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On rigid relation principles in set theory
without the axiom of choice

by

Paul Howard (Ypsilanti, MI) and Eleftherios Tachtsis (Karlovassi)

Abstract. We study the deductive strength of the following statements:

RR: every set has a rigid binary relation,
HRR: every set has a hereditarily rigid binary relation,
SRR: every set has a strongly rigid binary relation,

in set theory without the Axiom of Choice. RR was recently formulated by J. D. Hamkins
and J. Palumbo, and SRR is a classical (non-trivial) ZFC-result by P. Vopěnka, A. Pultr
and Z. Hedrĺın.

1. Terminology, background and goals. In this paper, we consider
three types of binary relations which we call respectively rigid, hereditarily
rigid and strongly rigid. We begin with their definitions.

Definition 1.1. Assume that R is a binary relation on the set X.

• An automorphism of the system (X,R) is a one-to-one function π
from X onto X such that for all y and z in X, y R z if and only if
π(y)Rπ(z).
• An endomorphism (or homomorphism) of the system (X,R) is a func-

tion f : X → X such that for all y and z in X, if y R z then f(y)Rf(z).
• (X,R) is rigid if the only automorphism of (X,R) is the identity func-

tion on X.
• (X,R) is hereditarily rigid if for all Y ⊆ X, (Y,R�Y ) is rigid, where
R�Y = R ∩ (Y × Y ).
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• (X,R) is strongly rigid if the only endomorphism of (X,R) is the
identity function on X (1).

Our main concern will be the existence of these three types of relations
in set theory without the Axiom of Choice.

The following definition gives the abbreviations we will use for the Axiom
of Choice and several of its consequences.

Definition 1.2.

• AC is the Axiom of Choice, i.e. the statement “every family of non-
empty sets has a choice function”.
• MC is the Axiom of Multiple Choice, i.e. the statement “every family
A = {Ai : i ∈ I} of non-empty sets admits a function F with domain
I such that for all i ∈ I, F (i) is a non-empty finite subset of Ai”.
• ACfin is AC restricted to families of non-empty finite sets.
• ACWO is AC restricted to families of non-empty well-orderable sets.
• For an infinite well-ordered cardinal number κ, ACκ denotes AC re-

stricted to κ-sized families of non-empty sets. In particular, for κ = ω,
ACω is the Axiom of Countable Choice.
• ACWO is AC restricted to well-ordered families of non-empty sets, i.e.
ACWO is (∀κ)ACκ, where κ denotes an infinite well-ordered cardinal
number.
• AC2

WO is AC restricted to well-ordered families of 2-element sets.
• DC is the principle of dependent choices, i.e. the statement “Let
R be a binary relation on a non-empty set A such that (∀x ∈ A)
(∃y ∈ A)(xR y). Then there is a sequence (xn)n∈ω of elements of A
such that xnRxn+1 for all n ∈ ω”.

We also use the abbreviations “ZF” for Zermelo–Fraenkel set theory with-
out the Axiom of Choice, and “ZFA” for ZF with the Axiom of Extensionality
weakened to permit the existence of atoms.

The following definitions will be needed in our study of models of set
theory.

Definition 1.3.

(1) Assume A is a set. (Frequently, A will be the set of atoms in a model
of ZFA.) Then [A]<ω denotes the set of finite subsets of A.

(2) Assume A is the set of atoms in some model M of ZFA+AC, x ∈M
and G is a group of permutations of A. Under these circumstances
every element φ ∈ G has a unique extension to an ∈-automorphism
of M . Following the usual convention we shall denote this extension

(1) We are using the terminology of [2]. This differs from the terminology of [9] where
rigid has the same meaning as our strongly rigid.
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also by φ. Then fixG(x) denotes the group of permutations {φ ∈ G :
∀t ∈ x, φ(t) = t}. If G is clear from the context, then fixG(x) will be
denoted by fix(x).

(3) Under the assumptions in part (2) above, SymG(x) denotes the group
of permutations {φ ∈ G : φ(x) = x} and, as above, SymG(x) will be
denoted by Sym(x) if G is clear from the context.

We also use the following terms.

Definition 1.4.

(1) An infinite set X is called amorphous if X is not the disjoint union
of two infinite sets.

(2) A set X is called Dedekind finite if X has no countably infinite
subsets. Otherwise, X is called Dedekind infinite.

Our work is motivated by the paper [2] in which the authors introduce
the “rigid relation principle” which is abbreviated RR:

RR: Every set admits a rigid binary relation.

In the current paper, we shall also consider the following—stronger than
RR—statements which are implicit in [2]:

HRR: Every set admits a hereditarily rigid binary relation.
SRR: Every set admits a strongly rigid binary relation.

It is easy to see that AC implies RR, since AC is equivalent to the state-
ment “every set can be well-ordered” and it is well-known that well-orders
are rigid. (Note that no infinite well-order is strongly rigid.) Since AC is
equivalent to the Axiom of Multiple Choice MC in ZF, it follows that, in ZF,
MC implies RR. We will show (Theorem 2.2) that MC does not imply RR in
ZFA set theory.

While the validity of the implication “AC → RR” is easy, this is not the
case with the validity of “AC → SRR”. In fact, this is a non-trivial classical
result by P. Vopěnka, A. Pultr and Z. Hedrĺın [9] proved in 1965. A simplified
proof was given in 2002 by J. Nešetřil [7].

In [2], it is shown that RR is neither equivalent to AC in ZF nor is it
provable from the ZF axioms alone.

Here is a summary of the results from [2] and a list of our related results.

Theorem 1.5 ([2]).

(1) RR is not provable in ZF. In particular, RR fails in the basic Fraenkel
permutation model and via the Jech–Sochor First Embedding Theo-
rem the result can be transferred to ZF.

(2) RR + ¬AC is relatively consistent with ZF. In particular, RR holds
in the basic Cohen model of ZF + ¬AC.
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(3) RR does not follow from ACκ for any (infinite) well-ordered cardi-
nal κ. Further, RR does not imply ACω, hence does not imply DC,
in ZF.

We prove:

• MC does not imply RR in ZFA. Thus, the statement “there are no
amorphous sets” does not imply RR in ZFA (Theorem 2.2 using the
second Fraenkel model).
• ACW0 does not imply RR in ZFA (Theorem 2.2 using the model N33

from [4]). Thus, the principle of dependent choices DC does not imply
RR, since ACWO implies DC [5, Theorem 8.2]. It follows that RR is a
strong axiom.
• RR implies AC2

WO (Theorem 2.7).

• HRR implies ACfin (Theorem 3.1). Thus, HRR implies that there are
no amorphous sets (Corollary 3.2).
• HRR implies ACWO in every Fraenkel–Mostowski (FM) permutation

model (Theorem 3.3).
• HRR does not imply AC in ZF (Theorem 3.4 using the basic Cohen

model). This enhances Theorem 1.5(2).
• SRR does not imply AC in ZFA (Theorem 3.5 using the Mostowski lin-

ear order model). This answers the question asked in the last sentence
of [2].

The authors of [2] also prove the following about RR for powers of 2 and
in particular for 2ω ' R and its subsets:

Theorem 1.6 ([2]).

(1) (ZF) Every set of reals admits a rigid binary relation.
(2) (ZF) If a set B has a hereditarily rigid irreflexive binary relation,

then every subset A ⊆ R×B has a rigid binary relation. In particular,
every subset A ⊆ R× γ for an ordinal γ has a rigid binary relation.

(3) It is not provable in ZF that every subset of 2R has a rigid binary
relation.

We prove:

• In ZF, every set of reals admits a strongly rigid binary relation (The-
orem 4.1). This enhances Theorem 1.6(1) above.
• In ZF, for every set X, if X has a strongly rigid binary relation, then

2X has a strongly rigid binary relation (Theorem 4.4).
• In ZF, for every n ∈ ω, Pn(ω), hence (by Theorem 4.10) 2P

n(ω), has
a strongly rigid binary relation. In particular, 2R has a strongly rigid
binary relation (Corollary 4.9).
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• In ZF, for every set X, if X has a rigid binary relation, then 2X has a
rigid binary relation (Theorem 4.10).
• In ZF, for every well-ordered cardinal number κ, 2κ has a rigid binary

relation (Corollary 4.11).
• If every subset of 2R has a rigid binary relation, then every countably

infinite family of pairs of sets of reals has a choice function (Theorem
4.13(a)). Thus, Theorem 1.6(3) given above is a corollary.
• If 2R has a hereditarily rigid binary relation, then every family of

non-empty finite sets of sets of reals has a choice function, which in
turn implies that there exists a non-measurable subset of 2ω with the
product measure (Theorem 4.13(b)).

We now present the main results in our paper divided into three sections:
Section 2 on the deductive strength of RR, Section 3 on the hereditary
rigidity and the strong rigidity principle of Vopěnka, Pultr and Hedrĺın, and
Section 4 on rigid hereditarily rigid, and strongly rigid binary relations on
Cantor cubes.

2. On the deductive strength of RR. We start this section with the
proofs that neither MC nor ACWO implies RR in ZFA. First, we provide a
general property which, if possesed by an FM model M , implies that the only
sets in M which admit a rigid binary relation are exactly the well-orderable
ones. We refer the reader to [5, Chapter 4] for an extensive treatment of FM
models and of the relevant techniques.

