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Abstract. We examine the properties of existentially closed (Rω-embeddable) II1
factors. In particular, we use the fact that every automorphism of an existentially closed
(Rω-embeddable) II1 factor is approximately inner to prove that Th(R) is not model-
complete. We also show that Th(R) is complete for both finite and infinite forcing and
use the latter result to prove that there exist continuum many nonisomorphic existentially
closed models of Th(R).

1. Introduction. This paper continues the model-theoretic study of
tracial von Neumann algebras initiated in [9]–[12]. Our main focus is study-
ing the class of existentially closed tracial von Neumann algebras. Roughly
speaking, a tracial von Neumann algebra M is existentially closed if any
system of ∗-polynomials with parameters from M that has a solution in
an extension of M already has an approximate solution in M . It has been
observed by many people that an existentially closed tracial von Neumann
algebra must be a McDuff II1 factor; see [12] for a proof. In particular,
free group factors and ultraproducts of matrix algebras are not existentially
closed.

Since the theory of tracial von Neumann algebras is universally axiom-
atizable, standard model theory shows that every tracial von Neumann al-
gebra is contained in an existentially closed one. A natural problem arises:
name a concrete existentially closed II1 factor. Well, one might guess that
the hyperfinite II1 factor R is existentially closed. It turns out that if one
restricts one’s attention to tracial von Neumann algebras that embed into
ultrapowers of R, henceforth referred to as Rω-embeddable von Neumann
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algebras, then R is existentially closed; in model-theoretic terms: R is an
existentially closed model of its universal theory. (This observation had
been made independently by C. Ward Henson and the fourth named au-
thor.)

Recall that the Connes Embedding Problem (CEP) asks whether every
II1 factor is Rω-embeddable. A positive solution to the CEP implies that R
is an existentially closed II1 factor. In fact, CEP is equivalent to the latter
clause (see Corollary 2.2).

In Section 2, we show that R is an existentially closed model of its uni-
versal theory and that all existentially closed Rω-embeddable factors have
the same ∀∃-theory as R. We also show that the only possible complete
∀∃-axiomatizable theory of Rω-embeddable II1 factors is Th(R). In partic-
ular, theories of free group factors or ultraproducts of matrix algebras are
not ∀∃-axiomatizable.

In Section 3, we show that every automorphism α of an existentially
closed II1 factor M is approximately inner, meaning that, for every finite
subset F of M and every ε > 0, there is a unitary u from M such that
‖α(x) − uxu∗‖2 < ε for all x ∈ F . We use this result to show that Th(R)
is not model-complete, meaning that not every embedding between models
of Th(R) is elementary. (It was shown in [12] that a positive solution to
CEP implied that Th(R) was not model-complete.) As a consequence, we
deduce that the class of existentially closedRω-embeddable II1 factors is not
an axiomatizable class (a result that was shown to hold for the potentially
larger class of existentially closed II1 factors in [12]).

In Section 4, we show that every existentially closed Rω-embeddable
II1 factor is a strong amalgamation base: if M0 is an existentially closed
Rω-embeddable II1 factor and fi : M0 → Mi, i = 1, 2, are embeddings into
Rω-embeddable II1 factors M1 and M2, then there is an Rω-embeddable
II1 factor N and embeddings gi : Mi → N such that g1 ◦ f1 = g2 ◦ f2 and
g1(M1) ∩ g2(M2) = g1(f1(M0)). Until this point, the best known amalga-
mation result appeared in [6], where it is shown that the amalgamated free
product M1 ∗R M2 is Rω-embeddable if both M1 and M2 are. Notice our
result is not a generalization of the result in [6] as we do not claim that our
amalgam is the amalgamated free product; on the other hand, our result
applies to continuum many II1 factors instead of applying solely to R.

In the final two sections, we study subclasses of the class of existentially
closed II1 factors that are even more generic. These factors are obtained
by model-theoretic forcing. It is shown that Th(R) is complete for both of
these notions of forcing, meaning that Th(R) is the theory of the “generic”
Rω-embeddable factors obtained from these notions of forcing. As a conse-
quence, we can infer that there are continuum many nonisomorphic models
of Th(R) that are existentially closed. We should point out that nearly all
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of Sections 4–6 go through in an arbitrary metric structure, not just for
II1 factors.

Throughout this paper, by a tracial von Neumann algebra we mean a
pair (A, tr), where A is a von Neumann algebra and tr is a fixed, faithful,
normal tracial state, although we often suppress mention of the tracial state
and simply refer to A as a tracial von Neumann algebra if there is no fear
of confusion. Given a tracial von Neumann algebra A, we often consider the
2-norm on A given by ‖x‖2 :=

√
tr(x∗x). Given a ∗-monomial p(~x, ~x∗) in

the variables ~x and their adjoints and a tuple ~a from a tracial von Neumann
algebra A, the quantity tr(p(~a,~a∗)) is referred to as a moment of ~a and the
(total) degree of p is called the order of tr(p(~a,~a∗)).

We will work in the setting of continuous model theory. We refer the
reader to [10] for a rapid introduction to this setting, where it is also ex-
plained how to treat von Neumann algebras as metric structures. However,
for the sake of completeness, in the next subsection we recall some basic no-
tions from continuous model theory and discuss the notion of existentially
closed structures.

1.1. Existentially closed structures. Fix a continuous language L
(e.g. the language for tracial von Neumann algebras). The set of L-terms
is the smallest set of expressions containing the constant symbols and vari-
ables and closed under the function symbols. For example, in the language
for tracial von Neumann algebras, these would be ∗-polynomials. Atomic
L-formulae are expressions of the form R(t1, . . . , tn), where R is a predi-
cate symbol and each ti is a term. Continuing with the example of tracial
von Neumann algebras, tr(p(x̄, x̄∗)) is an atomic formula, where p(x̄, x̄∗)
is a ∗-polynomial, as is ‖p(x̄, x̄∗)‖2. The set of quantifier-free L-formulae
is the set of L-formulae obtained from the atomic L-formulae by using
continuous functions f : Rn → R as connectives. If one, in addition, al-
lows the use of “quantifiers” sup and inf, then one arrives at the set of
L-formulae.

Returning to tracial von Neumann algebras again, the expression ϕ given
by supy(‖xy − yx‖2 + ‖xx∗ − 1‖2) is a formula; we may write ϕ as ϕ(x)
to indicate that the variable x is free in ϕ. If M is a tracial von Neu-
mann algebra and a ∈ M , then plugging a in for x in ϕ returns a real
number denoted ϕ(a)M . The condition ϕ(x) = 0 asserts that x is a uni-
tary element of the center of M . Notice that the sup equalling 0 tells us
that x commutes with all elements of M ; it is for this reason we some-
times think of sup as a universal quantifier, a fact we elaborate on be-
low.

Formulae with no free variables are called sentences, and conditions
σ = 0 where σ is a sentence are called closed conditions. Closed condi-
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tions actually assert something. For example, if τ is supx supy ‖xy − yx‖2,
then the closed condition τ = 0 holds in a tracial von Neumann algebra M
if and only if M is abelian. It is important to note that, given a sentence σ,
there is a compact interval I ⊆ R such that σM ∈ I for every L-structure M ;
if I is contained in the set of nonnegative real numbers, then we call σ a
nonnegative sentence.

