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Abstract

We study the solvability and Fredholmness of binomial boundary value problems for analytic
functions represented by integrals of Cauchy type with density on abstract nonstandard Banach
function spaces, assuming continuous, piecewise continuous and essentially bounded factorizable
functions as coefficients. The representation of the solutions of those problems allows us to
describe the explicit form of the solutions of the associated singular integral equations in each
case. The solvability and explicit representation of the solutions of a class of singular integral
equations with Carleman shifts is also considered.
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1. Introduction

The first formulation of linear boundary value problems (also called Riemann problems

or two-term boundary value problems) for analytic functions was due to Riemann [44]

in 1853, while the theory of singular integral equations with principal value integrals

was originated almost directly after the development of the classical theory of inte-

gral equations by E. Fredholm in 1903. Singular integral equations were investigated

by D. Hilbert [18] and H. Poincaré [43] while studying two different problems: Hilbert

investigated some boundary value problems for analytic functions and Poincaré studied

the theory of tides. J. Plemelj [42] applied further the Cauchy singular integral as a

mathematical device for solving boundary value problems.

The complete solution of the Riemann problem was first given by F. D. Gakhov [13, 14]

and N. I. Muskhelishvili [39, 40]. Subsequently, several authors have extensively studied

boundary value problems and singular integral equations on classical spaces of integrable

functions. Much of this groundwork is collected in [9, 15, 16, 24, 36, 37, 38, 47, 49] and

the references therein.

In the last two decades, several studies have been devoted to singular integral equa-

tions and boundary value problems in the general setting of variable exponent Lebesgue

spaces Lp(·), which is one of the prototypical examples of nonstandard Banach function

spaces. The basic properties as boundedness, invertibility and the Fredholm property of

singular integral operators over diverse domains and curves in Lp(·) (including weighted

versions) as well as the solvability theory of singular integral equations were established by

various authors: we refer to A. Yu. Karlovich [21], A. Yu. Karlovich and A. K. Lerner [22],

A. Yu. Karlovich and I. M. Spitkovsky [23], V. Kokilashvili, N. Samko and S. Samko [31]

and V. Kokilashvili and S. Samko [32, 33] and their references.

The Riemann boundary value problem for analytic functions within the framework

of Lp(·) spaces was first explored by V. Kokilashvili, V. Paatashvili and S. Samko [30];

the Haseman problem, the Riemann–Hilbert problem and the Dirichlet problem were

considered by V. Kokilashvili and V. Paatashvili [25–28, 41]. The recent monograph [29]

synthesizes numerous developments in this direction.

In the more abstract scheme of Banach function spaces, singular integral operators and

their corresponding equations, with coefficients belonging to different classes of functions,

have been studied by A. Yu. Karlovich [20] (in the case of reflexive rearragement-invariant

spaces), A. Yu. Karlovich and A. K. Lerner [22] and V. Kokilashvili and S. Samko [32, 33].

However, the solvability theory of singular integral equations is far from being complete

in this general framework.

[5]



6 E. M. Rojas

The aim of this paper is to extend the study of solvability and Fredholmness of two-

term boundary value problems for analytic functions represented by integrals of Cauchy

type on Lebesgue spaces to the case of density on Banach function spaces over Lyapunov

curves assuming some conditions (see (2.2)–(2.6) below). We will consider continuous,

piecewise continuous and essentially bounded functions as coefficients. Since singular in-

tegral equations are related to boundary value problems, we will use the representation

of their solutions to describe the explicit form of solutions of the associate equations in

each case. For the case of essentially bounded functions we are going to introduce the no-

tion of Wiener–Hopf factorization, and we will establish Simonenko’s Fredholm criterion

for singular integral operators with factorizable functions in this context. Moreover, the

solvability and explicit representation of solutions of a class of singular integral equations

with shift will be considered.

The paper is organized as follows. Chapter 2 contains the definitions and basic facts

about Banach function spaces; here we introduce the notion of factorization in X(Γ).

Chapter 3 is devoted to the study of solvability and representations of solutions of Rie-

mann problems with continuous, piecewise continuous and essentially bounded factoriz-

able coefficients.

In Chapter 4 we prove Simonenko’s Fredholm criterion for singular integral equations

with essentially bounded factorizable coefficients. As a consequence, we establish the

effective solution of the corresponding singular integral equations through the lateral

inverses of the operator.

In Chapter 5, by using the Fredholmness criteria for singular integral equations with

continuous and piecewise continuous functions proved by V. Kokilashvili and S. Sam-

ko [32], Simonenko’s Fredholmness criterion proved in Chapter 4 and the representations

of solutions of boundary value problems considered in Chapter 3, we prove the Fredholm

property for the above mentioned boundary value problems, and we will describe the

form of solutions of equation (4.2) for each class of essentially bounded functions under

study.

Chapter 6 deals with a class of singular integral equations with Carleman shift. For

the shift function we assume both behaviors: preserving or reversing the orientation of

the curve Γ. The existence and uniqueness of solutions will be established by projection

methods, so that we will be able to transform the initial equation into a system of

equations which can be solved by means of a Riemann boundary value problem technique.

Thus, using the results of Chapter 3 and the Sokhotski–Plemelj formulas we will give an

explicit form of the solutions. Furthermore, with the Fredholmness criteria mentioned

above and the projection methods, which in this case take the form of a nonexplicit

equivalence relation between operators, the Fredholm property for the associated singular

integral operator with shift is proved.

In Chapter 7 we show that all the assumptions imposed on the abstract Banach

function space X(Γ) are, in fact, well-known results in variable exponent Lebesgue spaces,

therefore our results are valid in those spaces.



2. Definitions and preliminary statements

Let Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ `} be an oriented rectifiable closed simple Lyapunov

curve in the complex plane C with arc-length s. We denote by D+ and D− the bounded

and unbounded components of C \ Γ respectively. We will assume that 0 ∈ D+ and, as

usual, Γ has the natural counterclockwise orientation.

Recall that a simple oriented curve Γ in the complex plane is called a Lyapunov curve

if the tangent to Γ at each point t exists and forms an angle θ(t) with the real axis which

satisfies the Hölder condition:

|θ(t1)− θ(t2)| ≤ A|t1 − t2|µ, A > 0, 0 < µ < 1.

We denote byR(Γ) the Banach algebra of rational functions without poles on Γ which,

as is well-known, can be decomposed as R(Γ) = R+(Γ) uR−(Γ), where R±(Γ) denote

the sets of all functions on R(Γ) with poles outside of D±. The continuous functions, the

smooth functions and the essentially bounded measurable functions on Γ, endowed with

the essential supremum norm ‖·‖∞, are denoted by C(Γ), C∞(Γ) and L∞(Γ) respectively.

For p ∈ [1,∞), Lp(Γ) denotes the usual Banach space of all Lebesgue measurable complex-

valued functions on Γ with absolutely integrable pth power.

The Cauchy singular integral operator along the curve Γ of finite length ` is defined by

(Sf)(t) :=
1

πi
p.v.

∫
Γ

f(τ)

τ − t
dτ, t = t(s), 0 ≤ s ≤ `,

where the integral is understood in the sense of principal value.

Let (Ω, µ) be a nonatomic σ-finite measure space, i.e., a measure space with nonatomic

σ-finite measure µ given on a σ-algebra of subsets of Ω. The set of all Lebesgue measurable

complex-valued functions on Ω is denoted by M. Let M+ be the subset of functions in

M whose values lie in [0,∞]. The characteristic function of a measurable set E ⊂ Ω is

denoted by χE , and the Lebesgue measure of E is denoted by |E|.
Definition 2.1 ([1, Ch. 1, Definition 1.1]). A mapping ρ : M+ → [0,∞] is called a

Banach function norm if, for all functions f, g, fn (n ∈ N) inM+, for all constants a ≥ 0,

and for all measurable subsets E of Ω, the following properties hold:

(A1) ρ(f) = 0⇔ f = 0 a.e. ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),

(A2) 0 ≤ g ≤ f a.e.⇒ ρ(g) ≤ ρ(f) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e.⇒ ρ(fn) ↑ ρ(f) (the Fatou property),

(A4) |E| <∞⇒ ρ(χE) <∞,

(A5) |E| <∞⇒
∫
E
f dµ ≤ CEρ(f)

with CE ∈ (0,∞) which may depend on E and ρ but is independent of f .

[7]
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Here, functions differing only on a set of measure zero are identified. The set X(Ω) of

all functions f ∈ M for which ρ(|f |) < ∞ is called a Banach function space. For each

f ∈ X(Ω), the norm of f is defined by

‖f‖X(Ω) := ρ(|f |).

The set X(Ω) under the natural linear space operations and with this norm becomes a

Banach space (see [1, Ch. 1, Theorems 1.4 and 1.6]).

If ρ is a Banach function norm, its associate norm ρ′ is defined on M+ by

ρ′(g) := sup

{∫
Ω

f(x)g(x) dµ : f ∈M+, ρ(f) ≤ 1

}
, g ∈M+.

It is a Banach function norm itself [1, Ch. 1, Theorem 2.2]. The Banach function space

X′(Ω) determined by the Banach function norm ρ′ is called the associate space (Köthe

dual) of X(Ω).

Lemma 2.1 (Hölder’s inequality, see [1, Ch. 1, Theorem 2.4]). Let X(Ω) be a Banach

function space with associate space X′(Ω). If f ∈ X(Ω) and g ∈ X′(Ω), then fg is

summable and ∫
Ω

|fg| dµ ≤ ‖f‖X(Ω)‖g‖X′(Ω). (2.1)

Let Σ denote the collection of all subsets of Ω of finite measure, where any two such

subsets which differ by a set of µ-measure zero are identified. With the distance

d(E,F ) :=

∫
Ω

|χE − χF | dµ, E, F ∈ Σ,

(Σ, d) is a complete metric space. A measure µ is said to be separable if the corresponding

metric space (Σ, d) is separable.

Lemma 2.2 ([1, Ch. 1, Corollaries 4.3–4.5]). Let µ be a separable measure.

(a) A Banach function space X(Ω) is separable if and only if its associate space X′(Ω) is

canonically isometrically isomorphic to the dual space X∗(Ω) of X(Ω).

(b) A Banach function space X(Ω) is reflexive if and only if both X(Ω) and its associate

space X′(Ω) are separable.

In this paper we will consider X(Γ) to be a Banach function space over a closed simple

Lyapunov curve Γ satisfying the following conditions:

C(Γ) ⊂ X(Γ) ⊂ L1(Γ), (2.2)

‖af‖X(Γ) ≤ sup
t∈Γ
|a(t)| · ‖f‖X(Γ) for a ∈ L∞(Γ), (2.3)

the operator S is bounded in X(Γ), (2.4)

X(Γ) is reflexive, (2.5)

C∞(Γ) is dense in X(Γ). (2.6)

The boundedness of the adjoint operator S∗ in the dual space X∗(Γ) is given in the

following result.
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Lemma 2.3. Suppose the operator S is bounded in the space X(Γ). Then its adjoint S∗

is connected with the operator S in the dual space X∗(Γ) via the equality

S∗ = −HSH

where H is the operator defined in X∗(Γ) by (Hϕ)(t) := h(t)ϕ(t), where h(t) = exp(iΘ(t))

and Θ(t) is the angle of inclination of Γ at t to the positive direction of the real axis.

Proof. Since X(Γ) is reflexive, Lemma 2.2 shows that X(Γ) and X′(Γ) are separable.

Furthermore, X∗(Γ) can be identified with the associate space X′(Γ) (see also [20, Lem-

ma 1.2]). That is, the general form of a linear functional on X(Γ) is given by

f(u) = (u, v) =

∫
Γ

u(t)v(t) |dt|, where u ∈ X(Γ), v ∈ X′(Γ).

Let φ, ψ ∈ R(Γ). Then from Cauchy’s Theorem it follows that∫
Γ

ψ(t)(Sφ)(t) dt = −
∫

Γ

φ(t)(Sψ)(t) dt.

