on thisted group algebras of otp representation TYPE OVER THE RING OF p-ADIC INTEGERS

BY
LEONID F. BARANNYK and DARIUSZ KLEIN (Słupsk)

Abstract

Let $\hat{\mathbb{Z}}_{p}$ be the ring of p-adic integers, $U\left(\hat{\mathbb{Z}}_{p}\right)$ the unit group of $\hat{\mathbb{Z}}_{p}$ and $G=G_{p} \times B$ a finite group, where G_{p} is a p-group and B is a p^{\prime}-group. Denote by $\hat{\mathbb{Z}}_{p}^{\lambda} G$ the twisted group algebra of G over $\hat{\mathbb{Z}}_{p}$ with a 2-cocycle $\lambda \in Z^{2}\left(G, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$. We give necessary and sufficient conditions for $\hat{\mathbb{Z}}_{p}^{\lambda} G$ to be of OTP representation type, in the sense that every indecomposable $\hat{\mathbb{Z}}_{p}^{\lambda} G$-module is isomorphic to the outer tensor product $V \# W$ of an indecomposable $\hat{\mathbb{Z}}_{p}^{\lambda} G_{p}$-module V and an irreducible $\hat{\mathbb{Z}}_{p}^{\lambda} B$-module W.

1. Introduction. Assume that $p \geq 2$ is a prime, S is either a field of characteristic p, or a commutative discrete valuation domain, $U(S)$ is the unit group of S, and G is a finite group of order $|G|$. Denote by $Z^{2}(G, U(S))$ the group of all $U(S)$-valued normalized 2-cocycles $\lambda=\left(\lambda_{a, b}\right)_{a, b \in G}: G \times G$ $\rightarrow U(S)$ of the group G that acts trivially on $U(S)$. We recall that λ is defined to be normalized if $\lambda_{a, e}=\lambda_{e, a}=1$ for all $a \in G$, where e is the identity element of G. By the twisted group algebra of G over S with a 2-cocycle $\lambda \in Z^{2}(G, U(S))$ we mean the free S-algebra $S^{\lambda} G$ with an S-basis $\left\{u_{g}: g \in G\right\}$ satisfying $u_{a} u_{b}=\lambda_{a, b} u_{a b}$ for all $a, b \in G$. Such a basis is called canonical (corresponding to λ). We remark that $S^{\lambda} G$ is isomorphic to the group algebra $S G$ if and only if λ is a 2 -coboundary (see [29, pp. 67-68]).

Assume now that $G=G_{p} \times B$, where G_{p} is a p-group, B is a p^{\prime}-group and $\left|G_{p}\right|>1,|B|>1$. This means that the Sylow p-subgroup G_{p} of G is a direct summand of G. We recall from [17, p. 9] that a finite group whose order is not divisible by p is called a p^{\prime}-group. Given $\mu \in Z^{2}\left(G_{p}, U(S)\right)$ and $\nu \in Z^{2}(B, U(S))$, the map $\mu \times \nu: G \times G \rightarrow U(S)$ defined by the formula

$$
\begin{equation*}
(\mu \times \nu)_{x_{1} b_{1}, x_{2} b_{2}}=\mu_{x_{1}, x_{2}} \cdot \nu_{b_{1}, b_{2}} \tag{1.1}
\end{equation*}
$$

for all $x_{1}, x_{2} \in G_{p}, b_{1}, b_{2} \in B$ is a 2-cocycle in $Z^{2}(G, U(S))$. Every 2-cocycle

[^0]Published online 12 January 2016.
$\lambda \in Z^{2}(G, U(S))$ is cohomologous to $\mu \times \nu$ in the second cohomology group

$$
\mathrm{H}^{2}(G, U(S))=Z^{2}(G, U(S)) / B^{2}(G, U(S)),
$$

where μ is the restriction of λ to $G_{p} \times G_{p}, \nu$ is the restriction of λ to $B \times B$ and $B^{2}(G, U(S))$ is the subgroup of all 2-coboundaries of $Z^{2}(G, U(S))$. If $\nu_{b_{1}, b_{2}}=1$ for all $b_{1}, b_{2} \in B$, we write $\lambda=\mu \times 1$. Similarly, $\lambda=1 \times \nu$ if $\mu_{x_{1}, x_{2}}=1$ for all $x_{1}, x_{2} \in G_{p}$.

Henceforth, we suppose that every cocycle $\lambda \in Z^{2}(G, U(S))$ under consideration satisfies the condition $\lambda=\mu \times \nu$, and all $S^{\lambda} G$-modules are assumed to be finitely generated left $S^{\lambda} G$-modules which are S-free. Recall that the study of these $S^{\lambda} G$-modules is essentially equivalent to the study of projective S-representations of G with the 2 -cocycle λ.

Let $\lambda=\mu \times \nu \in Z^{2}(G, U(S))$ and $\left\{u_{g}: g \in G\right\}$ be a canonical S-basis of $S^{\lambda} G$. Then $\left\{u_{h}: h \in G_{p}\right\}$ is a canonical S-basis of $S^{\mu} G_{p}$ and $\left\{u_{b}: b \in B\right\}$ is a canonical S-basis of $S^{\nu} B$. Moreover, if $g=h b$, where $g \in G, h \in G_{p}$, $b \in B$, then $u_{g}=u_{h} u_{b}=u_{b} u_{h}$. It follows that $S^{\lambda} G \cong S^{\mu} G_{p} \otimes_{S} S^{\nu} B$.

Given an $S^{\mu} G_{p}$-module V and an $S^{\nu} B$-module W, we denote by $V \# W$ the $S^{\lambda} G$-module whose underlying S-module is $V \otimes_{S} W$, the $S^{\lambda} G$-module structure is given by

$$
u_{h b}(v \otimes w)=u_{h} v \otimes u_{b} w
$$

for all $h \in G_{p}, b \in B, v \in V, w \in W$, and it is extended to $S^{\lambda} G$ and $V \otimes_{S} W$ by S-linearity. Following [29, p. 122], we call the module $V \# W$ the outer tensor product of V and W.

We next recall from [7, p. 10] the following definitions.
Definition 1.1. Assume that S, G are as above and $\lambda=\mu \times \nu \in$ $Z^{2}(G, U(S))$ is a 2-cocycle as in 1.1.
(a) The algebra $S^{\lambda} G$ is defined to be of OTP representation type if every indecomposable $S^{\lambda} G$-module is isomorphic to the outer tensor product $V \# W$, where V is an indecomposable $S^{\mu} G_{p}$-module and W is an irreducible $S^{\nu} B$-module.
(b) The group $G=G_{p} \times B$ is said to be of $O T P$ projective S-representation type if there is a cocycle $\lambda \in Z^{2}(G, U(S))$ for which the algebra $S^{\lambda} G$ is of OTP representation type.
(c) The group $G=G_{p} \times B$ is defined to be of purely OTP projective S-representation type if $S^{\lambda} G$ is of OTP representation type for any $\lambda \in Z^{2}(G, U(S))$.
In [14, Brauer and Feit proved that the group algebra $S G$ is always of OTP representation type in case when S is an algebraically closed field of characteristic p.

Blau [12] and Gudyvok [23], 24] independently show that if S is an arbitrary field of characteristic p, then $S G$ is of OTP representation type if
and only if G_{p} is cyclic or S is a splitting field for $S B$. In [24]-[26], Gudyvok considers an analogous problem for the group algebra $S G$, where S is a commutative complete discrete valuation domain. In particular, he proved that the algebra $\hat{\mathbb{Z}}_{p} G$ is of OTP representation type if and only if the p-adic number field $\hat{\mathbb{Q}}_{p}$ is a splitting field for $\widehat{\mathbb{Q}}_{p} B$, or G_{p} is cyclic of order $p^{n}, n \leq 2$.

In [2], [4], [5, [7]-9], the twisted group algebras $S^{\lambda} G$ of OTP representation type are described, where $G=G_{p} \times B$ and S is either a field of characteristic p, or a commutative complete discrete valuation domain of characteristic p. For this case, necessary and sufficient conditions on G and S were given, in [5], [9, for G to be of OTP projective S-representation type and of purely OTP projective S-representation type.

In the present paper we determine the twisted group algebras $\hat{\mathbb{Z}}_{p}^{\lambda} G$ of OTP representation type, where $G=G_{p} \times B$ and $\hat{\mathbb{Z}}_{p}$ is the ring of p-adic integers. Moreover, we describe the groups $G_{p} \times B$ of purely OTP projective $\hat{\mathbb{Z}}_{p}$-representation type.

The main results of the paper are the following three theorems proved as Theorems 3.6, 4.7 and 5.4.

Theorem A. Let $p \neq 2, G_{p}$ be a cyclic p-group, $G=G_{p} \times B, \mu \in$ $Z^{2}\left(G_{p}, U\left(\hat{\mathbb{Z}}_{p}\right)\right), \nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and $\lambda=\mu \times \nu$ be as in 1.1. Denote by d the number of simple blocks of the algebra $\hat{\mathbb{Q}}_{p}^{\mu} G_{p}$. The algebra $\mathbb{Z}_{p}^{\lambda} G$ is of OTP representation type if and only if one of the following conditions is satisfied:
(i) if $\left|G_{p}\right|>p^{2}$, then $d \leq 2$;
(ii) $\widehat{\mathbb{Q}}_{p}$ is a splitting field for $\hat{\mathbb{Q}}_{p}^{\nu} B$.

We also prove that if G_{p} is non-cyclic then, under some assumption, the algebra $\hat{\mathbb{Z}}_{p}^{\lambda} G$ is of OTP representation type if and only if $\hat{\mathbb{Q}}_{p}$ is a splitting field for $\hat{\mathbb{Q}}_{p}^{\nu} B$.