Suppose thatM andN are L-structures and i : M → N is an embedding,
that is, an injective map that preserves all the interpretations of symbols
in L. We say that i is an elementary embedding if, for every L-formula
ϕ(x) and every tuple a from M , we have ϕ(a)M = ϕ(i(a))N . If we relax
the previous definition to only hold for formulae of the form inf~x ϕ(~x) with
ϕ(~x) quantifier-free, we say that i is an existential embedding. If M is a
substructure of N , henceforth denoted M ⊆ N , and the inclusion map
i : M → N is an elementary embedding, we say that M is an elementary
substructure of N and write M � N .

An L-structure M models the closed condition σ = 0, denoted

M |= (σ = 0),

if σM = 0. If T is a set of closed conditions, then M |= T if M models all
of the conditions in T ; we let Mod(T ) denote the class of all models of T . If
T is a set of closed conditions and σ is a sentence, we say that T logically
implies the condition σ = 0, denoted T |= (σ = 0), if every model of T is
also a model of σ = 0.

In this paper, an L-theory is a collection T of closed conditions closed
under logical implication, meaning that if T |= (σ = 0), then σ = 0 belongs
to T . If M is an L-structure, then the theory of M is the theory

Th(M) := {σ = 0 : σM = 0}.

A complete theory is a theory of the form Th(M) for some M . If Th(M) =
Th(N), we say that M and N are elementarily equivalent and write M ≡ N .
Given any class K of L-structures, we define the theory of K to be the theory

Th(K) := {σ = 0 : σM = 0 for all M ∈ K} =
⋂
M∈K

Th(M).

Suppose that M and N are L-structures. In analogy with classical logic,
it is remarked in [11, Section 6] that M embeds into an ultrapower of N
if and only if σM ≤ σN for every sup-sentence σ, that is, when σ is of the
form σ = sup~x ϕ(~x) with ϕ quantifier-free. Notice that this latter property
is equivalent to the condition that σN = 0⇒ σM = 0 for every nonnegative
sup-sentence σ. Indeed, while one direction is clear, the other follows from
the fact that, if σN = r, then sup~x(max(ϕ(~x)− r, 0)) is nonnegative and has
value 0 in N .
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With the preceding paragraph in mind, given a theory T , we let T∀ denote
the subset of T containing only those conditions σ = 0 for which σ is a
nonnegative sup-sentence. Given a nonnegative sup-sentence σ = sup~x ϕ(~x),
the condition σ = 0 asserts that, for all ~x, we have ϕ(~x) = 0; it is for
this reason that we may call such a condition a universal condition and
hence refer to T∀ as the universal theory of T . If T = Th(M) for some
structureM , we write Th∀(M) for T∀. The content of the previous paragraph
may be summarized as: M embeds into an ultrapower of N if and only if
M |= Th∀(N). More generally, it is readily verified that, given an arbitrary
(i.e. perhaps incomplete) theory T , we have M |= T∀ if and only if M embeds
into a model of T .

Suppose that K is a nonempty class of L-structures. We say that K is an
axiomatizable class if K = Mod(T ) for some theory T . If there is a theory
T such that K = Mod(T∀), we say that T is universally axiomatizable. By
the preceding paragraph, T is universally axiomatizable if and only if a
substructure of a model of T is also a model of T .

If K is a class of L-structures, we say that K is inductive if K is closed
under unions of chains. If T is an L-theory, we say that T is inductive if
Mod(T ) is inductive. In classical logic, a theory is inductive if and only
if it is ∀∃-axiomatizable. In analogy with the preceding paragraphs, the
situation in continuous logic is as follows: given a theory T , we let T∀∃ de-
note the collection of conditions σ = 0 where σ is nonnegative and of the
form sup~x inf~y ϕ(~x, ~y) with ϕ(~x, ~y) quantifier-free; notice that such a con-
dition asserts that, for every ~x, there is ~y such that ϕ(~x, ~y) is (almost) 0,
whence such a condition is morally an ∀∃ assertion. It is shown in [19] that
an axiomatizable class K is inductive if and only if it is ∀∃-axiomatizable,
that is, if and only if it is of the form Mod(T∀∃) for some theory T . We
also say that a theory is ∀∃-axiomatizable if the class of its models is
∀∃-axiomatizable.

In [10], it is shown that the class of tracial von Neumann algebras
is a universally axiomatizable class and the subclass of II1 factors is an
∀∃-axiomatizable class. By the above fact concerning Th∀(R), a tracial
von Neumann algebra M models Th∀(R) if and only if it embeds in an
ultrapower of R.

Definition 1.1. Fix a class K of L-structures. For M,N ∈ K with
M ⊆ N , we say that M is existentially closed (e.c.) in N if, for any
quantifier-free formula ϕ(x, y) and any a ∈M , we have

inf
c∈M

ϕ(c, a)M = inf
b∈N

ϕ(b, a)N .

We say that M ∈ K is existentially closed for K if M is existentially closed
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in N for every N ∈ K with M ⊆ N . If K is the class of models of some
theory T , we call an e.c. member of K an e.c. model of T .

It is well known that if M and N are models of T∀ with M existentially
closed in N and N an e.c. model of T∀, then M is an e.c. model of T∀; see
[17, proof of Lemma 6.30]. In particular, an elementary substructure of an
e.c. model of T∀ is an e.c. model of T∀.

It is also well known that if K is an inductive class, then any mem-
ber of K is contained in an e.c. member of K. If, in addition, the class K
is axiomatizable and the language is, say, countable, then, by Downward
Löwenheim–Skolem, any member of K is contained in an e.c. member of K
of the same density character.

We say that the class K is model-complete if, for any M,N ∈ K with
M ⊆ N , we have M � N . If K is a model-complete axiomatizable class,
say K = Mod(T ), we also say that T is model-complete. Robinson’s test
for model-completeness states that T is model-complete if and only if every
embedding between models of T is existential.

We say that a class C of structures is model-consistent with K if ev-
ery element of K is contained in an element of C. For example, the sub-
class of e.c. elements of K is model-consistent with K (by the above re-
marks).

For any theory T , we let ET denote the class of existentially closed models
of T∀. In general, ET need not be axiomatizable. If it is, say ET = Mod(T ′),
we call T ′ the model-companion of T . (The use of the definite article “the”
is justified as the model-companion of a theory, if it exists, is unique up
to logical equivalence.) Note that the model-companion of T is necessarily
model-complete by Robinson’s test. Conversely, if T is a model-complete
theory, then all models of T are e.c. models of T∀ and T is the model-
companion of T∀.

In [12] it is shown that TvNa does not have a model-companion, that is,
the class of existentially closed tracial von Neumann algebras is not axioma-
tizable. It was also shown there that a positive solution to CEP implies that
the same conclusion remains true for the class of Rω-embeddable factors.
The main result of Section 3 of this paper shows that we may remove the
CEP assumption from this latter result.