Hence,

(φ, S∗ψ) = (Sφ, ψ) =

∫
Γ

(Sφ)(t)ψ(t) |dt| =
∫

Γ

(Sφ)(t)ψ(t)h(t) dt

= −
∫

Γ

φ(t)(Shψ)(t) dt = −
∫

Γ

φ(t)(HSHψ)(t) |dt| = −(φ,HSHψ). (2.7)

Since X(Γ) is reflexive, X(Γ) and X′(Γ) = X∗(Γ) are separable and by (2.6), R(Γ) is dense

in X(Γ) and X′(Γ), from (2.4) and (2.7) we conclude that S∗ = −HSH.

On the other hand, from [38, Ch. I, Corollary 1.2] we have (S2r)(t) = r(t) for all

r ∈ R(Γ). Since R(Γ) is dense in C∞(Γ) and, by assumption (2.6), C∞(Γ) is dense

in X(Γ), we conclude that S2 = I in X(Γ). Hence, from (2.4) and (2.6), the operators

P± := 1
2 (I ± S)

define bounded complementary projections in the space X(Γ). Thus, we define the sub-

spaces

X+(Γ) := P+X(Γ), X̊−(Γ) := P−X(Γ),

X−(Γ) := X̊−(Γ) u C.

Set

L1
+(Γ) : =

{
f ∈ L1(Γ) :

∫
Γ

f(τ)τn dτ = 0 for n ≥ 0

}
,

L̊1
−(Γ) : =

{
f ∈ L1(Γ) :

∫
Γ

f(τ)τ−n dτ = 0 for n ≥ 1

}
,

L1
−(Γ) : = L̊1

−(Γ) u C.

Lemma 2.4. Let Γ be a Lyapunov curve and let X(Γ) be a BFS satisfying (2.2)–(2.6).

Then:

(a) X+(Γ) = L1
+(Γ) ∩ X(Γ), X̊−(Γ) = L̊1

−(Γ) ∩ X(Γ), X−(Γ) = L1
−(Γ) ∩ X(Γ).

(b) If f ∈ X±(Γ), g ∈ X′±(Γ), then fg ∈ L1
±(Γ). Moreover, if f ∈ X−(Γ), g ∈ X̊

′
−Γ) or

f ∈ X̊−(Γ), g ∈ X′−(Γ), then fg ∈ L̊1
−(Γ).
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Proof. (a) follows from [38, Ch. II, Theorem 1.1] and assumptions (2.2) and (2.4), tak-

ing into consideration the decomposition R(Γ) = R+(Γ) u R−(Γ). The proof of (b) is

analogous to the proof of [2, Lemma 6.11], from the denseness of R(Γ) in C(Γ), assump-

tion (2.6) and the Hölder inequality.

Now, we can introduce a factorization of an invertible essentially bounded measurable

function a in Γ (a ∈ G(L∞(Γ))), where a ∈ G(L∞(Γ)) if ess inft∈Γ |a(t)| > 0. Let Γ be

a Lyapunov curve and X(Γ) be a BFS satisfying (2.2)–(2.6). We say that a function

a ∈ G(L∞(Γ)) admits a factorization in X(Γ) if it can be written in the form

a(t) = a−(t)tℵa+(t), a.e. on Γ, (2.8)

where ℵ ∈ Z,

(i) a− ∈ X−(Γ), a−1
− ∈ X′−(Γ), a+ ∈ X′+(Γ), a−1

+ ∈ X+(Γ),

(ii) the operator a−1
+ Sa+I is bounded in X(Γ).

The integer ℵ will be called the index of the function a and denoted by ind a. We can

prove that ℵ is uniquely determined.



3. Binomial boundary value problems on X(Γ)

In this chapter we study the Riemann problem

Ψ+(t) = G(t)Ψ−(t) + g(t), (3.1)

or equivalently, the associated problem

Ψ−(t) +G(t)Ψ+(t) = g(t) (3.2)

for analytic functions represented by integrals of Cauchy type with density on the

space X(Γ), assuming the function G is continuous, piecewise continuous or G ∈ L∞(Γ)

admitting a factorization (2.8).

The problem is stated in the following way: find functions Ψ+(t) and Ψ−(t) analytic

in D+ and D− respectively, vanishing at infinity, satisfying condition (3.1) or (3.2) on

their boundary values on the contour Γ.

The pair {Ψ−,Ψ+} is referred to as a solution of problem (3.1) (or (3.2)). The space of

all solutions of the homogeneous problem is called its kernel, and the space of functions g

for which the inhomogeneous problem is solvable is said to be its image. The dimension α

of the first of them and the codimension (in X(Γ)) β of the closure of the second are called

the defect numbers of the boundary value problem. If at least one of the numbers α and

β is finite, the difference α− β is referred to as the index of the problem. Problem (3.1),

or (3.2), is said to be normally solvable if its image is closed; it is called Fredholm if it is

normally solvable and has finite index.

Let Ψ be an analytic function of Cauchy integral type with nontangential limit

ϕ ∈ X(Γ),

Ψ(z) =
1

2πi

∫
Γ

ϕ(τ)

τ − z
dτ, z /∈ Γ,

with boundary values Ψ+(t) (resp. Ψ−(t)) as z → t, t ∈ Γ, z ∈ D+ (resp. t ∈ Γ, z ∈ D−).

According to the Sokhotski–Plemelj formulas, these boundary values are expressed by

Ψ+(t) = 1
2 [(Iϕ)(t) + (Sϕ)(t)], Ψ−(t) = 1

2 [(−Iϕ)(t) + (Sϕ)(t)].

Thus,

Ψ+(t)−Ψ−(t) = ϕ(t), Ψ+(t) + Ψ−(t) = (Sϕ)(t).

For a simply connected domain D, bounded by a rectifiable curve Γ, we denote by

Eδ(D), δ > 0, the Smirnov class of functions Ψ(z) in D for which

sup
r

∫
Γr

|Ψ(z)|δ |dz| <∞,

[11]
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where Γr is the image of γr = {z : |z| = r} under the conformal mapping of U =

{z : |z| < 1} onto D. When D is an infinite domain, the conformal mapping means the

one which transforms 0 into infinity. A function Ψ ∈ Eδ(D) has angular boundary values

almost everywhere on Γ and the boundary function belongs to Lδ(Γ).

On the other hand, let us introduce the notation

E(D) =

{
Ψ(z) : Ψ(z) = (Kϕ)(z) =

1

2π

∫
Γ

ϕ(τ)

τ − z
dτ, z /∈ Γ, with ϕ ∈ X(Γ)

}
.

As is known, E1(D) coincides with the class of analytic functions represented by Cauchy

integrals. So, for the function Ψ(z) which is analytic on the plane cut along the closed

curve Γ and belongs to E1(D±), we have

Ψ(z) = K(Ψ+ −Ψ−)(z).

This, together with the inclusion X(Γ) ⊂ L1(Γ), given by assumption (2.2), allows us to

define the following subsets of E(D):

E1(D±) = {ϕ ∈ E1(D±) : ϕ has definite limiting values on X(Γ)}.

Denote by E1
+(D+) the set of analytic functions on D+ with definite limiting on X+(Γ).

E̊1
−(D−) is referred to as the set of analytic functions on D− vanishing at infinity with

boundary value on X̊−(Γ). Finally, we set L1(Γ) := L1
+(Γ) u L̊1

−(Γ).

Since the boundary value problem is posed in X(Γ), we are looking for solutions

{ϕ+, ϕ−} represented by integrals of Cauchy type, i.e.,

ϕ±(z) =
1

πi

∫
Γ

ϕ±(ζ)

ζ − z
dζ in D±,

with nontangential limits a.e. on X(Γ). Then, the solutions are such that ϕ+ ∈ E1(D+)

and ϕ− ∈ E1(D−) for the boundary value problem with continuous coefficient G. In the

case of G essentially bounded and admitting a factorization (2.8), the solutions ϕ± rep-

resented by integrals of Cauchy type have nontangential limits a.e. on X+(Γ) and X̊−(Γ)

respectively; in this case the solutions are such that ϕ+ ∈ E1
+(D+) and ϕ− ∈ E̊1

−(D−).

3.1. The two-term boundary value problem with continuous coefficients. In

this section we study the solvability of problem (3.1) for G a nonvanishing continuous

function on Γ, with index ℵ = 1
2π [argG(t)]Γ and with g ∈ X(Γ).

We first establish the following auxiliary result:

Proposition 3.1.1. Let Γ be a closed curve and X(Γ) a BFS satisfying (2.2)–(2.4)

and (2.6). Assume that z0 ∈ D+. Then there exists an integer k ≥ 0 such that

exp{(Kϕ)(z)} =: X(z) ∈ E1(D+) and
X(z)− 1

(z − z0)k
∈ E1(D−).

Proof. Let δ > 0 and Γr be the image of γr = {z : |z| = r}, r < 1, under the conformal

mapping of U = {z : |z| < 1} onto D+. We have∫
Γr

|X(z)|δ |dz| ≤
∫

Γr

∞∑
n=0

1

n!
|δΨ(z)|n |dz|, where Ψ(z) =

1

2π

∫
Γ

ϕ(τ)

τ − z
dτ. (3.3)
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Since Ψ(z) ∈ E1(D+), it is known that∫
Γr

|Ψ(z)|n |dz| ≤
∫

Γ

|Ψ+(t)|n |dt|.

From (3.3) we obtain∫
Γr

|X(z)|δ |dz| ≤
∞∑
n=0

∫
Γ

|δΨ+(t)|n |dt| ≤
∞∑
n=0

1

n!

∫
Γ

∣∣∣∣δϕ(t)

2
+
δ

2
(Sϕ)(t)

∣∣∣∣n |dt|
≤
∞∑
n=0

1

n!

∫
Γ

|δϕ(t)|n |dt|+
∞∑
n=0

1

n!

∫
Γ

|δ(Sϕ)(t)|n |dt|

≤ `eδM +

∞∑
n=0

1

n!

∫
Γ

|δ(Sϕ)(t)|n |dt|,

where M = supt∈Γ |ϕ(t)|. It remains to show that the series
∑∞
n=0

1
n!

∫
Γ
|δ(Sϕ)(t)|n |dt|

converges. Since S is an involution, we have

(Sϕ)n(t) =

{
(Sϕ)(t), n odd,

ϕ(t), n even.

For n odd, from the Hölder inequality, we have
∞∑
n=1
n odd

1

n!
δn
∫

Γ

|(Sϕ)(t)| |dt| ≤
∞∑
n=0

1

n!
δn‖S‖X(Γ)‖1‖X′(Γ) = `‖S‖X(Γ)

∞∑
n=0

δn

n!
.

The last series converges if δ ≤ 1. The case of n even was shown above. This proves that

X(z) ∈ Eδ(D+) when δ ≤ 1.

In the case of D− it is necessary to consider two cases: 0 < r < r0 and r0 < r < 1 for

some fixed r0. The needed inequalities are obtained by choosing k > [1/δ] and proceeding

as before.

Now, notice that∫
Γ

|Ψ±(t)| |dt| =
∫

Γ

|e±δϕ(t)/2| |eδ/2(Sϕ)(t)| |dt| ≤ eδM/2
∞∑
n=0

1

n!

∫
Γ

∣∣∣∣δ2(Sϕ)(t)

∣∣∣∣n |dt|.
As before, we can prove that this series converges if δ ≤ 2.

Finally, we apply the following Smirnov Theorem: If Ψ ∈ Eγ1(D) and Ψ+ ∈ Lγ2(Γ)

where γ2 > γ1, then Ψ ∈ Eγ2(D). In our case, X(z) ∈ Eδ(D+), 0 < δ < 1, and assump-

tion (2.2) gives Ψ+ ∈ L1(Γ), so X(z) ∈ E1(D+) and X(z)−1
(z−z0)k

∈ E1(D−). Even more,

we are considering analytic functions with nontangential limits in X(Γ), more precisely,

Ψ+ ∈ X(Γ); then we conclude that X(z) ∈ E1(D+) and X(z)−1
(z−z0)k

∈ E1(D−).

