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Positive solution for a quasilinear equation
with critical growth in RN

Lin Chen (Nanjing and Yining), Caisheng Chen (Nanjing)
and Zonghu Xiu (Qingdao)

Abstract. We study the existence of positive solutions of the quasilinear problem{
−∆Nu+ V (x)|u|N−2u = f(u, |∇u|N−2∇u), x ∈ RN ,
u(x) > 0, x ∈ RN ,

where ∆Nu = div(|∇u|N−2∇u) is the N -Laplacian operator, V : RN → R is a continuous
potential, f : R × RN → R is a continuous function. The main result follows from an
iterative method based on Mountain Pass techniques.

1. Introduction and main result. In this paper, we study the exis-
tence of positive solutions of the quasilinear problem{

−∆Nu+ V (x)|u|N−2u = f(u, |∇u|N−2∇u), x ∈ RN ,
u(x) > 0, x ∈ RN ,

(1.1)

where ∆Nu = div(|∇u|N−2∇u) is the N -Laplacian operator, V : RN → R
is a continuous potential, and f : R× RN → R is a continuous function.

In recent years, quasilinear problems with a gradient term have been
subject to deep investigations: see for example [C, ZW, CW, FQ, DS] and the
references therein. This kind of problem arises in numerous physical models:
the turbulent flow of a gas in a porous medium, generalized reaction-diffusion
theory etc. (see [A, CH, DI, CS, MH]).

We study in particular the so-called p-Laplacian equations, which are
usually seen as the simplest generalizations of the Laplacian equation to the
quasilinear context. The p-Laplacian is the second order nonlinear differen-
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tial operator defined as

∆pu = div(|∇u|p−2∇u).

Here p > 1, and for p = 2 the p-Laplacian is the usual Laplacian. Quasilinear
equations involving the p-Laplacian operator are widely used in physical
models, for example, pseudo-plastic fluids correspond to 1 < p < 2, dilatant
fluids correspond to p > 2, and Newtonian fluids correspond to p = 2 [AE].

It is well known that the classical variational methods are not directly
applicable to equations involving the derivatives of the solution in the non-
linear term. In [FG], the authors developed an iterative method based on
Mountain Pass techniques to overcome this difficulty. A method inspired by
this technique is applied in the present paper.

The motivation for our investigation is the case 1 < p < N , which was
studied by G. M. Figueiredo [F]. Using Mountain Pass techniques in RN , he
proved the existence of a positive solution in W 1,p(RN ). In this paper, we
are interested in the case p = N . We will use an iterative method to prove
the existence of a positive solution of problem (1.1).

In order to state our main result, we make the following assumptions:

(A1) f(s, |ξ|N−2ξ) = 0 in (−∞, 0)× RN .

Since we are looking for a positive solution, assumption (A1) is reasonable.

(A2) The function f has exponential critical growth at the origin and at
infinity (see [D]), that is,

lim
|s|→0

|f(s, |ξ|N−2ξ)|
|s|N−1

= 0 for all ξ ∈ RN ,

and there exists d0 > 0 such that

lim
|s|→∞

|f(s, |ξ|N−2ξ)|
ed|s|

N/(N−1)
=

{
0 if d > d0,

∞ if d < d0,

for all ξ ∈ RN .

This assumption is motivated by the Trudinger–Moser inequality for bounded
domains [T, M].

(A3) (see [AF]) There exist constants p > N and θ > 0 such that

f(s, |ξ|N−2ξ) ≥ θsp−1, ∀s ≥ 0, ∀ξ ∈ RN ,
where

θ >

(
8Nν(p−N)

p(ν −N)

)(p−N)/N

Sp/N ,

S = inf
u∈W 1,N\{0}

	
RN (|∇u|N + V (x)|u|N ) dx

(
	
RN |u|p dx)N/p

.



Positive solution for a quasilinear equation 253

(A4) There exists C > 0 such that∣∣∣∣ ∂∂sf(s, |ξ|N−2ξ)
∣∣∣∣ ≤ C exp(dNs

N/(N−1)), ∀s ≥ 0, ∀ξ ∈ RN ,

where dN = Nω
1/(N−1)
N−1 > 0 and ωN−1 is the (N − 1)-dimensional

measure of the (N − 1)-sphere.
(A5) For all |s| > 0 and ξ ∈ RN , there exists ν > N such that

0 < νF (s, |ξ|N−2ξ) ≤ sf(s, |ξ|N−2ξ),
where F (s, |ξ|N−2ξ) =

	s
0 f(t, |ξ|N−2ξ) dt.