Theorem B. Let $p=2, G_{2}$ be a cyclic group of order $2^{n}, G=G_{2} \times B$, $\mu \in Z^{2}\left(G_{2}, U\left(\hat{\mathbb{Z}}_{2}\right)\right), \nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{2}\right)\right)$ and $\lambda=\mu \times \nu$ be as in 1.1). The algebra $\widehat{\mathbb{Z}}_{2}^{\lambda} G$ is of OTP representation type if and only if one of the following conditions is satisfied:
(i) $\hat{\mathbb{Q}}_{2}^{\mu} G_{2}$ is a totally ramified field extension of $\hat{\mathbb{Q}}_{2}$;
(ii) $\widehat{\mathbb{Q}}_{2}^{\mu} G_{2}$ is a field and the center of the algebra $\hat{\mathbb{Q}}_{2} B$ is 2 -irreducible (see Definition 2.11);
(iii) $n \leq 2$ and $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$ is the group algebra of G_{2} over $\hat{\mathbb{Z}}_{2}$;
(iv) $n=2$, the number of simple blocks of $\widehat{\mathbb{Q}}_{2}^{\mu} G_{2}$ is 2 and the center of $\widehat{\mathbb{Q}}_{2} B$ is 2 -irreducible;
(v) $\widehat{\mathbb{Q}}_{2}$ is a splitting field for $\hat{\mathbb{Q}}_{2} B$.

TheOrem C. The group $G=G_{p} \times B$ is of purely OTP projective $\hat{\mathbb{Z}}_{p^{-}}$ representation type if and only if one of the following conditions is satisfied:
(i) $p \neq 2$ and G_{p} is a cyclic group of order p or p^{2};
(ii) $p=2, G_{2}$ is a cyclic group of order 2 or 4 and the center of $\hat{\mathbb{Q}}_{2} B$ is 2-irreducible;
(iii) $p \neq 2$ and there exists a finite central group extension $1 \rightarrow A \rightarrow$ $\widehat{B} \rightarrow B \rightarrow 1$ such that any projective $\hat{\mathbb{Q}}_{p}$-representation of B with a 2-cocycle in $Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ lifts projectively to an ordinary $\hat{\mathbb{Q}}_{p^{-}}$ representation of \widehat{B} and $\widehat{\mathbb{Q}}_{p}$ is a splitting field for $\hat{\mathbb{Q}}_{p} \widehat{B}$;
(iv) $p=2$ and $\hat{\mathbb{Q}}_{2}$ is a splitting field for $\hat{\mathbb{Q}}_{2} B$.

We remark that conditions (iii) and (iv) of Theorem C do not hold for B if $B^{\prime} \neq B$. Here $B^{\prime}=[B, B]$ is the commutator subgroup of B.

Throughout the paper, we use the standard group representation theory notation and terminology introduced in the monographs by Curtis and Reiner [16]-18], and Karpilovsky [29]. A systematic account of the projective representation theory can be found in [29]. For problems of the representation theory of orders in finite-dimensional algebras and of Cohen-Macaulay algebras, we refer to the books [16]-[18], 35] and to the articles [21] and [31. A background of the modern representation theory of finite-dimensional algebras can be found in the monographs by Assem, Simson and Skowroński [1], Drozd and Kirichenko [22], Simson [30], and Simson and Skowroński 34], where among other things the representation types (finite, tame, wild) of finite groups and algebras are discussed. Various aspects of the representation types are also considered by Dowbor and Simson [19], [20], Simson 32], and Simson and Skowroński 33.

In particular, we use the following notation: $p \geq 2$ is a prime; $\hat{\mathbb{Z}}_{p}$ is the ring of p-adic integers; $\hat{\mathbb{Q}}_{p}$ is the field of p-adic numbers; $U\left(\hat{\mathbb{Z}}_{p}\right)$ is the unit group of $\hat{\mathbb{Z}}_{p} ; \Phi_{p^{n}}(X)$ is the cyclotomic polynomial of order $p^{n} ; \operatorname{GF}(q)$ is the finite field of q-elements; $\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}$ is the residue class field of $\hat{\mathbb{Z}}_{p} ; \operatorname{rad} A$ is the Jacobson radical of a ring A and $\bar{A}=A / \operatorname{rad} A$ is the factor ring of A by $\operatorname{rad} A ; G=G_{p} \times B$ is a finite group, where G_{p} is a p-group, B is a p^{\prime}-group, $\left|G_{p}\right|>1$ and $|B|>1 ; H^{\prime}=[H, H]$ is the commutator subgroup of a group H, e is the identity element of $H,|h|$ is the order of $h \in H$; soc H is the socle of an abelian group H. If D is a subgroup of H, then the restriction of $\lambda \in Z^{2}\left(H, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ to $D \times D$ will also be denoted by λ. We assume that in this case $\hat{\mathbb{Z}}_{p}^{\lambda} D$ is the $\hat{\mathbb{Z}}_{p}$-subalgebra of $\hat{\mathbb{Z}}_{p}^{\lambda} H$ consisting of all $\hat{\mathbb{Z}}_{p}$-linear combinations of elements $\left\{u_{d}: d \in D\right\}$, where $\left\{u_{h}: h \in H\right\}$ is a canonical $\hat{\mathbb{Z}}_{p}$-basis of $\hat{\mathbb{Z}}_{p}^{\lambda} H$ corresponding to λ. Given a $\hat{\mathbb{Z}}_{p}^{\lambda} H$-module, we write $\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\lambda} H}(M)$ for the ring of all $\hat{\mathbb{Z}}_{p}^{\lambda} H$-endomorphisms of M. Denote by
$A_{1} \dot{\times} A_{2}$ the Kronecker (or tensor) product of the matrices A_{1} and A_{2} (see [16, p. 69]), and by E_{m} the identity matrix of order m.
2. Preliminaries. We start with some information on the structure of the units of $\hat{\mathbb{Z}}_{p}$ that we need in the paper (see [27, p. 236]).

If $p \neq 2$, then any unit η in $U\left(\hat{\mathbb{Z}}_{p}\right)$ can be represented uniquely in the form

$$
\eta=\omega^{r}(1+p)^{\alpha},
$$

where ω is a primitive $(p-1)$ th root of 1 and $\alpha \in \hat{\mathbb{Z}}_{p}$. Any unit η in $U\left(\hat{\mathbb{Z}}_{2}\right)$ can be represented uniquely in the form

$$
\eta= \pm 5^{\alpha}, \quad \alpha \in \hat{\mathbb{Z}}_{2} .
$$

Denote by $U_{t}\left(\hat{\mathbb{Z}}_{p}\right)$ the maximal torsion subgroup of $U\left(\hat{\mathbb{Z}}_{p}\right)$. Hence

$$
U_{t}\left(\hat{\mathbb{Z}}_{p}\right)= \begin{cases}\langle\omega\rangle & \text { if } p \neq 2, \\ \langle-1\rangle & \text { if } p=2 .\end{cases}
$$

Let

$$
U_{f}\left(\hat{\mathbb{Z}}_{p}\right)= \begin{cases}\left\{(1+p)^{\alpha}: \alpha \in \hat{\mathbb{Z}}_{p}\right\} & \text { if } p \neq 2, \\ \left\{5^{\alpha}: \alpha \in \hat{\mathbb{Z}}_{2}\right\} & \text { if } p=2 .\end{cases}
$$

We have $U\left(\hat{\mathbb{Z}}_{p}\right)=U_{t}\left(\hat{\mathbb{Z}}_{p}\right) \times U_{f}\left(\hat{\mathbb{Z}}_{p}\right)$.
Lemma 2.1. Let $p \neq 2, D$ be a finite p-group and T a finite p^{\prime}-group.
(i) For every 2 -cocycle $\lambda \in Z^{2}\left(D, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ there exists a 2-cocycle μ in $Z^{2}\left(D, U_{f}\left(\hat{\mathbb{Z}}_{p}\right)\right)$ such that λ and μ are cohomologous in $\mathrm{H}^{2}\left(D, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$.
(ii) The restriction of any 2-cocycle $\lambda \in Z^{2}\left(D, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ to $D^{\prime} \times D^{\prime}$ is a 2-coboundary.
(iii) For every 2-cocycle $\lambda \in Z^{2}\left(T, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ there exists a 2 -cocycle ν in $Z^{2}\left(T, U_{t}\left(\hat{\mathbb{Z}}_{p}\right)\right)$ such that λ and ν are cohomologous in $\mathrm{H}^{2}\left(T, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$.

Proof. Apply [29, Theorem 1.7, p. 11, and Corollary 4.10, p. 42].
By Lemma 2.1, without loss of generality we may assume that if $G=$ $G_{p} \times B$ and $p \neq 2$, then every 2-cocycle $\lambda \in Z^{2}\left(G, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ satisfies the condition $\lambda=\mu \times \nu$, where $\mu \in Z^{2}\left(G_{p}, U_{f}\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and $\nu \in Z^{2}\left(B, U_{t}\left(\hat{\mathbb{Z}}_{p}\right)\right)$.

Lemma 2.2. Let D be a finite 2 -group and T a finite 2^{\prime}-group.
(i) The restriction of any 2 -cocycle $\lambda \in Z^{2}\left(D, U_{f}\left(\hat{\mathbb{Z}}_{2}\right)\right)$ to $D^{\prime} \times D^{\prime}$ is a 2-coboundary.
(ii) Every 2-cocycle $\lambda \in Z^{2}\left(T, U\left(\hat{\mathbb{Z}}_{2}\right)\right)$ is a 2-coboundary.

Proof. Again apply [29, Theorem 1.7, p. 11, and Corollary 4.10, p. 42].

In view of Lemma 2.2, we may assume that if $p=2$ and $G=G_{2} \times B$, then every 2-cocycle $\lambda \in Z^{2}\left(G, U\left(\hat{\mathbb{Z}}_{2}\right)\right)$ satisfies the condition $\lambda=\mu \times 1$, where μ is the restriction of λ to $G_{2} \times G_{2}$.

Let $H=\left\langle a_{1}\right\rangle \times \cdots \times\left\langle a_{m}\right\rangle$ be an abelian p-group of type $\left(p^{n_{1}}, \ldots, p^{n_{m}}\right)$, $\mu \in Z^{2}\left(H, U\left(\hat{\mathbb{Z}}_{p}\right)\right), r_{i}=p^{n_{i}}-1$ and $\gamma_{i}=\mu_{a_{i}, a_{i}} \mu_{a_{i}, a_{i}^{2}} \ldots \mu_{a_{i}, a_{i}{ }^{r}}$ for i in $\{1, \ldots, m\}$. The algebra $\hat{\mathbb{Z}}_{p}^{\mu} H$ has a canonical $\hat{\mathbb{Z}}_{p}$-basis $\left\{u_{h}: h \in H\right\}$ satisfying the following conditions:
(1) if $h=a_{1}^{k_{1}} \ldots a_{m}^{k_{m}}$ and $0 \leq k_{i}<p^{n_{i}}$ for each $i \in\{1, \ldots, m\}$, then

$$
u_{h}=u_{a_{1}}^{k_{1}} \ldots u_{a_{m}}^{k_{m}}
$$

(2) $u_{a_{i}}^{p^{n_{i}}}=\gamma_{i} u_{e}$ for every $i \in\{1, \ldots, m\}$.

