = Φ0,p(c, f
n
c (z)) for any n, p ≥ 1,

and so

Φn,p(c, z) = Φ0,p(c, f
n
c (z))

Lem. 2.4
=

∏
k|p

Q0,k(c, f
n
c (z))

=
∏
k|p

Q0,k(c, f
n−1
c (z))Q1,k(c, f

n−1
c (z))

=
∏
k|p

Q0,k(c, f
n−1
c (z))

∏
k|p

Q1,k(c, f
n−1
c (z))

= Φ0,p(c, f
n−1
c (z))

∏
k|p

Qn,k(c, z) = Φn−1,p(c, z)
∏
k|p

Qn,k(c, z).

Since each Φn,p is squarefree (Lemma 3.1), so is each Qn,p.
Repeatedly applying Lemma 2.2(2) & (3), we find Deg(fkc (z)) =

degz(f
k
c (z)) = dk for k ≥ 1. It follows that Deg(Φn,p) = degz(Φn,p) = dn+p
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for n ≥ 0 and p ≥ 1. Then by the recursive formulas (3.1), (1.1) and
Lemma 2.2(1), the degree conclusion in the lemma holds.

By the definition of Qn,p, we get the inductive formulas

(3.2)
Qn−1,p(c, fc(z)) = Qn,p(c, z), n ≥ 2,

Q0,p(c, fc(z)) = Q0,p(c, z)Q1,p(c, z),

for each p ≥ 1. This implies that we can obtain the properties of Qn,p by
induction on n.

In fact, Qn,p(c, z) is the defining polynomial of Xn,p. To see this, we will
now study the properties of the roots of Qn,p(c0, z) ∈ C[z] for any c0 ∈ C.

Proposition 3.3. Let n, p ≥ 1 be integers and c0 ∈ C. Then z0 ∈ C is
a root of Qn,p(c0, z) if and only if one of the following mutually exclusive
conditions holds:

(1) z0 is an (n, p)-preperiodic point of fc0 such that f lc0(z0) 6= 0 for any
0 ≤ l < n and [fpc0 ]′(fnc0(z0)) 6= 1.

(2) z0 is an (n, p)-preperiodic point of fc0 such that f lc0(z0) 6= 0 for any
0 ≤ l < n and [fpc0 ]′(fnc0(z0)) = 1.

(3) z0 is an (n,m)-preperiodic point of fc0 such that f lc0(z0) 6= 0 for
any 0 ≤ l < n and m is a proper factor of p with [fmc0 ]′(fnc0(z0)) a
primitive (p/m)th root of unity.

(4) z0 is an (n, p)-preperiodic point of fc0 such that f lc0(z0) = 0 for some
0 ≤ l < n.

(5) f (n−1)c0 (z0) = 0 and 0 is a p-periodic point of fc0.

We remark that in case (4), the case of l = n− 1 never occurs.

Proof. Fix c0 ∈ C. The proof goes by induction on n. If n = 1, then
Q0,p(c, fc(z)) = Q0,p(c, z) ·Q1,p(c, z). We claim that z0 is a common root of
Q0,p(c0, z) and Q1,p(c0, z) if and only if z0 = 0 is a p-periodic point of fc0 .

For sufficiency, we only need to note that, in this case, 0 is a multiple
root of Q0,p(c0, fc0(z)), but a simple root of Q0,p(c0, z) by Lemma 2.4(ii). For
necessity, z0 must be a multiple root of Q0,p(c0, fc0(z)). It follows that either
fc0(z0) is a multiple root of Q0,p(c0, z), or z0 is a critical point of fc0 . In the
former case, by Lemma 2.4(iv), c0 is a parabolic parameter and fc0(z0) is
a parabolic periodic point. This means that Q0,p(c0, fc0(z)) and Q0,p(c0, z)
have the same zero multiplicity at z0. Thus Q1,p(c0, z0) 6= 0. In the latter
case, we have z0 = 0, and by Lemma 2.4(ii), 0 is a p-periodic point of fc0 .

Such c0, z0 correspond to condition (5). In any other case, z0 is a root
of Q1,p(c0, z) if and only if fc0(z0) is a root of Q0,p(c0, z) but z0 is not
periodic. In fact, if it were, it would have the same period and multiplier as
its first image. By Lemma 2.4(ii), Q0,p(c0, z0) would vanish, a contradiction.
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Then Theorem 2.4(2) implies that z0 satisfies one of conditions (1)–(4) in
Proposition 3.3.

Assume that the proposition is established for 1 ≤ l < n. Then Qn,p(c, z)
= Qn−1,p(c, fc(z)). So for any c0 ∈ C, z0 is a root of Qn,p(c0, z) if and only if
fc0(z0) is a root of Qn−1,p(c0, z). By Lemma 2.1, if fc0(z0) has property (2)
or (3), then the orbit of z0 does not contain 0. Therefore by the inductive
assumption, z0 satisfies one of the five listed conditions.

In Proposition 3.3, the zeros of Qn,p(c, z) are divided into five classes. We
give some notation for sets consisting of zeros of various classes:

The set The points in the set
Cn,p(primitive) (c, z) satisfies condition (2) in Proposition 3.3

Cn,p(satellite) (c, z) satisfies condition (3) in Proposition 3.3

Cn,p(Misiurewicz) (c, z) satisfies condition (4) in Proposition 3.3

Cn,p(singular) (c, z) satisfies condition (5) in Proposition 3.3

Recall that for any n, p ≥ 1, the sets X̌n,p and Xn,p are defined by

X̌n,p = {(c, z) ∈ C2 | z is an (n, p)-preperiodic point of fc},
Xn,p = the closure of X̌n,p in C2.

Proposition 3.4. For n, p ≥ 1, we have

Xn,p = {(c, z) | Qn,p(c, z) = 0}, Xn,p\X̌n,p =Cn,p(satellite)∪Cn,p(singular).

Proof. Set X := {(c, z) | Qn,p(c, z) = 0}. Then X is a closed, perfect set.
By the definition of X̌n,p and Proposition 3.3, we have

(3.3) X \
(
Cn,p(satellite) ∪ Cn,p(singular)

)
= X̌n,p ⊂ X.

We claim that the sets Cn,p(satellite) and Cn,p(singular) are both finite. If
so, we get

X = X \ (Cn,p(satellite) ∪ Cn,p(singular)) = X̌n,p = Xn,p ⊂ X.

Hence it remains to check the claim.
If (c0, z0) ∈ Cn,p(satellite), then fn+pc0 (z0)−fnc0(z0) = 0 and [fpc0 ]′(fnc0(z0))

= 1. Hence c0 is a root of the resultant R ∈ C[c] of the equations fn+pc (z)−
fnc (z) = 0 and (fpc )′(fnc (z)) = 1. For c outside the Multibrot set, all the
periodic points of fc are repelling, so f

n+p
c (z)−fnc (z) and (fpc )′(fnc (z))−1 do

not have a common root. It follows that R is not identically zero, and hence
its roots form a finite set. If (c0, z0) ∈ Cn,p(singular), then Q0,p(c0, 0) = 0 by
Proposition 3.3(5) and Lemma 2.4(ii), whereas the roots of Q0,p(c, 0) form
a finite set.
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4. The irreducible factorization of Qn,p. In this section, we will
show that the curve Xn,p, n ≥ 1, has d− 1 smooth irreducible components,
and analyze the properties of its singular points. We always assume n ≥ 1
without explicit mention.

4.1. Factorization of Qn,p and the features of its singular points.
Recall that for f ∈ C[c, z], Deg(f) the total degree of f and degz(f) is the
degree of f in z.

Lemma 4.1. (Algebraic version) There exists a unique sequence {qjn,p ∈
C[z]}1≤j≤d−1 of monic polynomials such that

Qn,p(c, z) =
d−1∏
j=1

qjn,p(c, z).

All points in Cn,p(singular) are zeros of qjn,p ∈ C[c, z], and there are no
other common zeros for qin,p and qjn,p with i 6= j. Moreover, Deg(qjn,p) =

degz(q
j
n,p) = νd(p)d

n−1.
(Topological version) Define Vjn,p = {(c, z) ∈ C2 | qjn,p(c, z) = 0}

(1 ≤ j ≤ d − 1). Then Cn,p(singular) ⊂ Vjn,p for each j, and the sets
{Vjn,p \ Cn,p(singular)}1≤j≤d−1 are pairwise disjoint.

Proof. Recall that C = C[c] and K is a fixed algebraically closed field
containing C.

Let ∆ be a root of Q0,p ∈ C[z]. Then by Lemma 2.4(i),

Φ0,p(c,∆) = fpc (∆)−∆ = 0.