(A6) For each ξ ∈ RN , the function g(s) =: f(s, |ξ|N−2ξ)/sN−1 is non-
decreasing for s > 0.

(A7) The function f satisfies the following conditions:

|f(s1, |ξ|N−2ξ)| ≤ L1|s1 − s2|N−1

for all s1, s2 ∈ [0, ρ1] and all |ξ| ≤ ρ2, and

|f(s, |ξ1|N−2ξ1)− f(s, |ξ2|N−2ξ2)| ≤ L2|ξ1 − ξ2|N−1

for all s ∈ [0, ρ1] and all |ξ1|, |ξ|2 ≤ ρ2, where ρ1 and ρ2 depend on
N and ν given in the previous assumptions.

The following inequality in RN [DI] plays an important role in our proof:

〈|ξ|N−2ξ − |η|N−2η, ξ − η〉 ≥ CN |ξ − η|N ,(1.2)

where 〈·, ·〉 is the usual inner product in RN .
Consider the following conditions on the potential:

(V1) V (x) ≥ V0 > 0 for all x ∈ RN ;
(V2) V (x) is a continuous 1-periodic function, that is, V (x+ y) = V (x)

for all y ∈ ZN and all x ∈ RN (see [AF]).

Remark 1.1. Condition (V1) ensures that X below is a reflexive Banach
space for the norm ‖u‖.

In this paper, we always assume V (x) satisfies (V1) and (V2). Before
stating our main results, we give some notation.

For 1 ≤ p <∞, Lp(RN ) denotes the Lebesgue space with the norm

‖u‖p =
( �

RN
|u|p dx

)1/p
.

Define the function space

W 1,N (RN ) = {u ∈ LN (RN ) : |∇u| ∈ LN (RN )}
with the usual norm

‖u‖1,N =
( �

RN
(|∇u|N + |u|N ) dx

)1/N
.
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Let

X =
{
u ∈W 1,N (RN ) :

�

RN
(|∇u|N + V (x)|u|N ) dx <∞

}
.

Then X is a reflexive Banach space with the norm

‖u‖ =
( �

RN
(|∇u|N + V (x)|u|N ) dx

)1/N
,

and for all N ≤ q <∞,

X ↪→W 1,N (RN ) ↪→ Lq(RN )(1.3)

with continuous embeddings (see [DS]).

The main result in this paper is as follows.

Theorem 1.2. Assume (A1)–(A7) hold. Then problem (1.1) admits a
positive solution in W 1,N (RN ) provided

CN − L1

CN
> 0 and

(
L2

CN − L1

)1/(N−1)
< 1.

2. Preliminary results. The following lemma is a version of the Trudin-
ger–Moser inequality for RN .

Lemma 2.1 (Trudinger–Moser inequality for unbounded domains; see
also [BJ, Lemma 1]). Given any u ∈W 1,N (RN ) with N ≥ 2, we have

�

RN

(
ed|u|

N/(N−1) − SN−2(d, u)
)
dx <∞ for every d > 0.

Moreover, if ‖∇u‖NN ≤ 1, ‖u‖N ≤ M < ∞ and d < dN , then there exists a
positive constant C = C(N,M, d) such that

�

RN

(
ed|u|

N/(N−1) − SN−2(d, u)
)
dx < C,

where dN = Nω
1/(N−1)
N−1 > 0 and ωN−1 is the (N − 1)-dimensional measure

of the (N − 1)-sphere, and

SN−2(d, u) =

N−2∑
k=0

dk

k!
|u|Nk/(N−1).

First, we consider the problem

(2.1)

{
−∆Nu+ V (x)|u|N−2u = f(u, |∇v|N−2∇v), x ∈ RN ,
u(x) > 0, x ∈ RN ,

for v ∈ X ∩ C1,α
loc (RN ) with 0 < α < 1.



Positive solution for a quasilinear equation 255

Definition 2.2. A function u ∈ X is said to be a (weak) solution of
(2.1) if for any ϕ ∈ X,

�

RN

(
|∇u|N−2∇u∇ϕ+ V (x)|u|N−2uϕ

)
dx =

�

RN
f(u, |∇v|N−2∇v)ϕdx.

It is clear that problem (2.1) has a variational structure. The Euler
functional associated with (2.1) is

Jv(u) =
1

N
‖u‖N −

�

RN
F (u, |∇v|N−2∇v) dx.