Suppose that T is a universally axiomatizable theory. In [19], it is shown
that “most” elements of T are e.c. in a sense we now explain. Let X denote
the space of all modelsM of T equipped with a distinguished countable dense
subset M0 ⊆ M , enumerated as (mi : i < ω). We can define a topology on
X by declaring sets of the form

{M ∈ X : ϕM (mi1 , . . . ,min) < ε}
to be basic open sets, where ϕ is a quantifier-free formula, i1, . . . , in ∈ N and
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ε ∈ R>0∪{+∞}. In this way, X becomes a Polish space. It is a consequence
of results from [19] that the set of e.c. elements of X is dense in X and
any reasonable probability measure on X gives the set of e.c. models full
measure.

In our applications to von Neumann algebras, the universal theory T
at hand is either the theory of tracial von Neumann algebras TvNa or the
theory of Rω-embeddable tracial von Neumann algebras Th∀(R). In this
context, we see that any (Rω-embeddable) tracial von Neumann algebra
embeds into an existentially closed (Rω-embeddable) tracial von Neumann
algebra. Recall from the introduction that e.c. tracial von Neumann algebras
are McDuff II1 factors; the same proof also shows that e.c. models of Th∀(R)
are McDuff II1 factors.

Fact 1.2 ([16]). There is a family (Mα)α<2ℵ0 of Rω-embeddable II1 fac-
tors such that, for any II1 factor M , at most countably many of the Mα’s
embed into M .

Consequently, we have:

Corollary 1.3. There are 2ℵ0 many nonisomorphic existentially closed
(Rω-embeddable) tracial von Neumann algebras.

If we knew that Th(R) was inductive, then it would follow that there
are continuum many nonisomorphic e.c. models of Th(R). Nevertheless, we
will be able to derive this conclusion from our work on infinitely generic
structures in Section 5.

2. Inductive theories of II1 factors. Throughout this paper, U de-
notes a nonprincipal ultrafilter on some index set; if M is a tracial von
Neumann algebra, then MU denotes the corresponding (tracial) ultrapower
of M . We frequently make use of the fact that every embedding R → RU is
elementary (as every such embedding is unitarily conjugate to the diagonal
embedding; this is an easy direction of the main result of [15]).

From now on, we assume that all sentences under consideration are
nonnegative. Such an assumption poses no loss of generality when study-
ing existentially closed models (by just adding a suitable real to a for-
mula if necessary) and is required when studying questions of universal and
∀∃-axiomatizability.

The following crucial observation was also independently made by C. Ward
Henson and the fourth named author.

Lemma 2.1. R is an e.c. model of Th∀(R).

Proof. Suppose ϕ(x, y) is quantifier-free, a ∈ R and R ⊆ M . Fix an
embedding f : M → RU of M into an ultrapower of R. Note that then
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(infx ϕ(x, a))R ≥ (infx ϕ(x, a))M ≥ (infx(ϕ(x, fa))R
U

. Since f |R is elemen-
tary, the ends of the double inequality are equal, whence (infx ϕ(x, a))R =
(infx ϕ(x, a))M .

In Proposition 5.21, we will see that R is even more generic than just
being existentially closed.

Corollary 2.2. R is an e.c. model of TvNa if and only if CEP has a
positive solution.

Proof. The “if” direction follows from Lemma 2.1. For the converse,
suppose that M is a II1 factor and that σ = 0 belongs to Th∀(R). Without
loss of generality, suppose that σ has value bounded by 1 in all structures.
Since τ := max(1− σ, 0) is (equivalent to) a sentence of the form infx ϕ(x),
if R were an e.c. model of TvNa, we would have τR = τM , whence σR = σM

and M |= Th∀(R).

We now turn to ∀∃-theories of II1 factors.

Lemma 2.3. Suppose that M |= Th∀(R).

(1) If M is a II1 factor (or, more generally, contains a copy of R as a
substructure), then Th∀∃(M) ⊆ Th∀∃(R).

(2) If M is an e.c. model of Th∀(R), then Th∀∃(M) ⊇ Th∀∃(R).

Consequently, if M is an e.c. model of Th∀(R), then Th∀∃(M) = Th∀∃(R).

Proof. (1) Suppose σ=0 belongs to Th∀∃(M); write σ=supx infy ϕ(x, y).
Fix a ∈ R. We have embeddings i : R → M and j : M → RU . Since

(infy ϕ(i(a), y))M = 0, we have (infy ϕ(j(i(a)), y))R
U

= 0. Since j ◦ i is
elementary, we have (infy ϕ(a, y))R = 0. Since a ∈ R was arbitrary, we have
σR = 0.

(2) is standard (and holds in complete generality) but we include a proof
for the sake of completeness. Suppose σ = supx infy ϕ(x, y) and σR = 0.
Since M embeds into an ultrapower RU of R, given a ∈ M , we know that
(infy ϕ(a, y))M = (infy ϕ(a, y))R

U
= 0, whence σM = 0.

The last statement of the lemma follows from the fact (discussed above)
that e.c. models of Th∀(R) are II1 factors.

Corollary 2.4. If there exists a complete ∀∃-axiomatizable theory T ′

of Rω-embeddable II1 factors, then T ′ = Th(R).

Proof. Suppose that M |= Th∀(R) is a II1 factor such that T ′ := Th(M)
is ∀∃-axiomatizable. Then by (1) of the previous lemma, R |= T ′, whence
T ′ = Th(R).
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The previous corollary shows that if M is an Rω-embeddable II1 factor
that is not elementarily equivalent toR, then Th(M) is not ∀∃-axiomatizable.
In particular, ifM is not McDuff (e.g.M is a free group factor or ultraproduct
of matrix algebras), then Th(M) is not ∀∃-axiomatizable.

Question 2.5. Is Th(R) ∀∃-axiomatizable?

This question has a purely operator-algebraic reformulation in light of
the model-theoretic fact that a theory in a countable language is ∀∃-axiom-
atizable if and only if it is closed under unions of chains of countable models:
if we have a chain

R0 ⊆ R1 ⊆ R2 ⊆ · · ·
such that RUi ∼= RU for each i, then setting R∞ :=

⋃
iRi, do we have

RU∞ ∼= RU?
We should remark that in connection with the question of axiomatizabil-

ity, we do know that Th(R) is not ∃∀-axiomatizable. Indeed, let i : R →
L(F2) and j : L(F2) → RU be embeddings. Consider σ := infx supy ϕ(x, y)

such that σR = 0. Fix ε > 0 and choose a ∈ R such that supy ϕ(a, y)R < ε.
Since j ◦ i is elementary, we have

sup
y
ϕ(i(a), y)L(F2) ≤ sup

y
ϕ(j(i(a)), y)R

U
< ε.

It follows that σL(F2) = 0. Thus, if Th(R) were ∃∀-axiomatizable, we would
have L(F2) ≡ R, a contradiction.

For any theory T , recall that ET denotes the existentially closed models
of T∀.

Corollary 2.6. If T = Th(R), then Th∀∃(ET ) = Th∀∃(R).

Proof. Lemma 2.3(2) shows that Th∀∃(R) ⊆ Th∀∃(ET ). Conversely, sup-
pose that σ = 0 belongs to Th∀∃(ET ). Since e.c. models of T are II1 factors,
we conclude, by Lemma 2.3(1), that σR = 0.