To state the property, assume that M is the FM model determined by
the group G of permutations of the set A of atoms and the normal filter Γ
of subgroups of G. The relevant property is:

(2.1) For every x ∈M and every φ ∈ G there is a permutation φ′ of A which
is in M and for which φ′(x) = φ(x).

Recall here that if φ ∈ G, then there is a unique extension of φ to an
∈-automorphism of the model M , which we also denote by φ. Furthermore,
we note that if φ′ is in M , then so is φ′(x) for any x ∈M , since M satisfies
the axiom scheme of replacement.

Theorem 2.1. If M has property (2.1) then, in M , every Y that admits
a rigid relation is well-orderable.

Proof. Assume that (2.1) is true of M , that Y ∈M and that R is a rigid
relation on Y which is in M . Then for some H ∈ Γ ,

∀ψ ∈ H, ψ((Y,R)) = (Y,R).

We will show, by contradiction, that

(2.2) ∀ψ ∈ H, ∀t ∈ Y, ψ(t) = t.
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Assume that for some φ ∈ H and some t ∈ Y , φ(t) 6= t. By (2.1), there
is a permutation φ′ of A which is in M and for which φ′((Y,R, t)) =
φ((Y,R, t)) = (Y,R, φ(t)). Since φ′((Y,R)) = (Y,R), φ′ restricted to Y is
an automorphism of the system (Y,R) which is in M . But φ′(t) = φ(t) 6= t,
contradicting our assumption that R is rigid on Y .

Equation (2.2) implies that Y is well-orderable in M , finishing the proof
of the theorem.

Theorem 2.2.

(1) The Axiom of Multiple Choice MC does not imply RR in ZFA set
theory. Thus, the statement “there are no amorphous sets” does not
imply RR in ZFA.

(2) ACWO does not imply RR in ZFA. Hence, the principle of dependent
choices DC does not imply RR in ZFA.

Proof. (1) We consider the second Fraenkel permutation model of ZFA,
listed as model N2 in [4]. Let us recall its description: One starts with a
model M of ZFA + AC with a set A of atoms which is a countable disjoint
union

⋃
{An : n ∈ ω}, where An = {an, bn} for n ∈ ω. The group G of

permutations of A consists of all permutations π such that π(An) = An for
each n ∈ ω. The normal filter Γ of subgroups of G is the filter generated
by the filter base {fix(E) : E ∈ [A]<ω}. (See Definition 1.3.) Then N2 is
the FM model determined byM, G and Γ , consisting of all the hereditarily
symmetric elements ofM, that is, N2 consists of all x ∈M such that x and
every element in the transitive closure of x is symmetric, where for x ∈M,
x is symmetric if there is some finite set E ⊆ A such that fix(E) ⊆ Sym(x).
In this case, E is called a support of x.

It is known (see [4]) that MC holds in N2 and that the family A = {An :
n ∈ ω} (which is countable in N2) admits no partial choice function in the
model, i.e. A has no infinite subfamily with a choice function in the model.
It follows that A is not a well-orderable set in N2.

We show now that N2 satisfies property (2.1). To this end, let x ∈ N2
and let φ ∈ G. Let E be a support of x and let φ′ be any permutation of
A which agrees with φ on E and moves only finitely many atoms. Clearly,
φ′ ∈ G, φ′(x) = φ(x), and also φ′ is in N2, since the finite set E′ = {a ∈ A :
φ′(a) 6= a} is a support of φ′. By Theorem 2.1, the set A of atoms does not
admit a rigid binary relation in N2, hence RR fails in N2.

The second assertion of (1) follows from the fact that MC implies that
there are no amorphous sets (recall here Lévy’s characterization of MC in [6]:
MC is equivalent to “every infinite set has a well-ordered partition into non-
empty finite sets”).

(2) We shall use the P. Howard/H. Rubin/J. Rubin permutation model
N33 in [4]: The set A of atoms is countably infinite. � is a dense linear order
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on A without endpoints. Thus (A,�) is order isomorphic to (Q,≤), the
rationals with its usual ordering. G is the group of all order automorphisms
on (A,�) and Γ is the normal filter of subgroups of G generated by the
filter base {fix(E) : E is a bounded subset of A}.

Using standard techniques of FM models, it can be verified that A is a
non-well-orderable set. On the other hand, ACWO is true in N33 (see [4]).
Thus, we only need to show that RR fails in this model. By Theorem 2.1,
it suffices to show that N33 has property (2.1). To this end, let x ∈ N33
with support E and let φ ∈ G. By the definition of Γ , there exist atoms
e1 and e2 such that e1 ≺ e2 and E ⊆ (e1, e2) = {a ∈ A : e1 ≺ a ≺ e2}.
Since φ is an order automorphism of A, it follows that φ(e1) ≺ φ(e2) and
φ(E) ⊆ (φ(e1), φ(e2)). Let a, b ∈ A be such that a ≺ min{e1, e2, φ(e1), φ(e2)}
and b � max{e1, e2, φ(e1), φ(e2)}. Let φ′ ∈ G agree with φ on the closed
interval [e1, e2] of A and let φ′�(−∞, a] ∪ [b,∞) be the identity mapping.
Then under φ′, [a, e1] is order isomorphic to [a, φ(e1)], and [e2, b] is order
isomorphic to [φ(e2), b]. Then φ′(x) = φ(x) (since φ′ and φ agree on the
support E ⊆ [e1, e2] of x), and φ′ ∈ N33, since [a, b] is a support of φ′. Thus,
N33 satisfies property (2.1), and since A is not well-orderable, Theorem 2.1
shows that A does not admit a rigid relation in N33. Therefore RR fails in
this model, as required.

Remark 2.3. In [2, Theorem 2.1] it is shown that RR fails for the amor-
phous set A of atoms in the basic Fraenkel model N1 in [4] (A is countably
infinite (in the ground model where AC holds), G is the group of all permu-
tations of A, and Γ is the finite support normal filter). We note here that N1
satisfies property (2.1) since, as in the case of the second Fraenkel model N2,
given an x ∈ N1 and a permutation φ ∈ G, there is a permutation φ′ of A
which belongs to G, agrees with φ on a support of x, and moves only finitely
many atoms. Therefore φ′ ∈ N1. Since A is not well-orderable in N1, The-
orem 2.1 implies that A does not admit a rigid relation in that model.

The next lemma is mainly for use in the forthcoming Theorem 2.7, but
it can also be used to prove Theorems 3.1 and 3.3 of the next section.

Lemma 2.4. (ZF) Assume

(1) Z is a set such that every element of Z is an ordered pair (X,S)
where X is a well-orderable set and S is a rigid relation on X, and

(2) there is a function � whose domain is {X : ∃S, (X,S) ∈ Z} such
that for every X in the domain of �, �(X) is a well-ordering of
P(|X| × |X|) (here |X| denotes the initial ordinal with the same
cardinality as X).

Then there is a function F with domain Z such that for all (X,S) in Z,
F (X,S) ∈ X.
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Proof. For each (X,S) ∈ Z and t ∈ X, we let C(t, (X,S)) be the �(X)-
least element U of P(|X| × |X|) such that there is an isomorphism ψ of
the relational systems (X,S) and (|X|, U) such that ψ(t) = 0. We claim
that for all t1 and t2 in X, if t1 6= t2 then C(t1, (X,S)) 6= C(t2, (X,S)).
For if C(t1, (X,S)) = C(t2, (X,S)) = U then there are isomorphisms ψ1

and ψ2 from (X,S) onto (|X|, U) for which ψ1(t1) = 0 and ψ2(t2) = 0. But
then ψ = ψ−12 ◦ ψ1 is an isomorphism from (X,S) onto (X,S) for which
ψ(t1) = t2. Since (X,S) is rigid this implies that t1 = t2.

Hence we can define F (X,S) = the element t of X for which C(t, (X,S))
is �(X)-least.

The next two lemmas will only be used in the proof of Theorem 2.7.
Their proofs are similar to that of Lemma 2.4. In these lemmas and in
Theorem 2.7, if z = {a, b} is a 2-element set we use Tz for the transposition
(a, b). The intended domain of the permutation Tz will always be some finite
set containing z. It will vary but will always be clear from the context.

Lemma 2.5. Let Y be a set such that every element of Y is an ordered
triple (x,w, S) where x and w are (unordered) pairs, S is a relation on x∪w
and

(1) x ∩ w = ∅,
(2) neither Tx nor Tx ◦ Tw is an automorphism of the relational system

(x ∪ w, S).

Then there is a function H with domain Y such that H(x,w, S) ∈ x for
every (x,w, S) ∈ Y.