We also denote $\hat{\mathbb{Z}}_{p}^{\mu} H$ by $\left[H, \hat{\mathbb{Z}}_{p}, \gamma_{1}, \ldots, \gamma_{m}\right]$.
Recall that $u_{a_{i}} u_{a_{j}}=\varepsilon_{i j} u_{a_{j}} u_{a_{i}}$, where $i \neq j$ and $\varepsilon_{i j}=\mu_{a_{i}, a_{j}} \mu_{a_{j}, a_{i}}^{-1}$. It follows that $\varepsilon_{i j}^{\left|a_{i}\right|}=1$. Hence, $\varepsilon_{i j}=1$ for $p \neq 2$, and $\varepsilon_{i j} \in\{1,-1\}$ for $p=2$. Consequently, if $p \neq 2$ then $\hat{\mathbb{Z}}_{p}^{\mu} H$ is a commutative algebra.

Now we collect several facts we apply later.
LEMMA 2.3. Let $G=G_{p} \times B, \mu \in Z^{2}\left(G_{p}, U\left(\hat{\mathbb{Z}}_{p}\right)\right), \nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and $\lambda=\mu \times \nu$. The algebra $\hat{\mathbb{Z}}_{p}^{\lambda} G$ is of OTP representation type if and only if the outer tensor product $V \# W$ of any indecomposable $\hat{\mathbb{Z}}_{p}^{\mu} G_{p}$-module V and any irreducible $\hat{\mathbb{Z}}_{p}^{\nu} B$-module W is an indecomposable $\hat{\mathbb{Z}}_{p}^{\lambda} G$-module.

The proof is similar to that of the corresponding fact for the group algebra $\hat{\mathbb{Z}}_{p} G$ (see [12, p. 41], [26, p. 68] and [28, p. 658]).

Lemma 2.4. Let $G=G_{p} \times B, \mu \in Z^{2}\left(G_{p}, U\left(\hat{\mathbb{Z}}_{p}\right)\right), \nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and $\lambda=\mu \times \nu$. If V is an indecomposable $\hat{\mathbb{Z}}_{p}^{\mu} G_{p}$-module and W is an irreducible $\hat{\mathbb{Z}}_{p}^{\nu} B$-module, then

$$
\overline{\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\lambda} G}(V \# W)} \cong \overline{\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\mu} G_{p}}(V)} \otimes_{\mathbb{Z}_{p}} \overline{\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\nu} B}(W)}
$$

Proof. See [7, p. 15] and [28, p. 657].
LEMMA 2.5. Let $G=G_{p} \times B, \mu \in Z^{2}\left(G_{p}, U\left(\hat{\mathbb{Z}}_{p}\right)\right), \nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and $\lambda=\mu \times \nu$. If $\hat{\mathbb{Q}}_{p}$ is a splitting field for the $\hat{\mathbb{Q}}_{p}$-algebra $\hat{\mathbb{Q}}_{p}^{\nu} B$, then $\hat{\mathbb{Z}}_{p}^{\lambda} G$ is of OTP representation type.

Proof. Again see [7, p. 15] and [28, p. 657].
LEMMA 2.6. Let R be a commutative complete discrete valuation domain, H a finite group, $\lambda \in Z^{2}(H, U(R))$ and V an $R^{\lambda} H$-module. Then V is indecomposable if and only if $\overline{\operatorname{End}_{R^{\lambda} H}(V)}$ is a skew field.

Proof. Apply [17, Proposition 6.10, p. 125].

Lemma 2.7. Let G_{p} be a finite p-group, H a subgroup of $G_{p}, \lambda \in$ $Z^{2}\left(G_{p}, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and V an indecomposable $\hat{\mathbb{Z}}_{p}^{\lambda} H$-module. Assume that $\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\lambda} H}(V)$ is isomorphic to the finite field $\mathrm{GF}\left(p^{m}\right)$ and one of the following conditions is satisfied:
(i) $G_{p}=H \cdot T$, where T is a subgroup of the center of G_{p};
(ii) p does not divide m.

Then $V^{G_{p}}:=\hat{\mathbb{Z}}_{p}^{\lambda} G_{p} \otimes_{\hat{\mathbb{Z}}_{p}^{\lambda} H} V$ is an indecomposable $\hat{\mathbb{Z}}_{p}^{\lambda} G_{p}$-module, and the quotient algebra $\overline{\operatorname{End}_{\hat{\mathbb{Z}}_{\vec{p}}^{\lambda} G_{p}}\left(V^{G_{p}}\right)}$ is isomorphic to $\operatorname{GF}\left(p^{m}\right)$.

Proof. Apply [10, Theorem 2.6, p. 4138].
Lemma 2.8. Let K be a finite field extension of $\hat{\mathbb{Q}}_{p}, R$ the ring of all integral elements of K, \bar{R} the residue class field of R, and H either a cyclic group of order p^{3}, or an abelian group of type (p, p). Then, for any finite field extension F of \bar{R}, there exists an indecomposable $R H$-module M such that $\overline{\operatorname{End}_{R H}(M)} \cong F$.

Proof. See [26, pp. 72-74].
Lemma 2.9. Let K be a finite ramified extension of $\hat{\mathbb{Q}}_{p}, K \neq \hat{\mathbb{Q}}_{p}, R$ the ring of all integral elements of K, and H a cyclic group of order p^{2}. Then, for any finite field extension F of \bar{R}, there is an indecomposable $R H$-module M such that $\overline{\operatorname{End}_{R H}(M)} \cong F$.

Proof. See [26, pp. 73-74].
Lemma 2.10. Let $G=G_{p} \times B$. The group algebra $\hat{\mathbb{Z}}_{p} G$ is of OTP representation type if and only if either $\hat{\mathbb{Q}}_{p}$ is a splitting field for the group algebra $\widehat{\mathbb{Q}}_{p} B$, or G_{p} is a cyclic group of order $p^{r}, r \leq 2$.

Proof. See [24, p. 583].
Assume that
η is a primitive $\left(p^{m}-1\right)$ th root of 1 ,
$f(X) \in \hat{\mathbb{Z}}_{p}[X]$ is the minimal monic polynomial of η,
A_{f} is the companion matrix of the polynomial f
in the sense of [15, p. 345].
It is well known (see [27, pp. 190, 211-212]) that:
(i) the polynomial f is irreducible modulo p and the degree of f is m;
(ii) $\hat{\mathbb{Q}}_{p}(\eta)$ is an unramified extension of $\hat{\mathbb{Q}}_{p}$ of degree m;
(iii) $\hat{\mathbb{Z}}_{p}[\eta]$ is the ring of all integral elements of $\hat{\mathbb{Q}}_{p}(\eta)$;
(iv) $\hat{\mathbb{Z}}_{p}[\eta] / p \hat{\mathbb{Z}}_{p}[\eta] \cong \operatorname{GF}\left(p^{m}\right)$.

Let $\nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$. Then $\hat{\mathbb{Q}}_{p}^{\nu} B$ is the quotient algebra of $\hat{\mathbb{Q}}_{p} \widehat{B}$, where $|\widehat{B}|=(p-1) \cdot|B|($ see [29, pp. 136-137]). Denote by ξ a primitive $|\widehat{B}|$ th root of 1 . The field $\hat{\mathbb{Q}}_{p}(\xi)$ is a splitting field for $\hat{\mathbb{Q}}_{p} \widehat{B}$ (see [17, p. 386]) and hence $\hat{\mathbb{Q}}_{p}(\xi)$ is a splitting field for $\hat{\mathbb{Q}}_{p}^{\nu} B$. By [27, p. 211], $\hat{\mathbb{Q}}_{p}(\xi)$ is an unramified extension of $\hat{\mathbb{Q}}_{p}$. Since the index of every simple block of $\hat{\mathbb{Q}}_{p}^{\nu} B$ is 1 and $\hat{\mathbb{Q}}_{p}(\xi) \otimes_{\hat{\mathbb{Q}}_{p}} \hat{\mathbb{Q}}_{p}^{\nu} B$ is a direct product of matrix algebras over $\hat{\mathbb{Q}}_{p}(\xi)$, we have

$$
\begin{equation*}
\hat{\mathbb{Q}}_{p}^{\nu} B \cong \mathbb{M}_{n_{1}}\left(F_{1}\right) \times \cdots \times \mathbb{M}_{n_{r}}\left(F_{r}\right) \tag{2.2}
\end{equation*}
$$

where F_{1}, \ldots, F_{r} are unramified extensions of $\hat{\mathbb{Q}}_{p}$. We recall that the algebras $\mathbb{M}_{n_{1}}\left(F_{1}\right), \ldots, \mathbb{M}_{n_{r}}\left(F_{r}\right)$ are called the simple blocks of $\hat{\mathbb{Q}}_{p} B$.