Theorem 3.1.2. Let Γ be a Lyapunov curve and X(Γ) be a BFS satisfying (2.2)–(2.4)

and (2.6). Assume G ∈ C(Γ) and G(t) 6= 0 for t ∈ Γ. Then:

(a) For ℵ ≥ 0, problem (3.1) is unconditionally solvable in the class E(D), and all its

solutions are given by

Ψ(z) =
X(z)

2πi

∫
Γ

g(τ)

X+(τ)

dτ

τ − z
+X(z)ρ(z) (3.4)
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with

X(z) =

{
exph(z), z ∈ D+,

(z − z0)ℵ exph(z), z ∈ D−, z0 ∈ D+,

where

h(z) = K
(
lnG(t)(t− z0)ℵ

)
(z)

and ρ is an arbitrary polynomial of degree ℵ − 1.

(b) For ℵ < 0, problem (3.1) is solvable in this class if and only if∫
Γ

g(τ)τκ

X+(τ)
dτ = 0, κ = 0, . . . , |ℵ| − 1, (3.5)

and under these conditions the unique solution is given by (3.4) with ρ ≡ 0.

Proof. Consider first the case ℵ = 0. We choose a rational function G̃(t) such that

sup
t∈Γ

∣∣∣∣G(t)

G̃(t)
− 1

∣∣∣∣ < 1
2 (1 + ‖S‖X(Γ))

−1.

Clearly, ind G̃ = 0 and therefore X̃(z) = exp(K(ln G̃))(z) is continuous in D±. Since

Ψ(z) = (K(Ψ+ −Ψ−))(z), we have(
Ψ

X̃

)+

+
G

G̃

(
Ψ

X̃

)−
=

g

X̃+
. (3.6)

Notice that Ψ/X̃ ∈ E(D). In fact, because Ψ ∈ E1(D±) and 1/X is bounded, we have

Ψ/X̃ ∈ E1(D±) and therefore

Ψ/X̃ = K(Ψ+/X̃+ −Ψ−/X̃−).

From the Sokhotski–Plemelj formulas it follows that Ψ+ ∈ X(Γ), and hence Ψ/X̃ ∈ E(D).

Let
Ψ(z)/X̃(z) = (Kψ)(z), ψ ∈ X(Γ);

then equality (3.6) yields

ψ(t) =

(
G(t)

G̃(t)
− 1

)(
−1

2
ψ(t) +

1

2
(Sψ)(t)

)
+

g(t)

X̃(t)
. (3.7)

That means the function ψ is a solution of the equation ψ = Kψ in the space X(Γ), where

K is a contractive operator. Therefore, equation (3.7) and consequently problem (3.1)

has a unique solution in E(D). Now, we are going to construct that solution.

Let
X(z) = exp(K(lnG)(z)).

Since ℵ = 0,
lnG(t) = ln |G(t)|+ i argG(t)

is a continuous function, and from Proposition 3.1.1,

1/X(z)− 1 ∈ E1(D±).

If Ψ is a solution of problem (3.1), then Ψ ∈ E(D) and therefore Ψ ∈ E1(D±), even more

Ψ/X ∈ E(D). Also,
(Ψ/X)+ − (Ψ/X)− = g/X+.
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Since this problem has a unique solution in E(D), the function

Ψ(z) = X(z)K(g/X+)(z)

is the solution of (3.1) in the class E(D).

Let now ℵ > 0. We choose z0 ∈ D+ and rewrite problem (3.1) as

Ψ+(t) = G1(t)(t− z0)ℵΨ−(t) + g(t)

where G1(t) = (t− z0)−ℵG(t) is a continuous function with index zero. Let

F (z) =

{
Ψ(z), z ∈ D+,

(z − z0)ℵΨ(z), z ∈ D−.
(3.8)

There exists a polynomial ρ(z) of degree ℵ − 1 such that

Ξ(z) = F (z)− ρ(z) ∈ E1(D−); (3.9)

then Ξ(z) = K(Ξ+ − Ξ−)(z). But

Ξ+(t)− Ξ−(t) = F+(t)− F−(t) = Ψ(t)− (t− z0)ℵΨ−(t) ∈ X(Γ),

thus Ξ ∈ E(D) and moreover

Ξ+(t) = G1(t)Ξ−(t) + g1(t)

where g1(t) = g(t)− ρ(t) +G1(t)ρ(t). Since indG1 = 0, from the previous part

Ξ(z) = X1(z)K(g1/X
+
1 )(z), X1(z) = exp

(
K(lnG1)(z)

)
.

On the other hand,

K(g1/X
+
1 )(z) = K(g/X+

1 )(z)− 1

2πi

∫
Γ

ρ(t)

X+
1 (t)

dt

t− z
+

1

2πi

∫
Γ

ρ(t)

X−1 (t)

dt

t− z
.

But

1

2πi

∫
Γ

ρ(t)

X+
1 (t)

dt

t− z
=

{
ρ(z)/X1(z), z ∈ D+,

0, z ∈ D−,

and

1

2πi

∫
Γ

ρ(t)

X−1 (t)

dt

t− z
=

1

2πi

∫
Γ

[
ρ(t)

X−1 (t)
− ρ(t)

]
dt

t− z
+

1

2πi

∫
Γ

ρ(t)

t− z
dt

=

{
ρ(z), z ∈ D+,

−ρ(z)/X1(z) + ρ(z), z ∈ D−.

Thus,

Ξ(z) = X1(z)K(g1/X
+
1 )(z) = X1(z)K(g/X+

1 )(z) +X1(z)ρ(z)− ρ(z).

From (3.8) and (3.9) we arrive at (3.4).

It can verified that in the solution provided for problem (3.1) the arbitrary polynomial

ρ does not depend on the choice of the point z0. Finally, for ℵ < 0, the function given

by (3.8) belongs to E(D). Moreover, F+ = G1F
− + g. Hence,

F (z) = X1(z)K(g/X+
1 )(z),



16 E. M. Rojas

and since the Cauchy formula [17, Ch. X, §4, Th. 1] states that for any analytic function

φ with nontangential limit a.e. on Γ to be representable by an integral of Cauchy type

in D it is necessary and sufficient that∫
Γ

φ(ζ)ζn dζ = 0, n = 0, 1, . . . ,

the condition Ψ(z) = (z − z0)−ℵF (z) ∈ E1(D−) is fulfilled if and only if conditions (3.5)

are satisfied.

3.2. The boundary value problem (3.1) for piecewise continuous coefficients.

In this section we will study the solvability of the two-term boundary value problem (3.1)

with piecewise continuous functions as coefficients. To do so, we first introduce two nec-

essary axioms on X(Γ) as well as some auxiliary results proved in [32].

Axiom 1. For the space X(Γ) there exist two functions α and β with 0 < α(t), β(t) < 1

such that

|t− t0|γ(t0)S|t− t0|−γ(t0)I, t0 ∈ Γ,

is bounded in the space X(Γ) for all γ(t0) such that

−α(t0) < γ(t0) < 1− β(t0),

and is unbounded in X(Γ) if γ(t0) /∈ (−α(t0), 1− β(t0)).

The functions α and β are called the index functions of the space X(Γ).

Axiom 2. For any γ < 1 − β(t0) the embedding X(Γ, |t − t0|γ) ⊂ L1(Γ) is valid and

C∞(Γ) is dense in X(Γ, |t− t0|γ), for any t0 ∈ Γ.

From Axiom 1 the following result holds.

Lemma 3.2.1. Suppose X(Γ) satisfies conditions (2.2)–(2.3), and t1, . . . , tn ∈ Γ. Then

n∏
k=1

|t− tk|γk ∈ X(Γ) for all γk > −αk, k = 1, . . . , n.

Lemma 3.2.2. Let X(Γ) be a Banach function space satisfying conditions (2.2)–(2.3) and

Axioms 1–2. Then the space X(Γ, %) for %(t) =
∏n
k=1 |t − tk|γk , t1, . . . , tk ∈ Γ, satisfies

conditions (2.2)–(2.3) as well if

−α(tk) < γk < 1− β(tk), k = 1, . . . , n. (3.10)

Let G be a piecewise continuous function on Γ (written G∈PC(Γ)) with inft∈Γ |G(t)|
> 0, and let t1, . . . , tn be the points of discontinuity of G. As usual, we set

γ(t) =
1

2πi
ln

(
G(t− 0)

G(t+ 0)

)
, (3.11)

ω(t) =

n∏
k=1

(t− z0)γ(tk),

where z0 ∈ D+, the tk are the discontinuity points of G and the functions ωk(z) =

(z − z0)γ(tk) are univalent analytic functions in the complex plane with cut from z0 to
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infinity through tk ∈ Γ. The function

G1(t) = G(t)/ω(t) (3.12)

is continuous on Γ independently of the choice of

αk := <γ(tk) =
1

2πi
arg

(
G(t− 0)

G(t+ 0)

)
.

Consider now the function

$(z) =

m∏
k=1

$k(z) with $k(z) =


(z − tk)γ(tk), z ∈ D+,

(z − tk)γ(tk)

(z − z0)γ(tk)
, z ∈ D−,

where the branch of the function
(
z−tk
z−z0

)γ(tk)
is chosen so that it tends to 1 as z → ∞,

z ∈ D− so that $k is analytic in D±.

Assuming that the curve Γ has at least one-sided tangents at all tk. For βk := =γ(tk),

with γk chosen as in (3.10), and taking into account Lemmas 3.2.1 and 3.2.2, from the

equality

$k(z) = eαk ln |z−tk|−βk arg(z−tk)ei(βk ln |z−tk|+αk arg(z−tk))

we conclude that

$(z), 1/$(z) ∈ E1(D±). (3.13)

Let X(z) = $(z)X1(z), where

X1(z) = exp(K(ln(G1(t)))),

and introduce a new function

Ψ1(z) = Ψ(z)/$(z). (3.14)

If Ψ ∈ E1(D±) and (3.13) holds, according to Smirnov’s Theorem we have Ψ1 ∈ E1(D±).

Since Ψ1 = K(Ψ+
1 −Ψ−1 ), we get Ψ1 ∈ E(D).

Now, for the function G1 given in (3.12) and Ψ1 in (3.14), consider the problem

Ψ+
1 (t) = G1(t)Ψ−1 (t) +$(t)g(t). (3.15)

If we resolve (3.15), we find that all solutions of problem (3.1) in the case ℵ= indG1(t)≥ 0

are given by

Ψ(z) = $(z)X1(z)K

(
g

$+X+
1

)
(z) +$(z)X(z)ρ(z) (3.16)

where ρ is an arbitrary polynomial of degree ℵ.

Notice that from Lemma 3.2.2, the function Ψ in (3.16) is such that Ψ± ∈ X(Γ).

Therefore, (3.16) with an arbitrary polynomial ρ provides solutions of (3.1) in E(Γ). The

case of negative index is considered in the standard way.

Thus, we arrive at the following result.

Theorem 3.2.3. Let Γ be a Lyapunov curve and X(Γ) be a BFS satisfying (2.2)–(2.4),

(2.6) and Axioms 1–2. Let G ∈ PC(Γ) be such that inft∈Γ |G(t)| > 0 with points of

discontinuity t1, . . . , tn, and suppose that the curve Γ has at least one-sided tangents at

the points tk. Let ℵ = indG1, where G1 is given by (3.12). For γ(tk) given in (3.11)
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satisfying (3.10), the statement of Theorem 3.1.2 holds for problem (3.1) if X(z) is

replaced by X1(z) and formula (3.4) is replaced by formula (3.16).

3.3. The Riemann problem (3.2) with factorizable essentially measurable coef-

ficients. Now, we are going to consider the boundary value problem (3.2) with essentially

measurable coefficients admitting a factorization in the space X(Γ).

Theorem 3.3.1. Let Γ be a Lyapunov curve and let X(Γ) be a BFS satisfying (2.2)–(2.6).

Suppose that the function G admits a factorization G(t) = G−(t)tℵG+(t) in X(Γ). Then

(a) Problem (3.2) is solvable if and only if

G−1
− g ∈ L1(Γ), ϕ−0 = G−P−G

−1
− g ∈ X̊

1

−(Γ), (3.17)

ϕ+
0 = G−1

+ t−ℵP+G
−1
− g ∈ X+(Γ).