Proof. The proof is similar to that of Lemma 2.4. We let S be the set of
all relations on {0, 1, 2, 3}. Let � be a fixed well-ordering of the finite set S.
Assume that Y satisfies the hypotheses of the lemma. For each (x,w, S) ∈ Y
and each element t of x we let C(t, (x,w, S)) be the�-least element U of S for
which there is an isomorphism ψ of the systems (x∪w, S) and ({0, 1, 2, 3}, U)
such that ψ(x) = {0, 1}, ψ(w) = {2, 3} and ψ(t) = 0. We claim that for all
(x,w, S) in S, if t1 and t2 are in x and C(t1, (x,w, S)) = C(t2, (x,w, S)) then
t1 = t2. Assume the hypotheses of the claim. Then there are isomorphisms
ψ1 and ψ2 of (x∪w, S) and ({0, 1, 2, 3}, U) such that ψ1(x) = ψ2(x) = {0, 1},
ψ1(w) = ψ2(w) = {2, 3}, ψ1(t1) = 0 and ψ2(t2) = 0. It follows that ψ =
ψ−12 ◦ ψ1 is an automorphism of (x ∪ w, S) such that ψ(x) = x, ψ(w) = w
and ψ(t1) = t2. From the first two of the equalities we conclude that ψ is
one of Tx, Tw, Tx ◦ Tw or the identity on x ∪ w. By assumption (2) of the
lemma, ψ is neither Tx nor Tx ◦ Tw. In the remaining two cases ψ�x is the
identity so that t2 = ψ(t1) = t1.

We can therefore defineH(x,w, S) to be the t ∈ x for whichC(t, (x,w, S))
is �-least.
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Lemma 2.6. Let W be a set such that every element of W is an ordered
triple (x,w, S) where x and w are two-element sets, S is a relation on x∪w
and

(1) x ∩ w = ∅,
(2) Tx ◦ Tw is an automorphism of (x ∪ w, S) but Tx is not.

Then there is a function J defined on W such that for all (x,w, S) in W,
J(x,w, S) is a one-to-one function from w onto x.

Proof. As in the proof of Lemma 2.5 we let S be the set of all relations
on {0, 1, 2, 3} and we let � be a fixed well-ordering of the set S. Assume
that W satisfies the hypotheses of the lemma. For each triple (x,w, S) ∈ W
and each one-to-one function g from w onto x we let C(g, (x,w, S)) be the
�-least element U of S for which there is an isomorphism ψ of the systems
(x ∪ w, S) and ({0, 1, 2, 3}, U) such that ψ(x) = {0, 1}, ψ(w) = {2, 3} and
ψ(g) = {(2, 0), (3, 1)}.

We claim that for all (x,w, S) in S, if g1 and g2 are one-to-one functions
from w onto x and C(g1, (x,w, S)) = C(g2, (x,w, S)) then g1 = g2. Assume
the hypotheses of the claim. Let C(g1, (x,w, S)) = C(g2, (x,w, S)) = U .
Then there are isomorphisms ψ1 and ψ2 of (x ∪ w, S) and ({0, 1, 2, 3, }, U)
such that ψ1(x) = ψ2(x) = {0, 1}, ψ1(w) = ψ2(w) = {2, 3} and ψ1(g1) =
ψ2(g2) = {((2, 0), (3, 1)}. It follows that ψ = ψ−12 ◦ ψ1 is an automorphism
of (x ∪ w, S) such that ψ(x) = x, ψ(w) = w and ψ(g1) = g2. From the first
two equalities we conclude that ψ is one of Tx, Tw, Tx ◦ Tw or the identity
on x∪w. By assumption (2) of the lemma, ψ is not Tx. It also follows from
(2) that ψ is not Tw since if Tw and Tx ◦ Tw were automorphisms then Tx
would be. Therefore ψ is either the identity on x ∪ w or Tx ◦ Tw. Both fix
any one-to-one function from w onto x, so g2 = ψ(g1) = g1.

We define J(x,w, S) to be the one-to-one function g from w onto x for
which C(g, (x,w, S)) is least.

Theorem 2.7. RR implies that every well-ordered collection of two-
element sets has a choice function.

Proof. Let A be a well-ordered family of pairwise disjoint two-element
sets and assume that R is a rigid binary relation on

⋃
A. As above, for each

z ∈ A, we let Tz denote the transposition (a, b) where z = {a, b}.
We note that for z and z′ in A, if z 6= z′ then Tz ◦ Tz′ = Tz′ ◦ Tz and

(2.3) Tz ◦ Tz′�z = Tz and Tz′ ◦ Tz�z′ = Tz′ .

Definition 2.8. A non-empty finite sequence 〈zi〉ni=1 of distinct ele-
ments of A is called a good sequence if either

(1) n = 1 and Tz1 is an automorphism of the relational system (z1, R�z1),
or
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(2) n > 1 and for all i such that 1 ≤ i < n, Tzi ◦ Tzi+1 is an automor-
phism of (zi ∪ zi+1, R�(zi ∪ zi+1)) and Tzi is not an automorphism of
(zi ∪ zi+1, R�(zi ∪ zi+1)).

Note that in item (1), Tz1 is a permutation of z1, while in (2) both Tzi and
Tzi+1 represent permutations of zi∪zi+1. Also note that under the conditions
in (2) the permutation Tzi+1 is not an automorphism of (zi ∪ zi+1, R�(zi ∪
zi+1)). Further by (2.3),

(2.4) Tzi and Tzi+1 are automorphisms of (zi, R�zi) and (zi+1, R�zi+1) re-
spectively.

Lemma 2.9. For all y ∈ A, either

(1) Ty is not an automorphism of (y,R�y), or
(2) there is a z ∈ A and a good sequence 〈zi〉ni=1, n > 1, such that z1 = y

and neither Tzn nor Tzn◦Tz is an automorphism of (zn∪z,R�(zn∪z)).
Proof. Assume there is a y in A for which both (1) and (2) are false. We

will arrive at a contradiction by constructing a non-identity automorphism
Φ of (

⋃
A, R).

We first let A0 = {z ∈ A : there is a good sequence 〈zi〉ni=1 such that
z1 = y and zn = z} and then define Φ :

⋃
A →

⋃
A by

(2.5) Φ(a) =

{
b if ∃z ∈ A0, z = {a, b},
a otherwise.

The fact that Φ is a one-to-one function from
⋃
A onto

⋃
A follows from

our assumption that the elements of A are pairwise disjoint. We leave the
details to the reader.

We now argue that Φ is an automorphism of the system (
⋃
A, R). As-

sume that Φ is not an automorphism; then there are elements a and b of⋃
A such that either

aR b and Φ(a) 6RΦ(b), or(2.6)

a 6Rb and Φ(a)RΦ(b).(2.7)

If (2.7) holds then letting a′ = Φ(a) and b′ = Φ(b) we get Φ(a′) = a and
Φ(b′) = b. Therefore (2.7) is equivalent to “a′Rb′ and Φ(a′) 6RΦ(b′)”. So it
suffices to complete the proof under the assumption of (2.6). From (2.6) we
see that either Φ(a) 6= a or Φ(b) 6= b. Therefore we may do a proof by cases
using the following outline:

Case 1: a and b are in the same element z of A.

Case 2: a and b are in different elements of A.
Subcase 1: Φ(a) 6= a and Φ(b) = b.
Subcase 2: Φ(b) 6= b and Φ(a) = a.
Subcase 3: Φ(a) 6= a and Φ(b) 6= b.
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Case 1: a and b are in the same element z of A. In this case, since Φ
moves either a or b, the set z = {a, b} is in A0 and Φ(a) = b and Φ(b) = a.
Therefore Φ�z = Tz so we can conclude from (2.6) that

(2.8) aR b and Tz(a) 6RTz(b).

We also deduce from the definition of Φ (and the fact that Φ moves a)
that there is a good sequence 〈zi〉ni=1 with z1 = y and zn = z. By (2.4), Tz is
an automorphism of (z,R�z), which contradicts (2.8).

Case 2: a and b are in different elements of A. In this case there are ele-
ments a′ and b′ such that {a, a′} and {b, b′} are in A and {a, a′}∩{b, b′} = ∅.

Subcase 1: Φ(a) 6= a and Φ(b) = b. Here we use the definition of Φ to
conclude that:

(1) There is a good sequence 〈zi〉ni=1 such that z1 = y and zn = {a, a′}.
(2) The sequence 〈z1, . . . , zn, z〉, where z = {b, b′}, is not good. (Other-

wise Φ�z would be Tz.)
(3) Φ�{a, a′} = Φ�zn = Tzn .
(4) Since zn ∩ z = ∅, Tzn�z is the identity, so Φ�z = Tzn�z.

By using (3) and (4), equation (2.6) becomes “aR b and Tzn(a) 6RTzn(b)”.
Therefore

(2.9) Tzn is not an automorphism of (zn ∪ z,R�(zn ∪ z)).

Since 〈z1, . . . , zn, z〉 has length greater than 1 and is not good, con-
dition (2) of the definition of “good” must fail for this sequence. Since
〈zi〉ni=1 is good, (2) must fail because either Tzn is an automorphism of
(zn∪z,R�(zn∪z)), or Tzn ◦Tz is not an automorphism of (zn∪z,R�(zn∪z)).
By (2.9) the latter must hold. Combining this fact with (2.9) we have a se-
quence 〈zi〉ni=1 and an element z for which condition (2) of the lemma is
true. This is a contradiction.

Subcase 2: Φ(a) = a and Φ(b) 6= b. The argument in this case is very
similar to that of the previous case and we leave it to the reader.