Remark 2.7. If Th(R) is ∀∃-axiomatizable, then Th(ET ) = Th(R). This
would be in contrast to the theory of groups, where there are nonelementarily
equivalent e.c. groups.

At this point, it makes sense to introduce companion operators and the
Kaiser hull into continuous logic.

Definition 2.8. Suppose that we have a mapping T 7→ T ∗ on theories.
We say that the mapping is a companion operator if, for all theories T
and T ′, we have:

(1) (T ∗)∀ = T∀;
(2) T∀ = T ′∀ ⇒ T ∗ = (T ′)∗;
(3) T∀∃ ⊆ T ∗.
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In what follows, we will see some examples of companion operators. It is
clear that if T has a model-companion T ′, then T ′ satisfies the conditions of
the previous definition. The notion of a companion operator was an attempt
to extend the notion of a model-companion to an operation that is defined
for all theories.

Lemma 2.9. Suppose that T ∗ is a companion of T , and T ′ is an induc-
tive theory such (T ′)∀ = T∀. Then T ′ ⊆ T ∗.

Proof. We have T ∗ = (T ′)∗ ⊇ (T ′)∀∃; since T ′ is inductive, it follows
that T ′ ⊆ T ∗.

Lemma 2.10. If T1 and T2 are both inductive theories with the same
universal theory as T , then so is T1 ∪ T2.

Proof. T1 ∪ T2 is clearly inductive. Suppose A |= T∀. We build a chain

A ⊆M0 ⊆ N0 ⊆M1 ⊆ N1 ⊆ · · · ,
whereMi |= T1 and Ni |= T2 for each i; we obtain theMi and Ni by using
the fact that each of T1 and T2 has the same universal theory as T . Since
both T1 and T2 are inductive, it follows that the union of the chain models
both T1 and T2.

Since there is an inductive theory with the same universal theory as T ,
namely T∀∃, the previous two lemmas imply that there is a minimal com-
panion operator obtained by taking the maximal inductive theory with the
same universal theory as T , which is the union of all inductive theories with
the same universal theory as T . This companion is called the inductive or
Kaiser hull of T , denoted TKH.

Proposition 2.11.

(1) Th∀∃(ET ) ⊆ TKH.
(2) TKH is axiomatized by Th∀∃(ET ).

Proof. The first item follows from the fact that any model of T∀ can be
extended to an e.c. model of T∀. For the second item, it suffices to prove
that every element M of ET models TKH

∀∃ ; however, this follows immediately
from the fact that M is e.c. and is contained in a model of TKH.

Corollary 2.12. If T = Th(R), then TKH is axiomatized by Th∀∃(R).

3. Automorphisms of e.c. II1 factors. Suppose that M is a II1 factor
and α ∈ Aut(M). Recall that α is said to be approximately inner if for
every finite set {x1, . . . , xn} ⊆ M and every ε > 0 there is u ∈ U(M) such
that max1≤i≤n ‖α(xi)− uxiu∗‖2 < ε. Let Inn(M) denote the group of inner
automorphisms of M and let AppInn(M) denote the group of approximately
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inner automorphisms of M . Then AppInn(M) is the closure of Inn(M) in
the point-strong topology on Aut(M). It is a fact, independently due to
Connes [7] and Sakai [18], that AppInn(M) = Inn(M) if and only if M does
not have property (Γ).

Proposition 3.1. Suppose that M is an e.c. model of TvNa (so in par-
ticular a II1 factor). Then Inn(M) < AppInn(M) = Aut(M).

Proof. That Inn(M) is a proper subgroup of AppInn(M) follows from
the fact that an e.c. II1 factor is McDuff, whence has (Γ). For the equal-
ity, suppose that α ∈ Aut(M). Set N := M oα Z. Fix x1, . . . , xn ∈ M .
Then

N |= inf
u

max
(
d(uu∗, 1), d(u∗u, 1), max

1≤i≤n
d(α(xi), uxiu

∗)
)

= 0.

Since M is e.c., there is an almost unitary which almost conjugates each xi
to α(xi). By functional calculus, we can find an actual unitary that almost
conjugates each xi to α(xi) with slightly worse error.

Remark 3.2. If α ∈ AppInn(M), then for any elementary extension M ′

of M that is κ+-saturated, where κ is the density character of M , there is
u ∈ U(M ′) such that α(x) = uxu∗ for all x ∈M .

If M |= Th∀(R) and α ∈ Aut(M), then M oα Z |= Th∀(R) (see [1,
Proposition 3.4]). We can thus repeat the proof of Proposition 3.1 and con-
clude the following:

Proposition 3.3. If M is an e.c. model of Th∀(R), then

Inn(M) < AppInn(M) = Aut(M).

In particular, using Lemma 2.1, we recover the result of Sakai [18] that
AppInn(R) = Aut(R). We now aim to prove that Th(R) is not model-
complete. First, we need the following proposition. Recall that, for an
L-structure M and a tuple a from M , the type of a in M , denoted tpM (a),
is the set of formulae ϕ(x) such that ϕM (a) = 0.

Proposition 3.4. Suppose that Th(R) is model-complete. Then for any
R1 ≡ R and any finite tuples a, b ∈ R1 of the same length, we have tpR1(a)
= tpR1(b) if and only if a and b are approximately unitarily conjugate
in R1.

Proof. Without loss of generality, we may suppose that R1 is separa-
ble. Certainly if a and b are approximately unitarily conjugate in R1, then
they are unitarily conjugate in some ultrapower RU1 of R1, whence they
have the same type in RU1 , and hence in R1. Conversely, suppose that
tpR1(a) = tpR1(b). Go to a strongly ω-homogeneous elementary extension
R2 of R1 (see [3, Section 7]). Then there is α ∈ Aut(R2) such that α(a) = b.
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Since Th(R) is model-complete, every model of Th(R) is existentially closed,
whence, by Proposition 3.3, we find that a and b are approximately unitarily
conjugate in R2, and hence in R1.

We will need the following:

Fact 3.5 (Jung [15]). Suppose that M is a finitely generated Rω-embedd-
able factor such that, for any two embeddings i, j : M → RU , there is
u ∈ U(RU ) such that i(x) = uj(x)u∗ for all x ∈M . Then M ∼= R.

In order to apply Fact 3.5, we must observe that any separable R′ ≡ R
is finitely generated. In fact, if R′ ≡ R, then R′ is McDuff, whence singly
generated (see [2, Theorem 1] for an even more general statement).

Theorem 3.6. Th(R) is not model-complete.

Proof. Suppose, towards a contradiction, that Th(R) is model-complete.
Suppose that R′ � RU is separable and not isomorphic to R; this is pos-
sible by [11, Theorem 4.3]. We show that every embedding j : R′ → RU
is implemented by a unitary, that is, there is u ∈ RU such that, for ev-
ery x ∈ R′, j(x) = uxu∗; this will contradict Fact 3.5. Fix a generator x

for R′. By model-completeness, tpR
U

(x) = tpR
U

(j(x)). Thus, by Proposi-
tion 3.4, x and j(x) are approximately unitarily conjugate in RU ; since RU
is ω1-saturated (see [10, Proposition 4.11]), it follows that x and j(x) are
unitarily conjugate in RU . It follows that j is implemented by a unitary,
yielding the desired contradiction.