(b) If conditions (3.17) are fulfilled, then the general solution of problem (3.2) is

ϕ+ = ϕ+
0 +G−1

+ t−ℵρ, ϕ− = ϕ−0 −G−ρ, (3.18)

where ρ is a polynomial of degree ≤− ℵ − 1 if ℵ < 0, and is equal to zero if ℵ ≥ 0.

Proof. Let {ϕ+, ϕ−} be a solution of problem (3.2). Substituting the representation (2.8)

of G into the boundary condition (3.2) we obtain

ϕ−(t) +G−(t)tℵG+(t)ϕ+(t) = g(t),

f−(t) + tℵf+(t) = G−1
− (t)g(t), (3.19)

where f− = G−1
− ϕ− and f+ = G+ϕ

+. Since G−1
− ∈ X′−(Γ) and ϕ− ∈ X̊−(Γ), from

the Hölder inequality (2.1) we see that f− ∈ L̊1
−(Γ). Analogously, f+ ∈ L1

+(Γ). Thus,

equation (3.3) means that G−1
− g ∈ L1(Γ), thus P+G

−1
− g ∈ L1

+(Γ) and P−G
−1
− g ∈ L̊1

−(Γ)

are well-defined.

Rewriting equation (3.3), we get

f−(t)− P−G−1
− (t)g(t) = −tℵf+(t) + P+G

−1
− (t)g(t).

Since f− and P−G
−1
− g vanish at infinity, and we have L1

+(Γ) ∩ L1
−(Γ) = Const. and

L1
+(Γ) ∩ L̊1

−(Γ) = {0}, it follows that ρ(t) = tℵf+(t) − P+G
−1
− (t)g(t) is identically zero

for ℵ ≥ 0 and a polynomial of order ≤− ℵ − 1 for ℵ < 0.

Set

f−(t) = P−G
−1
− (t)g(t)− ρ(t), f+(t) = t−ℵP+G

−1
− (t)g(t) + t−ℵρ(t);

returning to the functions ϕ± we have formulas (3.18). By the assumptions, {ϕ+, ϕ−}
is a solution of problem (3.2), so ϕ+ ∈ X+(Γ) and ϕ− ∈ X̊−(Γ). Since ρ ∈ L̊∞− (Γ) and

t−ℵρ ∈ L∞+ (Γ), the conditions G−ρ ∈ X̊−(Γ) and G−1
+ t−ℵρ ∈ X+(Γ) are satisfied, and

therefore

ϕ+
0 ∈ X+(Γ), ϕ−0 ∈ X̊−(Γ),

which proves the necessity of (3.17) for the solvability of problem (3.2) as well as the fact

that every solution is of the form (3.18).

To prove that conditions (3.17) imply that every pair {ϕ+, ϕ−} defined by (3.18) is

a solution of problem (3.2) is direct by inserting the functions (3.18) into (3.2) taking
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into consideration the boundedness of the functions on the corresponding spaces, which

is given by (3.17).

From the Cauchy formula [17, Ch. X, §4, Th. 1] for any analytic function representable

by an integral of Cauchy type on a domain D, we immediately obtain:

Corollary 3.3.2. For the solvabiliy of problem (3.2) it is necessary that, for ℵ ≥ 0,∫
Γ

G−1
− (τ)g(τ)τ−κ dτ = 0, κ = 1, . . . ,ℵ.

Remark 3.3.3. (1) Notice that to establish Theorem 3.3.1, only condition (i) in the

definition of factorization of an essentially bounded function in X(Γ) was necessary. Thus,

in this sense, the factorization used in Theorem 3.3.1 is weaker than that defined on

page 10.

(2) Similar conclusions to those in Theorem 3.3.1 can be given for problem (3.1) by

considering the associate space X′(Γ) of X(Γ). In this case we define the factorization in

X(Γ) for a ∈ G(L∞(Γ)) as

a(t) = a+(t)tℵa−(t)

with ℵ ∈ N, a+ ∈ X+(Γ), a−1
+ ∈ X′+(Γ), a− ∈ X′−(Γ), a−1

− ∈ X−(Γ). The proof is similar

to the proof of Theorem 3.3.1 with obvious changes.



4. Solvability of singular integral equations with
factorizable coefficients

Now, we will give conditions guaranteeing the existence of solutions for a class of singular

integral equations with essentially bounded functions as coefficients, admitting a factor-

ization in X(Γ) as in (2.8). To do so, the Fredholmness of the associated singular integral

operator is studied.

4.1. Simonenko’s criterion for the Fredholm property for SIO’s with essentially

bounded coefficients. We are going to establish a Fredholm criterion for the operator

A = aP+ + bP− on X(Γ) with a, b ∈ G(L∞(Γ)), by adapting the classical Simonenko

scheme for singular integral operators with generalized factorizable functions on Lp(Γ).

First, recall that for a bounded linear operator A ∈ B(X,Y ), the set kerA of all

solutions of the homogeneous equation

Ax = 0 (4.1)

is the kernel of A. Its dimension is called the nullity of A and denoted by α(A). A bounded

operator A is called normally solvable (in the sense of Hausdorff) if the equation

Ax = y

is soluble only for those elements y which are orthogonal to the solution space of the

equation A∗u = 0, where A∗ is the conjugate operator A∗ : Y ∗ → X∗ defined by

(A∗u)x = u(Ax).

That is, A∗u = 0 if and only if u(y) = 0 for all y ∈ ImA, where ImA = {Ax : x ∈ X}.
This is equivalent to saying that ImA is a closed set.

For a normally solvable operator A the cokernel of A, CokerA, is defined as

CokerA = Y/ ImA.

Its dimension (called the deficiency of A) is denoted by

β(A) := dim CokerA.

α(A) and β(A) are frequently called the deficiency numbers of A.

An operator A is called a Fredholm operator, or a Φ-operator, if α(A) and β(A) are

finite. In this case, the Fredholm index is

IndA := α(A)− β(A).

The operator A is called semi-Fredholm if at least one of α(A) or β(A) is finite.

[20]
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Let us first consider the singular integral operator Aa := aP+ + P− on X(Γ) with

a ∈ L∞(Γ).

Proposition 4.1.1. If a ∈ L∞(Γ) and Aa is semi-Fredholm, then a ∈ G(L∞(Γ)).

Proposition 4.1.2. If a ∈ G(L∞(Γ)), then min(α(Aa), β(Aa)) = 0.

Propositions 4.1.1 and 4.1.2 can be proved as the classical case of Lp(Γ) with minor

modifications, by using the well-known Lusin–Privalov Theorem which can be applied in

this framework in view of assumption (2.2) and Lemma 2.3.

The following is a Fredholmness criterion for the operator Aa on the space X(Γ). This

result was established on the spaces Lp(Γ) by I. B. Simonenko [45, 46] (see also e.g. [38])

and by A. Yu. Karlovich in the case of reflexive rearrangement-invariant spaces [20]. The

proof that we are going to give is analogous to those cases.

Theorem 4.1.3. Let Γ be a Lyapunov curve. A function a ∈ L∞(Γ) admits a factor-

ization in X(Γ) if and only if Aa = aP+ + P− is a Φ-operator on X(Γ). In that case

IndAa = − ind a.

Proof. Necessity. Let 0 ∈ D+. First we assume that a admits a factorization a = a−a+

in X(Γ). Let r ∈ R(Γ). From Lemma 2.4 and the definition of factorization we know that

a−1
+ P+a

−1
− r ∈ X+(Γ) and a−P−a

−1
− r ∈ X̊−(Γ). Consider the bounded linear operator

B := (a−1
+ P+ + a−P−)a−1

− I = I + (1− a)a−1
+ P+a+a

−1I.

Then

AaBr = (aP+ + P−)(a−1
+ P+ + a−P−)a−1

− Ir = aa−1
+ P+a

−1
− r + a−P−a

−1
− r = r.

Analogously, BAar = r. Since B is bounded in X(Γ) due to assumptions (2.3) and (2.4)

and because R(Γ) is dense in X(Γ), we conclude that Aa is invertible with inverse

A−1
a = B. Hence, IndAa = 0.

Now, let a(t) = a−(t)tℵa+(t) be a factorization in X(Γ). Then the function at−ℵ

admits the factorization at−ℵ = a−a+ in X(Γ). Thus, the operator at−ℵP+ + P− is

invertible in X(Γ). If ℵ > 0 then Aa can be represented in the form

Aa = (at−ℵP+ + P−)(tℵP+ + P−).

From the 3rd step in the proof of Theorem B in [32] (see Theorem 5.1.1) we see that

tℵP+ + P− = tℵ(P+ + t−ℵP−) is a Φ-operator with index −ℵ; then from the Atkinson

Theorem for Fredholm operators we conclude that Aa is a Φ-operator with index −ℵ.

In the case ℵ < 0 we have

at−ℵP+ + P− = Aa(t−ℵP− + P−)

with t−ℵP+ +P− = t−ℵ(P+ + tℵP−) a Φ-operator with index ℵ, thus Aa is a Φ-operator

with index −ℵ.

Sufficiency. Suppose that Aa is a Fredholm operator with index −ℵ. By Proposition 4.1.1,

a ∈ G(L∞(Γ)). Consider the operator Aq, where q(t) = a(t)t−ℵ. By the compactness of

the commutator aS + SaI for a ∈ C(Γ) given by the 1st step of the proof of Theorem B

in [32], Aq = AaAt−ℵ + K where K is a compact operator. Hence Aq is Fredholm, and

IndAq = 0. From the Atkinson Theorem and the fact that the Fredholm index is invariant
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under compact perturbations, by Proposition 4.1.2 it follows that Aq is invertible in X(Γ).

Taking into account that the operator S∗ in the dual space X∗(Γ) is given by S∗ = −HSH,

applying Lemma 2.3 we can show that in this case the operator Aq−1 is invertible in the

associate space X′(Γ).

Let ϕ0 ∈ X(Γ) and ψ0 ∈ X′(Γ) be the solutions of the equations Aqϕ = 1 and

Aq−1ψ = 1 respectively. Applying Lemma 2.4 one can show that a+ := P+ψ0 and a− :=

1 − P−ψ0 are the factors of the factorization a(t) = a−(t)tℵa+(t), that is, a− ∈ X−(Γ),

a+ ∈ X′+(Γ), a−1
− ∈ X′−(Γ) , a−1

+ ∈ X+(Γ). To prove the boundedness of a−1
+ Sa+I in X(Γ),

assume without loss of generality that ‖q‖∞ < 1 and consider the operator

B := (a−1
+ P+ + a−P−)a−1

− I = I + (1− q)a+P+a
−1
− I.

As above, B = A−1
q is bounded and therefore a−1

+ P+a
−1
− I is bounded too, which is

equivalent to a−1
+ Sa−1

− I being bounded in X(Γ).

4.2. Effective solution of singular integral equations with essentially bounded

factorizable coefficients. The solvability theory in the space X(Γ) of the equation

Aϕ(t) := u(t)ϕ(t) +
v(t)

πi
p.v.

∫
Γ

ϕ(τ)

τ − t
dτ = f(t), t ∈ Γ, u, v ∈ L∞(Γ), (4.2)

or alternatively

A = aP+ + bP−, a := u+ v, b := u− v,

is given in the following results.

Theorem 4.2.1. Let Γ be a Lyapunov curve, a, b ∈ L∞(Γ) and let X(Γ) be a BFS

satisfying (2.2)–(2.6). Then, for the operator A = aP+ +bP− to be a Φ+- or Φ−-operator

on X(Γ) it is necessary that a, b ∈ G(L∞(Γ)). Let a, b invertible functions on L∞(Γ).

Then A is a Φ-operator if and only if the function ab−1 admits a factorization (2.8).

Let A be a Φ-operator and ℵ = ind(a/b). Then IndA = −ℵ and the operator A is left-

invertible, right-invertible, or two-sided invertible if ℵ > 0, ℵ < 0 or ℵ = 0 respectively.