We see that ∆ is periodic under fc and ∆, . . . , fp−1c (∆) are roots of Φ0,p.
Note that Φ0,p(c, 0) = fpc (0) is a polynomial in c of degree dp−1, so ∆ 6= 0.
Consequently, ω∆, . . . , ωd−1∆ are not roots of Q0,p, where ω = e2πi/d, be-
cause they are not periodic under fc. Then by the equation Q0,p(c, fc(z)) =
Q0,p(c, z)Q1,p(c, z) (see (3.2)), we see that ω∆, . . . , ωd−1∆ are roots of
Q1,p ∈ C[z].

Let us factorize Q0,p in K by

Q0,p(c, z) =

νd(p)∏
i=1

(z −∆i)

(∆s1 6= ∆s2 for s1 6= s2, because all roots of Φ0,p ∈ C[z] are simple by
Lemma 3.1, and so are Q0,p by Lemma 2.4(i)). Then Q1,p can be expressed
as

(4.1) Q1,p =

νd(p)∏
i=1

(z − ω∆i) · · · (z − ωd−1∆i) =
d−1∏
j=1

νd(p)∏
i=1

(z − ωj∆i).
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To see this, we first note that for any s, t ∈ [1, d− 1] and i1 6= i2 ∈ [1, νd(p)],
ωs∆i1 6= ωt∆i2 . But this is impossible because both∆i1 and∆i2 are periodic.
Thus {ω∆i, . . . , ω

d−1∆i}νd(p)i=1 are pairwise distinct roots of Q1,p ∈ C[z] by
the discussion above, so

∏νd(p)
i=1 (z−ω∆i) · · · (z−ωd−1∆i) is a divisor of Q1,p.

As its degree is (d− 1)νd(p), equal to the degree of Q1,p, and Q1,p is monic,
we get (4.1). For j ∈ [1, d− 1], set

qj1,p(c, z) =

νd(p)∏
i=1

(z − ωj∆i) = (ωj)νd(p)
νd(p)∏
i=1

(ω−jz −∆i)(4.2)

= (ωj)νd(p)Q0,p(c, ω
−jz).

Note that d | νd(p), so (ωj)νd(p) = 1. Then qj1,p(c, z) is a monic polynomial in
C[z] satisfying

(4.3) Q1,p(c, z) =
d−1∏
j=1

qj1,p(c, z).

This gives a factorization of Q1,p in C[z]. By (4.2) and the degree conclusion
in Lemma 2.4(i), Deg(qj1,p) and degz(q

j
1,p) are both νd(p).

For n ≥ 2, we can define qjn,p(c, z) inductively by the formula qjn,p(c, z) =

qjn−1,p(c, fc(z)). Using induction, the degree conclusion in the lemma follows
directly from Lemma 2.2(2)&(3). As Qn,p(c, z) = Qn−1,p(c, fc(z)), we have

(4.4) Qn,p(c, z) =
d−1∏
j=1

qjn,p(c, z).

This is a factorization of Qn,p(c, z) in C[z].
It remains to prove that each qjn,p(c, z) has the remaining properties an-

nounced in the lemma. For n = 1, since qj1,p(c, z) = Q0,p(c, ω
−jz), we set that:

(c0, z0) is a common root of qi1,p(c, z) and qj1,p(c, z) for some 1 ≤ i 6= j ≤
d−1⇔ both (c0, ω

−iz0) and (c0, ω
−jz0) are zeros of Q0,p(c, z). It follows that

ω−iz0 and ω−jz0 are both periodic points of fc0 , hence z0 = 0. Note that, in
case (3) of Lemma 2.4(ii), the critical point 0 is never periodic (Lemma 2.1),
so 0 has period p. It follows that (c0, z0) ∈ C1,p(singular). On the other hand,
if (c0, z0) ∈ C1,p(singular), then (c0, ω

−iz0) = (c0, ω
−jz0) = (c0, 0) is a zero

of Q0,p(c, z). For n ≥ 2, the conclusion can be deduced from the case of
n = 1 and the definition of qjn,p(c, z).

For convenience, we summarize the definitions of qj1,p in terms of Q0,p

and the inductive definitions of qjn,p (n ≥ 2) in terms of qjn−1,p as a corollary.
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Corollary 4.2. For any p ≥ 1, 1 ≤ j ≤ d−1, and ω = e2πi/d, we have{
qj1,p(c, z) = Q0,p(c, ω

−jz),

qjn,p(c, z) = qjn−1,p(c, fc(z)), n ≥ 2.

Example 4.3. Here are some examples ofQn,p and their decompositions.
Let d = 3. Suppose p = 1; then Q0,1(c, z) = z3 + c− z,

Q1,1(c, z) = c2 + cz + z2 + 2cz3 + z4 + z6

= (z3 + c− e−
2
3
πiz)(z3 + c− e−

4
3
πiz)

= q11,1(c, z) · q21,1(c, z)

and

Q2,1(c, z) = 3c2 + 3c4 + (c6 + 3c+ 10c3 + 6c5)z3 + (1 + 12c2 + 15c4)z6

+ (6c+ 20c3)z9 + (1 + 15c2)z12 + 6cz15 + z18

=
(
(1− e−

2
3
πi)c+ c3 + (3c2 − e−

2
3
πi)z3 + 3cz6 + z9

)
×
(
(1− e−

4
3
πi)c+ c3 + (3c2 − e−

4
3
πi)z3 + 3cz6 + z9

)
= q12,1(c, z) · q22,1(c, z).

Suppose p = 2; then Q0,2(c, z) = 1 + c2 + cz + z2 + 2cz3 + z4 + z6 and

Q1,2(c, z) = 1 + 2c2 + c4 − (c+ c3)− z2 + (3c+ 4c3)z3 − 3c2z4

+ (1 + 6c2)z6 − 3cz7 + 4cz9 − z10 + z12

= (1 + c2 + e−
2
3
πiz + e−

4
3
πiz2 + 2cz3 + e−

2
3
πiz4 + z6)

× (1 + c2 + e−
4
3
πiz + e−

2
3
πiz2 + 2cz3 + e−

4
3
πiz4 + z6)

= q11,2(c, z) · q21,2(c, z).

From Lemma 4.1, we see that in the case d ≥ 3, the polynomial Qn,p is
both reducible and non-smooth, because Cn,p(singular), which is non-empty,
is contained in the set of singular points of Qn,p.

We now turn to the study of the components qjn,p(c, z). The following
theorem is the core of this section.

Theorem 4.4. Given d ≥ 2, for any n, p ≥ 1 and j ∈ [1, d − 1], the
polynomial qjn,p(c, z) is smooth and irreducible.

The proof of this theorem is postponed to §4.2.
By this theorem, all components Vjn,p are Riemann surfaces. Together

with Lemma 4.1, this implies that the singularity set of Xn,p is equal to
Cn,p(singular). The next proposition characterizes the features of these sin-
gularities.
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Proposition 4.5. Given d ≥ 2, for n, p ≥ 1, each singularity (c0, z0)
of Xn,p has multiplicity d − 1. Furthermore, if f lc0(z0) = 0 for some 0 ≤ l
≤ n−2, then Xn,p has one tangent of multiplicity d−1 at (c0, z0); otherwise,
the singularity (c0, z0) is ordinary.

Proof. Let (c0, z0) be a singular point of Xn,p. Since each component of
Xn,p is smooth and they pairwise intersect at (c0, z0), the first non-vanishing
term of Qn,p(c, z) at (c0, z0) is d−1. Hence the multiplicity of the singularity
(c0, z0) is d− 1.

If n = 1, by Proposition 3.3(5), the fact that (c0, z0) ∈ C1,p(singular)
implies that z0 = 0 and (c0, 0) ∈ X0,p. According to Lemma 2.1, c0 is not a
parabolic parameter. Then Lemma 2.4(iv) shows that (c0, 0) is not a critical
point of π0,p, and hence (∂Q0,p/∂z)(c0, 0) 6= 0. Meanwhile, according to
Lemma 2.4(v), (∂Q0,p/∂c)(c0, 0) 6= 0. Thus Q0,p(c, z) has a local expression

Q0,p(c, z) = a0,p(c− c0) + b0,pz + higher order terms

around (c0, 0) with a0,p, b0,p 6= 0. It follows that

qj1,p(c, z) = Q0,p(c, ω
−jz) = a0,p(c− c0) + b0,pω

−jz + higher order terms.