Subcase 3: Φ(a) 6= a and Φ(b) 6= b. In this case (by the definition of Φ)
there are two good sequences 〈zi〉ni=1 and 〈wj〉mj=1 with z1 = w1 = y, zn =
{a, a′} and wm = {b, b′}. Further Φ�zn ∪ wm = Tzn ◦ Twm . Applying this
equality to (2.6) we conclude that aR b and Tzn ◦ Twm(a) 6RTzn ◦ Twm(b).
So Tzn ◦ Twm is not an automorphism of (zn ∪ wm, R�(zn ∪ wm)). It follows
that at least one of Tzn or Twm is not an automorphism of this relational
system. If the first possibility holds then wm ∈ A and 〈zi〉ni=1 provide an
example for case (2) of the lemma, a contradiction. Similarly, if Twm is not
an automorphism then zn ∈ A and 〈wj〉mj=1 provide such an example.
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To complete the proof of the theorem we let Z = {(y,R�y) : y ∈ A and
R�y is rigid}. The set Z satisfies hypothesis (1) of Lemma 2.4 and we can
obtain a function � satisfying hypothesis (2) of the lemma by choosing some
well-ordering E of P(2 × 2) = P({0, 1} × {0, 1}) and letting �(y) = E for
any y which is a first component of an element of Z. Let F be a function
satisfying the conclusion of the lemma.

Similarly, if we let

Y = {(x,w,R�(x ∪ w)) : x,w ∈ A, x 6= w, and neither Tx nor Tx ◦ Tw
is an automorphism of (x ∪ w,R�(x ∪ w)}

then Y satisfies the hypotheses of Lemma 2.5. We let H be a function sat-
isfying the conclusion.

Finally we let

W = {(x,w,R�(x ∪ w)) : x,w ∈ A, x 6= w, and Tx ◦ Tw is

an automorphism of (x ∪ w,R�(x ∪ w)) but Tx is not}.

W satisfies the hypotheses of Lemma 2.6 and we let J be a function satisfying
the conclusion.

Our goal in this section is to use H and J to define a function K whose
domain is the set of pairs (〈zi〉ni=1, z) where 〈zi〉ni=1 is a good sequence and
z is an element of A such that neither Tzn nor Tzn ◦ Tz is an automorphism
of (zn ∪ z,R�(zn ∪ z)). (See condition (2) of Lemma 2.9.) We also want
K(〈zi〉ni=1, z) ∈ z1. It follows from the definition of “good” that for 1 ≤ i < n,
(zi, zi+1, R�(zi ∪ zi+1)) ∈ W, so

(2.10) J(zi, zi+1, R�(zi ∪ zi+1)) is a one-to-one function from zi+1 onto zi.

To simplify the notation we let Ji = J(zi, zi+1, R�(zi ∪ zi+1)) for 1 ≤ i < n.
Secondly we note that (zn, z, R�(zn ∪ z)) is in Y, so

(2.11) H((zn, z, R�(zn ∪ z))) ∈ zn.

We can now define K(〈zi〉ni=1, z) = J1 ◦ · · · ◦Jn−1(H((zn, z, R�(zn∪ z)))). By
(2.10) and (2.11), we have K(〈zi〉ni=1, z) ∈ z1.

As a final step in the proof we define a choice function CH for A. Since A
is well-orderable, the set of finite sequences of elements ofA is well-orderable.
Choose one such ordering ≤. Assume that y ∈ A. If condition (1) of Lemma
2.9 holds then (y,R�y) ∈ Z and we let CH(y) = F (y,R�y) ∈ y. If condition
(2) of Lemma 2.9 holds then we let 〈z1, . . . , zn, z〉 be the ≤-least sequence for
which z1 = y, 〈zi〉ni=1 is good and neither Tzn nor Tzn◦Tz is an automorphism
of (zn ∪ z,R�(zn ∪ z)). Then (〈zi〉ni=1, z) is in the domain of K and we let
CH(y) = K(〈zi〉ni=1, z). As noted above, this is an element of z1 and therefore
an element of y since y = z1.
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3. On the hereditary rigidity and the Strong Rigidity Principle
of Vopěnka, Pultr and Hedrĺın. We start this section with the proofs
that the principle HRR implies the Axiom of Choice for families of non-empty
finite sets and that it is not equivalent to AC in ZF.

Theorem 3.1. HRR implies ACfin.

Proof. Assume HRR and assume that A is a family of finite sets. By HRR
there is a hereditarily rigid relation R on

⋃
A. Let Z = {(A,R�A) : A ∈ A}.

Then Z satisfies hypothesis (1) of Lemma 2.4. Further, hypothesis (2) is
also satisfied since

⋃
n∈ω P(n×n) is countable and therefore well-orderable,

say by E. So for each A ∈ A we can define �(A) = E�|A|.
Let F be the function given by the conclusion of Lemma 2.4. We define

a choice function G on A by G(A) = F (A,R�A).

J. Truss [8, Theorem 3] showed that if for some natural number n > 1,
the set [X]n of all n-element subsets of a set X has a choice function, then
X is finite or not amorphous. From this and Theorem 3.1, we immediately
obtain the following corollary.

Corollary 3.2. HRR implies that there are no amorphous sets.

Theorem 3.3. In every Fraenkel–Mostowski model of ZFA, the state-
ment HRR implies ACWO (AC for families of non-empty well-orderable sets).

Proof. The proof proceeds as in Theorem 3.1 except that hypothesis (2)
of Lemma 2.4 is now true because in every Fraenkel–Mostowski model there
is a function (actually a proper class) � such that for every well-orderable
set X, �(X) is a well-ordering of P(|X| × |X|) (see [3]).

Our next result strengthens Theorem 1.5(2) (see the introduction) and
states that every set in the basic Cohen forcing model admits a hereditarily
rigid binary relation. Thus HRR is not equivalent to the full Axiom of Choice
in ZF set theory.

Theorem 3.4. HRR holds in the basic Cohen model of ZF + ¬AC (model
M1 in [4]) and in the Mostowski linearly ordered permutation model of ZFA
+ ¬AC (model N3 in [4]). Therefore, HRR is not equivalent to AC in ZF.

Proof. Let M be the basic Cohen model and let A be the set of the
countably many added generic reals. It is known (see [5, Lemma 5.25]) that
for every set X ∈M, there is, inM, an ordinal γ and a one-to-one function
f : X → [A]<ω×γ. The same holds in the Mostowski model (see [5, Lemma
4.6]), except that A in that model denotes the set of its atoms.

We show that HRR holds in M. To this end, let X ∈M. By [5, Lemma
5.25], there is a well-ordered partition {Xα : α ∈ γ}, γ some ordinal number,
of X into Dedekind finite sets. Without loss of generality we may view each
Xα as a subset of [A]<ω, hence X has a linear order inM, say ≺. We define
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a partial order R on X as follows: If x, y ∈ Xα for some α < γ, then xR y
if and only if x ≺ y. If x ∈ Xα and y ∈ Xβ, α 6= β, then xR y if and only if
α ∈ β. In this case, we shall write x < y instead of xR y. It is clear that R
is a linear order on X.

We show that R is a hereditarily rigid relation on X. In fact, due to the
definition of R, it is easy to see that it suffices to show that R is a rigid
relation on X. To this end, let f : X → X be an automorphism of the
relational system 〈X,R〉, and toward a contradiction assume that f is not
the identity mapping on X. For every x ∈ X, let Orb(x) = {fn(x) : n ∈ Z}
be the orbit of x under f . We first observe the following facts:

(1) Since for each α < γ, Xα is Dedekind finite, it follows that for every
x ∈ X and for every α < γ, Orb(x) ∩Xα is a finite set.

(2) There is an ordinal α < γ and an element x ∈ Xα with f(x) 6= x
such that Orb(x) is infinite. Otherwise, that is, if all the orbits of f
were finite, then since R is a linear order on X, f would necessarily
fix X pointwise, contradicting our assumption on f .

By observation (2), let α0 be the least α ∈ γ such that there exists an
x ∈ Xα with f(x) 6= x and Orb(x) is infinite. By (1), it then follows that for
some n ∈ Z, we have x < fn(x) or fn(x) < x (that is, x and fn(x) belong
to distinct elements of the partition {Xα : α ∈ γ} of X). Without loss of
generality, assume that x < f(x) (that is, f(x) ∈ Xβ for some β > α0).
By the property of the ordinal α0, observation (1) and the fact that f is an
automorphism, it follows that {f−n(x) : n ∈ N} is necessarily a countably
infinite subset of Xα0 . This contradicts the fact that Xα0 is Dedekind finite.
Thus, f is the identity mapping and R is a rigid binary relation on X.

Theorem 3.5. SRR is not provable in ZF set theory.

Proof. SRR implies RR and the latter is not provable in ZF by [2, Theo-
rem 2.1].

Next, we prove that SRR is not equivalent to AC in ZFA. First, we need
the following lemma.

Lemma 3.6. If R is a strongly rigid binary relation on a set X and
|X| > 1, then R is irreflexive, i.e. there is no y ∈ X for which y R y.

Proof. Assuming the hypotheses and the existence of a y0 ∈ X for which
y0Ry0 the function f defined by f(x) = y0 is a non-identity endomorphism
of the system (X,R).

Theorem 3.7. SRR holds in the Mostowski linear order model of ZFA
+ ¬AC. Thus, SRR is not equivalent to AC in ZFA.

Proof. The Mostowski linear order model M (model N3 in [4]) is con-
structed from a model M ′ of ZFA + AC with a countable set A of atoms
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using an ordering ≤ of A chosen so that (A,≤) is order isomorphic to the
set of rational numbers with the usual ordering. We let G be the group of
all order isomorphisms of (A,≤). Then M is the Fraenkel–Mostowski model
determined by G using finite supports. We now give a slightly more detailed
description of M and introduce some useful notation.