Let W_{j} be an irreducible $\hat{\mathbb{Z}}_{p}^{\nu} B$-module such that $\widetilde{W}_{j}:=\hat{\mathbb{Q}}_{p} \otimes_{\hat{\mathbb{Z}}_{p}} W_{j}$ is a direct summand of $\mathbb{M}_{n_{j}}\left(F_{j}\right)$, where $j \in\{1, \ldots, r\}$. Denote by Γ_{j} an irreducible matrix $\hat{\mathbb{Z}}_{p}$-representation of the algebra $\hat{\mathbb{Z}}_{p}^{\nu} B$ afforded by the module W_{j}. Let $\operatorname{deg} \Gamma_{j}=k_{j}$. Assume that

$$
\begin{align*}
L_{j} & :=\left\{A \in \mathbb{M}_{k_{j}}\left(\hat{\mathbb{Q}}_{p}\right): A \Gamma_{j}(x)=\Gamma_{j}(x) A \text { for every } x \in \hat{\mathbb{Z}}_{p}^{\nu} B\right\} \\
S_{j} & :=\left\{C \in \mathbb{M}_{k_{j}}\left(\hat{\mathbb{Z}}_{p}\right): C \Gamma_{j}(x)=\Gamma_{j}(x) C \text { for every } x \in \hat{\mathbb{Z}}_{p}^{\nu} B\right\} \tag{2.3}
\end{align*}
$$

Then L_{j} is a $\hat{\mathbb{Q}}_{p}$-algebra and S_{j} is a $\hat{\mathbb{Z}}_{p}$-algebra. Moreover

$$
L_{j} \cong \operatorname{End}_{\hat{\mathbb{Q}}_{p}^{\nu} B}\left(\widetilde{W}_{j}\right) \cong F_{j}, \quad S_{j} \cong \operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\nu} B}\left(W_{j}\right)
$$

We identify $\alpha \in \hat{\mathbb{Q}}_{p}$ with the scalar matrix $\alpha E_{k_{j}}$. Then $\hat{\mathbb{Q}}_{p} \subset L_{j}$ and $\hat{\mathbb{Z}}_{p} \subset S_{j}$. Suppose that $A \in L_{j}$ and $A \neq 0$. Then by [16, Corollary 76.16, p. 536], $A=p^{l} C$, where $l \in \mathbb{Z}, C \in S_{j}$ and C is invertible over $\hat{\mathbb{Z}}_{p}$. Since C is a root of the characteristic polynomial $\operatorname{det}(X E-C) \in \hat{\mathbb{Z}}_{p}[X]$ of C, the matrix C is integral over $\hat{\mathbb{Z}}_{p}$. If A is integral over $\hat{\mathbb{Z}}_{p}$, then so is $A C^{-1}$. It follows that $l \geq 0$, hence $A \in S_{j}$. Consequently, S_{j} is the integral closure of $\hat{\mathbb{Z}}_{p}$ in L_{j}.

Definition 2.11. Let B be a finite p^{\prime}-group and $\nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$. We say that the center of the algebra $\hat{\mathbb{Q}}_{p}^{\nu} B$ is p-irreducible if $\left[F: \hat{\mathbb{Q}}_{p}\right]$ is not divisible by p for every simple block $\mathbb{M}_{n}(F)$ of $\hat{\mathbb{Q}}_{p}^{\nu} B$.

Denote by l_{B} the product of all pairwise distinct prime divisors of $|B|$. Let ξ be a primitive l_{B} th root of 1 . If $\left[\hat{\mathbb{Q}}_{p}(\xi): \hat{\mathbb{Q}}_{p}\right]$ is not divisible by p, then for any $\nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ the center of $\hat{\mathbb{Q}}_{p}^{\nu} B$ is p-irreducible.

Proposition 2.12. Let W_{j} be an irreducible $\hat{\mathbb{Z}}_{p}^{\nu} B$-module such that $\hat{\mathbb{Q}}_{p} \otimes_{\hat{\mathbb{Z}}_{p}} W_{j}$ is a direct summand of $\mathbb{M}_{n_{j}}\left(F_{j}\right)($ see $\sqrt{2.2})$. Then:
(i) $\overline{\operatorname{End}_{\mathbb{Z}_{p}^{\nu} B}\left(W_{j}\right)} \cong \mathrm{GF}\left(p^{k_{j}}\right)$, where $k_{j}=\left[F_{j}: \hat{\mathbb{Q}}_{p}\right]$.
(ii) $\hat{\mathbb{Q}}_{p}$ is a splitting field for $\hat{\mathbb{Q}}_{p}^{\nu} B$ if and only if \mathbb{Z}_{p} is a splitting field for $\mathbb{Z}_{p}^{\bar{\nu}} B:=\hat{\mathbb{Z}}_{p}^{\nu} B / p \hat{\mathbb{Z}}_{p}^{\nu} B$.
Proof. (i) By [17, Proposition 5.22, p. 112],

$$
\overline{\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\nu} B}\left(W_{j}\right)} \cong \operatorname{End}_{\hat{\mathbb{Z}}_{p} B}\left(W_{j}\right) / p \operatorname{End}_{\hat{\mathbb{Z}}_{p} B}\left(W_{j}\right) \cong S_{j} / p S_{j}=\operatorname{GF}\left(p^{k_{j}}\right),
$$

where $k_{j}=\left[F_{j}: \hat{\mathbb{Q}}_{p}\right]$ (see the notation 2.3).
(ii) By [17, Theorem 6.8, p. 124], for every simple $\mathbb{Z}_{p}^{\bar{\nu}} B$-module \bar{W} there exists an irreducible $\hat{\mathbb{Z}}_{p}^{\nu} B$-module W such that $W / p W \cong \bar{W}$. By [16, Theorem 76.8, p. 532 and Corollary 76.16, p. 536],

$$
\operatorname{End}_{\mathbb{Z}_{p}^{\bar{p}} B}(\bar{W}) \cong \operatorname{End}_{\mathbb{Z}_{p}^{\nu} B}(W) / p \operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\nu} B}(W) .
$$

Moreover, by [16, Corollary 76.15, p. 536$], W / p W$ is a simple $\mathbb{Z}_{p}^{\bar{\nu}} B$-module for any irreducible $\hat{\mathbb{Z}}_{p}^{\nu} B$-module W.

Furthermore, $\hat{\mathbb{Q}}_{p}$ is a splitting field for $\hat{\mathbb{Q}}_{p}^{\nu} B$ if and only if

$$
\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\nu} B}(W) / p \operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\nu} B}(W) \cong \mathbb{Z}_{p}
$$

for every irreducible $\hat{\mathbb{Z}}_{p}^{\nu} B$-module W. It follows that $\hat{\mathbb{Q}}_{p}$ is a splitting field for $\widehat{\mathbb{Q}}_{p}^{\nu} B$ if and only if $\operatorname{End}_{\mathbb{Z}_{p}^{\bar{v}} B}(\bar{W}) \cong \mathbb{Z}_{p}$ for any simple $\mathbb{Z}_{p}^{\bar{\nu}} B$-module \bar{W}, i.e. if and only if \mathbb{Z}_{p} is a splitting field for $\mathbb{Z}_{p}^{\bar{\nu}} B$.

Proposition 2.13. Let $G=G_{p} \times B, \mu \in Z^{2}\left(G_{p}, U\left(\hat{\mathbb{Z}}_{p}\right)\right), \nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and $\lambda=\mu \times \nu$. Assume that if G_{p} is a non-abelian group, then the center of the algebra $\hat{\mathbb{Q}}_{p}^{\nu} B$ is p-irreducible. Moreover, let T be a subgroup of G_{p}, $|T|>1$ and $H=T \times B$. If $\hat{\mathbb{Z}}_{p}^{\lambda} H$ is not of OTP representation type, then neither is $\hat{\mathbb{Z}}_{p}^{\lambda} G$.

Proof. Suppose that $\hat{\mathbb{Z}}_{p}^{\lambda} H$ is not of OTP representation type. Then, in view of Lemma 2.3 , there exist an indecomposable $\hat{\mathbb{Z}}_{p}^{\mu} T$-module V and an irreducible $\hat{\mathbb{Z}}_{p}^{\nu} B$-module W such that $V \# W$ is a decomposable $\hat{\mathbb{Z}}_{p}^{\lambda} H$-module. By Lemmas 2.4 and $2.6 . \overline{\operatorname{End}}_{\hat{\mathbb{Z}}_{p}^{\mu} T}(V) \otimes_{\mathbb{Z}_{p}} \overline{\operatorname{End}}_{\hat{\mathbb{Z}}_{p}^{\nu} B}(W)$ is not a skew field. In view of Lemma 2.7. the $\hat{\mathbb{Z}}_{p}^{\mu} G_{p}$-module $V^{G_{p}}:=\hat{\mathbb{Z}}_{p}^{\mu} G_{p} \otimes_{\hat{\mathbb{Z}}_{p}^{\mu} T} V$ is indecomposable and the quotient algebra $\operatorname{End}_{\hat{\mathbb{Z}}_{p_{p}^{\mu}} G_{p}}\left(V^{G_{p}}\right)$ is isomorphic to the field $\overline{\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\mu} T}(V) \text {. Hence, again by Lemmas } 2.4 \text { and } 2.6 \text {, the } \hat{\mathbb{Z}}_{p}^{\lambda} G \text {-module } V^{G_{p}} \# W ~}$ is decomposable. Applying Lemma 2.3. we conclude that the algebra $\hat{\mathbb{Z}}_{p}^{\lambda} G$ is not of OTP representation type.
3. Twisted group algebras $\hat{\mathbb{Z}}_{p}^{\lambda} G$ of OTP representation type for $p \neq 2$. Let R be a commutative ring with 1 , and t a root of the monic
irreducible polynomial $f(X) \in R[X]$. Denote by

$$
\begin{equation*}
\widetilde{z} \in \mathbb{M}_{m+1}(R) \tag{3.1}
\end{equation*}
$$

the matrix of multiplication by $z \in R[t]$ in the R-basis $1, t, \ldots, t^{m}$ of the ring $R[t]$.

Throughout this section, we assume that $p \neq 2$.
Let δ, θ and ρ be roots of the irreducible polynomials

$$
X^{p^{n}}-(1+p), X^{p^{n-1}}-(1+p), \Phi_{p}\left(\frac{X^{p^{n-1}}}{1+p}\right) \in \hat{\mathbb{Z}}_{p}[X]
$$

respectively.
Lemma 3.1. Let $H=\langle a\rangle$ be a cyclic group of order $p^{n}(n \geq 1)$ and $\hat{\mathbb{Z}}_{p}^{\mu} H=\left[H, \hat{\mathbb{Z}}_{p},(1+p)^{p^{l}}\right]$, where $l \in\{0,1\}$ and $n \geq 2$ for $l=1$.
(i) If $l=0$ then, up to equivalence, the algebra $\widehat{\mathbb{Z}}_{p}^{\mu} H$ has only one indecomposable matrix $\hat{\mathbb{Z}}_{p}$-representation $\Gamma: u_{a} \mapsto \widetilde{\delta}$.
(ii) If $l=1$ then, up to equivalence, the indecomposable matrix $\hat{\mathbb{Z}}_{p}$-representations of the algebra $\hat{\mathbb{Z}}_{p}^{\mu} H$ are the following:

$$
\Gamma_{1}: u_{a} \mapsto \widetilde{\theta}, \quad \Gamma_{2}: u_{a} \mapsto \widetilde{\rho}, \quad \Gamma_{3 j}: u_{a} \mapsto\left(\begin{array}{cc}
\widetilde{\theta}\left\langle\pi^{j}\right\rangle \\
0 & \widetilde{\rho}
\end{array}\right), j=0,1, \ldots, p^{n-1}-1,
$$

where $\pi=1-\theta$ is a prime element of $\hat{\mathbb{Z}}_{p}[\theta]$ and $\left\langle\pi^{j}\right\rangle$ is the matrix in which all columns but the last one are zero, and the last column consists of the coordinates of π^{j} in the $\hat{\mathbb{Z}}_{p}$-basis $1, \theta, \ldots, \theta^{p^{n-1}-1}$ of the ring $\hat{\mathbb{Z}}_{p}[\theta]$.