Therefore the tangents of Vj1,p (1 ≤ j ≤ d−1) at (c0, 0) are pairwise distinct.
For n ≥ 2, we denote by ajn,p(c − c0) + bjn,p(z − z0) the equation of

the tangent of Vjn,p at (c0, z0). By the formula qjn,p(c, z) = q1,p(c, f
n−1
c (z))

(Corollary 4.2), we have

ajn,p =
∂qjn,p
∂c

(c0, z0) =
∂qj1,p
∂c

(c0, 0) +
∂qj1,p
∂z

(c0, 0)
∂fn−1c

∂c
(c0, z0)

= a0,p + b0,pω
−j ∂f

n−1
c

∂c
(c0, z0),

bjn,p =
∂qjn,p
∂z

(c0, z0) =
∂qj1,p
∂z

(c0, 0)(fn−1c0 )′(z0) = b0,pω
−j(fn−1c0 )′(z0).

If there exists 0 ≤ l ≤ n−2 such that f lc0(z0) = 0, then (fn−1c0 )′(z0) = 0, and
hence bjn,p = 0. It follows that the first non-vanishing term of Qn,p at (c0, z0)
is a(c−c0)d−1 where a is a non-zero constant, i.e., Xn,p has the tangent c = c0
of multiplicity d − 1 at (c0, z0). In the other cases, we get (fn−1c0 )′(z0) 6= 0.
Combining this with the fact that a0,p, b0,p 6= 0, it is not difficult to check
that the pairs (ajn,p, b

j
n,p) (1 ≤ j ≤ d − 1) are pairwise non-colinear. Hence

the tangents of Vjn,p (1 ≤ j ≤ d− 1) at (c0, z0) are pairwise distinct, that is,
(c0, z0) is ordinary.

4.2. Proof of the smoothness and irreducibility of qjn,p. The ob-
jective here is to prove Theorem 4.4.
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The approach to proving the smoothness is similar to that in [BT]. The
idea is to prove that some partial derivative of qjn,p is non-vanishing. Fol-
lowing A. Epstein [E], we will express this derivative as the coefficient of a
quadratic differential of the form (fc)?Q − Q. Thurston’s contraction prin-
ciple gives (fc)?Q−Q 6= 0, whence our partial derivative is non-zero.

The approach to the irreducibility is based on the connectedness of the
periodic curve X0,p. Then we will show the connectedness of the Vjn,p using
a branched covering, by induction on n.

Here we list some definitions and results about quadratic differentials and
Thurston’s contraction principle. The proofs can be found in [BT] and [Le].

We use Q(C) to denote the set of meromorphic quadratic differentials on
C whose poles (if any) are all simple. If Q ∈ Q(C) and U is a bounded open
subset of C, the norm

‖Q‖U :=
� �

U

|q|

is well-defined and finite.
For f : C → C a non-constant polynomial and Q = q dz2 a meromor-

phic quadratic differential on C, the pushforward f∗Q is defined to be the
quadratic differential

f∗Q := Tq dz2 with Tq(z) :=
∑

f(w)=z

q(w)

f ′(w)2
.

If Q ∈ Q(C), then also f∗Q ∈ Q(C). The following lemma is a weak version
of Thurston’s contraction principle.

Lemma 4.6. If f : C→ C is a polynomial and Q ∈ Q(C), then f∗Q 6= Q.

The formulas below appeared in [Le, Chapter 2]; we write them together
as a lemma.

Lemma 4.7 (Levin). For f = fc, we have

(4.5)


f∗

(
dz2

z

)
= 0,

f∗

(
dz2

z − a

)
=

1

f ′(a)

(
dz2

z − f(a)
− dz2

z − c

)
if a 6= 0.

To prove the irreducibility of qjn,p, we need the following lemma.

Lemma 4.8. For each n, p ≥ 1 and 1 ≤ j ≤ d − 1, the polynomial
qjn,p(c, 0) (in the variable c) has degree νd(p)dn−2.

Proof. For n = 1, we see that qj1,p(c, 0) = Q0,p(c, 0) from Corollary 4.2.
Then the result follows directly from Lemma 2.4(v).



52 Y. Gao

For n ≥ 2, we have qjn,p(c, 0) = qj1,p(c, f
n−1(0)). Since Deg(qj1,p) =

degz(q
j
1,p) = νd(p) (see Lemma 4.1) and Deg(fn−1c (0)) = dn−2 (which is

easily checked), we have

Deg(qjn,p(c, 0)) = Deg(qj1,p(c, z)) ·Deg(fn−1c (0)) = νd(p)d
n−2

by Lemma 2.2(2) & (3).

Proof of Theorem 4.4. The proof goes by induction on n.
For n = 1, as qj1,p(c, z) = Q0,p(c, ω

−jz) and Q0,p(c, z) is smooth and
irreducible, we know that qj1,p(c, z) are smooth and irreducible. Assume that
for 1 ≤ l < n, the polynomials qjl,p(c, z) are smooth and irreducible. We will
show that qjn,p(c, z) are then smooth and irreducible. Fix any j0 ∈ [1, d− 1].

Smoothness of qj0n,p. As qj0n,p(c, z) = qj0n−1,p(c, fc(z)), for any zero (c0, z0)

of qj0n,p(c, z) we have

(4.6)


∂qj0n,p
∂c

(c0, z0) =
∂qj0n−1,p
∂c

(c0, w0) +
∂qj0n−1,p
∂z

(c0, w0),

∂qj0n,p
∂z

(c0, z0) =
∂qj0n−1,p
∂z

(c0, w0) · f ′c0(z0),

where w0 = fc0(z0). Hence if z0 6= 0, by the smoothness of Vj0n,p (induc-
tive assumption), [∂qj0n,p/∂c](c0, z0) and [∂qj0n,p/∂z](c0, z0) cannot be 0 simul-
taneously; it follows that qj0n,p(c, z) is smooth at (c0, z0). So it remains to
prove that qj0n,p(c, z) is smooth at (c0, 0) ∈ Vj0n,p. In this situation, c0 is either
a p-periodic superattracting parameter or an (n, p)-Misiurewicz parameter,
and [∂qj0n,p/∂z](c0, 0) = 0. So we have to show [∂qj0n,p/∂c](c0, 0) 6= 0.

In the former case fn−1c0 (0) = 0, so p |n−1. As qj0n,p(c, z) = qj01,p(c, f
n−1
c (z)),

we have

(4.7)
∂qj0n,p
∂c

(c0, 0) =
∂qj01,p
∂c

(c0, 0) +
∂qj01,p
∂z

(c0, 0)
∂fn−1c

∂c
(c0, 0).

As Q0,p(c0, 0) = 0 and p |n− 1, differentiating both sides of the equation

fn−1c (z)− z =
∏
k|n−1

Q0,k(c, z),

which appears in Lemma 2.4(i), with respect to c and z respectively at (c0, 0),
we obtain

(4.8)



∂fn−1c

∂c
(c0, 0) =

∂Q0,p

∂c
(c0, 0)

∏
k|n−1
k 6=p

Q0,k(c0, 0),

−1 =
∂Q0,p

∂z
(c0, 0)

∏
k|n−1
k 6=p

Q0,k(c0, 0).
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Since qj01,p(c, z) = Q0,p(c, ω
−j0z), we have

∂qj01,p
∂c

(c0, 0) =
∂Q0,p

∂c
(c0, 0),

∂qj01,p
∂z

(c0, 0) = ω−j0
∂Q0,p

∂z
(c0, 0).

By substituting these two formulas into (4.7) and applying (4.8), we find

∂qj0n,p
∂c

(c0, 0) =
∂Q0,p

∂c
(c0, 0) + ω−j0

∂Q0,p

∂z
(c0, 0)

∂Q0,p

∂c
(c0, 0)

∏
k|n−1
k 6=p

Q0,k(c0, 0)

(4.9)

=
∂Q0,p

∂c
(c0, 0)

(
1 + ω−j0

∂Q0,p

∂z
(c0, 0)

∏
k|n−1
k 6=p

Q0,k(c0, 0)

)

=
∂Q0,p

∂c
(c0, 0)(1− ω−j0).

By Lemma 2.4(v), [∂Q0,p/∂c](c0, 0) is non-zero, hence so is [∂qj0n,p/∂c](c0, 0).
In the latter (Misiurewicz) case, since

∂Qn,p
∂c

(c0, 0) =
∏

1≤j 6=j0≤d−1
qjn,p(c0, 0) · ∂q

j0
n,p

∂c
(c0, 0)

and (c0, 0) is not a zero of
∏
j 6=j0 q

j
n,p(c, z) by Lemma 4.1, we have only to

show [∂Qn,p/∂c](c0, 0) 6= 0. Furthermore, since
∂Φn,p
∂c

(c0, 0) = Φn−1,p(c0, 0) ·
∏

k|p,k<p

Qn,k(c0, 0) · ∂Qn,p
∂c

(c0, 0)

and Φn−1,p(c0, 0) ·
∏
k|p,k<pQn,k(c0, 0) 6= 0, we shall equivalently show

[∂Φn,p/∂c](c0, 0) 6= 0. We shall find a meromorphic quadratic differential
Q with simple poles such that

(fc0)∗Q = Q+
∂Φn,p
∂c

(c0, 0) · dz2

z − c0
.