Corollary 3.7. Th∀(R) does not have a model-companion. Conse-
quently, the e.c. models of Th∀(R) do not form an axiomatizable class.

Proof. The proof of [12, Proposition 3.2] shows that any model-complete
theory of Rω-embeddable II1 factors must be contained in Th(R). Thus, if
the model-companion of Th∀(R) existed, Th(R) would be model-complete,
a contradiction.

We should remark that the fact that Th(R) is not model-complete gives
a more elementary proof of [12, Corollary 3.5], namely that CEP implies
that there are no model-complete theories of II1 factors. Indeed, this proof
is a bit simpler than the one given in [12] as it does not require us to use
the fact that TvNa does not have a model-companion, which in turn involves
some nontrivial results of Nate Brown from [5].

Corollary 3.8. Assume that the Continuum Hypothesis (CH ) holds.
Then for any nonprincipal ultrafilter U on N, there is an embedding f :
RU → RU that is not existential.
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Proof. By Robinson’s test, there are separable R1,R2 |= Th(R) and
an embedding g : R1 → R2 that is not existential. We define f := gU :
RU1 → RU2 . Then f is not existential. By CH, we have RU1 ∼= RU2 ∼= RU (see
[10]).

The following corollary uses a standard absoluteness argument from set
theory. A statement is arithmetical if all of its quantifiers range over the
set of natural numbers, N. Forcing and most standard methods for proving
relative consistency with ZFC do not add (or remove) elements of N. There-
fore the truth of arithmetical statements is unchanged under forcing; for this
reason, such statements are said to be absolute. In particular, if one proves
such a statement by using an axiom that can be forced over every model
of ZFC (such as the Continuum Hypothesis), then the statement can be
proved in ZFC alone (see e.g. [8] for more examples of absolute statements
in analysis).

Corollary 3.9. There is ε > 0 such that, for every m ∈ N>0, there are
tuples a and b from R whose moments up to order at most m are within
1/m of each other and for which there is no unitary u in R that conjugates
a to within ε of b (in 2-norm).

Proof. We first observe that we may safely assume CH in this proof.
Indeed, the truth of the statement remains unaltered if we instead quantify
over some “nice” (i.e. definable) countable dense subsets of Q and R; this
modified statement is now arithmetical, whence absolute.

Suppose that the statement of the corollary is false; we show that every
embedding f : RU → RU , where U is an ultrafilter on the natural numbers,
is existential, contradicting Corollary 3.8. Suppose that f : RU → RU is an
embedding and suppose that ϕ(x, y) is a quantifier-free formula (with single
variables for simplicity). Fix a = [(an)] ∈ RU and set f(a) = b = [(bn)]. Sup-

pose that (infx ϕ(x, b))R
U

= r. Fix η > 0. Fix I0 ∈ U such that, for n ∈ I0,
we have (infx ϕ(x, bn))R ≤ r + η. Let ε := ∆ϕ(η) and choose m as in the
assumption; here ∆ϕ is a modulus of uniform continuity for ϕ. Fix I1 ⊆ I0
such that, for n ∈ I1, an and bn have moments up to order m that agree
to within 1/m. (This is possible because a and b have the same moments.)
For n ∈ I1, we have unitaries un ∈ R such that |unanu∗n − bn| < 1/m.
In that case, we get infx(ϕ(x, an)) ≤ r + 2η for n ∈ I1. It follows that

infx(ϕ(x, a))R
U ≤ r.

4. E.c. models and strong amalgamation bases. Until further no-
tice, we let L be a continuous signature and K a class of L-structures.

Definition 4.1. We say that A ∈ K is an amalgamation base for K if
whenever B,C ∈ K both contain A, then there is D ∈ K and embeddings
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f : B → D and g : C → D such that f |A = g|A. If, in addition, we can
always find D, f , and g such that f(B) ∩ g(C) = f(A), we call A a strong
amalgamation base for K.

If K is the class of tracial von Neumann algebras, then, by virture of the
amalgamated free product construction, every element of K is an amalga-
mation base.

For any L-structure A, we let LA denote the language L where new
constant symbols ca are added for elements a ∈ A. We let D(A) denote the
atomic diagram of A, that is, the set of closed LA-conditions “σ(a) = 0”
where σ(x) is a quantifier-free formula, a is a tuple from A, and σ(a)A = 0.
As in classical logic, if B is an LA-structure that satisfies D(A), then the
map sending a to the interpretation of the constant naming a in B is an
embedding of L-structures.

We also let D+(A) denote the set of all closed conditions “σ(a) ≤ 1/k”,
where σ(a) = 0 belongs to D(A) and k ∈ N>0. Observe that an LA-structure
satisfies D(A) if and only if it satisfies D+(A).

The following is the continuous logic analog of a classical model-theoretic
fact (see [14, Theorem 3.2.7], although for some reason it is assumed there
that T is ∀∃-axiomatizable, which is surely unnecessary).

Proposition 4.2. Suppose that T is an L-theory and A is an e.c. model
of T . Then A is a strong amalgamation base for the models of T .

Proof. Suppose that B,C |= T both contain A. Without loss of general-
ity, B ∩C = A. For c ∈ C \A, set δc := d(c, A) > 0. It suffices to show that
the following set of LB∪C-conditions is satisfiable:

T ∪D+(B) ∪D(C) ∪ {d(b, c) ≥ δc : b ∈ B \A, c ∈ C \A}.

Suppose that this is not the case. Then there is k ∈ N>0, ~b = (b1, . . . , bn)

from B \A, a quantifier-free formula χ(~b, ~d ), where ~d ∈ A and χB(~b, ~d ) = 0,
and c1, . . . , cn from C \A such that

T ∪ {χ(~b, ~d ) ≤ 1/k} ∪D(C) ∪ {d(bi, ci) ≥ δci : i = 1, . . . , n}

is unsatisfiable. Consequently, the set

T ∪ {χ(~x, ~d ) ≤ 1/k} ∪D(C) ∪ {d(xi, ci) ≥ δci : i = 1, . . . , n}

of LC-conditions is unsatisfiable. Since A is e.c., there is ~a ∈ A such that
χA(~a, ~d ) ≤ 1/k, whence χC(~a, ~d ) ≤ 1/k. Consequently, there is i∈{1, . . . , n}
such that d(ai, ci) < δci , a contradiction.

Observe that in the previous proof we could have replaced D(C) by
the full elementary diagram of C, whence we can always assume that the
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amalgam is an elementary extension of C. Also observe that, by Downward
Löwenheim–Skolem, we can ensure that the amalgam has density character
equal to the maximum of the density characters of B and C.

Corollary 4.3. Any e.c. Rω-embeddable von Neumann algebra is a
strong amalgamation base for the class of Rω-embeddable von Neumann
algebras.

We should compare this result with the difficult result of [6] that if Mi are
Rω-embeddable II1 factors for i = 1, 2, then the amalgamated free product
M1 ∗RM2 is also Rω-embeddable. This is the best such result known, in the
sense that if one replacesR by anotherRω-embeddable tracial von Neumann
algebra, then it is unknown whether or not the amalgamated free product
is Rω-embeddable.