Proof. (i) If $l=0$ then $\hat{\mathbb{Z}}_{p}^{\mu} H \cong \hat{\mathbb{Z}}_{p}[\delta]$. Each $\hat{\mathbb{Z}}_{p}^{\mu} H$-module M can be considered as a torsionfree module over the principal ideal domain $\hat{\mathbb{Z}}_{p}[\delta]$, therefore if $M \neq 0$ then $M \cong \hat{\mathbb{Z}}_{p}[\delta] \oplus \cdots \oplus \hat{\mathbb{Z}}_{p}[\delta]$. Hence, up to equivalence, the algebra $\widehat{\mathbb{Z}}_{p}^{\mu} H$ has only one indecomposable matrix $\hat{\mathbb{Z}}_{p}$-representation $u_{a} \mapsto \widetilde{\delta}$.
(ii) Let $l=1, M$ be an arbitrary non-zero $\widehat{\mathbb{Z}}_{p}^{\mu} H$-module and

$$
N:=\left\{v \in M:\left(u_{a}^{p^{n-1}}-(1+p) u_{e}\right) v=0\right\} .
$$

Then N is a $\hat{\mathbb{Z}}_{p}^{\mu} H$-submodule of M. Since M is a $\hat{\mathbb{Z}}_{p}$-torsionfree module, $\alpha m \in N$ implies $m \in N$ for all $m \in M$ and for all non-zero $\alpha \in \hat{\mathbb{Z}}_{p}$. One can view the $\hat{\mathbb{Z}}_{p}^{\mu} H$-module N as a module over the algebra

$$
\hat{\mathbb{Z}}_{p}^{\mu} H /\left(u_{a}^{p^{n-1}}-(1+p) u_{e}\right) \hat{\mathbb{Z}}_{p}^{\mu} H \cong \hat{\mathbb{Z}}_{p}[\theta] .
$$

Since $\hat{\mathbb{Z}}_{p}[\theta]$ is a principal ideal domain and N is a $\hat{\mathbb{Z}}_{p}[\theta]$-torsionfree module,
there is a decomposition $N \cong \hat{\mathbb{Z}}_{p}[\theta] \oplus \cdots \oplus \hat{\mathbb{Z}}_{p}[\theta]$. Moreover, we have

$$
\hat{\mathbb{Z}}_{p}^{\mu} H / \Phi_{p}\left(\frac{u_{a}^{p^{n-1}}}{1+p}\right) \hat{\mathbb{Z}}_{p}^{\mu} H \cong \hat{\mathbb{Z}}_{p}[\rho],
$$

where $\hat{\mathbb{Z}}_{p}[\rho]$ is a principal ideal domain. The $\hat{\mathbb{Z}}_{p}^{\mu} H$-module M / N can be viewed as a $\hat{\mathbb{Z}}_{p}[\rho]$-module. If $z \in \hat{\mathbb{Z}}_{p}[\rho]$ and $z \neq 0$, then the equality $z(v+N)=N$ yields $v \in N$. This means that M / N is a torsionfree module over $\hat{\mathbb{Z}}_{p}[\rho]$. Hence in the case $N \neq M$ we have $M / N \cong \hat{\mathbb{Z}}_{p}[\rho] \oplus \cdots \oplus \hat{\mathbb{Z}}_{p}[\rho]$.

Every $\hat{\mathbb{Z}}_{p}$-basis of N can be extended to an $\hat{\mathbb{Z}}_{p}$-basis of M (see [16, p. 100]), and hence up to equivalence, any matrix $\hat{\mathbb{Z}}_{p}$-representation Γ of the algebra $\hat{\mathbb{Z}}_{p}^{\mu} H$ afforded by the $\hat{\mathbb{Z}}_{p}^{\mu} H$-module M can be written in the form

$$
\Gamma\left(u_{a}\right)=\left(\begin{array}{cc}
\widetilde{\theta} \dot{\times} E_{s} & * \\
0 & \widetilde{\rho} \dot{\times} E_{t}
\end{array}\right),
$$

where $\widetilde{\theta} \dot{\times} E_{s}$ is the Kronecker product of the matrices $\widetilde{\theta}$ and E_{s}. Using the technique of [11, pp. 880-888], we conclude that indecomposable matrix $\hat{\mathbb{Z}}_{p}$-representations of the algebra $\hat{\mathbb{Z}}_{p}^{\mu} H$ are $\Gamma_{1}, \Gamma_{2}, \Gamma_{3 j}$, as asserted.

Lemma 3.2. Let $H=\langle a\rangle$ be a cyclic group of order p^{n} and let μ be in $Z^{2}\left(H, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$. If the algebra $\widehat{\mathbb{Q}}_{p}^{\mu} H$ has at most two simple blocks, then $\overline{\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\mu} H}(W)} \cong \mathbb{Z}_{p}$ for each indecomposable $\hat{\mathbb{Z}}_{p}^{\mu} H$-module W.

Proof. Keeping the notation of Lemma 3.1, assume that $\hat{\mathbb{Z}}_{p}^{\mu} H$ is not the group algebra $\hat{\mathbb{Z}}_{p} H$ and $\hat{\mathbb{Q}}_{p}^{\mu} H$ is not a field. Then $n \geq 2$ and $\hat{\mathbb{Z}}_{p}^{\mu} H=$ $\left[H, \hat{\mathbb{Z}}_{p},(1+p)^{p}\right]$. If W_{1} is an underlying $\widehat{\mathbb{Z}}_{p}^{\mu} H$-module of the representation Γ_{1}, then $\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\mu} H}\left(W_{1}\right) \cong \hat{\mathbb{Z}}_{p}[\theta]$, and consequently

$$
\overline{\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\mu} H}\left(W_{1}\right)} \cong \hat{\mathbb{Z}}_{p}[\theta] /(1-\theta) \hat{\mathbb{Z}}_{p}[\theta] \cong \mathbb{Z}_{p} .
$$

Let $W_{3 j}$ be an underlying $\hat{\mathbb{Z}}_{p}^{\mu} H$-module of the representation $\Gamma_{3 j}$,

$$
\begin{aligned}
S & :=\left\{C \in \mathbb{M}_{p^{n}}\left(\hat{\mathbb{Z}}_{p}\right): C \Gamma_{3 j}\left(u_{a}\right)=\Gamma_{3 j}\left(u_{a}\right) C\right\}, \\
S_{1} & :=\left\{C_{1} \in \mathbb{M}_{p^{n-1}}\left(\hat{\mathbb{Z}}_{p}\right): C_{1} \widetilde{\theta}=\widetilde{\theta} C_{1}\right\} .
\end{aligned}
$$

The ring S is isomorphic to $\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\mu} H}\left(W_{3 j}\right)$, and the ring S_{1} is isomorphic to $\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\mu} H}\left(W_{1}\right)$. If $C \in S$ then

$$
C=\left(\begin{array}{cc}
C_{1} & D \\
0 & C_{2}
\end{array}\right)
$$

where $C_{1} \in S_{1}$ and $C_{2} \widetilde{\rho}=\widetilde{\rho} C_{2}$. Since $S_{1} / \operatorname{rad} S_{1} \cong \mathbb{Z}_{p}$, we have $C_{1}=\alpha E^{\prime}+T_{1}$, where $\alpha \in \hat{\mathbb{Z}}_{p}, E^{\prime}$ is the identity matrix of order p^{n-1} and $T_{1} \in \operatorname{rad} S_{1}$, i.e. T_{1} is a non-invertible matrix over $\hat{\mathbb{Z}}_{p}$. It follows that $C=\alpha E+T$, where E
is the identity matrix of order p^{n} and $T \in S$. Because S is a local ring and T is a non-invertible matrix over $\widehat{\mathbb{Z}}_{p}$, we conclude that $T \in \operatorname{rad} S$. It follows that $S / \operatorname{rad} S \cong \mathbb{Z}_{p}$.

The case when $\hat{\mathbb{Q}}_{p}^{\mu} H$ is a field and the case when $|H|=p$ and $\hat{\mathbb{Z}}_{p}^{\mu} H$ is the group algebra can be treated similarly.

Lemma 3.3. Let $H=\langle a\rangle$ be a cyclic p-group and $\mu \in Z^{2}\left(H, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$. Assume that the algebra $\hat{\mathbb{Q}}_{p}^{\mu} H$ has three simple blocks.
(i) If $\hat{\mathbb{Z}}_{p}^{\mu} H$ is the group algebra $\hat{\mathbb{Z}}_{p} H$, then $|H|=p^{2}$ and $\overline{\operatorname{End}_{\hat{\mathbb{Z}}_{P}^{\mu} H}(W)} \cong$ \mathbb{Z}_{p} for each indecomposable $\widehat{\mathbb{Z}}_{p}^{\mu} H$-module W.
(ii) If μ is not a 2-coboundary, then, for any positive integer m, there is an indecomposable $\hat{\mathbb{Z}}_{p}^{\mu} H$-module M such that

$$
\overline{\operatorname{End}_{\widehat{\mathbb{Z}}_{p}^{\mu} H}(M)} \cong \mathrm{GF}\left(p^{m}\right) .
$$

Proof. Statement (i) was proved in [24, p. 583]. Now we prove (ii). In view of Lemma 2.7. we may assume that $|H|=p^{3}$ and

$$
\hat{\mathbb{Z}}_{p}^{\mu} H=\left[H, \hat{\mathbb{Z}}_{p},(1+p)^{p^{2}}\right] .
$$