Then by Lemma 4.6, we obtain [∂Φn,p/∂c](c0, 0) 6= 0.
We shall use the following notation:

zk := f◦n+kc0 (0), δk := f ′c0(zk) = dzd−1k , 0 ≤ k ≤ p− 1,

yl := f lc0(0), εl := f ′c0(yl) = dyd−1l , 1 ≤ l ≤ n− 1.

With this notation and some calculation, we get

∂Φn,p
∂c

(c0, 0) =
∂f
◦(n+p)
c

∂c
(c0, 0)− ∂f◦nc

∂c
(c0, 0)

= (δ0 · · · δp−1 − 1)(εn−1 · · · ε1 + · · ·+ εn−1εn−2 + εn−1 + 1)

+ δp−1 · · · δ1 + · · ·+ δp−1 + 1.
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Denote

α = (δ0 · · · δp−1 − 1)(εn−1 · · · ε1 + · · ·+ εn−1εn−2 + εn−1 + 1).

Let

Q =

p−1∑
k=0

ρk
z − zk

dz2 +

n−1∑
l=1

λl
z − yl

dz2

be a quadratic differential inQ(C). Here ρk (0 ≤ k ≤ p−1), λl (1 ≤ l ≤ n−1)
are undetermined coefficients (note that y1 = c0). Applying Lemma 4.7 and
writing f for fc0 , we have

f∗Q =

p−1∑
k=0

ρk
δk

(
dz2

z − z
k+1

− dz2

z − c0

)
+
n−2∑
l=1

λl
εl

(
dz2

z − y
l+1

− dz2

z − c0

)
+
λn−1
εn−1

(
dz2

z − z0
− dz2

z − c0

)
=

(
ρp−1
δp−1

+
λn−1
εn−1

)
dz2

z − z0
+
ρ0
δ0

dz2

z − z1
+ · · ·+ ρp−2

δp−2

dz2

z − zp−1

+

(
α−

n−1∑
l=1

λl
εl

)
dz2

z − y1
+
λ1
ε1

dz2

z − y2
+ · · ·+ λn−2

εn−2

dz2

z − yn−1

−
(
α+

p−1∑
k=0

ρk
δk

)
dz2

z − c0
.

We want to choose Q so that

f∗Q−Q = −
(
α+

p−1∑
k=0

ρk
δk

)
dz2

z − c0
.

This amounts to solving the following linear system for the unknown coeffi-
cient vector (ρ0, . . . , ρp−1, λ1, . . . , λn−1):

1
δ0
−1
· ·
· ·
· ·

1
δ
p−2

−1

−1 1
δ
p−1

1
ε
n−1

1 + 1
ε1

1
ε2

1
ε3
· · · 1

ε
n−2

1
ε
n−1

1
ε1

−1
· ·

· ·
· ·

1
ε
n−2

−1





ρ0
·
·
·

ρp−2

ρp−1

λ1

λ2

·
·
·

λn−1



=



0
·
·
·
0

0

α

0

·
·
·
0



.
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Denoting by A the coefficient matrix, we have

det(A) =
(−1)n−1α

δ0 · · · δp−1 · ε1 · · · εn−1
.

Thus whether α = 0 or not, this linear system has non-zero solutions, and
one of its solutions is

(4.10)

ρ0 = δ0 · · · δp−1,
ρ1 = δ1 · · · δp−1,
...

ρp−1 = δp−1,

λ1 = (δ0 · · · δp−1 − 1) · εn−1 · · · ε1,
...

λn−2 = (δ0 · · · δp−1 − 1) · εn−1εn−2,
λn−1 = (δ0 · · · δp−1 − 1) · εn−1.

Therefore, for (ρ0, . . . , ρp−1, λ1, . . . , λn−1) satisfying (4.10), we have

f∗Q−Q = −
(
α+

p−1∑
k=0

ρk
δk

)
dz2

z − c0
= −∂Φn,p

∂c
(c0, 0) · dz2

z − c0
.

As a consequence [∂Φn,p/∂c](c0, 0) 6= 0.

Irreducibility of qj0n,p. For n ≥ 2, qjn,p(c, z) is defined by qjn,p(c, z) =

qjn−1,p(c, fc(z)). Interpreting these equations from a topological point of view,
we obtain a sequence of maps

{℘jn,p : Vjn,p → V
j
n−1,p, (c, z) 7→ (c, fc(z)) | n ≥ 2, p ≥ 1, 1 ≤ j ≤ d− 1}.

Note that for n = 1, we can also define a map ℘j1,p : Vj1,p → X0,p by
℘j1,p(c, z) = (c, fc(z)). By the smoothness of Vjn,p, we can check the following
results.

• The map ℘j1,p : Vj1,p → X0,p is a homeomorphism. To see this, notice
that qj1,p(c, z) = Q0,p(c, ω

−jz) (Corollary 4.2), so we can define a map φj1,p
from X0,p to Vj1,p by sending (c0, w0) ∈ X0,p to (c0, ω

jz0) ∈ Vj1,p, where z0
is the point in the orbit of w0 under fc0 with fc0(z0) = w0. By a simple
computation, we can see that φj1,p ◦ ℘

j
1,p = idVj1,p

and ℘j1,p ◦ φ
j
1,p = idX0,p .

Hence ℘j1,p is a homeomorphism.
• For n ≥ 2, the map ℘jn,p : Vjn,p → Vjn−1,p is a degree d branched covering

with critical set
Dj
n,p = {(c, 0) | qjn,p(c, 0) = 0},

and each critical point has multiplicity d− 1.
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In fact, (c0, w0) ∈ Vjn−1,p \ ℘(Dj
n,p) has d preimages (c0, z1), . . . , (c0, zd)

under ℘jn,p, where z1, . . . , zd are the preimages of w0 under fc0 . Fix i ∈ [1, d].
If [∂qjn,p/∂z](c0, zi) 6= 0, then by (4.6), [∂qjn−1,p/∂z](c0, w0) 6= 0. This implies
that some neighborhoods of (c0, zi) and (c0, w0) can each be parameterized
by c. In such two local coordinates, the map ℘jn,p has a local expression
c 7→ c near (c0, zi), which means that ℘jn,p is a local homeomorphism near
(c0, zi). If [∂qjn,p/∂z](c0, zi) = 0, then by (4.6), the fact that zi 6= 0 and the
smoothness of qjn,p, we find that [∂qjn−1,p/∂z](c0, w0) = 0 and

∂qjn,p
∂c

(c0, zi) =
∂qjn−1,p
∂c

(c0, w0) 6= 0.

This implies that some neighborhoods of (c0, zi) and (c0, w0) can each be
parameterized by z, and c′(zi) = 0. In such two local coordinates, the map
℘jn,p has a local expression z 7→ fc(z)(z) near (c0, zi). Since zi 6= 0, we have
dfc(z)(z)

dz

∣∣
z=zi

= dzi 6= 0, which still means that ℘jn,p is a local homeomorphism
near (c0, zi).

By the discussion above, we can see that

℘jn,p : Vjn,p \ (℘jn,p)
−1(℘(Dj

n,p))→ V
j
n−1,p \ ℘(Dj

n,p)

is a degree d covering. On the other hand, any point in ℘jn,p(Dj
n,p) has only

one preimage, which belongs to Dj
n,p. Hence ℘ : Vjn,p → Vjn−1,p is a degree

d branched covering (because (℘jn,p)−1(℘(Dj
n,p)) = Dj

n,p and Dj
n,p is finite),

and the local degree of ℘jn,p at each point of Dj
n,p is d.

By the smoothness of qj0n,p(c, z) and the inductive irreducibility assump-
tion, we know that Vj0n−1,p and each connected component of Vj0n,p are Rie-
mann surfaces. Then the restriction of ℘j0n,p to any connected component
of Vj0n,p is also a branched covering. Lemma 4.8 implies that the critical set
Dj0
n,p of ℘j0n,p is non-empty. Since each critical point has multiplicity d − 1,

the set Vj0n,p must be connected. By Lemma 2.3 and the smoothness of qj0n,p,
we conclude that qj0n,p(c, z) is irreducible in C[c, z].