If φ ∈ G then, as in Definition 1.3, φ also denotes its unique extension
to an ∈-automorphism of the model M ′. Note that if E is a finite subset
of A then fix(E) = Sym(E). An element x of M ′ is symmetric if there is
some finite E ⊆ A such that fix(E) ⊆ Sym(x). We then call E a support
of x. The element x is called hereditarily symmetric if x and every element
in the transitive closure of x is symmetric. The model M consists of all the
hereditarily symmetric elements of M ′.

The following facts will be useful:

(1) Every element of M has a minimum (under ⊆) support which we
denote by supp(x). For x ∈M , supp(x) has the property that

(3.1) ∀φ ∈ G, φ(x) = x if and only if

φ(supp(x)) = supp(x) if and only if φ ∈ fix(supp(x)).

(2) Similarly, if x ∈ M and E ⊆ A is finite then there is a minimum
finite subset F of A with the properties

(3.2) F ∩ E = ∅ and ∀φ ∈ fix(E), φ(x) = x if and only if

φ(F ) = F if and only if φ ∈ fix(F ).

We call this set F the support of x relative to E and denote it by
suppE(x). (It is fairly easy to show that suppE(x) = supp(x) \ E.)

(3) If x ∈ M and there is some finite H ⊆ A such that fix(H) ⊆ fix(x)
(that is, supp(t) ⊆ H for all t ∈ x) then x is well-orderable in M
and for every well-ordering ≺ of x which is in M ′, H is a support
of ≺. In fact, H is a support of every relation on x which is in M ′.

For the proof of the theorem let X be a set in M and let E = supp(X).
Let S = {F ⊆ A : ∃y ∈ X, F = suppE(y)}. It follows from (3.2) that S ∈M .
For each F ∈ S let XF = {y ∈ X : suppE(y) = F}. Then C = {XF : F ∈ S}
is a partition of X. Note that F 7→ XF is a one-to-one function from S onto
C and is in M . Both of these follow from the fact that

(3.3) suppE(XF ) = F.

We need to find a strongly rigid relation on X in the model M . We first
consider the easy case in which S is finite. Then

⋃
S is a finite subset of A.

Further, since every element of X is supported by E∪F for some element F
of S, E∪

⋃
S is a support of every element of X. By fact (3) above, E∪

⋃
S

is a support of every well-ordering of X which is in M ′. At this point we
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need the result of Vopěnka, Pultr and Hedrĺın [9] that under AC every set
admits a strongly rigid binary relation. In particular, since AC holds in M ′,
there is a strongly rigid relation defined on X which is in M ′. By the last
sentence in (3), this relation is in M .

Now we consider the case where S is infinite. Since every set in M is
linearly orderable in M (see [5, Section 4.5] for example) we let ≺ be a
strict linear ordering of C which is in M . We shall use ≺ to construct a
strongly rigid relation R on X.

The construction will also require a function R on C = {XF : F ∈ S}
with the properties

(3.4) R is in M and supp(R) ⊆ E,
(3.5) for each XF ∈ C,R(XF ) is a strongly rigid relation on XF ,

(3.6) for each XF ∈ C, if |XF | = 1 then R(XF ) = ∅.
Let ORB be the set of fix(E)-orbits of elements of C. That is, ORB =
{{φ(XF ) : φ ∈ fix(E)} : XF ∈ C}.

We claim that in order to construct R it will suffice to construct for each
U ∈ ORB a function RU with domain U for which

(1) RU is in M and supp(RU ) ⊆ E,
(2) for each XF ∈ U , RU (XF ) is a strongly rigid relation on XF ,
(3) for each XF ∈ U , if |XF | = 1 then RU (XF ) = ∅.

To prove the claim we note that ORB is a partition of C with support E.
Therefore, assuming that the RU s have been constructed as above, R =⋃
U∈ORBRU will be a function satisfying (3.4)–(3.6).

Assume U ∈ ORB. We construct RU as follows: Choose an element XF0

of U . By the definition of XF0 , each element y of XF0 has suppE(y) = F0.
As in the proof for S finite, there is a strongly rigid relation r on XF0 which
is in M and for which suppE(r) ⊆ F0 and we may choose r = ∅ if |XF0 | = 1.
We are now in a position to define RU :

(3.7) RU = {φ(XF0 , r) : φ ∈ fix(E)} = {(φ(XF0), φ(r)) : φ ∈ fix(E)}.
Since fix(E) is closed under composition it is clear that ψ(RU ) = RU for all
ψ ∈ fix(E), and therefore supp(RU ) ⊆ E.

To argue that RU is a function assume that both (φ1(XF0), φ1(r)) and
(φ2(XF0), φ2(r)) are in RU (where φ1 and φ2 are in fix(E)) and that φ1(XF0)
= φ2(XF0). Then φ−12 φ1(XF0) = XF0 . By (3.3), suppE(XF0) = F0 and
therefore by (3.2), φ−12 φ1(F0) = F0. Since suppE(r) ⊆ F0 we conclude that
φ−12 φ1(r) = r and so φ1(r) = φ2(r).

Finally, we argue that for all XF ∈ U , RU (XF ) is a strongly rigid re-
lation on XF . If XF ∈ U there is a φ ∈ fix(E) such that XF = φ(XF0)
and RU (XF ) = φ(r). Since r is a relation on XF0 , φ(r) = RU (XF ) is a
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relation on φ(XF0) = XF . Since φ(r) = RU (XF ) it also follows that φ re-
stricted to XF0 is an order isomorphism of the relational systems (XF0 , r)
and (XF , RU (XF )) which is in the model M since E∪F0∪φ(F0) is a support
(of φ restricted to XF0). As r is strongly rigid on XF0 , RU (XF ) is strongly
rigid on XF .

This completes the construction of a function R on {XF : F ∈ S}
satisfying (3.4)–(3.6).

Our final step is to (use R and ≺ to) define a relation R on X and to
argue that R is strongly rigid. We define R as follows: If y1 and y2 are in X
then

y1 R y2 if and only if (∃XF ∈ C, y1, y2 ∈ XF and y1 R(XF ) y2), or(
∃XF1 ∃XF2 ∈ C, XF1 6= XF2 ,

y1 ∈ XF1 , y2 ∈ XF2 and XF1 ≺ XF2

)
.

The relation R is in M since it is supported by the union of a support for
R and a support for ≺. Some immediate properties of R are given by the
following lemma.

Lemma 3.8.

(1) If y1 and y2 are both in XF for some XF ∈ C then y1 R y2 if and
only if y1 R(XF ) y2. (This and the following item use the definition
of R and the fact that C is a partition of X.)

(2) If y1 and y2 are in different elements of C, say XF1 and XF2, then
y1 R y2 if and only if XF1 ≺ XF2.

(3) If y1 and y2 are in different elements of C then either y1 R y2 or
y2 R y1. (By the second part of the definition of R and the fact that
≺ is a linear ordering.)

(4) For every endomorphism f : X → X of (X,R),

∀XF ∈ C, if ∃y ∈ XF , f(y) 6= y then ∃z ∈ XF , f(z) /∈ XF

(since R restricted to XF is R(XF ) which is strongly rigid).

We now argue that R is strongly rigid. Assume that it is not. Then
there is an endomorphism f of (X,R) and an element y0 ∈ X such that
f(y0) 6= y0. Let K be a support of f . We define a sequence 〈zn, XHn〉n∈ω
with the following properties:

(1) XHn ∈ C,
(2) zn ∈ XHn ,
(3) f(zn) /∈ XHn ,

by recursion (but we do not claim that the sequence is in M).
For n = 0 let suppE(y0) = H0; then y0 ∈ XH0 . By Lemma 3.8(4) there

is a z ∈ XH0 such that f(z) /∈ XH0 and we let z0 = z.
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Assume that zn and XHn have been defined satisfying (1)–(3). We let
Hn+1 = suppE(f(zn)) so that f(zn) ∈ XHn+1 . We claim that there is an
element zn+1 of XHn+1 such that f(zn+1) /∈ XHn+1 . To prove the claim we
consider two cases. First if f(f(zn)) /∈ XHn+1 we can let zn+1 = f(zn).
On the other hand, if f(f(zn)) ∈ XHn+1 , then since f(zn) ∈ XHn+1 \XHn ,
we have XHn+1 6= XHn . It follows from this and Lemma 3.8(3) that either
zn R f(zn) or f(zn) R zn. Since f is an endomorphism we see that

(3.8) f(zn) is related to f(f(zn)) by R.
Since f(zn) and f(f(zn)) are both in XHn+1 we can use Lemma 3.8(1) to
deduce that

(3.9) f(zn) is related to f(f(zn)) by R(XHn+1).

Therefore R(XHn+1) 6= ∅. By Lemma 3.6 no element of XHn+1 is related to
itself by R(XHn+1) and in particular (using (3.9)) f(zn) 6= f(f(zn)). Now
it follows from Lemma 3.8(4) that there is at least one element z of XHn+1

such that f(z) /∈ XHn+1 , and we let zn+1 be one of these. This completes
the definition of the sequence 〈zn, XHn〉.