Question 4.4. Is every model of Th∀(R) an amalgamation base?

5. Infinitely generic structures. In this section, we assume that K is
an inductive class of L-structures. We will prove the existence of a very natu-
ral subclass of K, the so-called infinitely generic elements of K, which can be
characterized as the unique maximal subclass of K that is model-complete
and model-consistent with K. These structures will turn out to be existen-
tially closed elements of K. Our treatment of infinitely generic structures in
continuous logic is inspired by the classical treatment of this topic presented
in [13]. For the sake of simplicity, we work in the bounded continuous logic
of [3], where all predicates and formulae take values in [0, 1] (although we
apply the general theory to the unbounded case of tracial von Neumann
algebras).

We arrive at the class of infinitely generic structures via infinite forcing.
For M ∈ K, σ a restricted LM -sentence in prenex normal form (see [3, Sec-
tion 6]), ./ ∈ {<,≤, >,≥}, and r ∈ [0, 1], we define the relations M 
 (σ./r)
recursively on the complexity of σ:

• If σ is quantifier-free, then M 
 (σ ./ r) iff σM ./ r.
• Suppose that σ = infx ϕ(x). Then:

— M 
 (σ < r) iff there is a ∈M such that M 
 (ϕ(a) < r).
— M 
 (σ ≤ r) iff M 
 (σ < r′) for every r′ > r.
— M 
 (σ ≥ r) iff there does not exist N ∈ K with N ⊇ M and

a ∈ N such that N 
 (ϕ(a) < r).
— M 
 (σ > r) iff M 
 (σ ≥ r′) for some r′ > r.

• Suppose that σ = supx ϕ(x). Then:

— M 
 (σ ≤ r) iff there does not exist N ∈ K with N ⊇ M and
a ∈ N such that N 
 (ϕ(a) > r).
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— M 
 (σ < r) iff M 
 (σ ≤ r′) for some r′ < r.
— M 
 (σ > r) iff there is a ∈M such that M 
 (ϕ(a) > r).
— M 
 (σ ≥ r) iff M 
 (σ > r′) for all r′ < r.

The next three lemmas are routine and are left to the reader.

Lemma 5.1. Suppose that M ∈ K, σ is a restricted LM -sentence in
prenex normal form and r, s ∈ [0, 1] are such that r < s. Then:

(1) If ./ ∈ {<,≤} and M 
 (σ ./ r), then M 
 (σ ./ s).
(2) If ./ ∈ {>,≥} and M 
 (σ ./ s), then M 
 (σ ./ r).

Lemma 5.2. Suppose that M ∈ K, σ is a restricted LM -sentence in
prenex normal form and r ∈ [0, 1].

(1) If M 
 (σ < r), then M 
 (σ ≤ r).
(2) If M 
 (σ > r), then M 
 (σ ≥ r).

Lemma 5.3. Suppose that M ∈ K, σ is a restricted LM -sentence in
prenex normal form, and r, s ∈ [0, 1]. If ./ ∈ {<,≤} and ./′ ∈ {>,≥} are
such that M 
 (σ ./ r) and M 
 (σ./′s), then s ≤ r.

Definition 5.4. Suppose that M ∈ K and σ is a restricted LM -sentence
in prenex normal form. We then define:

• VM (σ) := inf{r : M 
 (σ < r)} = inf{r : M 
 (σ ≤ r)}.
• vM (σ) := sup{r : M 
 (σ > r)} = sup{r : M 
 (σ ≥ r)}.

We refer to VM (σ) and vM (σ) as the upper and lower forcing values of ϕ
in M .

By Lemma 5.3, we see that vM (σ) ≤ VM (σ) for any restricted LM -
sentence σ.

Lemma 5.5. Suppose that M,N ∈ K are such that M ⊆ N and σ is
a restricted LM -sentence in prenex normal form. Then vM (σ) ≤ vN (σ) ≤
V N (σ) ≤ VM (σ).

Proof. The proof is by induction on complexity of σ, the result being
obvious for σ quantifier-free. Suppose first that σ = infx ϕ(x). Suppose that
M 
 (σ ≥ r). If N 1 (σ ≥ r), then there is N ′ ∈ K with N ′ ⊇ N and a ∈ N ′
such that N ′ 
 (ϕ(a) < r). Since M ⊆ N ′, we have M 1 (σ ≥ r). It follows
that vM (σ) ≤ vN (σ). Now suppose that M 
 (σ < r), so there is a ∈ M
such that M 
 (ϕ(a) < r). By induction, V N (ϕ(a)) ≤ r. Fix ε > 0. Then
N 
 (ϕ(a) < r + ε), whence N 
 (σ < r + ε). Since ε > 0 was arbitrary, we
have V N (σ) ≤ r. It follows that V N (σ) ≤ VM (σ).

The proof for the case σ = supx ϕ(x) is similar.
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Definition 5.6. We say that M ∈ K is infinitely generic if, for every
restricted LM -sentence σ in prenex normal form, we have vM (σ) = VM (σ).

Proposition 5.7. For every M ∈ K, there is N ∈ K with M ⊆ N such
that N is infinitely generic.

Proof. Suppose that σ is a restricted LM -sentence in prenex normal
form. We seek to find N ∈ K with N ⊇ M such that N is generic for σ.
Since any extension of N in K remains generic for σ, we can iterate this
process to find an extension of M in K that is generic for every restricted
LM -sentence in prenex normal form. We can then iterate this procedure ω
many times to get a generic extension of M .

IfM is generic for σ, we do nothing. Otherwise, we have vM (σ) < VM (σ).
Note that σ cannot be quantifier-free. Suppose first that σ = infx ϕ(x). Set
r to be the midpoint of (vM (σ), VM (σ)). Since M 1 (σ ≥ r), we have
N0 ∈ K with M ⊆ N0 and a ∈ N0 such that N 
 (ϕ(a) < r). It follows
that V N0(σ)− vN0(σ) ≤ 1

2(VM (σ)− vM (σ)). If N0 is generic for σ, then we
are done. Otherwise, by the same argument, there is N1 ∈ σ with N0 ⊆ N1

and V N1 − vN1(σ) ≤ 1
2(V N0(σ)− vN0(σ)). If in this process we ever reach a

generic for σ extension of M , then we are done. Otherwise, N :=
⋃
iNi is a

generic for σ extension of M .

Now suppose that σ = supx ϕ(x) and let r be as in the previous para-
graph. Since we have M 1 (σ ≤ r), there is N ∈ K with M ⊆ N and
a ∈ N such that N 
 (ϕ(a) > r). Now proceed as in the previous para-
graph.

The following characterization of infinitely generic structures relating
forcing and truth is crucial.

Proposition 5.8. Suppose that M ∈ K. Then M is infinitely generic if
and only if, for every restricted LM -sentence σ, every r ∈ [0, 1] and every
./ ∈ {<,≤, >,≥}, we have

(†) M 
 (σ ./ r)⇔ σM ./ r.