5. Genus of the compactification of Vjn,p. In the previous section,
we have seen that Xn,p consists of d − 1 Riemann surfaces Vjn,p pairwise
intersecting at the singular points of Xn,p. In order to give a complete topo-
logical description of Xn,p, we also need the topological characterization of
each Vjn,p.

In fact, by adding an ideal boundary point at each end of Vjn,p, we ob-
tain a compactification of Vjn,p, denoted by V̂jn,p, such that V̂jn,p is a compact
Riemann surface (see §5.1). The genus of V̂jn,p is calculated in §5.2. Topolog-
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ically, Xn,p is completely determined by the number of its singular points,
the genus of V̂jn,p and the number of ideal boundary points added to Vjn,p (or
the number of ends of Vjn,p).

5.1. Compactification of Vjn,p. Denote by πjn,p : Vjn,p → C the projec-
tion from Vjn,p to the parameter plane, i.e., πjn,p(c, z) = c. It is easy to see
that

(5.1) πjn,p = π0,p ◦ ℘j1,p ◦ · · · ◦ ℘
j
n−1,p ◦ ℘

j
n,p

where π0,p is the projection from X0,p to the parameter plane and ℘jn,p is
defined in the proof of irreducibility. It follows that πjn,p is a degree νd(p)dn−1

branched covering. To study the critical points of πjn,p, we define a subset
Ccrit
n,p (singular) of Cn,p(singular) by

(5.2) Ccrit
n,p (singular)

= {(c, z) ∈ Cn,p(singular) | f lc(z) = 0 for some 0 ≤ l ≤ n− 2}.

Lemma 5.1. For any l, p ≥ 1, the critical set of πjl,p is the union of
Cjl,p(primitive), Cjl,p(satellite), C

j
l,p(Misiurewicz) and Ccrit

l,p (singular), where
Cjl,p(M) := Cl,p(M) ∩ Vjl,p and M indicates different properties.

Proof. We first note that (c0, z0) is a critical point of πjl,p if and only if
[∂qjl,p/∂z](c0, z0) = 0. By Lemma 2.4(iv) and the fact that ℘j1,p is a homeo-
morphism (shown in the proof of irreducibility of qjl,p), the critical set of π

j
1,p

is Cj1,p(primitive) ∪ Cj1,p(satellite). In the case l = 1, Cl,p(Misiurewicz) and
Ccrit
l,p (singular) are empty.
For l ≥ 2, by Corollary 4.2, we have qjl,p(c, z) = qj1,p(c, f

l−1
c (z)). Then a

point (c0, z0) is critical for πjl,p if and only if

∂qjl,p
∂z

(c0, z0) =
∂qj1,p
∂z

(c0, f
l−1
c0 (z0)) · (f l−1c0 )′(z0) = 0.

Equivalently, either (c0, f
l−1
c0 (z0)) is a critical point of ℘j1,p, or f

l
c0(z0) = 0

for some 0 ≤ q ≤ n − 2. By Proposition 3.3, the former happens if and
only if (c0, z0) ∈ Cjl,p(primitive)∪Cjl,p(satellite), and the latter if and only if
(c0, z0) ∈ Cjl,p(Misiurewicz) ∪ Ccrit

l,p (singular).

From this lemma, we see that the critical value set of πjn,p is contained in
the union of the sets of parabolic, superattracting and Misiurewicz parame-
ters. Hence C\Md contains no critical values. It follows that each connected
component of (℘jn,p)−1(C \Md), called an end of Vjn,p, is conformal to C \D.
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By adding an ideal boundary point at the infinitely far boundary, each end
of Vjn,p is conformal to the unit disk, and thus Vjn,p becomes a compact Rie-
mann surface. This gives a kind of compactification of Vjn,p, and in the next
subsection we will calculate the genus of this compact Riemann surface.

More precisely, let {Ejn,p,i | 1 ≤ i ≤ mj
n,p} be the ends of Vjn,p. Denote

by ∞j
n,p,i the point added at the infinitely far boundary of Ejn,p,i. Then the

surface V̂jn,p := Vjn,p∪{∞j
n,p,i}

mjn,p
i=1 is a compactification of Vjn,p, and Êjn,p,i :=

Ejn,p,i ∪ {∞
j
n,p,i} is called an end of V̂jn,p. In this case, the map πjn,p can be

extended to
π̂jn,p : V̂jn,p → Ĉ

by setting π̂jn,p(∞j
n,p,i) =∞.

5.2. Calculation of the genus of V̂jn,p. Now, for any n, p ≥ 1 and
j ∈ [1, d−1], we have obtained a branched covering π̂jn,p : V̂jn,p → Ĉ of degree
νd(p)d

n−1 between two compact Riemann surfaces. By the Riemann–Hurwitz
formula, we have

2− 2gjn,p + total number of critical points of π̂jn,p = 2νd(p)d
n−1,

where gjn,p denotes the genus of V̂jn,p. So in order to calculate the genus
of V̂jn,p, we only need to count the number of critical points of π̂jn,p with
multiplicity. By Lemma 5.1, we know that the set of critical points of π̂jn,p
consists of Cjn,p(primitive), Cjn,p(satellite), Cjn,p(Misiurewicz), Ccrit

n,p (singular)
and maybe some added ideal boundary points. So we will count them class
by class.

Counting the points of Cjn,p(primitive) and Cjn,p(satellite). Bousch [B]
counts the number of critical points in C0,p(primitive) and C0,p(satellite). His
argument can be directly extended to our case (see also [Sil, Thm. 4.17]),
so we only give the result. The numbers of critical points (counted with
multiplicity) of π̂jn,p in Cjn,p(primitive) and Cjn,p(satellite) are

dn−1p
[
(d− 1)νd(p)/d−

∑
k|p, k<p

(νd(k)/d)(d− 1)ϕ(p/k)
]

and
dn−1

∑
k|p, k<p

(νd(k)/d)(d− 1)ϕ(p/k)k(p/k − 1).

Counting the points of Cjn,p(Misiurewicz). Recall that Dj
s,p = {(c, 0) ∈

C2 | qjs,p(c, 0) = 0}, s ≥ 2, is the set of critical points of ℘js,p. By Proposi-
tion 3.3, if (c, 0) ∈ Dj

s,p, then c is either an (s, p)-Misiurewicz parameter or
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a p-superattracting parameter. So we divide Dj
s,p into

Dj
s,p(Misiurewicz) = {(c, 0) ∈ Dj

s,p | c is a Misiurewicz parameter},
Dj
s,p(period) = {(c, 0) ∈ Dj

s,p | c is a superattracting parameter}.

By the definition of Cjn,p(Misiurewicz), we have

Cjn,p(Misiurewicz) =

n⋃
s=2

(hjn,s,p)
−1(Dj

s,p(Misiurewicz)),

where hjn,s,p := ℘js+1,p ◦ · · · ◦ ℘
j
n,p : Vjn,p → Vjs,p.

Fix any s ∈ [2, n]. Since the degree of qjs,p(c, 0) is νd(p)ds−2 (Lemma 4.8)
and [∂qjs,p/∂c](c, 0) 6= 0 at each (c, 0) ∈ Dj

s,p (shown in the proof of smoothness
of qjs,p(c, z)), we get #Dj

s,p = νd(p)d
s−2. By Proposition 3.3(v), Dj

s,p(period)

is non-empty if and only if p | s−1. In this case, we also see thatDj
s,p(period) =

{(c, 0) | Q0,p(c, 0) = 0}, so #Dj
s,p(period) equals νd(p)/d if p | s − 1, and 0

otherwise. It follows that

#Dj
s,p(Misiurewicz) =

{
νd(p)d

s−2 if p - s− 1,
νd(p)d

s−2 − νd(p)/d if p | s− 1.

Note that the critical value set of hjn,s,p is disjoint from Dj
s,p(Misiurewicz),

so
#(hjn,s,p)

−1(Dj
s,p(Misiurewicz)) = #Dj

s,p(Misiurewicz) · dn−s

and each point in (hjn,s,p)−1(D
j
s,p(Misiurewicz)) is a critical point of π̂jn,p

with multiplicity d − 1. Therefore the number of critical points (counted
with multiplicity) of π̂jn,p in Cjn,p(Misiurewicz), denoted by Mn,p, is

Mn,p =
n∑
s=2

#Dj
s,p(Misiurewicz) · dn−s · (d− 1)(5.3)

= νd(p)d
n−2(d− 1)

(
n− 1−

[(n−1)/p]∑
t=1

d−tp
)
.

Counting the points of Ccrit
n,p (singular). Recall that Ccrit

n,p (singular) con-
sists of all points of the form (c, z) with fn−1c (z) = 0 and such that there
exists l ∈ [0, n− 2] with f l(z) = 0 and such that 0 is p-periodic.