The corresponding (one- or two-sided) inverse is of the form

A−1 = (t−ℵP+ + P−)(c−1
+ P+ + c−P−)c−1

− b−1I

where ab−1 = c−t
ℵc+ is the factorization in X(Γ) of the function ab−1.

Proof. Let 0 ∈ D+ and assume a, b ∈ G(L∞(Γ)). Then A can be written as

A = b(ab−1P+ + P−),

where the multiplicator operator bI is bounded in X(Γ) by assumption (2.3), and invert-

ible with inverse b−1I. Thus it is a Φ-operator.

Since ab−1 ∈ G(L∞(Γ)), from Proposition 4.1.1 the operator ab−1P+ + P− is semi-

Fredholm. Therefore, by the Atkinson Theorem, A is a semi-Fredholm operator.

On the other hand, Theorem 4.1.3 guarantees that ab−1P+ + P− is a Φ-operator

if and only if ab−1 admits a factorization. Then reasoning as before we conclude that

A = b(ab−1P+ + P−) is a Φ-operator iff ab−1 admits a factorization in X(Γ).
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Now, suppose A is a Φ-operator and ℵ = ind ab−1. Since bI is invertible, we have

Ind bI = 0, and from the Atkinson Theorem,

IndA = Ind bI + Ind(ab−1P+ + P−) = Ind(ab−1P+ + P−).

Then Theorem 4.1.3 asserts that Ind(ab−1P+ + P−) = − ind ab−1 = −ℵ.

To prove the (one- or two-sided) invertibility of A notice that for ab−1 = c−t
ℵc+,

A = bc−(tℵc+P+ + c−1
− P−) = bc−(tℵP+ + P−)(c+P+ + c−1

− P−) (4.3)

with bc−I and c+P+ + c−1
− P− invertible operators with inverses

(bc−I)−1 = b−1c−1
− I and (c+P+ + c−1

− P−)−1 = c−1
+ P+ + c−P−.

From the 3rd step of the proof of Theorem B in [32], the operator tℵP+ + P− is left-,

right- or two-sided invertible (so, by (4.3), so is A) if ℵ > 0, ℵ < 0 or ℵ = 0 respectively.

Direct computations show that the inverses of A are in fact (t−ℵP+ +P−)(c−1
+ P+ +c−P−)

× c−1
− b−1I.

The following result gives the dimension of kerA and CokerA, as well as the solvability

conditions for (4.2).

Theorem 4.2.2. Let Γ be a Lyapunov curve, let X(Γ) be a BFS satisfying (2.2)–(2.6)

and let a, b ∈ G(L∞(Γ)). Moreover, assume that the function ab−1 admits a factorization

ab−1 =: c = c−t
ℵc+ in the space X(Γ). Then if ℵ = ind c < 0,

ker(aP+ + bP−) = span{g, gt, . . . , gt|ℵ|−1} (4.4)

where g = c−1
+ − c−tℵ. In the case ℵ > 0,

Coker(aP+ + bP−) = span{bc−, bc−t, . . . , bc−tℵ−1} (4.5)

and the equation aP+ϕ+ bP−ϕ = f has a solution if and only if∫
Γ

f(t)b−1(t)c−1
− (t)t−j dt = 0, j = 1, . . . ,ℵ. (4.6)

Proof. Let A = aP+ +bP− and assume 0 ∈ D+. From (4.3) we see that A and tℵP+ +P−
are equivalent operators, therefore

dim kerA = dim ker(tℵP+ + P−) = dim ker(P+ + t−ℵP−).

The 3rd step of the proof of Theorem B in [32] shows that if ℵ ≤ 0 then dim kerA = |ℵ|,
and if ℵ ≥ 0 then dim CokerA = ℵ.

Now, suppose ℵ < 0. We are going to find the set ker(P+ + t−ℵP−), that is,

{ϕ ∈ X(Γ) : P+ϕ+ t−ℵP−ϕ = 0}. Since dim ker(P+ + t−ℵP−) = |ℵ|, there is a poly-

nomial p|ℵ|−1(t) = a|ℵ|−1t
|ℵ|−1 + · · · + a1t + a0 of degree at most |ℵ| − 1 such that

t|ℵ|P−ϕ+ p|ℵ|−1 ∈ P−(X(Γ)). From the above we have

P+ϕ = p|ℵ|−1, P−ϕ = −p|ℵ|−1/t
|ℵ|.

Thus,

P+ϕ(t) + P−ϕ(t) = ϕ(t) = p|ℵ|−1(t)[1− 1/t|ℵ|],

and therefore

ker(P+ + t−ℵP−) = span{t|ℵ|−1 − 1/t, t|ℵ|−2 − 1/t2, . . . , 1− 1/t}.
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On the other hand, by (4.3) we obtain

kerA = (c−1
+ P+ + c−P−) ker(tℵP+ + P−) = span{g1, . . . , g|ℵ|}

with gj = (c−1
+ P+ + c−P−)(t|ℵ|−j − t−j), j = 1, . . . , |ℵ|. Here

gj = (c−1
+ P+ + c−P−)(t|ℵ|−j − t−j) = (c−1

+ P+ + c−P−)t|ℵ|−j − (c−1
+ P+ + c−P−)t−j

= c−1
+ P+t

|ℵ|−j − c−P−t−j = c−1
+ t|ℵ|−j − c−t−j ,

proving (4.4).

Now, assume ℵ > 0. From (4.3) we have ImA = bc− Im(TℵP+ + P−), which gives

(4.5) because Im(TℵP+ +P−) consists of all functions ϕ ∈ X(Γ) such that P+ϕ has a zero

of order at most ℵ at t = 0. On the other hand, from (4.3) and the 3rd step of Theorem B

in [32], A is a Φ-operator, left-invertible and therefore normally solvable, so the equation

Aϕ = f has a solution if and only if∫
Γ

f(t)yj(t) |dt| = 0, j = 1, . . . ,m, (4.7)

where y1, . . . , ym is a basis of solutions of the adjoint homogeneous equation A∗y = 0

in X(Γ). From Lemma 2.3 the adjoint operator of A is defined by A∗ = H(P+b+P−a)H,

because P ∗+ = HP−H and P ∗− = HP+H. Therefore

HA∗zj = (P+b+ P−a)c−1
− b−1t−j = P+c

−1
− t−j + P−c+t

ℵ−j = 0,

so zj ∈ kerA∗, j = 1, . . . ,ℵ. But the functions zj are linearly independent, and since

dim kerA∗ = dim CokerA = ℵ,
we conclude that ℵ = m and zj = yj for all j.

Moreover, yj(t)|dt| = h(t)c−1
− (t)b−1(t)t−j |dt| = c−1

− (t)b−1(t)t−jdt, and so (4.6)

and (4.7) coincide, which completes the proof.



5. Fredholmness of boundary value problems and
explicit representation of solutions of (4.2)

Let Ψ be an analytic function of Cauchy integral type with nontangential limit ϕ ∈ X(Γ).

According to the Sokhotski–Plemelj formulas, the boundary values Ψ+(t) (resp. Ψ−(t))

with z → t, t ∈ Γ, z ∈ D+ (resp. t ∈ Γ, z ∈ D−) are expressed by

Ψ+(t) = 1
2 [(Iϕ)(t) + (Sϕ)(t)], Ψ−(t) = 1

2 [(−Iϕ)(t) + (Sϕ)(t)].

Therefore, Ψ+(t)−Ψ−(t) = ϕ(t) and Ψ+(t)+Ψ−(t) = (Sϕ)(t), which allows us to reduce

the equation

(a(t)P+ + b(t)P−)ϕ(t) = g(t), b ∈ G(L∞(Γ)),

or equivalently

(a(t)b−1(t)P+ + P−)ϕ(t) = b−1(t)g(t), (5.1)

to the Riemann boundary value problem

Ψ−(t) + (−a(t)b−1(t))Ψ+(t) = −b−1(t)g(t). (5.2)

Analogously, the equation

(a(t)P+ + b(t)P−)ϕ(t) = g(t), a ∈ G(L∞(Γ)),

(P+ + b(t)a−1(t)P−)ϕ(t) = a−1(t)g(t) (5.3)

reduces to the Riemann boundary value problem

Ψ+(t) = (b(t)a−1(t))Ψ−(t) + a−1(t)g(t), (5.4)

for a piecewise analytic function {Ψ+(z),Ψ−(z)} vanishing at z = ∞. That is, equa-

tion (5.1) and problem (5.2), as well as equation (5.3) and problem (5.4) with the addi-

tional condition Ψ−(∞) = 0, are equivalent. This means that there exists a one-to-one

correspondence between the solutions of problem (5.2) (resp. (5.4)) and the solutions of

equation (5.1) (resp. (5.3)).

5.1. The case of continuous coefficients. We can characterize the Fredholmness of

the boundary value problem (5.4) with an invertible continuous coefficient ba−1 through

the Fredholmness of the operator A = aP+ + bP− given in the following criterion [32,

Theorem B]:

Theorem 5.1.1. Let X(Γ) be any BFS satisfying assumptions (2.2)–(2.4) and (2.6). The

operator A = aP+ + bP− with a, b ∈ C(Γ) is Fredholm in the space X(Γ) if and only if

a(t) 6= 0 and b(t) 6= 0 for all t ∈ Γ. In this case, IndA = ind(b/a) = ℵ.

[25]
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Thus, we have the following result:

Proposition 5.1.2. Let Γ be a Lyapunov curve and let X(Γ) be any BFS satisfying

assumptions (2.2)–(2.4) and (2.6). The boundary value problem (5.4) with continuous co-

efficient ba−1 is Fredholm with index ℵ if and only if ba−1 ∈ G(C(Γ)) with ind ba−1 = ℵ.

On the other hand, using the equivalence mentioned above, we can give an explicit

representation of solutions of (4.2) with continuous coefficients a and b, satisfying the

assumptions of Theorem 5.1.1, through the two-term boundary value problem (5.4).

Theorem 5.1.3. Let Γ be a Lyapunov curve and let X(Γ) be any BFS satisfying as-

sumptions (2.2)–(2.4) and (2.6). Equation (4.2) with continuous coefficients a and b has

solutions if and only if a(t) 6= 0 and b(t) 6= 0 for all t ∈ Γ. The solutions are described,

according to the case, by:

(ℵ ≥ 0)

ϕ(t) =
(1− (t− z0)ℵ)eh(t)

2πi

∫
Γ

f(τ)

eh(τ)

dτ

τ − z
+ (1− (t− z0)ℵ)eh(t)ρ(t) (5.5)

where h(t) = K
(
ln b(τ)

a(τ) (τ − z0)ℵ
)
(t) and ρ is an arbitrary polynomial of degree

ℵ − 1.

(ℵ < 0) The unique solution in this case is as in (5.5) with ρ(t) ≡ 0. In addition, it is

necessary that ∫
Γ

f(τ)τκ

eh(τ)
dτ = 0, κ = 0, . . . , |ℵ| − 1. (5.6)

Here, ℵ := ind ba−1.

Proof. From Theorem 5.1.1, the conditions a(t) 6= 0 and b(t) 6= 0 for all t ∈ Γ are equiv-

alent to the Fredholmness of the associated operator A = aP+ + bP−. Therefore equa-

tion (4.2) is solvable. From Theorem 3.1.2, the solutions of the boundary problem (5.4)

are given by (3.4). The solvability conditions (5.6) are necessary for the solvability of (5.4)

as stated in Theorem 3.1.2. Finally, from the Sokhotski–Plemelj formulas we have (5.5).

5.2. The case of piecewise continuous coefficients. The Fredholmness of prob-

lem (5.4) with piecewise continuous coefficients is characterized by using the Fredholm-

ness of the operator A = aP+ + bP− with coefficients in the same class. To establish this

we will use the so-called Khvedelidze–Gohberg–Krupnik investigation scheme, so first we

are going to recall the reformulations of the notions of p-no singularity and p-index in

the framework of Banach function spaces introduced in [32].