Proof. We treat the “if” direction first. Fix a restricted LM -sentence σ
and suppose, aiming for a contradiction, that vM (σ) < VM (σ). Fix r in
(vM (σ), VM (σ)). Since M 1 (σ ≥ r), by (†), we have σM < r. By (†) again,
we see that M 
 (σ < r), contradicting r < VM (σ).

We now prove the “only if” direction by induction on complexity of σ.
As usual, the quantifier-free case is trivial and we only treat the case σ =
infx ϕ(x). The equivalence in (†) is clear when ./ ∈ {<,≤}. To finish, it
suffices to prove that (†) holds for ./ equalling ≥. Suppose that M 
 (σ ≥ r)
and yet σM < r. Then by induction we find that M 
 (ϕ(a) < r) for some
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a ∈M , a contradiction. If M 1 (σ ≥ r), then VM (σ) = vM (σ) < r, whence
M 
 (σ < r) and hence σM < r.

Let G denote the collection of infinitely generic members of K.

Corollary 5.9. If M ∈ G, then for every restricted LM -sentence σ, we
have vM (σ) = VM (σ) = σM .

Proposition 5.10. If M,N ∈ G and M ⊆ N , then M � N .

Proof. If σ is a restricted LM -sentence in prenex normal form, then
σM = σN by Lemma 5.5 and Corollary 5.9. It remains to notice that the
restricted formulae are dense in the set of all formulae.

Proposition 5.11. If M ∈ G, then M is e.c. for K.

Proof. It is enough to check the condition for the case that ϕ is restricted
quantifier-free. In that case, suppose b ∈M and N ∈ K is such that M ⊆ N .
Take N ′ ∈ G such that N ⊆ N ′. Observe that

(inf
x
ϕ(x, b))N

′ ≤ (inf
x
ϕ(x, b))N ≤ (inf

x
ϕ(x, b))M .

However, by Proposition 5.10, (infx ϕ(x, b))M = (infx ϕ(x, b))N
′
, whence

(infx ϕ(x, b))M = (infx ϕ(x, b))N .

Proposition 5.12 (Uniform continuity of forcing). For any L-formula
σ(x) and any ε > 0, there is δ > 0 such that, for any M ∈ K and any tuples
a, a′ ∈M , if d(a, a′) < δ, then

|VM (σ(a))− VM (σ(a′))|, |vM (σ(a))− vM (σ(a′))| < ε.

Proof. We proceed by induction on the complexity of σ, the case of
quantifier-free σ being trivial. Suppose that σ(x) = infy ϕ(x, y). Let ∆f

ϕ be
a modulus of uniform continuity for forcing for ϕ. Suppose that M ∈ K,
a, a′ ∈ M are within ∆f

ϕ(ε), and M 1 (σ(a) ≥ r). Then there is N ∈ K
with M ⊆ N and b ∈ N such that N 
 (ϕ(a, b) < r). By definition

of ∆f
ϕ, we have N 
 (ϕ(a′, b) < r + ε), so M 1 (σ(a) ≥ r + ε). By sym-

metry, it follows that |vM (σ(a)− vM (σ(a′))| < ε. The other cases are simi-
lar.

Proposition 5.13. G is an inductive class.

Proof. Suppose that (Mα : α < λ) is a chain from G andM =
⋃
α<λMα.

Since K is inductive, we have M ∈ K. Now suppose that σ(a) is a restricted
LM -sentence. Fix ε > 0. Choose δ > 0 to witness uniform continuity of
forcing for σ(x) and ε. Take α < λ and a′ ∈ Mα such that d(a, a′) < δ.
Then

VM (σ(a))− vM (σ(a)) ≤ 2ε+
(
VM (σ(a′))− vM (σ(a′))

)
= 2ε,

where the last equality holds as Mα is generic for σ(a′). Let ε go to 0.
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Proposition 5.14. Suppose that C is a subclass of K such that:

• C is model-consistent with K, and
• C is model-complete.

Then C ⊆ G.

Proof. Fix M0 ∈ C; we want M0 ∈ G. We prove by induction on complex-
ity of σ that M0 is generic for σ. Suppose first that σ = infx ϕ(x). Suppose
M0 is not generic for σ. Take r ∈ (vM0(σ), VM0(σ)). Since M0 1 (σ ≥ r),
there is N ∈ K with N ⊇ M0 and a ∈ N such that N 
 (ϕ(a) < r). Take
M1 ∈ C with M ⊇ N , so M1 
 (ϕ(a) < r). Since M1 is generic, ϕM1(a) < r,
whence σM1 < r. Take M2 ∈ G with M2 ⊇M1 and M3 ∈ C with M3 ⊇M2,
and so on. . . Let M denote the union of the chain. Since both C and G
are model-complete classes, each Mi is an elementary substructure of M .
In particular, σM0 = σM = σM1 < r, whence there is b ∈ M0 such that
ϕM0(b) < r. Since we already know that M0 is generic for ϕ(b), we have
M0 
 (ϕ(b) < r), whence M0 
 (σ < r), a contradiction. The proof for
σ = supx ϕ(x) is similar.

Corollary 5.15. G is the unique maximal subclass of K that is model-
consistent with K and model-complete.

Proposition 5.16. Suppose that M ∈ K is such that M � M ′ for all
M ′ ∈ G with M ⊆M ′. Then M ∈ G.

Proof. This follows from Proposition 5.14 by considering the class C :=
G ∪ {M}.

Proposition 5.17. Suppose that K = Mod(T ) for some ∀∃-axiomatiz-
able theory T . Suppose that M ∈ K and M ′ ∈ G are such that M � M ′.
Then M ∈ G.

Proof. By the previous proposition, it is enough to show that if N ∈ G
also contains M , then M � N . Since M is an e.c. model of T (being an
elementary substructure of an e.c. model of T ), we can find N ′ ∈ K which
amalgamates M ′ and N over M . Fix N ′′ ∈ G extending N ′. Then for any
LM -sentence σ, we have

σM = σM
′

= σN
′′

= σN .

Corollary 5.18. Suppose that K = Mod(T ) for some ∀∃-axiomatizable
theory T . Then for every M ∈ K, there is N ∈ G with M ⊆ N and such
that the density character of N equals the density character of M .

Proof. This is immediate from Propositions 5.17 and 5.7, and Downward
Löwenheim–Skolem.
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Let T g := Th(G). We call T g the forcing companion for T . The name is
a good one:

Proposition 5.19. T g is a companion operator.

Proof. Immediate from the fact that every element of G is existentially
closed.

Recall that a theory T has the joint embedding property (JEP) if any
two models of T can be simultaneously embedded into a third model of T .
If T is complete, then it has JEP.

Lemma 5.20. T g is complete if and only if T has JEP.

Proof. If T g is complete, then it has JEP; since T and T g have the same
universal theories, it follows that T has JEP.

Conversely, suppose that T has JEP (whence T g does); we must show
that T g is complete. Suppose M,N ∈ G. Let A |= T g be such that M,N
both embed into A. Let A1 ∈ G be such that A embeds into A1. From
model-completeness of G, we see that M,N � A1, whence M ≡ N. It
follows that T g is complete.

We are now ready to show that the infinite forcing companion of Th∀(R)
is Th(R).