We divide Cn,p(singular) into subsets Ctn,p(singular) which consist of
points (c, z) ∈ Cn,p(singular) such that

n− 1− tp = min{l | f lc(z) = 0}.
Here t can take the values 0, . . . , [(n− 1)/p], where [x] denotes the inte-
ger part of x, and the sets Ctn,p are pairwise disjoint and form a partition
of Cn,p(singular). From (5.2), we see that Ccrit

n,p (singular) is the union of
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Ctn,p(singular), t ≥ 1. Hence #Ccrit
n,p (singular) = 0 if n − 1 < p. So in the

following discussion, we only treat the case of n−1 ≥ p, i.e., [(n− 1)/p] ≥ 1.
Let t ≥ 1. We have (c, z) ∈ Ctn,p(singular) if and only if

(c, 0) ∈ Dj
tp+1,p(period), fn−1−tpc (z) = 0 and (fn−1−tpc )′(z) 6= 0.

Hence

Ctn,p(singular)

= (hjn,tp+1,p)
−1(Dj

tp+1,p(period)) \ (hjn,(t+1)p+1,p)
−1(Dj

(t+1)p+1,p(period))

if (t+ 1)p+ 1 ≤ n, and Ctn,p(singular) = (hjn,tp+1,p)
−1(Dj

tp+1,p(period)) oth-
erwise. So

#Ctn,p(singular)

=

{
dn−1−tp · νd(p)/d if t = [(n− 1)/p],
dn−1−tp · νd(p)/d− d · dn−1−(t+1)p · νd(p)/d if 1 ≤ t < [(n− 1)/p].

On the other hand, hjn,tp+1,p : Vjn,p → Vjtp+1,p is injective in a neighbor-
hood of any point (c, z) ∈ Ctn,p(singular), and πjkp+1,p : Vjtp+1 → C has
local degree dt at (c, 0), so the number of critical points counted with mul-
tiplicity in Ctn,p(singular) is (dt − 1)#Ctn,p(singular). Thus the total number
of critical points counted with multiplicity in Cn,p(singular), in the case of
[(n− 1)/p] ≥ 1, is

(5.4) Kn,p :=

[(n−1)/p]∑
t=1

(dt − 1)#Ctn,p(singular)

= νd(p)(d
p−1 − 1)dn−1−p(ξn,p − ζn,p) + (d[(n−1)/p] − 1)νd(p)d

n−2−[(n−1)/p]p

where ξn,p :=
∑[(n−1)/p]−1

t=1 d−t(p−1) and ζn,p :=
∑[(n−1)/p]−1

t=1 d−pt.
Note that when [(n− 1)/p] = 0, the number computed by formula (5.4)

is 0, which is still equal to the cardinality of Ccrit
n,p (singular). So the number

Kn,p, defined by (5.4), is equal to the number of critical points counted with
multiplicity in Ccrit

n,p (singular) in all cases.

Counting the ideal boundary points. Bousch [B] and Milnor [Mil1] show
that the local degree of π0,p at each ideal boundary point is 2 (in the case
of d = 2) by analysing the asymptotic behavior of fc(z) as (c, z) goes to an
ideal boundary point on X0,p. Their argument can be easily generalized to our
case with degree d ≥ 2. Just to be self-contained we give an alternative proof
using the monodromy action (Lemma 5.3 below). By Lemma 5.3, the local
degree of V̂jn,p at each ideal boundary point is d. It follows that the number
of ideal boundary points is νd(p)dn−2 because π̂jn,p is a degree νd(p)dp−1
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branched covering. So the number of critical points counted with multiplicity
is νd(p)dn−2(d− 1).

By the Riemann–Hurwitz formula, we have

gjn,p = 1 + 1
2νd(p)d

n−2(pd− p− 1− d) + 1
2(Mn,p +Kn,p)

− 1
2d

n−2(d− 1)
∑

k|p, k<p

kνd(k)ϕ(p/k).

Here are the genera of some examples.

d n p νd(p) Mn,p Kn,p gn,p

3 1 1 3 0 0 0
3 2 1 3 4 2 1
2 2 2 2 2 0 0
2 3 2 2 7 1 1
2 2 3 6 6 0 2

Corollary 5.2. For fixed n, p ≥ 1, the surfaces Vjn,p, 1 ≤ j ≤ d − 1,
are pairwise homeomorphic.

Proof. Topologically, the surface Vjn,p is completely determined by the
genus and the number of ideal boundary points of V̂jn,p, and these two num-
bers are independent of j.

Lemma 5.3. All ideal boundary points are critical points of π̂jn,p with
multiplicity d− 1.

Proof. We first give a symbolic description of the dynamics on the filled-
in Julia set for a parameter outside the Multibrot set.

If c ∈ CrMd, the Julia set of fc is a Cantor set. If c ∈ RMd
(θ) with θ 6= 0

not necessarily periodic, the dynamical rays Rc(θ/d), . . . , Rc((θ + d− 1)/d)
bifurcate at the critical point. The set Rc(θ/d)∪· · ·∪Rc((θ+d−1)/d)∪{0}
decomposes the complex plane into d connected components. We denote by
U0 the component containing Rc(0) and by U1, . . . , Ud−1 the other compo-
nents in counterclockwise order.

The orbit of a point x ∈ Kc has an itinerary with respect to this partition.
In other words, to each x ∈ Kc, we can associate a sequence in ZN

d whose
jth entry is k if f◦j−1c (x) ∈ Uk. This gives a map ιc : Kc → ZN

d , which is
bijective for any c ∈ C\Md. Moreover, the dynamic of fc on Kc is conjugate
to shift on ZN

d via the map ιc.
Now let π := πjn,p

∣∣
Ejn,p,i

. The map π : Ejn,p,i → C \Md is a covering of

degree djn,p,i. Fix c0 ∈ C \ (Md ∪ RMd
(0)) with djn,p,i = #(π−1(c0)). Since

Ejn,p,i is connected, the monodromy group induced by π, denoted by Mon(π),
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acts on π−1(c0) transitively. Thus for any fixed (c0, z0) ∈ π−1(c0), the set
π−1(c0) is exactly the orbit of (c0, z0) under Mon(π).

Let ct : [0, 1] → C \Md be an oriented simple closed curve based at c0
that intersects RMd

(0) only at ct0 . Let zt be the (n, p)-preperiodic point of fct
obtained from the analytic continuation of z0 along ct. Note that as c varies
in C \ (Md ∪RMd

(0)), the (n, p)-preperiodic points of fc and the dynamical
rays Rc(0) and Rc((θc + s)/d) (s ∈ Zd) vary continuously. Consequently,{

ιct(zt) = ιc0(z0) for t ∈ [0, t0),
ιct(zt) = ιc0(z1) for t ∈ (t0, 1].

Furthermore, on the one hand, zt and Rct(0) vary continuously for t ∈ [0, 1].
On the other hand, when ct passes through RMd

(0), the dynamical rays
Rct((θt+s)/d) (s ∈ Zd) jump from Rct− ((θt− + s)/d) to Rct+ ((θt++s+1)/d),

t− < t0 < t+. So if ιc0(z0) = βn · · ·β1ε1 · · · εp, then

(5.5) ιc0(z1) = (βn + 1) · · · (β1 + 1)(ε1 + 1) · · · (εp + 1).

Hence σct , the element of Mon(π) induced by ct maps (c0, z0) to (c0, z1) with
z1 satisfying (5.5). Since π1(C \Md, c0) = 〈ct〉, we have

(πjn,p
∣∣
Ejn,p,i

)−1(c0)

= {(c0, z) | ιc0(z) = (βn + s) · · · (β1 + s)(ε1 + s) · · · (εp + s), s ∈ Zd}.

As a consequence, djn,p,i = d.

6. The Galois group of Qn,p(c, z). The objective here is to study Xn,p
from the algebraic point of view by calculating its associated Galois group.

Recall that C denotes the ring C[c], and K is a fixed algebraically
closed field containing C. Since the characteristic of C(c) is 0, any poly-
nomial f ∈ C[z] induces a finite Galois extension C(c)(f) over C(c) (see [W,
Thms. 3.2.6, 2.7.14]), where C(c)(f) is the splitting field of f , and hence a
Galois group G(f) := Gal(C(c)(f)/C(c)). In particular, we denote the Galois
group of Qn,p by Gn,p.

For all n ≥ 0 and p ≥ 1, denote by Rn,p the set of roots of Qn,p ∈ C[z].
By (3.2), we have fc(Rn,p) = Rn−1,p if n ≥ 1 and fc(R0,p) = R0,p. Set

R≤n,p :=
⋃

0≤l≤n
Rl,p.