It follows from the definition that

(3.10) ∀n ∈ ω, f(zn) ∈ XHn+1 .

Further from conditions (2) and (3) and the fact that f(zn) ∈ XHn+1 we
may conclude that

(3.11) XHn 6= XHn+1 .

Therefore, since ≺ is a linear ordering C, it follows that XHn is related by
≺ to XHn+1 . In particular, XH0 is related to XH1 by ≺. For the remainder
of the proof we assume

(3.12) XH0 ≺ XH1 .

The proof for XH1 ≺ XH0 is similar and is left to the reader.

Lemma 3.9. For all n ∈ ω, XHn ≺ XHn+1.

Proof. The proof is by induction. Assume that n ∈ ω and for all k ∈ ω
if k < n then XHk

≺ XHk+1
. We will show that XHn ≺ XHn+1 . If n = 0

then “XHn ≺ XHn+1” is our assumption (3.12). If n 6= 0 then n − 1 ∈ ω
and therefore by our induction assumption XHn−1 ≺ XHn . Since zn−1 ∈
XHn−1 and zn ∈ XHn we have zn−1 R zn. As f is an endomorphism we
get f(zn−1) R f(zn). Since f(zn−1) ∈ XHn and f(zn) ∈ XHn+1 we can use
Lemma 3.8(2) to conclude that XHn ≺ XHn+1 .

It follows from the lemma and the fact that ≺ is a linear ordering that
〈XHn〉n∈ω is a sequence of pairwise distinct elements of C. Since H 7→ XH is
a one-to-one function from S onto C, 〈Hn〉n∈ω is also a sequence of pairwise
distinct finite subsets of A.
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We now argue that there must be an n0 ∈ ω with Hn0+1 * E ∪K ∪Hn0 .
(K is the finite support of f and E is the finite support of X chosen earlier.)
If there is no such n0 then Hn+1 ⊆ E ∪K ∪Hn for every n ∈ ω. Then by
induction Hn ⊆ E∪K∪H0 for all n ∈ ω. This is impossible since E∪K∪H0

is finite and so has only finitely many subsets.

We obtain a contradiction by considering zn0 which is in XHn0
and f(zn0)

which is in XHn0+1 . Since Hn0+1 * E ∪K ∪Hn0 we may choose an element

a of A in Hn0+1 \ (E∪K ∪Hn0) and a permutation φ ∈ fix(E∪K ∪Hn0) for
which φ(a) 6= a. Since suppE(f(zn0)) = Hn0+1, we have φ(f(zn0)) 6= f(zn0).
Since φ ∈ fix(E ∪K ∪Hn0), φ fixes both zn0 and f . This is a contradiction
since a permutation which fixes both f and zn0 must fix f(zn0).

4. Rigid, hereditarily rigid, and strongly rigid binary relations
on Cantor cubes. We begin with the observation that both HRR and RR
are related to the corresponding formulations restricted to powers of 2. In
particular:

(1) HRR if and only if for every set X, 2X has a hereditarily rigid binary
relation. (This is straightforward, since X can be considered as a
subset of 2X .)

(2) RR if and only if for every set X, every subset of 2X has a rigid
binary relation.

It is also clear that RR implies

(∗) For every set X, 2X has a rigid binary relation.

We do not know whether “(∗) → RR” holds in ZF. Note that (∗) is not
provable in set theory without choice, since it fails in the basic Fraenkel
permutation model M for the set A of atoms. In particular (see [4], [5]),
2A is Dedekind finite in M , and since M satisfies “for every x ∈ M and
every φ ∈ G there is a permutation φ′ of A which is in M and for which
φ′(x) = φ(x)” (see Remark 2.3), it follows from Theorem 2.1 that 2A does
not admit a rigid binary relation.

As mentioned in the introduction, the statement “every subset of 2ω has
a rigid binary relation” is provable in ZF set theory (see [2, Theorem 2.1]).
Here, we shall give a sharper result: “every subset of 2ω has a strongly rigid
binary relation” is also a theorem of ZF.

Theorem 4.1. (ZF) Every set of reals has a strongly rigid binary rela-
tion.

Proof. We shall work with the Cantor cube 2ω instead of R. So let
A ⊆ 2ω. We consider the following two cases:
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Case 1: A is Dedekind infinite. Let {bn : n ∈ ω} be an enumeration of
a countably infinite subset B ⊆ A. Without loss of generality assume that
A \B 6= ∅. (If A = B, i.e. A is countably infinite, then the relational system
〈B,S〉, where S is the binary relation on B defined below, is strongly rigid.
See the argument below.)

First we fix an integer n∗ > 1 and we also let {pn : n ∈ ω} be an
enumeration of the set Fn(ω, 2) of all partial finite functions from ω into 2.
Now we define a binary relation S on A as follows:

(1) (b0, bn∗) ∈ S and (bn, bn+1) ∈ S for all n ∈ ω.
(2) For a ∈ A \ B and for n ∈ ω we require (bn, a) ∈ S if and only if

pn ⊆ a.

We assert that S is a strongly rigid relation on A. First note that S�B
is strongly rigid since any homomorphism of 〈B,S�B〉 would have to fix b0,
hence bn∗ , and consequently every element of B. Indeed, let g : B → B
be a homomorphism of 〈B,S�B〉. Suppose, toward a contradiction, that
g(b0) 6= b0. There are the following cases:

(a) g(b0) = bn∗ . Then (b0, bn∗) ∈ S ⇒ (bn∗ , g(bn∗)) ∈ S, hence g(bn∗) =
bn∗+1. But then (bn∗−1, bn∗) ∈ S, hence g(bn∗−1) = bn∗ . From this, it
easily follows that g(bm) = bm+1 for all m < n∗. Now, (b0, b1) ∈ S,
so (g(b0), g(b1)) ∈ S and consequently (bn∗ , b2) ∈ S. Since 2 ≤ n∗,
we have reached a contradiction.

(b) g(b0) = bj for some j < n∗. Then j ≤ n∗ − 1, hence necessarily
g(bn∗) = bk for some k ≤ n∗, since (b0, bn∗) ∈ S implies (g(b0), g(bn∗))
∈ S. So by the definition of S and the fact that j < n∗, it follows
that g(bn∗) = bk for some k ≤ n∗. Similarly to case (a), one then
shows that (bm, bn) ∈ S for n ≤ m, which is a contradiction.

(c) g(b0) = bj for some j > n∗. It follows that g(bn∗) = bj+1 (for
(b0, bn∗) ∈ S ⇒ (g(b0), g(bn∗)) ∈ S, hence (bj , g(bn∗)) ∈ S, and
consequently g(bn∗) = bj+1), j + 1 > n∗, and it is not hard to verify
that then (bm, bk) ∈ S for some m, k such that n∗ ≤ k < m, which
is a contradiction.

It follows that g(b0) = b0, hence necessarily g(bn∗) = bn∗ . (Note that
(b0, bn∗) ∈ S ⇒ (b0, g(bn∗)) ∈ S, hence g(bn∗) = b1 or g(bn∗) = bn∗ . If
g(bn∗) = b1, then g(bn∗−1) = b0, so we would have (bn∗−2, bn∗−1) ∈ S ⇒
(g(bn∗−2), b0) ∈ S (recall that n∗ > 1) which is impossible since there is no
m ∈ ω such that (bm, b0) ∈ S.) We then easily obtain g(bm) = bm for all
m ∈ ω \ {0, n∗}.

We proceed now with the proof that S is strongly rigid on A. To this
end, let f : A→ A be a homomorphism of the system 〈A,S〉.
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We prove first that f(bn) ∈ B for all n ∈ ω. If not, let n ∈ ω be such
that f(bn) ∈ A \ B. Then (bn, bn+1) ∈ S, hence (f(bn), f(bn+1)) ∈ S. But
for no (a, b) ∈ S is a an element of A \B, therefore f(bn) ∈ B. Since S�B is
strongly rigid, it follows that f(bn) = bn for all n ∈ ω.

Next we show that f(y) = y for all y ∈ A \ B. We first argue that
f(y) ∈ A \ B for all y ∈ A \ B. Assume on the contrary that y ∈ A \ B is
such that f(y) = bn for some n ∈ ω. It is clear that there is an infinite subset
M ⊆ ω such that pm ⊆ y for all m ∈ M (note that for all k ∈ ω, y�k ⊆ y,
and for k, k′ ∈ ω with k 6= k′, we have y�k 6= y�k′) hence (bm, y) ∈ S for all
m ∈M . But then, for all m ∈M , (f(bm), f(y)) ∈ S, hence (bm, bn) ∈ S since
f fixes every element of B and f(y) = bn. This is clearly a contradiction, due
to the fact that M is infinite and the definition of S�B. Thus f [A\B] ⊆ A\B,
as required.

To end the proof, assume toward a contradiction that f(y) 6= y for
some y ∈ A \ B. Let n0 be the minimum n ∈ ω such that pn ⊆ y but
pn * f(y). Then (bn0 , y) ∈ S, hence (bn0 , f(y)) ∈ S. Thus pn0 ⊆ f(y), since
f(y) ∈ A \B. This is a contradiction, hence f(y) = y. It follows that S is a
strongly rigid binary relation on A, as required.