We say that Jv ∈ C1(X,R) and its Gateaux derivative is given by

J ′v(u)ϕ =
�

RN
(|∇u|N−2∇u∇ϕ+ V (x)|u|N−2uϕ) dx

−
�

RN
f(u, |∇v|N−2∇v)ϕdx.

It is well known that the weak solutions of (2.1) are the critical points
of the energy functional Jv(u).

Lemma 2.3. Suppose that (A2) holds. Let v ∈ X ∩ C1,α
loc (RN ) with 0 <

α < 1. Then there exist β, ρ > 0 such that Jv(u) ≥ β > 0 for all u ∈ X with
‖u‖ = ρ.

Proof. By (A2), given ε > 0 and s ≥ 1, there exists Cε = C(ε, s) > 0
such that, for every d > d0,

|F (t, |ξ|N−2ξ)| ≤ ε

N
|t|N + Cε|t|s

(
ed|t|

N/(N−1) − SN−2(d, t)
)

for all t ∈ R and ξ ∈ RN .
The following inequality can be found in [DJ, DS]:

�

RN
|u|s
(
ed|u|

N/(N−1) − SN−2(d, u)
)
dx ≤ C(d,N)‖u‖s,

provided that ‖u‖ ≤ δ, where the positive constant δ is sufficiently small.

Using the Hölder inequality, we get

Jv(u) ≥ 1

N
‖u‖N − ε

N
‖u‖NN − Cε

�

RN
|u|s
(
ed|u|

N/(N−1) − SN−2(d, u)
)
dx

≥ 1

N
‖u‖N − ε

N
C1‖u‖N − C2‖u‖s

with small ‖u‖. Taking ε = 1/(2C1), we deduce that

Jv(u) ≥ 1

2N
‖u‖N − C2‖u‖s.
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Choosing s > N , we can consider ρ > 0 sufficiently small satisfying

β :=
1

2N
ρN − C2ρ

s > 0.

For ‖u‖ = ρ, we have

Jv(u) ≥ 1

2N
ρN − C2ρ

s = β > 0.

Lemma 2.4. Suppose that (A1)–(A5) hold. Let v ∈ X ∩ C1,α
loc (RN ) with

0 < α < 1 and w0 ∈ C∞0 (RN ) with ‖w0‖X = 1. Then there exists T > 0,
independent of v, such that

(2.2) Jv(tw0) ≤ 0 for all t ≥ T.
Proof. For s ∈ R, we define

L(t) = t−νF (ts, |ξ|N−2ξ)− F (s, |ξ|N−2ξ), t ≥ 1.

Then it follows from (A5) that

L′(t) = t−ν−1
(
stf(ts, |ξ|N−2ξ)− νF (ts, |ξ|N−2ξ)

)
≥ 0

for all t ≥ 1. Hence, L(t) ≥ L(1) = 0 for all t ≥ 1 and then

F (ts, |ξ|N−2ξ) ≥ tνF (s, |ξ|N−2ξ).
Using this it is easy to check that

Jv(tw0) ≤
1

N
tN‖w0‖ − tν

�

RN
F (w0, |∇v|N−2∇v) dx.

Since ν > N , we have Jv(tw0) → −∞ as t → ∞. Hence, there exists a
constant T > 0 such that (2.2) holds.

Lemma 2.5. Under assumptions (A1)–(A6), problem (2.1) has a positive

solution uv ∈ C1,α
loc ∩ L

∞(RN ) with 0 < α < 1 for any v ∈ X ∩ C1,α
loc (RN ).

Moreover, there exist constants ρ1, ρ2 > 0, independent of v, such that
‖uv‖C0,α

loc (RN )
≤ ρ1 and ‖∇uv‖C0,α

loc (RN )
≤ ρ2.

Proof. By Lemmas 2.3 and 2.4, the functional Jv satisfies the geometric
conditions of the Mountain Pass Theorem. Hence, by a version of the Moun-
tain Pass Theorem without the (PS) condition [W], there exists a sequence
{un} ⊂ X satisfying

Jv(un)→ cv and J ′v(un)→ 0, as n→∞,
where

cv = inf
γ∈Γ

max
t∈[0,1]

Jv(γ(t)) > 0,

with
Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = Tw0},

where w0 and T are as in Lemma 2.4.
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By virtue of (A5), we have

cv + ‖un‖+ on(1) ≥ Jv(un) +
1

ν
J ′v(un)un ≥

(
1

N
− 1

ν

)
‖un‖N .

When n is sufficiently large, we get

cv + ‖un‖ ≥
(

1

N
− 1

ν

)
‖un‖N .