Then fc(R≤n,p) ⊂ R≤n,p and the action of fc induces a directed graph
structure consisting of a certain number of disjoint cycles of order p, to
each vertex of which is attached a tree of height n. More precisely, for each
0 ≤ l ≤ n, we consider the roots in Rl,p as the vertices of level l, and two
vertices ∆1, ∆2 ∈ R≤n,p are connected by an oriented edge from ∆1 to ∆2 if
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fc(∆1) = ∆2. Thus R≤n,p has a graph structure, and we denote this graph
by RT

≤n,p (see Figure 1).

Example. For d = 3, p = 4, n = 2, the directed graph RT
≤2,4 has 18

pairwise isomorphic connected components. We draw one below.

level-0

level-1

level-2

Fig. 1. A connected component of RT
≤2,4

On the other hand, note that R≤n,p is the set of roots of

Q≤n,p :=
n∏
l=0

Ql,p ∈ C[z].

So, correspondingly, we consider the Galois group G≤n,p of Q≤n,p. Firstly,
we have the following simple result.

Proposition 6.1. For all n ≥ 0 and p ≥ 1, we have Gn,p = G≤n,p.

Proof. By (3.2), any root of Ql,p ∈ C[z] (0 ≤ l ≤ n) can be written as a
polynomial with coefficients in C of roots of Qn,p. It follows that the splitting
field of Q≤n,p =

∏n
l=0Ql,p over C(c) is the same as that of Qn,p over C(c).

Hence G≤n,p = Gn,p.

By this proposition, computing the Galois group Gn,p is equivalent to
computing G≤n,p. Let σ ∈ G≤n,p. Since it fixes the base field C(c) pointwise,
we have σ(Rl,p) = Rl,p and fc◦σ = σ◦fc. Hence σ induces an automorphism
of the graph RT

≤n,p, i.e., σ is a permutation of the vertices of RT
≤n,p of each

fixed level, and ∆1, ∆2 ∈ R≤n,p are connected by an edge from ∆1 to ∆2

if and only if σ(∆1), σ(∆2) are connected by an edge from σ(∆1) to σ(∆2).
Clearly, different elements of G≤n,p induce different automorphisms ofRT

≤n,p.
So G≤n,p can be seen as a subgroup of Aut(RT

≤n,p), the automorphism group
of the graph RT

≤n,p.
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In the case d = 2, Bousch [B] proved that

G≤n,p ' Aut(RT
≤n,p) ' H≤n,p(fc),

where H≤n,p(fc) denotes the set of all permutations of R≤n,p that commute
with fc. In the general case, the result is similar but needs a small modifi-
cation. We will exhibit this point in the following.

Let σ ∈ G≤n,p. As σ fixes the field C(c) pointwise, it must satisfy the
following two conditions:

(P1) σ commutes with fc, i.e., σ ◦ fc = fc ◦ σ.
(P2) σ commutes with the rotation of argument 1/d. That is, if σ(∆) =

∆̃ for ∆, ∆̃ ∈ R≤n,p, then σ(ωj∆) = ωj∆̃,where ω = e2πi/d and
1 ≤ j ≤ d− 1.

Therefore, if a permutation ofR≤n,p is to be a candidate for being an element
of G≤n,p, it should satisfy conditions (P1) and (P2).

In fact, in the case of d = 2, condition (P1) implies (P2). To see this, let
∆n−1 be a root of Qn−1,p (n ≥ 1) and ∆n,−∆n be its preimages under fc.
Let σ ∈ G≤n,p and set ∆̃n := σ(∆n). By (P1), σ must map −∆n to −∆̃n,
so (P2) holds. Therefore, (P1) alone may be sufficient for a permutation of
R≤n,p to be an element of G≤n,p, and Bousch [B] proved this point.

However, the situation is a little different in the case of d ≥ 3. With
the notations ∆n−1, ∆n, ∆̃n and σ as above, ∆n−1 has now at least three
preimages, which are ∆n, ω∆n, . . . , ω

d−1∆n. From condition (P1), we only
know that σ maps {ω∆n, . . . , ω

d−1∆n} bijectively to {ω∆̃n, . . . , ω
d−1∆̃n},

but cannot get σ(ωj∆n) = ωj(∆̃n) for 1 ≤ j ≤ d − 1. So, in case d ≥ 3,
condition (P2) cannot be omitted.

We wish to prove that, except (P1) and (P2), no other restrictions are
imposed onG≤n,p. The proof is similar to that of [B, Chapter III, Theorem 4].

Theorem 6.2. The Galois group G≤n,p consists of all permutations on
R≤n,p which commute with fc and with the rotation of argument 1/d.

Proof. We denote by rd the rotation of argument 1/d, and byH≤n,p(fc, rd)
the set of permutations of R≤n,p which commute with fc and rd. By the
definition, it is not difficult to check that H≤n,p(fc, rd) leaves each Rl,p, and
hence R≤l,p, invariant for 0 ≤ l ≤ n.

Define a group homomorphism

φn : G≤n,p → H≤n,p(fc, rd)

by letting φn(σ) be the restriction of σ to R≤n,p. According to the discussion
above, we just need to prove the surjectivity of φn.

Note first that the result is true for n = 0 by Lemma 2.4(vi).
For n = 1, since H≤1,p(fc, rd) leaves R0,p invariant, there is a natural

homomorphism from H≤1,p(fc, rd) to H≤0,p(fc, rd) with τ̃ 7→ τ̃ |R0,p . It has
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an inverse which maps τ ∈ H≤0,p(fc, rd) to τ̃ ∈ H≤1,p(fc, rd) such that
τ̃ |R0,p = τ and τ̃(ωj∆) = ωjτ(∆) for each ∆ ∈ R0,p, j ∈ [1, d − 1]. Thus
H≤1,p(fc, rd) ' H≤0,p(fc, rd). Note that G1,p = G0,p (because the splitting
fields of Q0,p and Q1,p over C(c) coincide), so the result is true for n = 1.

Nowwe argue by induction onn. Assumeφn−1 :G≤n−1,p→H≤n−1,p(fc, rd)
is surjective (n ≥ 2).

Let τ ∈ H≤n,p(fc, rd). As τ commutes with fc, it leavesR≤n−1,p invariant.
Then τ |n−1, the restriction of τ toR≤n−1,p, belongs toH≤n−1,p(fc, rd). By the
inductive assumption, there is a σn−1 ∈ G≤n−1,p with φn−1(σn−1) = τ |n−1.
From Galois theory (see [W, Thm. 2.88]), we can find σ ∈ G≤n,p whose
restriction to the splitting field of Q≤n−1,p over C(c) coincides with σn−1.
Set τ ′ := τ ·φn(σ)−1. Then τ ′ ∈ H≤n,p(fc, rd) and τ ′ fixes R≤n−1,p pointwise.
Now it remains to prove that G≤n,p contains τ ′, i.e., there exists σ′ ∈ G≤n,p
with φn(σ′) = τ ′, because if so, then τ = φn(σ′)φn(σ) = φn(σ′σ), which
implies φn is surjective.

Set κl := νd(p)(d − 1)dl−1 for each l ≥ 1 (which is the number of roots
of Ql,p), and denote

Rn,p = {∆i
n, ω∆

i
n, . . . , ω

d−1∆i
n}

κn−1

i=1 .

Since τ ′ fixes R≤n−1,p pointwise and commutes with both fc and rd, it can
be expressed as a product

τ ′ =

κn−1∏
i=1

(si, si + 1, . . . , d− 1, 0, . . . , si − 1),

where (si, si+1, . . . , d−1, 0, . . . , si−1) is the cyclic permutation of (∆i
n, . . . ,

ωd−1∆i
n) mapping ∆i

n to ωsi∆i
n and so on. Notice that all these cyclic per-

mutations (si, . . . , si − 1) pairwise commute.
The argument in this section is a classical correspondence between Galois

theory and covering theory (see [Z] for the details). Let Vn,p be the set of
singular values of the projection π : Xn,p → C. Then πn,p restricts to a cover
from the complement of the preimage of Vn,p in Xn,p to the complement of
Vn,p in C. For all c0 not in Vn,p, there is thus an action of π1(C \ Vn,p, c0) on
the roots

Zn,p = {zin, . . . , ωd−1zin}
κn−1

i=1

of Qn,p(c0, z) seen as a polynomial in z with complex coefficients. By the
correspondence between Galois theory and covering theory (see [Z, Thm. 1]),
there is a (non-unique) choice of bijection between the roots of Qn,p ∈ C[z]
and the roots of Qn,p(c0, z) ∈ C[z] such that the set of permutations induced
by the Galois group on R≤n,p is conjugated by this bijection to the set of
permutations of Zn,p induced by π1(C \ Vn,p, c0). Thus we get a surjective
(non-injective, usually) morphism from π1(C \ Vn,p, c0) to the Galois group.
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Moreover, this bijection is such that any polynomial relation between the ∆i
n

with coefficients in C(c) will give a relation between the zin, with c0 being
substituted for c. This implies that the action of π1(C \ Vn,p, c0) on Zn,p
preserves commutation with multiplication by ω.