For a BFS X(Γ) satisfying Axiom 1, a function G ∈ PC(Γ) is called X(Γ)-nonsingular

if inft∈Γ |G(t)| > 0 and
1

2π
arg

G(tk − 0)

G(tk + 0)
/∈ [α(tk), β(tk)] + Z

where [· · · ] + Z stands for the set
⋃
ξ∈[··· ]{ξ, ξ ± 1, ξ ± 2, . . . } and α and β are the index

functions of the space X(Γ). For an X(Γ)-nonsingular function, the integer

ind a =

n∑
k=1

[θ(tk)−<γ(tk)],



BVP & SIE on Banach function spaces 27

where θ(tk) are the increments

θ(tk) =
1

2π

∫ tk+1−0

tk+0

d argG(t),

is referred to as the X(Γ)-index of the function G.

The Fredholmness criterion for the operator A = aP+ + bP− reads as follows [32,

Theorem C]:

Theorem 5.2.1. Let X(Γ) be any BFS satisfying (2.2)–(2.4), (2.6) and Axioms 1–2. The

operator A = aP+ + bP− with a, b ∈ PC(Γ) is Fredholm in the space X(Γ) if

inf
t∈Γ
|a(t)| 6= 0, inf

t∈Γ
|b(t)| 6= 0 (5.7)

and the function

a/b is X(Γ)-nonsingular. (5.8)

In this case,

IndA = − ind(a/b).

Condition (5.7) is also necessary for the operator A to be Fredholm in X(Γ). If the index

functions α and β of the space X(Γ) coincide at the points tk of discontinuity of the

coefficients a, b:

α(tk) = β(tk), k = 1, . . . , n,

then condition (5.8) is necessary as well.

The Fredholm property of problem (5.4) with a piecewise continuous coefficient is

established in the following result.

Proposition 5.2.2. Let Γ be a Lyapunov curve and let X(Γ) be any BFS satisfying

(2.2)–(2.4), (2.6) and Axioms 1–2. The boundary value problem (5.4) with piecewise con-

tinuous coefficient ab−1 is Fredholm with index ℵ if

inf
t∈Γ
|a(t)| 6= 0, inf

t∈Γ
|b(t)| 6= 0 (5.9)

and the function

a/b is X(Γ)-nonsingular (5.10)

with index ℵ = − ind(a/b). Condition (5.9) is also necessary for the Fredholmness of

problem (5.4). If at the points tk of discontinuity of the coefficients a, b,

α(tk) = β(tk), k = 1, . . . , n,

then condition (5.10) is necessary as well.

The representation of the solutions of (4.2) with piecewise continuous coefficients a

and b satisfying the assumptions of Theorem 5.2.1 is given in the following result.

Theorem 5.2.3. Let Γ be a Lyapunov curve and let X(Γ) be any BFS satisfying

(2.2)–(2.4), (2.6) and Axioms 1–2. Equation (4.2) with piecewise continuous coefficients

a and b has solutions if a and b satisfy (5.7), and ab−1 is X(Γ)-nonsingular with disconti-

nuity points t1, . . . , tn, at which the curve Γ has at least one-sided tangents. The solutions

are described, according to the case, by:
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(ℵ ≥ 0)

ϕ(t) =
(
ω+(t)X+

1 (t)− ω−(t)X−1 (t)
)
K

(
f

ω+X+
1

)
(t)

+
(
ω+(t)X+

1 (t)− ω−(t)X−1 (t)
)
ρ(t) (5.11)

where

ω+(t) =

n∏
k=1

(t− tk)γ(tk), ω−(t) =

n∏
k=1

(
t− tk
t− z0

)γ(tk)

,

X1(t) = eK(lnG1(t)), G1(t) =
a(t)b−1(t)∏n

k=1(t− tk)γ(tk)

with z0 ∈ D+, and ρ is an arbitrary polynomial of degree ℵ − 1.

(ℵ < 0) The unique solution in this case is as in (5.11) with ρ(t) ≡ 0. In addition, it is

necessary that ∫
Γ

f(τ)τκ

X+
1 (τ)

dτ = 0, κ = 0, . . . , |ℵ| − 1. (5.12)

Here, ℵ := indG1.

Proof. From Theorem 5.2.1, the assumptions of the theorem are sufficient for the Fred-

holmness of the associated operator A, and thus equation (4.2) is solvable. From Theo-

rem 3.2.3, the solutions of the boundary problem (5.4) are given by (3.16). The solvability

conditions (5.12) are necessary for the solvability of problem (5.4) as is stated in Theo-

rem 3.2.3. Finally, from the Sokhotski–Plemelj formulas we have (5.11).

5.3. The case of essentially bounded factorizable coefficients. The Fredholmness

of problem (5.2), for an essentially measurable function admitting a factorization in X(Γ)

as in (2.8), can be characterized through Theorem 4.1.3:

Proposition 5.3.1. Let Γ be a Lyapunov curve and let X(Γ) be any BFS satisfying

(2.2)–(2.6). Then problem (5.2) is Fredholm iff its coefficient function ab−1 admits a

factorization in X(Γ) given in (2.8).

Notice that from Theorem 4.2.1, the invertibility of the coefficient in problem (3.2) is

necessary for its normal solvability.

Theorem 5.3.2. Let Γ be a Lyapunov curve and let X(Γ) be any BFS satisfying as-

sumptions (2.2)–(2.6). Equation (4.2) with essentially bounded coefficients a and b has

solutions if and only if a, b ∈ G(L∞(Γ)) and ab−1 admits a factorization (2.8). The

solutions are described, according to the case, by:

(ℵ < 0)
ϕ(t)=

(
c−1
+ (t)t−ℵP+ +c−(t)P−

)
c−1
− (t)b−1(t)g(t)+

(
c−1
+ (t)t−ℵ+c−(t)

)
ρ(t) (5.13)

where ρ is an arbitrary polynomial of degree |ℵ| − 1.

(ℵ ≥ 0) The unique solution in this case is as in (5.13) with ρ(t) ≡ 0. In addition, it is

necessary that ∫
Γ

c−1
− (τ)b(τ)f(τ)τ−κ dτ = 0, κ = 1, . . . ,ℵ. (5.14)

Here, ℵ := ind ab−1.
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Proof. From Theorem 4.2.2, equation (4.2) is solvable. Notice that condition (3.17) holds

for the factorizable function ab−1 ∈ G(L∞(Γ)). Therefore, from Theorem 3.3.1, the so-

lutions of problem (5.2) have the form (3.18). In this last case, from Corollary 3.3.2,

for the solvability of the boundary value problem (5.2) it is necessary that (5.14) holds,

therefore, from the Sokhotski–Plemelj formulas, the general solutions of equation (4.2)

have the representation (5.13) with an arbitrary polynomial function ρ if ℵ < 0, and

ρ(t) ≡ 0 if ℵ ≥ 0, in which case condition (5.14) should be satisfied. See Theorem 4.2.2,

equality (4.6).



6. Singular integral equations with Carleman shift

Let α(t) be a homeomorphism of Γ onto itself which may preserve or change the orien-

tation of Γ, and suppose that at every point t the derivative α′(t) exists and satisfies

α′(t) 6= 0 and the Hölder condition. In addition, we will assume that α(t) satisfies the

so-called Carleman condition:

α2(t) = (α ◦ α)(t) = t. (6.1)

Moreover, we will assume that

α(t) induces a bounded shift operator (Wϕ)(t) = ϕ(α(t)) on X(Γ). (6.2)

Notice that (6.1) implies that W satisfy the Carleman condition W 2 = I (see e.g. [19, 35]).

Among all kinds of Carleman shift operators, here we are going to consider those satisfying

WS = γSW , where γ = ±1. When γ = 1 (α preserves the orientation of Γ), W is called

a commutative Carleman shift operator, and for γ = −1 (α reverses the orientation of Γ)

an anti-commutative Carleman shift operator.

In the present chapter, the solvability of the following class of integral equations will be

studied in the space X(Γ) over a Lyapunov curve Γ satisfying (2.2)–(2.4), (2.6) and (6.2):

f(t)ϕ(t) + g(t)
1

πi
p.v.

∫
Γ

ϕ(τ)

τ − t
dτ + g(t)

1

πi
p.v.

∫
Γ

ϕ(τ)

τ − α(t)
dτ = h(t), (6.3)

where f(t) and g(t) are essentially bounded functions with f(t) 6= 0 on Γ, and α(t) is a

Carleman shift function.

Consider the following complementary projection operators on X(Γ):

P1 := 1
2 (I −W ) and P2 := 1

2 (I +W ).

Note that W k =
∑2
j=1(−1)kjPj , k = 1, 2, and

Pk =
1

2

2∑
j=1

(−1)k(1−j)W j+1, k = 1, 2. (6.4)

The following lemma will be useful.

Lemma 6.0.1. Let Γ be a Lyapunov curve and let X(Γ) be a BFS satisfying (2.2)–(2.4),

(2.6) and (6.2). Let ψ ∈ X(Γ). Then, for z ∈ C,

(PkSψ)(z) =

{
(SPkψ)(z) if W is a commutative shift operator,

(SP3−kψ)(z) if W is an anti-commutative shift operator.
(6.5)

[30]
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Proof. We have directly

(PkSψ)(z) = 1
2{(Sψ)(z) + (−1)kW (Sψ)(z)} = 1

2{(Sψ)(z) + (−1)kγ(WSψ)(z)}

where γ = ±1 depending on whether W is a commutative or anti-commutative Carleman

shift operator. From this, (6.5) follows.

6.1. An auxiliary system of equations and solvability of (6.3). We are going

to discuss the existence and uniqueness of solutions of (6.3). Moreover, we will provide

explicit representations of such solutions. To this end, in particular, we will use projection

methods as in [3, 4, 5, 8, 7, 48] so that we will be able to transform the initial equation

into a system of equations which can be solved by means of a Riemann boundary value

problem technique.

Let us introduce the following functions: for k = 1, 2,

fα(t) := f(t)f(α(t)), (6.6)

[fg]k(t) := f(α(t))g(t) + (−1)kf(t)g(α(t)), (6.7)

[fh]k(t) := 1
2

(
f(α(t))h(t) + (−1)kf(t)h(α(t))

)
. (6.8)

Notice that with the complementary projections Pk (k = 1, 2), given in (6.4), the func-

tions in (6.7) and (6.8) can be rewritten as [fg]k(t) = 2Pk[f(α(t))g(t)] and [fh]k(t) =

Pk[f(α(t))h(t)].

Now, we will replace (6.3) with a simpler and equivalent system of equations. First of

all, notice that using Pk (k = 1, 2), we can rewrite (6.3) as

f(t)ϕ(t) + 2g(t)(P2Sϕ)(t) = h(t). (6.9)

Proposition 6.1.1. Let ϕ∈X(Γ). Then ϕ is a solution of (6.9) if and only if {ϕk :=Pkϕ,

k = 1, 2} is a solution of{
fα(t)ϕk(t) + [fg]k(t)[(Sϕ2)(t)] = [fh]k(t) if α preserves orientation, or

fα(t)ϕk(t) + [fg]k(t)(Sϕ1)(t)] = [fh]k(t) otherwise.
(6.10)

Here fα(t), [fg]k(t) and [fh]k(t) (k = 1, 2) are defined in (6.6)–(6.8) respectively.

Proof. Suppose that ϕ ∈ X(Γ) is a solution of (6.9). Multiplying by f(α(t)) we have

f(α(t))f(t)ϕ(t) + 2f(α(t))g(t)(P2Sϕ)(t) = f(α(t))h(t).

Applying the projections Pk (k = 1, 2), we get

Pk[f(α(t))f(t)ϕ](t) + 2Pk[f(α(t))g(t)(P2Sϕ)](t) = Pk[f(α(t))h(t)]. (6.11)

By using (6.4) and the fact that WP2 = P2, we can verify that

Pk[f(α(t))f(t)ϕ](t) = f(α(t))f(t)(Pkϕ)(t),

Pk[f(α(t))g(t)(P2Sϕ)](t) = Pk[f(α(t))g(t)](P2Sϕ)(t).