Case 2: A is a Dedekind finite set. Since A is also strictly linearly order-
able (that is, linearly orderable by an irreflexive relation), say by the lexico-
graphical order <lex on 2ω, it can be easily verified that the only homomor-
phism of 〈A,<lex〉 is the identity, hence<lex is a strongly rigid relation onA.

Remark 4.2. As mentioned in Section 1, a new simplified proof of SRR
(in ZFC) is provided in [7]. As with the original proof in [9], it is shown that
every ordinal admits a strongly rigid binary relation and the key point of
both proofs (in [7] and [9]) is choosing for each ordinal β with countable
cofinality—in a given ordinal α—a sequence (βn)n∈ω converging to β. This
procedure is not choice free. Now, if we restrict attention to ℵ1, that is, the
given ordinal α is equal to ℵ1, then in view of Theorem 4.1 and its proof, we
may avoid choosing (converging) sequences for ordinals in ℵ1 with countable
cofinality. In particular, in order to show that ℵ1 has a strongly rigid binary
relation, we only need to assume that there is an injection f : ℵ1 → R.
Then Theorem 4.1 applies. Note that it is not provable in ZF that ℵ1 can
be embedded into R (see [4, Form 170]).

Since, by Theorem 4.1, no choice form is required in order to prove that
2ω has a strongly rigid binary relation, it is natural to ask if, in ZF, 2P(ω)

(hence 2R), or 2P
n(ω) for any positive integer n, has a strongly rigid binary

relation. We will answer these questions affirmatively : see Corollary 4.9.
First we establish, in ZF, the following general result: If a set X has a
strongly rigid binary relation, then so does its power set P(X). To start
with the proof, we need the following lemma.
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Lemma 4.3. If (X1, R1) and (X2, R2) are strongly rigid relational sys-
tems where X1 ∩X2 = ∅, |X1| > 1 and |X2| > 1 then (X1 ∪X2, R1 ∪ R2 ∪
{(b, a) : a ∈ X1 and b ∈ X2}) is strongly rigid.

Proof. Assume that the hypotheses hold and let R = R1 ∪R2 ∪ {(b, a) :
a ∈ X1 and b ∈ X2}. We note that if xR y then it cannot be the case that
x ∈ X1 and y ∈ X2.

Assume that f : X1 ∪X2 → X1 ∪X2 is an endomorphism. To prove that
f is the identity it will suffice to show that f(a) ∈ X1 for all a ∈ X1 and
f(b) ∈ X2 for all b ∈ X2 (since (X1, R1) and (X2, R2) are rigid). We will
prove the first of these statements; the proof of the second is similar.

Toward a contradiction assume that a0 ∈ X1 and f(a0) ∈ X2. Since
bR a0 for every b ∈ X2, we conclude that f(b)Rf(a0) for every such b.
Using the remark in the second sentence of the proof and the fact that
f(a0) ∈ X2 we conclude that f(b) ∈ X2 for all b ∈ X2. Therefore f�X2 is
an endomorphism of (X2, R2). In order to complete the proof we only have
to show that f�X2 is not the identity function on X2. We will prove this by
showing that f(f(a0)) 6= f(a0).

We first note that f(a0)Ra0 since f(a0) ∈ X2 and a0 ∈ X1. Therefore
f(f(a0))Rf(a0). By Lemma 3.6 (that is, R is irreflexive since it is strongly
rigid) and the assumption that |X2| > 1 we get f(f(a0)) 6= f(a0).

Theorem 4.4. If X admits a strongly rigid binary relation, then so does
P(X).

Proof. Assume that R0 is a strongly rigid relation on X. Since every
finite set admits a strongly rigid relation it suffices to prove the theorem
when X is infinite.

As a first step we choose two disjoint subsets X1 and X2 of P(X) such
that X1 ∩ X2 = ∅, |X1| = |X|, |X2| = |X|, ∅ ∈ X1 and X ∈ X2, and we
let φ1 : X → X1 and φ2 : X → X2 be one-to-one surjective functions. For
example, we could choose two distinct elements a and b of X, let X1 =
{{a, x} : x ∈ X \ {b}} ∪ {∅}, X2 = {{b, x} : x ∈ X \ {a}} ∪ {X}, and define

φ1(x) =

{
{a, x} if x ∈ X \ {b},
∅ if x = b,

φ2(x) =

{
{b, x} if x ∈ X \ {a},
X if x = a.

Next we define relations R1 and R2 on X1 and X2 respectively so that
(X1, R1) and (X2, R2) are copies of (X,R0). More specifically, we let R1 =
φ1(R0) = {(φ(x), φ(y)) : (x, y) ∈ R0} and R2 = φ2(R0). By Lemma 4.3 the
relation R = R1 ∪ R2 ∪ {(b, a) : a ∈ X1 and b ∈ X2} is a strongly rigid
relation on X1 ∪ X2. We also note that φ2 ◦ φ−11 is an isomorphism of the
systems (X1, R1) and (X2, R2). Using R we define a relation S on P(X) to
be the union of the following three sets:
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• R,
• {(φ1(a), y) : y ∈ P(X) \ (X1 ∪ X2) and a ∈ y} (which is a subset of
X1 × (P(X) \ (X1 ∪X2))),
• {(y, φ2(a)) : y ∈ P(X) \ (X1 ∪ X2) and a /∈ y} (which is a subset of

(P(X) \ (X1 ∪X2))×X2).

We note that by the definition of S, if y ∈ P(X) \ (X1 ∪ X2) then for
all z, z S y implies z ∈ X1 and y S z implies z ∈ X2. We claim that S is a
strongly rigid relation on P(X).

Indeed, assume that f is an endomorphism of (P(X), S). We will show
that f is the identity function on P(X). As a first step we show that
f�X1∪X2 is the identity. This is the content of the following lemma and its
corollary.

Lemma 4.5. For all x ∈ X1 ∪X2, f(x) ∈ X1 ∪X2.

Proof. For contradiction, assume that x0 ∈ X1 ∪ X2 is an element for
which f(x0) /∈ X1 ∪X2.

Case 1: x0 ∈ X1. In this case x S x0 for every x ∈ X2. It follows that

(4.1) ∀x ∈ X2, f(x) S f(x0).

Since f(x0) ∈ P(X) \ (X1 ∪ X2), the remark following the definition of S
implies

(4.2) ∀x ∈ X2, f(x) ∈ X1.

Composing f with the isomorphism φ2 ◦ φ−11 we have (f ◦ φ2 ◦ φ−11 )(X1) =
f(φ2φ

−1
1 (X1)) = f(X2) ⊆ X1. Hence f ◦ φ2 ◦ φ−11 is a homomorphism of

(X1, R1). (This uses the fact that S ∩ R1 = R1.) Since (X1, R1) is strongly
rigid we conclude that f(φ2(φ

−1
1 (x))) = x for all x ∈ X1. Therefore for any

a ∈ X, letting a = φ−11 (x), we conclude that

(4.3) ∀a ∈ X, f(φ2(a)) = φ1(a).

Since f(x0) /∈ X1 ∪ X2 and X ∈ X1 ∪ X2 there is some a0 ∈ X such that
a0 /∈ f(x0). By the definition of S we have

(4.4) φ1(a0) 6S f(x0).

Since φ1(a0) ∈ X1 and x0 ∈ X2 we find (using the definition of S again)
that φ2(a0) S x0. Since f is a homomorphism, we have f(φ2(a0)) S f(x0).
By (4.3) this is the same as φ1(a0) S f(x0), contrary to (4.4).

Case 2: x0 ∈ X2. The proof in this case is similar and uses the fact that
∅ ∈ X1 ∪X2.

Since (X1 ∪ X2, R) is strongly rigid, we have the following corollary of
Lemma 4.5.

Corollary 4.6. For all x ∈ X1 ∪X2, f(x) = x.
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Lemma 4.7. For all y ∈ P(X) \ (X1 ∪X2), f(y) ∈ P(X) \ (X1 ∪X2).

Proof. Assume that the lemma is false and that y0 ∈ P(X) \ (X1 ∪X2)
has f(y0) ∈ X1 ∪X2.

Case 1: f(y0) ∈ X1. Since X ∈ X1∪X2 we may choose a ∈ X such that
a /∈ y0. By the definition of S, y0 S φ2(a). It follows that f(y0) S f(φ2(a)),
which gives f(y0) S φ2(a) (using the corollary above). But this contradicts
the definition of S since f(y0) ∈ X1 and φ2(a) ∈ X2.

Case 2: f(y0) ∈ X2. The proof is similar to the proof in Case 1 and is
left to the reader.

The following lemma will complete the proof of the theorem.

Lemma 4.8. For all y ∈ P(X) \ (X1 ∪X2), f(y) = y.

Proof. Toward a contradiction, assume there is a y1 ∈ P(X) \ (X1 ∪X2)
for which f(y1) 6= y1. Let y2 = f(y1). Then by Lemma 4.7, we have y2 ∈
P(X) \ (X1 ∪X2). Since y1 6= y2 there are two cases to consider:

Case 1: There is an element a ∈ y1 \ y2. In this case φ1(a) S y1 and
φ1(a) 6S y2 by the definition of S. From the first of these we deduce that
f(φ1(a)) S f(y1). Now using f(φ1(a)) = φ1(a) we arrive at the contradiction
φ1(a) S f(y1).

Case 2: There is an element a ∈ y2 \ y1. This is similar to the previous
case and is left to the reader.