Therefore, by the discussion above, to obtain the required permuta-
tion τ ′, we only need to find a path in the basic group π1(C \Vn,p, c0) whose
monodromy action on {(zin, . . . , ωd−1zin)}κn−1

i=1 induces the same permuta-
tion as τ ′. We now show the following result, which is sufficient: for any
i ∈ [1, κn−1], there exists a path in π1(C \Vn,p, c0) whose monodromy action
induces the permutation (si, si + 1, . . . , si − 1).

Fix any i ∈ [1, κn−1]. Suppose that {(c0, zin), (c0, ωz
i
n), . . . , (c0, ω

d−1zin)}
belong to Vtn,p. Let ĉ be an (n, p)-Misiurewicz parameter with (ĉ, 0) ∈ Vtn,p.
Such a ĉ exists because the set Dt

n,p(Misiurewicz) is non-empty (see Sec-
tion 5.2). By (3.2), we have (ĉ, ĉ) ∈ Xn−1,p. Since ĉ is a Misiurewicz param-
eter and the orbit of ĉ does not contain 0, the point (ĉ, ĉ) belongs to no
sets in Lemma 5.1 in the case l = n − 1. Hence w = ĉ is a simple root of
the equation Qn−1,p(ĉ, w) = 0 (in w). So by the Implicit Function Theorem,
the equation Qn−1,p(c, w) = 0 has a unique solution w = w(c) close to ĉ
fullfilling w(ĉ) = ĉ. Thus, a neighborhood of (ĉ, 0) in Xn,p can be written as

{(c, zc) ∪ (c, ωzc) ∪ · · · ∪ (c, ωd−1zc) | |c− ĉ| < ε},

where zc is one of the preimages of w(c) under fc near 0.
When c makes a small turn around ĉ, the set {zc, ωzc, . . . , ωd−1zc} gets

a cyclic permutation with ωjzc mapped to ωj+1zc, because πn,p is a degree
d covering in a punctured neighborhood of (ĉ, 0) (which is shown in §5.2),
and the other (n, p)-preperiodic points of fc remain fixed, since πn,p is in-
jective around each point (ĉ, ξ) with ξ a non-zero (n, p)-preperiodic point
of fĉ. So if we choose a path γ ∈ π1(C \ Vn,p, c0) homotopic to ĉ, the
permutation induced by γ’s monodromy action gives the cyclic permuta-
tion (2, . . . , d, 1) of (z∗n, ωz

∗
n, . . . , ω

d−1z∗n) for an (n, p)-preperiodic point z∗n
of fc0 fullfilling (c0, z

∗
n) ∈ Vtn,p, and keeps the other (n, p)-preperiodic points

of fc0 fixed. Now we join (c0, z
i
n) and (c0, z

∗
n) by a curve from (c0, z

i
n) to

(c0, z
∗
n) in Vtn,p \ π−1n,p(Vn,p), and denote its projection under πn,p by β. Then

β ∈ π1(C \ Vn,p, c0) and the path β · γsi · β−1 is what we expect.

Applying this theorem, we can also characterize the Galois group G≤n,p
by the automorphisms of the directed graph RT

≤n,p, as in the d = 2 case.
For d ≥ 3, denote by Aut(RT

n,p, rd) the set of automorphisms of RT
≤n,p that

commute with the rotation of argument 1/d, and by H≤n,p(fc, rd) the set
of permutations on R≤n,p that commute with fc and the rotation of argu-
ment 1/d.
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Corollary 6.3. For n ≥ 0 and p ≥ 1,

G≤n,p ' Aut(RT
n,p, rd) ' H≤n,p(fc, rd).

Following Bousch [B, Chap. 3, III] and Silverman [Sil, §3.9], we express
the Galois group Gn,p (n ≥ 2) as a wreath product.

Definition 6.4. Let G be a group and Σ be a subgroup of Sm, where
Sm denotes the set of permutations of {1, . . . ,m}. Denote by Σ n Gm the
wreath product of G and Σ. As a set, it consists of g = σ(g1, . . . , gm) where
gi ∈ G and σ ∈ Σ. The multiplication is defined by

g · h = σg(g1, . . . , gm) · σh(h1, . . . , hm) = σg ◦ σh(gσh(1) · h1, . . . , gσh(m) · hm).

Under this multiplication law, Σ nGm is a group with

g−1 = σ−1g (g−1
σ−1
g (1)

, . . . , g−1
σ−1
g (1)

)

and unit element (1, . . . , 1).

Bousch [B] showed that G0,p is isomorphic to Sνd(p)/p n (Z/pZ)νd(p)/p

(see also [Sil, §3.9]). From the proof of Theorem 6.2, we have seen that
G1,p = G0,p, so

G1,p ' Sνd(p)/p n (Z/pZ)νd(p)/p.

For n ≥ 2, we can give inductively an isomorphic model of Gn,p by a wreath
product. Recall that κn = νd(p)(d − 1)dn−1 (n ≥ 1) is the number of roots
of Qn,p.

Proposition 6.5. For n ≥ 2, we have Gn,p ∼= Gn−1,p n (Z/dZ)κn−1,
where the action of Gn−1,p on (1, . . . , κn−1) comes from the action of Gn−1,p
on the roots of Qn−1,p, of which there are exactly κn−1.

Proof. For n ≥ 2, we denote by (∆i
n−1)

κn−1

i=1 the roots of Qn−1,p ∈ C[z],
and denote by

({∆i
n, ω∆

i
n, . . . , ω

d−1∆i
n})

κn−1

i=1

the roots of Qn,p such that fc(∆i
n) = ∆i

n−1.

∆1
n−1 ∆2

n−1 . . . ∆
κn−1
n−1

∆1
n ∆2

n . . . ∆
κn−1
n

ω∆1
n ω∆2

n . . . ω∆
κn−1
n

...
...

...
ωd−1∆1

n ωd−1∆2
n . . . ωd−1∆

κn−1
n

We define a group homomorphism

W : Gn,p → Gn−1,p n (Z/dZ)κn−1
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by W (σ) = σ|n−1(s1, . . . , sκn−1), where σ|n−1 is the restriction of σ to the
splitting field of Qn−1,p over C(c), and the ith digit in (s1, . . . , sκn−1) is si
if and only if once σ(∆i

n−1) = ∆t
n−1 for some 1 ≤ t ≤ κn−1, then σ(∆i

n) =
ωsi∆t

n. The injectivity ofW is straightforward by the action ofGn,p onR≤n,p,
and the surjectivity of W is due to Theorem 6.2.

To end this section, we compute Gn,p for some small n, p. Note that
although G1,p is isomorphic to a subgroup Sνd(p)/pn (Z/pZ)νd(p)/p of Sνd(p),
it is indeed a subgroup of Sνd(p)(d−1). So mimicking the action of G1,p on

{ω∆1
1, . . . , ω∆

νd(p)
1 ; . . . ;ωd−1∆1

1, . . . , ω
d−1∆

νd(p)
1 },

we define a subgroup Pνd(p)(d−1),d of Sνd(p)(d−1) such that τ ∈ Pνd(p)(d−1),d
if and only if

τ
(
1, . . . , νd(p); . . . ; (d− 2)νd(p) + 1, . . . , (d− 2)νd(p) + νd(p)

)
=
(
σ(1), . . . , σ(νd(p)); . . . ; (d−2)νd(p)+σ(1), . . . , (d−2)νd(p)+σ(νd(p))

)
for a σ ∈ Sνd(p). Then Pνd(p)(d−1),d ' Sνd(p) ' G1,p, and Pνd(p)(d−1),d =
Sνd(p) in the case d = 2. The results of computation are listed in the following
table.

d n p νd(p) κn−1 Gn,p(d)

3 1 1 3 – S3 ' P6,3

3 2 1 3 6 P6,3 n (Z/3Z)6

3 3 1 3 18 (P6,3 n (Z/3Z)6)n (Z/3Z)18

2 3 2 2 4 ((Z/2Z)n (Z/2Z)2)n (Z/2Z)4

2 2 3 6 6 ((Z/2Z)n (Z/3Z)2)n (Z/2Z)6
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