Therefore, we can rewrite (6.11) as

f(α(t))f(t)(Pkϕ)(t) + 2Pk
(
f(α(t))g(t)

)
(P2Sϕ)(t) = Pk[f(α(t))h(t)]. (6.12)
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Now, by Lemma 6.0.1 we see that P2S = SP2 for W a commutative Carleman shift

operator, and P2S = SP1 for W an anti-commutative shift. In this way, we conclude that

(P1ϕ, P2ϕ) is a solution of (6.10).

Conversely, suppose that there exists ϕ such that (P1ϕ, P2ϕ) is a solution of (6.10).

Then Lemma 6.0.1 guarantees that system (6.10) is equivalent to (6.12), thus summing

k from 1 to 2 we directly see using (6.12) that

2∑
k=1

[
fα(t)(ϕk)(t) + 2Pk[f(α(t))g(t)](P2Sϕ)(t)

]
=

2∑
k=1

Pk[f(α(t))h(t)]

is equivalent to

f(α(t))f(t)ϕ(t) + 2f(α(t))g(t)(P2Sϕ)(t) = f(α(t))h(t)

due to the fact that f(t) 6= 0 for t ∈ Γ. Then

f(t)ϕ(t) + 2g(t)(P2SΓϕ)(t) = h(t),

which completes the proof.

Proposition 6.1.2. If (φ1, φ2) is a solution of system (6.10), then so is (P1φ1, P2φ2).

Proof. Let (φ1, φ2) be a solution of (6.10). Applying the projections Pk to (6.10) we have

Pk
(
fα(t)φk(t) + [fg]k(t)(Sφi)(t)

)
= Pk[fh]k(t), k, i = 1, 2.

Notice that Pk[fα(t)φk](t) = fα(t)Pkφk(t) and

Pk
(
[(fg)]k(t)(Sφi)

)
(t) = 1

2{[fg]k(t)(Sφi)(t) + (−1)k[fg]k(α(t))W (SΓφi)(t)}
= [fg]k(t) 1

2{(Sφi)(t) +W (Sφi)(t)}, (6.13)

because [fg]k(t) = (−1)k[fg]k(α(t)).

Since Pk[fg]k = [fg]k, the right-hand side of (6.13) can be rewritten as Pk([fg]k(t))

× P2(Sφi)(t). From (6.10), the value of i depends on whether W is commutative or

anti-commutative, therefore

Pk
[
[fg]k(t)(Sφi)

]
(t) = Pk([fg]k(t))(SPiφi)(t).

Finally, note that Pk([fh]k)(t) = [fh]k(t). Thus, (P1φ1, P2φ2) is a solution of (6.10).

Theorem 6.1.3. Equation (6.9) has solutions in X(Γ) if and only if the equation

fα(t)ϕ2(t) + [fg]2(t)(Sϕ2)(t) = [fh]2(t) if W is commutative, or (6.14)

fα(t)ϕ1(t) + [fg]1(t)(Sϕ1)(t) = [fh]1(t) if W is anti-commutative,

has solutions. Moreover, if ϕk(t) (k = 1, 2) is a solution of (6.14), then equation (6.9)

has a solution given by

ϕ(t) =


h(t)− 2g(t)[(Sϕ2)(t)]

f(t)
if WS = SW ,

h(t)− 2g(t)[(Sϕ1)(t)]

f(t)
if WS = −SW .

(6.15)

Proof. Suppose that ϕ ∈ X(Γ) is a solution of (6.9). By Proposition 6.1.1 we know that

(P1ϕ, P2ϕ) is a solution of (6.10). Hence, for W preserving the orientation of Γ, P2ϕ is a
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solution of (6.14), and P1ϕ is the corresponding solution for W reversing the orientation

of Γ.

Conversely, suppose that ϕ2 is a solution of (6.14). Without loss of generality, we

assume that we are in the orientation preserving case (since the other case is dealt with

similarly). In this case, (6.10) has a solution (ϕ1, ϕ2) determined by

ϕ1(t) =
[fh]1(t)− [fg]1(t)[(Sϕ2)(t)]

fα(t)
. (6.16)

From Proposition 6.1.2, Piϕi is also a solution of (6.14), so (P1ϕ1, P2ϕ2) is also a solution

of (6.10). Set

ϕ =

2∑
k=1

Pkϕk. (6.17)

It is clear that Pkϕ = Pkϕk. This means that (P1ϕ, P2ϕ) is a solution of (6.11). From

Proposition 6.1.1, ϕ is a solution of (6.10). Moreover, from (6.16) and (6.17), we obtain

ϕ(t) =

2∑
k=1

Pk

[
[fh]k(t)− [fg]k[(Sϕ2)(t)]

fα(t)

]
. (6.18)

As before, we can see that

2∑
k=1

Pk[fh]k(t) = f(α(t))h(t),

2∑
k=1

Pk([fg]k(t)[(Sϕ2)(t)]) = 2f(α(t))g(t)[(Sϕ2)(t)].

Substituting these in (6.18), we have

ϕ(t) =
h(t)− 2g(t)[(Sϕ2)(t)]

f(t)
.

6.2. Closed form of solutions. At this point we know that formula (6.15) gives a

representation for solutions of (6.3). In order to obtain a closed form of solutions, we

must compute (Sϕk)(t), k = 1, 2, from formula (6.15). We can use the Riemann problems

associated to (6.14) to describe the form of that solution in the cases where the coefficients

of the equation are continuous, piecewise continuous and essentially bounded factorizable

functions.

For continuous coefficients, assume that fα ± [fg]k ∈ G(C(Γ)) (k = 1, 2) and set

G(t) =


fα(t)− [fg]2(t)

fα(t) + [fg]2(t)
if W commutes,

fα(t)− [fg]1(t)

fα(t) + [fg]1(t)
if W anti-commutes,

(6.19)

H(t) =


[fh]2(t)

fα(t) + [fg]2(t)
if W commutes,

[fh]1(t)

fα(t) + [fg]1(t)
if W anti-commutes.

(6.20)
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Equation (6.14) can now be rewritten as

P+ϕk(t) +G(t)P−ϕk(t) = H(t),

which is then reduced to

Ψ+
k (t) = G(t)Ψ−k (t) +H(t), G ∈ G(C(Γ)).

Moreover, from the Sokhotski–Plemelj formulas, we have (Sϕk)(t) = Ψ+
k (t)+Ψ−k (t), thus

the representations of the solutions of equations (6.14) for commuting or anti-commuting

shift with continuous coefficients are given in the following result.

Theorem 6.2.1. Let Γ be a Lyapunov curve and let X(Γ) be a BFS satisfying

(2.2)–(2.4), (2.6) and (6.2). Let G(t) and H(t) be as in (6.19) and (6.20) respectively.

Then equation (6.3) has solutions in X(Γ) and they are given by

ϕ(t) =
h(t)− 2g(t)(Sϕk)(t)

f(t)
, k = 1, 2,

where k = 1 if W is a commutative Carleman shift operator, and k = 2 if W is anti-

commutative. In addition, for (Sϕk)(t) = Ψ+
k (t) + Ψ−k (t), we have the following different

situations:

(ℵ ≥ 0) In this case

Ψ+
k (t) =

eh(t)

2πi

∫
Γ

H(τ)

eh(τ)

dτ

τ − t
+ eh(t)ρ(t), (6.21)

Ψ−k (t) =
(t− z0)ℵeh(t)

2πi

∫
Γ

H(τ)

eh(τ)

dτ

τ − t
+ (t− z0)ℵeh(t)ρ(t), (6.22)

where

h(t) =
1

2π

∫
Γ

lnG(τ)(τ − z0)ℵ

τ − t
dτ, z0 ∈ D+,

and ρ(t) = aℵ−1t
ℵ−1 + aℵ−2t

ℵ−2 + · · ·+ a0.

(ℵ < 0) For this case the solution is unique and Ψ±k are as in (6.21) and (6.22) with

ρ(t) ≡ 0, and in addition it is necessary that∫
Γ

H(τ)τκ

eh(τ)
= 0, κ = 0, . . . , |ℵ| − 1.

Proof. From Theorem 6.1.3 we know that (6.3) has solutions if and only if (6.14) does.

Furthermore, the solutions of (6.3) are given by (6.15). Thus, we will compute the solu-

tions of (6.14). We will use the associated Riemann boundary value problem. Namely, by

the Sokhotski–Plemelj formulas, (6.14) reduces to the following boundary problem: Find

a sectionally analytic function Ψk(z) (Ψk(z) = Ψ+
k (z) for z ∈ D+ and Ψk(z) = Ψ−k (z)

for z ∈ D−) vanishing at infinity and satisfying

Ψ+
k (t) = G(t)Ψ−k (t) +H(t) (6.23)

on Γ, where G(t) and H(t) are defined in (6.19) and (6.20) respectively.

From Theorem 3.1.2, the solutions of problem (6.23) read as follows:
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(1) Case ℵ ≥ 0. In this case the solutions are given by (cf. (3.4))

Ψ±k (t) =
X±(t)

2πi

∫
Γ

H(τ)

X+(τ)

dτ

τ − z
+X±(t)ρ(t) (6.24)

where X+(t) = exph(t), X−(t) = (t− z0)ℵ exph(t) (z0 ∈ D+), and

h(t) = K
(
lnG(τ)(τ − z0)ℵ

)
(t)

and ρ is an arbitrary polynomial of degree ℵ − 1. The second term on the right-hand

side of (6.24) is the general solution of the homogeneous (H(t) ≡ 0) Riemann problem

(6.23), and the first term is a particular solution of the corresponding inhomogeneous

problem (6.23).

(2) Case ℵ < 0. For this case, Ψ±k are as in (6.24) and ρ(z) ≡ 0. In addition, it is necessary

that ∫
Γ

H(τ)τκ

eh(τ)
dτ = 0, κ = 0, . . . , |ℵ| − 1.

This completes the proof.

When (6.3) has essentially bounded coefficients, assume fα ± [fg]k ∈ G(L∞(Γ))

(k = 1, 2) and define

G̃(t) = 1/G(t) (6.25)

for the function G given in (6.19), and

H̃(t) =


[fh]2(t)

fα(t)− [fg]2(t)
if W commutes,

[fh]1(t)

fα(t)− [fg]1(t)
if W anti-commutes.

(6.26)

These functions allow us to rewrite (6.14) as

G̃(t)P+ϕk(t) + P−ϕk(t) = H̃(t). (6.27)

Theorem 6.2.2. Let Γ be a Lyapunov curve and let X(Γ) be a BFS satisfying (2.2)–(2.6)

and (6.2). Let G̃(t) and H̃(t) be as in (6.25) and (6.26) respectively; moreover, suppose

that G̃ admits a factorization G−(t)tℵG+(t) in X(Γ). Then equation (6.3) has solutions

in X(Γ) and they are given by

ϕ(t) =
h(t)− 2g(t)(Sϕk)(t)

f(t)
, k = 1, 2,

where k = 1 if W is a commutative Carleman shift operator, and k = 2 if W is anti-

commutative. In addition, for (Sϕk)(t) = Ψ+
k (t) + Ψ−k (t), we have:

(ℵ < 0) In this case

Ψ+
k (t) = G−1

+ (t)t−ℵP+G
−1
− (t)H(t) +G−1

+ (t)t−ℵρ(t), (6.28)

Ψ−k (t) = G−(t)P−G
−1
− (t)H(t) +G−(t)ρ(t), (6.29)

where ρ(t) = a−ℵ−1t
−ℵ−1 + a−ℵ−2t

−ℵ−2 + · · ·+ a0.
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(ℵ ≥ 0) For this case, Ψ±k are as in (6.28) and (6.29) with ρ(t) ≡ 0, and in addition it

is necessary that∫
Γ

G−1
− (τ)

(
fα(τ)− [fg]k(τ)

)
[fh]k(τ)τ−κ = 0, κ = 1, . . . ,ℵ, k = 1, 2.

Proof. From Theorem 6.1.3 we know that (6.3) has solutions if and only if (6.14) does.