Denote by $\theta_{1}, \theta_{2}, \theta_{3}$ roots of the irreducible polynomials

$$
X^{p}-(1+p), \Phi_{p}\left(\frac{X^{p}}{1+p}\right), \Phi_{p^{2}}\left(\frac{X^{p}}{1+p}\right) \in \hat{\mathbb{Z}}_{p}[X],
$$

respectively, and by s_{j} the $\hat{\mathbb{Z}}_{p}$-rank of $\hat{\mathbb{Z}}_{p}\left[\theta_{j}\right]$ for $j=1,2,3$. Let $\pi_{j}=1-\theta_{j}$ for $j=1,2, A_{f}$ be the companion matrix of the polynomial f as in (2.1) and Γ be the matrix $\hat{\mathbb{Z}}_{p}$-representation of the algebra $\hat{\mathbb{Z}}_{p}^{\mu} H$ defined by

$$
\Gamma\left(u_{a}\right)=\left(\begin{array}{ccc}
\widetilde{\theta}_{1} \dot{\times} E_{m} & \left\langle\pi_{1}\right\rangle \dot{\times} E_{m} & \langle 1\rangle \dot{\times} A_{f} \\
0 & \widetilde{\theta}_{2} \dot{\times} E_{m} & \left\langle\pi_{2}\right\rangle \dot{\times} E_{m} \\
0 & 0 & \widetilde{\theta_{3}} \dot{\times} E_{m}
\end{array}\right)
$$

where m is the order of A_{f}, and $\left\langle\delta_{j}\right\rangle$ is the matrix all of whose columns except the last one are zero, whereas the last column consists of the coordinates of the element $\delta_{j} \in \hat{\mathbb{Z}}_{p}\left[\theta_{j}\right]$ in the $\hat{\mathbb{Z}}_{p}$-basis $1, \theta_{j}, \ldots, \theta_{j}^{s_{j}-1}$ of the ring $\hat{\mathbb{Z}}_{p}\left[\theta_{j}\right]$, $1 \leq j \leq 2$.

By the same arguments as in [11, pp. 889-894], we can prove that the representation Γ is indecomposable. Denote by M the underlying $\hat{\mathbb{Z}}_{p}^{\mu} H$-module of Γ. The algebra $\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\mu} H}(M)$ is isomorphic to the algebra

$$
S=\left\{C \in \mathbb{M}_{m p^{3}}\left(\hat{\mathbb{Z}}_{p}\right): C \Gamma\left(u_{a}\right)=\Gamma\left(u_{a}\right) C\right\} .
$$

For a matrix $\Omega=\left(x_{k l}\right) \in \operatorname{GL}\left(m, \hat{\mathbb{Z}}_{p}\left[\theta_{j}\right]\right)$, we set $\widetilde{\Omega}=\left(\widetilde{x}_{k l}\right)$ (see the notation (3.1)).

By Lemma 2.6, S is a local ring. If $C \in S$ and C is a non-invertible matrix, then $C \in \operatorname{rad} S$. Let $C \in S$ be an invertible matrix. Arguing as in [11, pp. 890-892], we conclude that C is of the form

$$
C=\left(\begin{array}{ccc}
\widetilde{\Omega}_{1} & C_{1} & C_{2} \\
0 & \widetilde{\Omega}_{2} & C_{3} \\
0 & 0 & \widetilde{\Omega}_{3}
\end{array}\right)
$$

where $\Omega_{j} \in \mathrm{GL}\left(m, \hat{\mathbb{Z}}_{p}\left[\theta_{j}\right]\right)$ for $j=1,2,3$ and $\Omega_{1}^{-1} A_{f} \Omega_{1} \equiv A_{f}\left(\bmod \pi_{1}\right)$. The matrix Ω_{1} can be written as $\Omega_{1}=T_{1}+\pi_{1} \Omega_{1}^{\prime}$, where $T_{1} \in \operatorname{GL}\left(m, \hat{\mathbb{Z}}_{p}\right)$, $\Omega_{1}^{\prime} \in \mathbb{M}_{m}\left(\hat{\mathbb{Z}}_{p}\left[\theta_{1}\right]\right)$ and $T_{1}^{-1} A_{f} T_{1} \equiv A_{f}(\bmod p)$. By [16, Theorem 76.8, p. 532], there is a matrix $D_{1} \in \mathrm{GL}\left(m, \hat{\mathbb{Z}}_{p}\right)$ such that $D_{1} \equiv T_{1}(\bmod p)$ and $D_{1}^{-1} A_{f} D_{1}=A_{f}$. Let $D:=\operatorname{diag}\left[E_{s_{1}} \dot{\times} D_{1}, E_{s_{2}} \dot{\times} D_{1}, E_{s_{3}} \dot{\times} D_{1}\right]$. Then $D \in S$, hence $C-D \in S$. Since $\Omega_{1}-D_{1} \equiv 0\left(\bmod \pi_{1}\right)$, the matrix $\widetilde{\Omega}_{1}-\widetilde{D}_{1}$ is non-invertible over $\hat{\mathbb{Z}}_{p}$. Hence so is $C-D$, and therefore $C-D \in \operatorname{rad} S$.

Let $R=\left\{D_{1} \in \mathbb{M}_{m}\left(\hat{\mathbb{Z}}_{p}\right): D_{1} A_{f}=A_{f} D_{1}\right\}$. The ring R is local, $\operatorname{rad} R=$ $p R$ and $R / \operatorname{rad} R \cong \operatorname{GF}\left(p^{m}\right)$. The map $\varphi: S / \operatorname{rad} S \rightarrow R / \operatorname{rad} R$ defined by $\varphi(C+\operatorname{rad} S)=D_{1}+\operatorname{rad} R$ is an algebra isomorphism. Consequently,

$$
\overline{\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\mu} H}(M)} \cong \mathrm{GF}\left(p^{m}\right)
$$

and the proof is complete.
LEMmA 3.4. Let $H=\langle a\rangle \times\langle b\rangle$ be an abelian group of type $\left(p^{n}, p^{2}\right)$, $\mu \in Z^{2}\left(H, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and $\hat{\mathbb{Z}}_{p}^{\mu} H=\left[H, \hat{\mathbb{Z}}_{p}, 1+p, 1\right]$. Then, for any finite field F of characteristic p, there is an indecomposable $\hat{\mathbb{Z}}_{p}^{\mu} H$-module M such that $\overline{\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\mu} H}(M)} \cong F$.

Proof. Let $D:=\langle a\rangle$ and $T:=\langle b\rangle$. The algebra $\hat{\mathbb{Z}}_{p}^{\mu} D$ is isomorphic to the $\hat{\mathbb{Z}}_{p}$-algebra $R:=\hat{\mathbb{Z}}_{p}[\rho]$, where $\rho^{p^{n}}=1+p$. The field $\hat{\mathbb{Q}}_{p}(\rho)$ is a totally ramified extension of $\hat{\mathbb{Q}}_{p}$ of degree p^{n}, R is the ring of all integral elements of $\hat{\mathbb{Q}}_{p}(\rho)$, $\pi=1-\rho$ is a prime element of R and $R / \pi R \cong \mathbb{Z}_{p}$. One can view $\hat{\mathbb{Z}}_{p}^{\mu} H$ as the group algebra $R T$. By Lemma 2.9, for any finite field F of characteristic p, there is an indecomposable $R T$-module M for which $\overline{\operatorname{End}_{R T}(M)} \cong F$. One can view M as an indecomposable $\hat{\mathbb{Z}}_{p}^{\mu} H$-module. Moreover $\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\mu} H}(M) \cong$ $\operatorname{End}_{R T}(M)$.

We are now able to prove the first main result of this paper.
TheOrem 3.5. Let $p \neq 2, G_{p}$ be a cyclic p-group, $G=G_{p} \times B, \mu \in$ $Z^{2}\left(G_{p}, U_{f}\left(\hat{\mathbb{Z}}_{p}\right)\right), \nu \in Z^{2}\left(B, U_{t}\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and $\lambda=\mu \times \nu$ be as in 1.1). The algebra $\hat{\mathbb{Z}}_{p}^{\lambda} G$ is of OTP representation type if and only if one the following conditions is satisfied:
(i) if $\left|G_{p}\right|>p^{2}$, then $\hat{\mathbb{Z}}_{p}^{\mu} G_{p}=\left[G_{p}, \hat{\mathbb{Z}}_{p}, \alpha\right]$, where $\alpha \equiv 1(\bmod p)$ and $\alpha \not \equiv 1\left(\bmod p^{3}\right)$;
(ii) $\hat{\mathbb{Q}}_{p}$ is a splitting field for $\hat{\mathbb{Q}}_{p}^{\nu} B$.

Proof. We have $\hat{\mathbb{Z}}_{p}^{\mu} G_{p}=\left[G_{p}, \hat{\mathbb{Z}}_{p}, \alpha\right]$, where $\alpha \in U_{f}\left(\hat{\mathbb{Z}}_{p}\right)$. It is easy to show that $\hat{\mathbb{Z}}_{p}^{\mu} G_{p}=\left[G_{p}, \hat{\mathbb{Z}}_{p},(1+p)^{p^{k}}\right]$, where $k=0$ if $\alpha \not \equiv 1\left(\bmod p^{2}\right) ; k=1$ if $\alpha \equiv 1\left(\bmod p^{2}\right)$ and $\alpha \not \equiv 1\left(\bmod p^{3}\right) ; k \geq 2$ if $\alpha \equiv 1\left(\bmod p^{3}\right)$.

If one of conditions (i)-(ii) is satisfied, then $\hat{\mathbb{Z}}_{p}^{\lambda} G$ is of OTP representation type, by Lemmas 2.32 .6 and 3.13 .3 .

Let us prove the necessity. Assume that $\hat{\mathbb{Q}}_{p}$ is not a splitting field for $\hat{\mathbb{Q}}_{p}^{\nu} B$. In view of Proposition 2.12 , there is an irreducible $\hat{\mathbb{Z}}_{p}^{\nu} B$-module W such that $\overline{\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\nu} B}(W)} \cong \operatorname{GF}\left(p^{m}\right)$, where $m>1$. If $\left|G_{p}\right|>p^{2}$ and $\hat{\mathbb{Z}}_{p}^{\mu} G_{p}=\left[G_{p}, \hat{\mathbb{Z}}_{p}, \alpha\right]$, where $\alpha \equiv 1\left(\bmod p^{3}\right)$, then, by Lemmas $2.7 / 2.8$ and 3.3 , there exists an indecomposable $\hat{\mathbb{Z}}_{p}^{\mu} G_{p}$-module V such that $\operatorname{End}_{\hat{\mathbb{Z}}_{p}^{\mu} G_{p}}(V) \cong \operatorname{GF}\left(p^{m}\right)$. Since $\operatorname{GF}\left(p^{m}\right) \otimes_{\mathbb{Z}_{p}} \mathrm{GF}\left(p^{m}\right)$ is not a field, the $\hat{\mathbb{Z}}_{p}^{\lambda} G$-module $V \# W$ is decomposable, by Lemmas 2.4 and 2.6. Consequently, in view of Lemma 2.3, the algebra $\hat{\mathbb{Z}}_{p}^{\lambda} G$ is not of OTP representation type.