Denoting C3 = 1/N − 1/ν, we obtain

C3‖un‖N ≤ cv + ‖un‖.
Thus, {un} is bounded in X. Hence, there exist uv ∈ X and a subsequence
of {un}, still denoted by {un}, such that

un ⇀ uv in X,(2.3)

un → uv in Lsloc(RN ) for N ≤ s,(2.4)

un(x)→ uv(x) a.e. in RN .(2.5)

Also, as proved in [D], we get

∂un
∂xi

(x)→ ∂uv
∂xi

(x) a.e. in RN .

Passing to a subsequence if necessary, we can deduce that

∇un(x)→ ∇uv(x) a.e. in RN .(2.6)

Thanks to (2.6), we obtain

|∇un|N−2∇un → |∇uv|N−2∇uv a.e. in RN .
Since {|∇un|N−2∇un} is bounded in LN/(N−1)(RN ), we conclude that

|∇un|N−2∇un ⇀ |∇uv|N−2∇uv in LN/(N−1)(RN ).

Therefore �

RN
|∇un|N−2∇un∇ϕdx→

�

RN
|∇uv|N−2∇uv∇ϕdx

for all ϕ ∈ X.
Similarly, we have�

RN
|∇un|N−2unϕdx→

�

RN
|uv|N−2uvϕdx

for all ϕ ∈ X.
By using assumptions (A2) and (A4), given ε > 0, q ≥ 0 and β0 > 1

there exists Cε > 0 such that

(2.7) f(s, |ξ|N−2ξ) ≤ εsN−1 + Cεs
q
(
exp(β0dNs

N/(N−1))− SN−2(β0dN , s)
)

for all s ≥ 0 and ξ ∈ RN .
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Thanks to the proof of Lemma 3 in [AF] we conclude that

cv <
ν −N
8NNν

.

From (2.3)–(2.5) and (A5) we obtain

cv = lim
n→∞

Jv(un) = lim
n→∞

(
Jv(un)− 1

ν
J ′v(un)un

)
≥ ν −N

Nν
lim sup
n→∞

�

RN
(|∇un|N + V0|un|N ) dx.

It follows that

lim sup
n→∞

‖∇u‖NN ≤
Nνcv
ν −N

<
1

8N
< 1

and

lim sup
n→∞

‖un‖NN ≤
Nνcv

V0(ν −N)
.

Then, based on Lemma 2.1, we conclude that there exist C > 0, and β0, r > 1
close to 1, such that the sequence {Gn} given by

Gn(x) = exp(β0dN |un|N/(N−1))− SN−2(β0dN , un)

belongs to Lr(RN ) and ‖Gn‖r ≤ C for all n ∈ N.
Applying (2.7) and the Dominated Convergence Theorem [B], we have

(2.8)
�

RN
f(un, |∇v|N−2∇v)ϕdx→

�

RN
f(uv, |∇v|N−2∇v)ϕdx

for all ϕ ∈ X.
So, we obtain J ′v(uv)ϕ = 0 for all ϕ ∈ X.
Suppose uv 6≡ 0. By (A1), we get uv ≥ 0 and uv ∈ C1,α

loc (RN ) ∩ L∞(RN )
for some 0 < α < 1. By the Harnack inequality, uv > 0 for all x ∈ RN .
Moreover, similar to the proof in [BE], there exist constants ρ1, ρ2 > 0,
independent of v, such that ‖uv‖C0,α

loc (RN )
≤ ρ1 and ‖∇uv‖C0,α

loc (RN )
≤ ρ2.

If uv ≡ 0, we first prove that there exist a sequence {xn} ⊂ RN and
α1, R > 0 such that

(2.9)
�

BR(xn)

|un|N dx ≥ α1.

Supposing the contrary, we have

lim sup
n→∞
y∈RN

�

BR(y)

|un|N dx = 0.

Applying [L, Lemma 8.4], we obtain

un → 0 in Lt(RN ) for all t ∈ (N,∞),
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which implies that

Jv(un)→ 0 as n→∞.

This is absurd because it implies cv = 0. Let wn(x) = un(x + xn). Since
V (x) is a 1-periodic function, we can use the invariance of RN under trans-
lations to conclude that Jv(wn) → cv and J ′v(wn) → 0. Moreover, up to a
subsequence, wn ⇀ wv in X and wn → wv in LN (BR(0)) with wv being a
critical point of Jv and wv 6= 0. In the similar manner to the proof of the
case uv 6≡ 0, we conclude that wv is a nontrivial solution of (1.1), and the
lemma is proved.