The proof of the theorem is complete.

Corollary 4.9. (ZF) For every n ∈ ω, Pn(ω), hence (by Theorem 4.4)
2P

n(ω), has a strongly rigid binary relation. In particular, 2R has a strongly
rigid binary relation.

Proof. Use Theorem 4.4 and an easy induction.

Our next result, Theorem 4.10, is the analogue of Theorem 4.4 for rigid
binary relations. That is, we prove that if a set X has a rigid binary relation,
then in ZF, so does P(X). In addition, our proof will implicitly suggest a
simplification of the proof of [2, Theorem 2.1] (see Remark 4.12(2)). We shall
also take the opportunity to point out a slightly different argument for [2,
Theorem 2.1], which is applied directly to R rather than to 2ω (see Remark
4.12(3)). We do this in order to extract possible new ideas.

Theorem 4.10. (ZF) For every set X, if X has a rigid binary relation,
then so does 2X .

Proof. Assume that a set X admits a rigid binary relation S. We shall
identify each element x of X with the element of 2X which is the charac-
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teristic function of {x}. This will simplify the notation. We define a binary
relation R on 2X as follows:

• For x, y ∈ X, we define (x, y) ∈ R if and only if (x, y) ∈ S.
• For x ∈ X and y ∈ 2X \X, define (x, y) ∈ R if and only if y(x) = 1.

We assert that R is a rigid relation on 2X . To see this, let f be an
automorphism of the relational system 〈2X , R〉. We will show that f is the
identity mapping. First, note that f(x) ∈ X for all x ∈ X. If not, let x ∈ X
be such that f(x) = y ∈ 2X \ X. Pick any function z ∈ 2X \ X such that
z(x) = 1. Then (x, z) ∈ R and thus (f(x), f(z)) ∈ R or (y, f(z)) ∈ R. But
there is no pair (a, b) ∈ R such that a ∈ 2X \ X, and we have reached
a contradiction. Similarly, one shows that f�X is onto X (if x ∈ X, then
there is a y ∈ 2X such that f(y) = x; if y /∈ X, then taking an element z as
before, we find that (x, z) ∈ R, hence (y, f−1(z)) ∈ R, a contradiction, hence
y ∈ X). It follows that f�X is an automorphism of 〈X,R�X〉. Furthermore,
as R�X ≡ S and S is rigid on X, we conclude that f(x) = x for all x ∈ X.

Next we show that f(y) = y for all y ∈ 2X \X. Assume on the contrary
that y ∈ 2X \X is such that f(y) 6= y. Since f is the identity mapping on
X and f is a permutation of 2X , we have f(y) ∈ 2X \X. Let x ∈ X be such
that f(y)(x) 6= y(x). Without loss of generality assume that y(x) = 1, hence
f(y)(x) = 0. It follows that (x, y) ∈ R and (x, f(y)) /∈ R. However, since f
is an automorphism of 〈2X , R〉, we have

(x, y) ∈ R → (f(x), f(y)) ∈ R → (x, f(y)) ∈ R,
a contradiction. Thus f(y) = y, as required.

Corollary 4.11. (ZF) For every well-ordered cardinal number κ, 2κ has
a rigid binary relation.

Proof. This follows from Theorem 4.10 and the fact that well-orders are
rigid.

Remark 4.12. 1. Using ideas from the proof of Theorem 4.10 one may
simplify (part of) the definition and the proof of the rigid relation R in the
proof of [2, Theorem 1.1], for a Dedekind infinite set A ⊆ 2ω, as follows: For
y /∈ Z = {z∗, z0, z1, . . .} ⊆ A, R(x, y) holds if and only if x = zn for some n
and y(n) = 1.

2. We present a modification of the proof of [2, Theorem 1.1], adjusted
to R and not to 2ω. Let A be an infinite uncountable subset of R. Suppose
first that A has a countably infinite subset B = {bn : n ∈ ω} and let
Q = {qn : n ∈ ω} be an enumeration of the rationals. We define a binary
relation R on A as follows: For all n ∈ N, (bn, bn+1) ∈ R and (bn, b0) ∈ R. In
addition, we require (b0, b0) ∈ R. For a ∈ A\B we require (bn, a) ∈ R if and
only if qn < a, where < is the usual ordering on R. Now we show that R is
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rigid. Let f be an automorphism of 〈A,R〉. As in the proof of [2, Theorem
1.1], one verifies that f fixes B pointwise. Now let a ∈ A \ B and suppose,
for contradiction, that f(a) = c 6= a. Without loss of generality assume
that a < c and let n ∈ ω be such that a < qn < c. Then (bn, c) ∈ R, hence
(bn, f(a)) ∈ R and thus (bn, a) ∈ R. This means that qn < a, a contradiction.
Therefore, f(a) = a and R is rigid as asserted.

The case where A is a Dedekind finite subset of R can be treated as in
the proof of [2, Theorem 1.1] or Theorem 4.1 of the current paper.

The next natural question is whether the statement “every subset of
2P(ω) has a rigid binary relation” (in other words, the statement “every set
of sets of reals has a rigid binary relation”) is still provable in ZF. In [2, top
of p. 397], the answer is found to be negative. Here, we go one step further,
giving some information regarding the placement of “every subset of 2P(ω)

has a rigid binary relation” in the hierarchy of weak choice principles. In
particular, based on the proof of Theorem 2.7, we will see that “every subset
of 2P(ω) has a rigid binary relation” implies the Axiom of Countable Choice
for pairs of sets of reals (see Theorem 4.13). Since the latter weak choice
principle fails in the second Cohen symmetric model for ZF+¬AC (see [4]),
we will also see as a by-product that “every subset of 2P(ω) has a rigid binary
relation” is not provable in ZF.

Recall that the statement “2R has a strongly rigid binary relation” is a
theorem of ZF (see Corollary 4.9).

Theorem 4.13.

(a) If every subset of 2R has a rigid binary relation, then every countably
infinite family of pairs of sets of reals has a choice function. Thus,
the statement “every subset of 2R has a rigid binary relation” is not
provable in ZF.

(b) If 2R has a hereditarily rigid binary relation, then every family of
non-empty finite sets of sets of reals has a choice function, which in
turn implies that there exists a non-measurable subset of 2ω with the
product measure.

Proof. (a) Let A = {Ai : i ∈ ω} be a countably infinite family of pairs of
sets of reals. We may assume that for all i ∈ ω, if Ai = {x, y}, then x\y 6= ∅
and y \ x 6= ∅ (otherwise we could choose from Ai the set

⋂
Ai). Thus, we

can further assume that for each i ∈ ω, the elements of Ai are disjoint. In
addition, since |R×R| = |R| we may also assume that A is pairwise disjoint
(otherwise, replace each Ai with {x× {i} : x ∈ Ai}).

Since |P(R)| = |2R|, we may view
⋃
A as a subset of 2R. By our as-

sumption,
⋃
A has a rigid binary relation R. Following now the proof of

Theorem 2.7, we conclude that A has a choice function.
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For the second assertion, in the second Cohen forcing model (modelM7
in [4]) there is a countably infinite family of pairs of sets of reals which does
not have a partial choice function in the model, i.e. a choice function whose
domain is some infinite subset of A (see [4], [5]). Thus, the statement “every
subset of 2R has a rigid binary relation” fails in Cohen’s second model.

(b) The first implication of (b) follows from Theorem 3.1, while the
second one follows from [5, Problem 10, p. 7].

5. Summary. The following diagram summarizes results of the paper
on the rigidity principles RR, HRR and SRR. In the diagram, a solid ar-
row “→”, either horizontal or vertical, means that the implication holds
in ZF. A negated solid arrow “9”, either horizontal or diagonal, means
“non-implication in ZFA”. The negated arrow “ 6⇑” means “non-implication
in ZF”.

AC → SRR X↘
↓6⇑ ↓
HRR → RR 8 MC,ACWO,DC

↓ ↓
ACfin → AC2

WO

↓ ↑
6 ∃ amorphous sets 9 RR

Implications and non-implications between rigidity principles and certain choice forms

6. Problems

1. What is the relationship of RR or SRR with BPI (the Boolean Prime
Ideal Theorem, i.e. the statement “every non-trivial Boolean algebra
has a prime ideal”) or with OP (the Ordering Principle, i.e. the state-
ment “every set can be linearly ordered”. It is known (see [4]) that
BPI → OP).

2. What is the relationship between HRR and SRR?
3. Does RR or SRR imply “there are no amorphous sets”?
4. Is the statement “2ω (equivalently, R) has a hereditarily rigid binary

relation” provable in ZF?
5. Is the statement “for every well-ordered cardinal κ, every subset of

2κ has a rigid binary relation” provable in ZF? The latter question is
also addressed in [1]. (Note that the statement is true in every FM
model, since in each such model the power set of a well-orderable set
is well-orderable: see [4].)
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6. Is the statement “for every set X, if X has a hereditarily rigid binary
relation, then 2X has a hereditarily rigid binary relation” provable in
ZF? (Note that the latter statement implies the statement of prob-
lem 5, so a possible negative answer to problem 5 yields a negative
answer to the current problem.)

7. Given a set X, is it true (in ZF) that if 2X has a rigid binary relation,
then X also has such a relation?

8. Is it provable in ZF that every well-ordered set admits a strongly rigid
binary relation?
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