The previous theorem can be reformulated in the following way.
Theorem 3.6. Let $p \neq 2, G_{p}$ be a cyclic p-group, $G=G_{p} \times B, \mu \in$ $Z^{2}\left(G_{p}, U\left(\hat{\mathbb{Z}}_{p}\right)\right), \nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and $\lambda=\mu \times \nu$. Denote by d the number of simple blocks of the algebra $\hat{\mathbb{Q}}_{p}^{\mu} G_{p}$. Then the algebra $\hat{\mathbb{Z}}_{p}^{\lambda} G$ is of OTP representation type if and only if one of the following conditions is satisfied:
(i) if $\left|G_{p}\right|>p^{2}$, then $d \leq 2$;
(ii) $\hat{\mathbb{Q}}_{p}$ is a splitting field for $\hat{\mathbb{Q}}_{p}^{\nu} B$.

We remark that if $\left|G_{p}\right| \leq p^{2}$ then $d \leq 3$; moreover, if $d=3$ then $\left|G_{p}\right|=p^{2}$ and $\widehat{\mathbb{Q}}_{p}^{\mu} G_{p}=\hat{\mathbb{Q}}_{p} G_{p}$.

Suppose now that G_{p} is an abelian group of type $\left(p^{n}, p\right)$ and μ is in $Z^{2}\left(G_{p}, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$. In this case $d \geq 2$. If $d=2$ then there exists a direct decomposition $G_{p}=\langle a\rangle \times\langle b\rangle$, where $|a|=p^{n}$ and $|b|=p$, such that $\hat{\mathbb{Z}}_{p}^{\mu} G_{p}=\left[G_{p}, \hat{\mathbb{Z}}_{p}, 1+p, 1\right]$.

Proposition 3.7. Let $p \neq 2, G_{p}$ be an abelian group od type $\left(p^{n}, p\right)$, $G=G_{p} \times B, \mu \in Z^{2}\left(G_{p}, U\left(\hat{\mathbb{Z}}_{p}\right)\right), \nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and $\lambda=\mu \times \nu$. If the number of simple blocks of $\hat{\mathbb{Q}}_{p}^{\mu} G_{p}$ is different from 2 , then $\hat{\mathbb{Z}}_{p}^{\lambda} G$ is of OTP representation type if and only if $\hat{\mathbb{Q}}_{p}$ is a splitting field for $\hat{\mathbb{Q}}_{p}^{\nu} B$.

Proof. Let $D=\operatorname{soc} G_{p}$. If $\hat{\mathbb{Z}}_{p}^{\mu} D=\hat{\mathbb{Z}}_{p} D$, then the assertion follows from Lemmas 2.5, 2.10 and Proposition 2.13. Assume now that $\hat{\mathbb{Z}}_{p}^{\mu} D$ is not $\hat{\mathbb{Z}}_{p} D$. Then there is a subgroup $T=\langle a\rangle \times\langle b\rangle$ of type $\left(p^{2}, p\right)$ of G_{p} such that $\hat{\mathbb{Z}}_{p}^{\mu} T=\left[T, \hat{\mathbb{Z}}_{p}, 1,1+p\right]$. Let $H=T \times B$. If $\hat{\mathbb{Q}}_{p}$ is not a splitting field for $\hat{\mathbb{Q}}_{p}^{\nu} B$
then, by Lemmas $2.3,2.4$. 2.6 and $3.4 . \hat{\mathbb{Z}}_{p}^{\lambda} H$ is not of OTP representation type. Applying Proposition 2.13. we conclude that neither is $\hat{\mathbb{Z}}_{p}^{\lambda} G$.

Theorem 3.8. Let $p \neq 2, G_{p}$ be a non-cyclic p-group, $G=G_{p} \times B$, $\mu \in Z^{2}\left(G_{p}, U\left(\hat{\mathbb{Z}}_{p}\right)\right), \nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and $\lambda=\mu \times \nu$. Assume that if G_{p} / G_{p}^{\prime} is of type $\left(p^{n}, p\right)$, then G_{p} is non-abelian and the following conditions are satisfied:
(i) if μ is not a 2-coboundary, then the center of $\hat{\mathbb{Q}}_{p}^{\nu} B$ is p-irreducible;
(ii) if $\left|G_{p}\right|=p^{3}$ then $\exp G_{p}=p$.

The algebra $\hat{\mathbb{Z}}_{p}^{\lambda} G$ is of OTP representation type if and only if $\hat{\mathbb{Q}}_{p}$ is a splitting field for $\widehat{\mathbb{Q}}_{p}^{\nu} B$.

Proof. Assume that G_{p} / G_{p}^{\prime} is not of type $\left(p^{n}, p\right)$. In view of Lemma 2.1. we may assume that G_{p} is abelian. Let $D=\operatorname{soc} G_{p}$. If $|D| \geq p^{3}$ then $\mathbb{Z}_{p}^{\mu} D$ contains a group algebra $\hat{\mathbb{Z}}_{p}^{\mu} H=\hat{\mathbb{Z}}_{p} H$, where H is a group of type (p, p). In this case the theorem follows from Lemmas [2.5, 2.10 and Proposition 2.13. The case when $|D|=p^{2}$ and $\widehat{\mathbb{Z}}_{p}^{\mu} D=\hat{\mathbb{Z}}_{p} D$ is treated similarly. Suppose now that $|D|=p^{2}$ and the restriction of μ to $D \times D$ is not a 2-coboundary. Then $\hat{\mathbb{Z}}_{p}^{\mu} G_{p}$ contains an algebra $\widehat{\mathbb{Z}}_{p}^{\mu} H$ as in Lemma 3.4. Next apply Lemmas 2.3, 2.6, 3.4 and Proposition 2.13.

Assume that G_{p} / G_{p}^{\prime} is of type $\left(p^{n}, p\right)$. If G_{p}^{\prime} is not cyclic, then the assertion follows from Lemmas 2.1, 2.10 and Proposition 2.13. Assume that $G_{p}^{\prime}=\langle c\rangle,|c|=p^{s}$ and $G_{p} / G_{p}^{\prime}=\left\langle x G_{p}^{\prime}\right\rangle \times\left\langle y G_{p}^{\prime}\right\rangle$, where $\left|x G_{p}^{\prime}\right|=p^{n},\left|y G_{p}^{\prime}\right|=p$. Let $T=\left\langle c^{p}\right\rangle$. Denote by D the subgroup of G_{p} such that $G_{p}^{\prime} \subset D$ and $D / G_{p}^{\prime}=\operatorname{soc}\left(G_{p} / G_{p}^{\prime}\right)$. By [3, Lemma 1.12, p. 288], $\left|D^{\prime}\right| \leq p$. First, we examine the case when $x^{p^{n}} \in T$ and $y^{p} \in T$. If $s \geq 2$ then $D^{\prime} \subset T$ and $D / T=\langle a T\rangle \times\langle b T\rangle \times\langle c T\rangle$, where $a=x^{p^{n-1}}$ and $b=y$. Arguing further as in the first part of the proof, we establish the desired conclusion. If $s=1$ then $|D|=p^{3}$ and $\exp D=p$. The algebra $\hat{\mathbb{Z}}_{p}^{\mu} D$ contains a group algebra $\hat{\mathbb{Z}}_{p}^{\mu} H=\hat{\mathbb{Z}}_{p} H$, where H is an abelian group of type (p, p). Next we argue as previously.

We now consider the case in which $x^{p^{n}} \notin T$. Let $\left\{u_{g}: g \in G_{p}\right\}$ be a canonical $\hat{\mathbb{Z}}_{p}$-basis of $\hat{\mathbb{Z}}_{p}^{\mu} G_{p}$. We may assume that

$$
u_{x}^{p^{n}}=(1+p)^{j} u_{c}, \quad u_{y}^{p}=(1+p)^{k} u_{e}, \quad \text { where } k \in\{0,1\} .
$$

By Proposition 2.13 and Theorem 3.6, $|c|=p$, hence $n \geq 2$. If $k=0$ then the $\hat{\mathbb{Z}}_{p}$-algebra generated by u_{c} and u_{y} is the group algebra $\hat{\mathbb{Z}}_{p} H$, where $H=\langle c\rangle \times\langle y\rangle$. If $k=1$ then

$$
\left(u_{y}^{-j} u_{x}^{p^{n-1}}\right)^{p}=u_{c} .
$$

Consequently, $\widehat{\mathbb{Z}}_{p}^{\mu} G_{p}$ contains the twisted group algebra $\hat{\mathbb{Z}}_{p}^{\mu} H$ as in Lemma
3.4 where $H=\langle y\rangle \times\left\langle y^{-j} x^{p^{n-1}}\right\rangle$ is of type $\left(p, p^{2}\right)$. Next apply Lemmas 2.3 2.6, 3.4 and Proposition 2.13.

If $x^{p^{n}} \in T$ and $y^{p} \notin T$, then $|c|=p, n \geq 2$ and

$$
u_{x}^{p^{n}}=(1+p)^{i} u_{e}, \quad u_{y}^{p}=(1+p)^{j} u_{c} .
$$

Let $i=p k$ and $v=(1+p)^{-k} u_{x}^{p^{n-1}}$. Then $v^{p}=u_{e}$, hence the $\hat{\mathbb{Z}}_{p}$-algebra generated by v and u_{c} is a group algebra of an abelian group of type (p, p). If p does not divide i, we may assume that $i=1$. For $v=u_{x}^{-j p^{n-1}} u_{y}$ we have $v^{p}=u_{c}$. Therefore $\hat{\mathbb{Z}}_{p}^{\mu} G_{p}$ contains $\hat{\mathbb{Z}}_{p}^{\mu} H$ as in Lemma 3.4, where $H=$ $\left\langle x^{p}\right\rangle \times\left\langle y x^{-j p^{n-1}}\right\rangle$ is of type $\left(p^{n-1}, p^{2}\right)$. Applying Lemmas 2.3 2.6. 3.4 and Proposition 2.13, we finish the proof.