Proposition 5.21. R is infinitely generic.

Proof. We prove by induction on complexity of restricted L(R)-sentences
σ that vR(σ) = V R(σ) = σR. This is clear for σ quantifier-free. Now suppose
that σ = infx ϕ(x, a), where we display the parameters a coming fromR. We
first prove that V R(σ) ≤ σR. Suppose that σR < r, so ϕ(b, a)R < r for some
b ∈ R. By the induction hypothesis, R 
 (ϕ(b, a) < r), so R 
 (σ < r) and
V R(σ) ≤ r. We now prove that σR ≤ vR(σ). Suppose that vR(σ) < r, so
R 1 (σ ≥ r). Then there are N ⊇ R and b ∈ N such that N 
 (ϕ(b, a) < r).
Let N1 ⊇ N be infinitely generic. Then

ϕ(b, a)N1 = V N1(ϕ(b, a)) ≤ V N (ϕ(b, a)) < r.

Let N2 � N1 contain R and b. Let j : N2 → RU be an embedding. Then
ϕ(j(b), j(a))R

U
< r, whence infx ϕ(x, j(a))R

U
< r. Since the induced em-

bedding R ↪→ N2 ↪→ RU is elementary, we have σR = infx ϕ(x, a)R < r.

The case that σ = supx ϕ(x, a) is similar, but we include a proof for
the sake of completeness. We first prove that σR ≤ vR(σ). Suppose that
vR(σ) < r. Then R 1 (σ > r), that is, R 1 (ϕ(b, a) > r) for all b ∈ R,
that is, vR(ϕ(b, a)) ≤ r. By the induction hypothesis, ϕ(b, a)R ≤ r for all
b ∈ R, whence σR ≤ r. We now show that V R(σ) ≤ σR. Suppose that
V R(σ) > r. Then R 1 (σ ≤ r). Thus, there are N ⊇ R and b ∈ N such that
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N 
 (ϕ(b, a) > r). Let N1 ⊇ N be infinitely generic. Then

ϕ(b, a)N1 = vN1(ϕ(b, a)) ≥ vN (ϕ(b, a)) ≥ r.
Let N2 � N1 contain R and b. Let j : N2 → RU be an embedding. Then
ϕ(j(b), j(a))R

U ≥ r, whence supx ϕ(x, j(a))R
U ≥ r. As before, that means

that σR = supx ϕ(x, a)R ≥ r.
Corollary 5.22. If T = Th∀(R), then T g = Th(R).

Proof. Since T has JEP, T g is complete; since R |= T g, it follows that
T g = Th(R).

Corollary 5.23. Every Rω embeddable II1 factor is contained in an
e.c. model of Th(R).

Proof. LetM be anRω-embeddable II1 factor. Then there is an infinitely
generic N with M ⊆ N . But since T g = Th(R), it follows that N ≡ R.

If we knew that Th(R) were ∀∃-axiomatizable, then the previous corol-
lary would be immediate.

Corollary 5.24. There are continuum many nonisomorphic e.c. mod-
els of Th(R).

Proof. Combine the previous corollary with Fact 1.2.

6. Finitely generic structures. There is another kind of model-theo-
retic forcing that is more in the spirit of Cohen’s original notion of forc-
ing which is often called finite (model-theoretic) forcing. This forcing was
adapted to the continuous setting in [4] and we only recall the basic setup
in order to give context to our results.

We work in a countable signature L and add countably many new con-
stant symbols C to the language. We fix a class K of structures and let K(C)
denote the class of all structures (M,ac)c∈C0 where C0 is a finite subset of C.
We treat such structures as L(C0)-structures in the natural way.

Conditions are finite sets of the form {ϕ1 < r1, . . . , ϕn < rn} where each
ϕi is an atomic L(C)-sentence and there is M ∈ K(C) such that ϕMi < ri
for each i = 1, . . . , n. The partial order on conditions is reverse inclusion.
If p is a condition and ϕ is an atomic sentence of L(C), we define fp(ϕ) :=
min{r ≤ 1 : ϕ < r ∈ p}, with the understanding that min(∅) = 1. For a
condition p and an L(C)-sentence ϕ, we define the value Fp(ϕ) ∈ [0, 1] by
induction on ϕ:

• Fp(ϕ) = fp(ϕ) if ϕ is atomic.
• Fp(¬ϕ) = ¬ infq⊇p Fq(ϕ).
• Fp

(
1
2ϕ
)

= 1
2(ϕ).

• Fp(ϕ+ ψ) = Fp(ϕ) + Fp(ψ) (truncated addition).
• Fp(infx ϕ(x)) = infc∈C Fp(ϕ(c)).
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In the second item above, ¬ is an abbreviation for truncated subtraction,
that is, if r ∈ [0, 1], then ¬r := max(1 − r, 0). If r ∈ R and Fp(ϕ) < r, we
say that p forces that ϕ < r, and write p 
 ϕ < r.

Definition 6.1. We say that a nonempty set G of conditions is generic
if the union of two elements of G is once again an element of G and for every
L(C)-sentence ϕ and every r > 1, there is p ∈ G such that

Fp(ϕ) + Fp(¬ϕ) < r.

If G is generic and ϕ is an L(C)-sentence, set ϕG := infp∈G Fp(ϕ). We
should also remark that generic sets exist; in fact, any condition is contained
in a generic set by [4, Proposition 2.12].

The following result is the combination of Lemma 2.16 and Theorem
2.17 in [4].

Theorem 6.2 (Generic model theorem). Let MG
0 denote the term alge-

bra T (C) equipped with the natural interpretation of the function symbols

and interpreting the predicate symbols by PM
G
0 (~τ) := P (~τ)G. Let MG be

the completion of MG
0 . Then MG is an L(C)-structure such that, for all

L(C)-sentences ϕ, we have ϕM
G

= ϕG.

We say that an L-structure N is finitely generic for K if there is a
generic G such that M is isomorphic to the L-reduct of MG. Note that
finitely generic structures exist as generic sets of conditions exist. Finitely
generic structures are existentially closed.

Let T f denote the theory of the class of finitely generic models of T .
Then T f is a companion operator for T , called the finite forcing companion,
and is complete if and only if T has JEP. (See [13, Chapter 5] for the proofs
of these claims in the classical case.)

Proposition 6.3. Suppose that M,N ∈ K, M ⊆ N , and M is existen-
tially closed in N . If N is finitely generic for K, then so is M .

Proof. See [13, Proposition 5.15] for a proof in the classical case.

Corollary 6.4. R is finitely generic and Th(R) is the finite forcing
companion of Th∀(R).

Proof. Suppose that M is a finitely generic model of Th∀(R). Then M
is e.c., whence a II1 factor. Since R embeds into M and is e.c., we see that
R is finitely generic. The second claim follows from the fact that the forcing
companion is complete whenever the original theory has JEP.

Hodges’ book [14] describes the finitely generic models being at the
“thin” end of the spectrum of e.c. models while the infinitely generic ones
are at the “fat” end. It is thus interesting that in the case of Th(R), we
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have the prime model being both finitely and infinitely generic while simul-
taneously having a plethora of infinitely generic models (and yet not being
model-complete).
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