Lemma 2.6. Let v ∈ X ∩C1,α
loc (RN ) with 0 < α < 1. Then there exists a

constant K > 0, independent of v, such that ‖uv‖ ≤ K for all solutions uv
obtained in Lemma 2.5.

Proof. Using (A6), we obtain

cv = inf
u∈X\{0}

sup
t≥0

Jv(tu).

By (A5), there exist constants a, b > 0 such that

F (s, |ξ|N−2ξ) ≥ a|s|ν − b

for all s ∈ R and ξ ∈ RN .
Choosing w0 in Lemma 2.4 and by (A5), we obtain

Jv(tw0) ≤
1

N

�

RN
|∇(tw0)|N dx+

1

N

�

RN
V (x)|tw0|N dx(2.10)

−
�

suppw0

(atν |w0|ν − b) dx

≤ 1

N
tN − C3t

ν + b|suppw0|.

Denote

max
t≥0

(
tN

N
− C3t

ν + b|suppw0|
)

=: k.

Then cv ≤ k. By (A6), we obtain

Jv(uv)−
1

ν
J ′v(uv)uv ≥

(
1

N
− 1

ν

)
‖uv‖N .

A simple computation yields

‖uv‖ ≤
(
k

(
1

N
− 1

ν

)−1)1/N

=: K.
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3. Proof of Theorem 1.2. Thanks to Lemma 2.5, we construct a
sequence {un} ⊂ X ∩ C1,α

loc (RN ) with 0 < α < 1 as solutions of

(Pn) −∆Nun + V (x)|un|N−2u = f(u, |∇un−1|N−2∇un−1), x ∈ RN ,

starting with an arbitrary u0 ∈ X ∩ C1,α
loc (RN ), with

‖un‖C0,α
loc (RN )

≤ ρ1 and ‖∇un‖C0,α
loc

(RN ) ≤ ρ2.

Since un+1 is the solution of (Pn+1), we have

(3.1)
�

RN

(
|∇un+1|N−2∇un+1 · ∇un+1 + V (x)|un+1|N−2un+1 · un+1

)
dx

=
�

RN
f(un+1, |∇un|N−2∇un)un+1 dx

and

(3.2)
�

RN

(
|∇un+1|N−2∇un+1 · ∇un + V (x)|un+1|N−2un+1un

)
dx

=
�

RN
f(un+1, |∇un|N−2∇un)un dx.

Applying (3.1) and (3.2), we see that

(3.3)
�

RN
|∇un+1|N−2∇un+1(∇un+1 −∇un) dx

+
�

RN
V (x)|un+1|N−2un+1(un+1 − un) dx

=
�

RN
f(un+1, |∇un|N−2∇un)(un+1 − un) dx.

Similarly, since un is the solution of (Pn), we have

(3.4)
�

RN
|∇un|N−2∇un(∇un+1 −∇un) dx

+
�

RN
V (x)|un|N−2un(un+1 − un) dx

=
�

RN
f(un, |∇un−1|N−2∇un−1)(un+1 − un) dx.
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By (1.2), (3.3) and (3.4), we obtain

‖un+1 − un‖N

≤ 1

CN

�

RN

(
f(un+1, |∇un|N−2∇un)− f(un, |un|N−2∇un)

)
δ(un) dx

+
1

CN

�

RN

(
f(un, |∇un|N−2∇un)− f(un, |∇un−1|N−2∇un−1)

)
δ(un) dx,

where δ(un) = un+1 − un.
Applying (A7), we obtain

CN − L1

CN
‖un+1 − un‖N ≤

L2

CN

�

RN
|∇un −∇un−1|N−1|un+1 − un| dx.

Then, by Hölder’s inequality, it follows that

‖un+1 − un‖ ≤
(

L2

CN − L1

)1/(N−1)
‖un − un−1‖ =: k̃‖un − un−1‖,

where k̃ =
(

L2
CN−L1

)1/(N−1)
. Since the coefficient k̃ is less than 1, the sequence

{un} strongly converges in X to some function u ∈ X. Furthermore, by
Lemma 2.3, we know that u > 0 in RN . Theorem 1.2 is proved.
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(1984), 223–283.

[MH] E. Momoniat and C. Harley, An implicit series solution for a boundary value
problem modelling a thermal explosion, Math. Comput. Modelling 53 (2011), 249–
260.

[M] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J.
20 (1971), 1077–1092.

[T] N. Trudinger, On imbedding into Orlicz space and some applications, J. Math.
Mech. 17 (1967), 473–484.

[W] M. Willem, Minimax Theorems, Birkhäuser, 1986.
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