Furthermore, the solutions of (6.3) are given by (6.15). Thus, we will compute the solu-

tions of (6.14). We will use the Riemann boundary value problem associated to (6.27):

Find a sectionally analytic function vanishing at infinity and satisfying

Ψ−k (t)−G(t)Ψ+
k (t) = −H(t) (6.30)

on Γ, where G̃(t) and H̃(t) are defined in (6.25) and (6.26) respectively. Since G̃(t) admits

a factorization in X(Γ), we are able, as in Chapter 5, to use Theorem 3.3.1. Thus, the

solutions of problem (6.30) read as follows:

(1) Case ℵ < 0. In this case the solutions are given by

Ψ+
k (t) = G−1

+ t−ℵP+G
−1
− (t)H(t) +G−1

+ (t)t−ℵρ(t), (6.31)

Ψ−k (t) = G−(t)P−G
−1
− (t)H(t) +G−(t)ρ(t), (6.32)

where ρ(t) = a−ℵ−1t
−ℵ−1 + a−ℵ−2t

−ℵ−2 + · · · + a0. The second term on the right-hand

side of (6.31) and (6.32) is the general solution of the homogeneous (H(t) ≡ 0) Rie-

mann problem (6.30), and the first term is a particular solution of the corresponding

inhomogeneous problem (6.30).

(2) Case ℵ ≥ 0. For this case, Ψ±k are as in (6.31) and (6.32), and ρ(z) ≡ 0. In addition,

it is necessary that∫
Γ

G−1
− (τ)

(
fα(τ)− [fg]k(τ)

)
[fh]k(τ)τ−κ = 0, κ = 1, . . . ,ℵ, k = 1, 2.

If ℵ = 0, then problem (6.30) has a unique solution. This completes the proof.

6.3. The Fredholmness of the singular integral operator with shift associated

to (6.3). Notice that in the operator theory approach, to equation (6.3) is associated the

singular integral operator

S := fI + gS + gWS : X(Γ)→ X(Γ).

The projection method used before will allow us to establish a Fredholmness criterion for

the operator S on X(Γ) by means of a nonexplicit equivalence operator relation.

Theorem 6.3.1. Let Γ be a Lyapunov curve and let X(Γ) be a BFS satisfying

(2.2)–(2.4), (2.6) and (6.2). Then the operator S := fI + gS + gWS is a Φ-operator

on X(Γ) if and only if (fα − [fg]k)(fα + [fg]k)−1 ∈ G(C(Γ)). The functions fα and

[fg]k are given in (6.6) and (6.7) respectively, with k = 1 if W anti-commutes and

k = 2 if W commutes. Moreover, under the presence of the Fredholm property, IndS =

ind(fα − [fg]k)(fα + [fg]k)−1 =: ℵ.

Proof. From Theorem 6.1.3, we know that equation (6.3) is solvable if and only if the

equation

fα(t)ϕk(t) + [fg]k(t)(Sϕk)(t) = [fh]k(t) (k = 1, 2) (6.33)
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is solvable, where fα, [fg]k(t) and [fh]k(t) are given in (6.6)–(6.8) respectively, and k = 1

or k = 2 depending on the commutative nature of the shift operator W . Even more,

from (6.15), the dimensions of the sets of solutions of (6.3) and of (6.33) coincide.

On the other hand, by using the functions G and H defined in (6.25) and (6.26),

equation (6.33) can be rewritten as

P+ϕk(t) +G(t)P−ϕk(t) = H(t).

Therefore, the regularity properties of the operators P+ +GP− and S coincide.

Finally, from Theorem 5.1.1, the operator P+ +GP− is a Φ-operator with Fredholm

index ℵ = indG if and only if G ∈ G(C(Γ)), and so this is transferred to the operator S;

i.e., we conclude that fα ± [fg]k ∈ G(C(Γ)) (with indG = ℵ) if and only if S is a

Φ-operator with IndS = ℵ.

In a similar way, the Fredholmness of the operator S with piecewise continuous and

factorizable essentially bounded functions as coefficients can be proved by using Theo-

rems 5.2.1 and 4.1.3 respectively.

Theorem 6.3.2. Let Γ be a Lyapunov curve and let X(Γ) be a BFS satisfying

(2.2)–(2.4), (2.6), (6.2) and Axioms 1–2. Then S := fI + gS + gWS is a Φ-operator

on X(Γ) if fα ± [fg]k ∈ G(PC(Γ)) and the function (fα + [fg]k)(fα − [fg]k)−1 is

X(Γ)-nonsingular with discontinuity points t1, . . . , tn, at which the curve Γ has at least

one-sided tangents. The functions fα and [fg]k are given in (6.6) and (6.7) respectively,

and k = 1 if W anti-commutes and k = 2 if W commutes. In this case,

IndS = ind(fα + [fg]k)(fα − [fg]k)−1.

The condition fα± [fg]k ∈ G(PC(Γ)) is also necessary for the Fredholmness of S. On the

other hand, if the index functions α and β of the space X(Γ) coincide at the points tk of

discontinuity of the coefficients (fα + [fg]k)(fα − [fg]k)−1, then the X(Γ)-nonsingularity

of (fα + [fg]k)(fα − [fg]k)−1 is necessary as well.

Theorem 6.3.3. Let Γ be a Lyapunov curve and let X(Γ) be a BFS satisfying

(2.2)–(2.6) and (6.2). Then S := fI + gS + gWS is a Φ-operator on X(Γ) if and only if

fα ± [fg]k ∈ G(L∞(Γ)) and G̃ = (fα + [fg]k)(fα − [fg]k)−1 admits a factorization (2.8)

in X(Γ) with ind G̃ = ℵ. The functions fα and [fg]k are given in (6.6) and (6.7) respec-

tively, and k = 1 if W anti-commutes and k = 2 if W commutes. Moreover, under the

presence of the Fredholm property, IndS = −ℵ.



7. The variable exponent Lebesgue spaces case

The variable exponent Lebesgue spaces are one of the most well-known Banach function

spaces. Their fundamental study have been growing rapidly during the last two decades,

apart from mathematical interest, due to possible applications to image restoration and

to models with the so-called nonstandard local growth in fluid mechanics and elasticity

theory; see for instance [6, 12] and the references therein.

In this chapter we are going to show that all the results given in the previous chapters

are valid in variable exponent Lebesgue spaces. To do so we will show that conditions

(2.2)–(2.6), (6.2) and Axioms 1–2 imposed on X(Γ) are, in fact, well-known results on

variable exponent Lebesgue spaces.

The space Lp(·)(Γ) over a Jordan curve Γ of finite length ` is defined as the set

of all measurable complex-valued functions f on Γ such that Ip(λf) < ∞ for some

λ = λ(f) > 0, where

Ip(f) =

∫
Γ

|f(t)|p(t) |dt| =
∫ `

0

|f(t(s))|p(t(s)) ds.

This set becomes a Banach space with respect to the (Luxemburg) norm

‖f‖p(·) := inf{λ > 0 : Ip(f/λ) ≤ 1}.

For the fundamental properties of these spaces we refer to [10, 11].

Assume p : Γ→ [1,∞) is a measurable function with

1 < p− = ess inf p(t) ≤ p(t) ≤ p+ = ess sup p(t) <∞, t ∈ Γ. (7.1)

We will need the following condition on p(t):

|p(t1)− p(t2)| ≤ A

− ln |t1 − t2|
, |t1 − t2| ≤ 1/2, t1, t2 ∈ Γ, (7.2)

where A > 0 does not depend on t1 and t2, or on the function p∗(s) = p(t(s)):

|p∗(s1)− p∗(s2)| ≤ A

− ln |s1 − s2|
, |s1 − s2| ≤ 1/2, s1, s2 ∈ [0, `]. (7.3)

Since |t(s1) − t(s2)| ≤ |s1 − s2|, condition (7.2) always implies (7.3). Conversely, (7.3)

implies (7.2) if there exists λ > 0 such that |s1 − s2| ≤ c|t(s1)− t(s2)|λ with some c > 0.

Therefore, conditions (7.2) and (7.3) are equivalent on Jordan curves. Moreover, this is

valid on general curves satisfying the so-called chord condition.

On the suitability of Lp(·)(Γ) for our results. In order to establish the validity of

assumptions (2.2)–(2.6) and (6.2), as well as of Axioms 1 and 2 on the spaces Lp(·)(Γ),

[38]
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we will assume that properties (7.1)–(7.3) of the exponent p(t) hold.

(2.2) C(Γ) ⊂ Lp(·)(Γ) ⊂ L1(Γ). This follows from (7.1).

(2.3) ‖af‖Lp(·)(Γ) ≤ supt∈Γ |a(t)| · ‖f‖Lp(·)(Γ) for a ∈ L∞(Γ). Evident.

(2.4) The operator S is bounded in Lp(·)(Γ). This is proved in [33, Theorem 2].

(2.5) Lp(·)(Γ) is reflexive. Proved in [34, Corollary 2.7].

(2.6) C∞(Γ) is dense in Lp(·)(Γ). Given in [33, Theorem 4.1].

(6.2) α(t) induces a bounded shift operator (Wϕ)(t) = ϕ(α(t)) on Lp(·)(Γ). In fact,

for a shift function α as on p. 30 and an exponent function p satisfying

(7.1)–(7.3), in [41, Lemma 2] it was proved that the functions pα(t) := p(α(t))

and pα(t) := max(p(t), pα(t)) satisfy (7.1)–(7.3) as well. Also, in [41] it is shown

that Lp(·)(Γ)∩Lpα(·)(Γ) = Lpα(·)(Γ), therefore the operators W and S are bounded

on Lpα(·)(Γ).

Axiom 1 in Lp(·)(Γ) is proved in [33, Theorem 2]. For Axiom 2, the embedding

Lp(·)(Γ, |t − t0|γ) ⊂ L1(Γ) if γ < 1/q(t0) follows from the Hölder inequality on Lp(·)(Γ),

and the denseness of C∞(Γ) in Lp(·)(Γ, |t − t0|γ) for t0 ∈ Γ is a particular case from

[33, Theorem 4.1].

On the other hand, the dual space of Lp(·)(Γ) is Lp
′(·)(Γ) [34, Corollary 2.7], where

p′(t) = p(t)
p(t)−1 . [34, Corollary 2.12] asserts that Lp(·)(Γ) is separable, so the adjoint oper-

ator of S is well-defined in Lp
′(·)(Γ). The denseness of the rational functions in variable

exponent Lebesgue spaces is given in [33, Theorem 4.1], so the complementary projections

P± are well-defined; hence so are the subspaces

L
p(·)
+ (Γ) := P+L

p(·)(Γ), L̊
p(·)
− (Γ) := P−L

p(·)(Γ), L
p(·)
− (Γ) := L̊

p(·)
− (Γ) u C.

Now, we can introduce a factorization for an invertible function a ∈ L∞(Γ) in Lp(·)(Γ).

A function a ∈ G(L∞(Γ)) admits a factorization in Lp(·)(Γ) if it can be written in the

form

a(t) = a−(t)tℵa+(t), a.e. on Γ,

where ℵ ∈ Z and

(i) a− ∈ Lp(·)− (Γ), a−1
− ∈ L

p′(·)
− (Γ), a+ ∈ Lp

′(·)
+ (Γ), a−1

+ ∈ Lp(·)+ (Γ),

(ii) the operator a−1
+ Sa+I is bounded in Lp(·)(Γ).

The integer ℵ is referred to as the index of the function a and is denoted by ind a. We

can prove that the number ℵ is uniquely determined.

We point out that for this case we can use the Smirnov class Ep(D) instead of

E1(D), because [30, Theorem 3.3] ensures that if S is bounded from Lp(·)(Γ) to Lp(Γ)

(1 < p <∞), then for every ϕ ∈ Lp(·)(Γ), the corresponding analytic function of Cauchy

integral type whose nontangential limit is ϕ belongs to Ep(D).

Using this factorization and due to the fact that Lp(·)(Γ) satisfies all the assumptions

imposed on X(Γ), all the results given in the previous chapters are valid, with obvious

modifications, in this case.



References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic

Press, Boston, MA, 1988.
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[10] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Foundations and Harmonic

Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser, 2013, 312 pp.
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