Proposition 3.9. Let p be an arbitrary prime, $G=G_{p} \times B, \nu \in$ $Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ and $\lambda=1 \times \nu \in Z^{2}\left(G, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$. The algebra $\hat{\mathbb{Z}}_{p}^{\lambda} G$ is of OTP representation type if and only if either $\hat{\mathbb{Q}}_{p}$ is a splitting field for $\hat{\mathbb{Q}}_{p}^{\nu} B$, or G_{p} is a cyclic group of order $p^{r}, r \leq 2$.

Proof. Apply Lemmas 2.3, 2.6, 2.8, 3.2 and 3.3.
4. Twisted group algebras $\hat{\mathbb{Z}}_{2}^{\lambda} G$ of OTP representation type. In this section $\hat{\mathbb{Q}}_{2}$ is the field of 2-adic numbers, $\hat{\mathbb{Z}}_{2}$ is the ring of 2-adic integers, $G=G_{2} \times B$ is a finite group, where G_{2} is a 2 -group, B is a 2^{\prime}-group and $\left|G_{2}\right|,|B|>1$. In view of Lemma 2.2, the algebra $\hat{\mathbb{Z}}_{2}^{\nu} B$ is the group algebra $\hat{\mathbb{Z}}_{2} B$ for any $\nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{2}\right)\right)$. Therefore every cocycle $\lambda \in Z^{2}\left(G, U\left(\hat{\mathbb{Z}}_{2}\right)\right)$ satisfies the condition $\lambda=\mu \times 1$, where μ is the restriction of λ to $G_{2} \times G_{2}$. Let

$$
\begin{equation*}
\rho=\frac{1+\sqrt{5}}{2}, \quad R=\hat{\mathbb{Z}}_{2}[\rho] . \tag{4.1}
\end{equation*}
$$

We recall from [13, p. 277] that the field $\hat{\mathbb{Q}}_{2}(\sqrt{5})$ is an unramified extension of $\hat{\mathbb{Q}}_{2}$ of degree 2 and R is the ring of all integral elements of $\hat{\mathbb{Q}}_{2}(\sqrt{5})$.

Assume that $\mu \in Z^{2}\left(G_{2}, U\left(\hat{\mathbb{Z}}_{2}\right)\right), \Lambda=\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$ and $\Lambda^{\prime}=R \otimes_{\hat{\mathbb{Z}}_{2}} \Lambda$. If N is a Λ^{\prime}-module, we denote by N_{Λ} the module N viewed as a Λ-module. By a result due to Jacobinski (see [17, pp. 697-698]), for any indecomposable Λ-module M there is an indecomposable Λ^{\prime}-module U such that M is a direct summand of the module U_{Λ}. Moreover, if N is an indecomposable Λ^{\prime}-module, then $R \otimes_{\hat{\mathbb{Z}}_{2}} N_{\Lambda} \cong N \oplus V$, where V is also an indecomposable Λ^{\prime}-module and the R-rank of V is equal to the R-rank of N.

Lemma 4.1. Let $G=G_{2} \times B, \mu \in Z^{2}\left(G_{2}, U_{f}\left(\hat{\mathbb{Z}}_{2}\right)\right)$ and $\lambda=\mu \times 1 \in$ $Z^{2}\left(G, U_{f}\left(\hat{\mathbb{Z}}_{2}\right)\right)$. If μ is not a 2 -coboundary and $\hat{\mathbb{Z}}_{2}^{\lambda} G$ is of OTP representation type, then the center of $\hat{\mathbb{Q}}_{2} B$ is 2 -irreducible.

Proof. By Lemma 2.2, the restriction of μ to $G_{2}^{\prime} \times G_{2}^{\prime}$ is a 2-coboundary. Hence we may assume that $\mu_{x, y}=1$ for all $x, y \in G_{2}^{\prime}$. Let $\left\{u_{g}: g \in G_{2}\right\}$ be a canonical $\hat{\mathbb{Z}}_{2}$-basis of $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$. Then $u_{g}^{-1} u_{h} u_{g}=u_{g^{-1} h g}$ for all $g \in G_{2}, h \in G_{2}^{\prime}$. Suppose that $F=G_{2} / G_{2}^{\prime}$ and $I\left(G_{2}^{\prime}\right)$ is the augmentation ideal of $\hat{\mathbb{Z}}_{2} G_{2}^{\prime}$. Arguing as in the proof of [29, Lemma 5.5, p. 91], we may show that $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$. $I\left(G_{2}^{\prime}\right)$ is a two-sided ideal of $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$ and $\hat{\mathbb{Z}}_{2}^{\mu} G_{2} / \hat{\mathbb{Z}}_{2}^{\mu} G_{2} \cdot I\left(G_{2}^{\prime}\right) \cong \hat{\mathbb{Z}}_{2}^{\tau} F$ for some $\tau \in Z^{2}\left(F, U_{f}\left(\hat{\mathbb{Z}}_{2}\right)\right)$ such that μ is cohomologous to $\inf (\tau) \in Z^{2}\left(G_{2}, U_{f}\left(\hat{\mathbb{Z}}_{2}\right)\right)$, where $\inf (\tau)_{a, b}=\tau_{a G_{2}^{\prime}, b G_{2}^{\prime}}$ for all $a, b \in G_{2}$. Since μ is not a 2-coboundary, neither is τ. Consequently, without loss of generality we may suppose that G_{2} is abelian.

Up to cohomology, there is an element $x \in G_{2}$ of order 2^{n} such that

$$
u_{x}^{2^{n}}=5^{2^{m}} u_{e}, \quad m<n
$$

Let $H=\langle x\rangle, D=\langle y\rangle$ be a cyclic group of order $2^{n-m}, z=y^{2^{n-m-1}}$ and $T=\langle z\rangle$. There exists an algebra homomorphism of $\hat{\mathbb{Z}}_{2}^{\mu} H$ onto the twisted group algebra

$$
\hat{\mathbb{Z}}_{2}^{\sigma} D=\bigoplus_{i=0}^{2^{n-m}-1} \hat{\mathbb{Z}}_{2} v_{y}^{i}, \quad v_{y}^{2^{n-m}}=5 v_{e}
$$

Denote by M the underlying $\hat{\mathbb{Z}}_{2}^{\sigma} T$-module of the matrix representation Δ of $\hat{\mathbb{Z}}_{2}^{\sigma} T$ defined by

$$
\Delta\left(v_{z}\right)=\left(\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right), \quad \text { where } v_{z}=v_{y}^{2^{n-m-1}}
$$

The algebra $\operatorname{End}_{\hat{\mathbb{Z}}_{2}^{\sigma} T}(M)$ is isomorphic to the algebra

$$
R=\left\{C \in \mathbb{M}_{2}\left(\hat{\mathbb{Z}}_{2}\right): C \Delta\left(v_{z}\right)=\Delta\left(v_{z}\right) C\right\}
$$

We have

$$
R=\left\{\left(\begin{array}{cc}
\alpha & \beta \\
\beta & \alpha-\beta
\end{array}\right): \alpha, \beta \in \hat{\mathbb{Z}}_{2}\right\} .
$$

Since

$$
\left(\begin{array}{rr}
0 & 1 \tag{4.2}\\
1 & -1
\end{array}\right)^{2}+\left(\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

we conclude that $R \cong \hat{\mathbb{Z}}_{2}[\rho]$, where $\rho=(1+\sqrt{5}) / 2$. It follows that $\overline{\operatorname{End}_{\hat{\mathbb{Z}}_{2}^{\sigma} T}(M)} \cong \mathrm{GF}(4)$. In view of Lemma 2.7. the induced module $N:=$ $M^{D}=\hat{\mathbb{Z}}_{2}^{\sigma} D \otimes_{\hat{\mathbb{Z}}_{2}^{\sigma} T} M$ is indecomposable and $\operatorname{End}_{\hat{\mathbb{Z}}_{2}^{\sigma} D}(N) \cong \mathrm{GF}(4)$. One can view the $\hat{\mathbb{Z}}_{2}^{\sigma} D$-module N as a $\hat{\mathbb{Z}}_{2}^{\mu} H$-module. By Lemma 2.7 , the $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$-module $N^{G_{2}}:=\hat{\mathbb{Z}}_{2}^{\mu} G_{2} \otimes_{\hat{\mathbb{Z}}_{2}^{\mu} H} N$ is indecomposable and ${\overline{\operatorname{End}} \hat{\mathbb{Z}}_{2}^{\mu} G_{2}\left(N^{G_{2}}\right)}$ is isomorphic
to GF(4). By applying Lemmas 2.3, 2.4, 2.6 and Proposition 2.12, one shows that the center of $\hat{\mathbb{Q}}_{2} B$ is 2 -irreducible.

Lemma 4.2. Let H be an abelian group of type $(2,2)$ and $\Lambda=\left[H, \hat{\mathbb{Z}}_{2}, 5,1\right]$. Then, for any odd number m, there is an indecomposable Λ-module M such that $\overline{\operatorname{End}_{\Lambda}(M)}$ contains a subfield which is isomorphic to $\operatorname{GF}\left(2^{m}\right)$.

Proof. Let $\Lambda^{\prime}=R \otimes_{\hat{\mathbb{Z}}_{2}} \Lambda$ (see the notation 4.1p). The algebra Λ^{\prime} is the group algebra $R H$. Therefore, by Lemma 2.8 , there is an indecomposable Λ^{\prime}-module N for which $\overline{\operatorname{End}_{\Lambda^{\prime}}(N)} \cong \mathrm{GF}\left(2^{2 m}\right)$. Assume that N_{Λ} is an indecomposable Λ-module. We have $\operatorname{End}_{\Lambda^{\prime}}(N) \subset \operatorname{End}_{\Lambda}\left(N_{\Lambda}\right)$. Because the rings $\operatorname{End}_{\Lambda^{\prime}}(N)$ and $\operatorname{End}_{\Lambda}\left(N_{\Lambda}\right)$ are local, $\operatorname{rad} \operatorname{End}_{\Lambda^{\prime}}(N) \subset \operatorname{rad}^{\operatorname{End}}{ }_{\Lambda}\left(N_{\Lambda}\right)$. It follows that $\overline{\operatorname{End}_{\Lambda^{\prime}}(N)}$ is isomorphic to a subfield of $\overline{\operatorname{End}_{\Lambda}\left(N_{\Lambda}\right)}$. Consequently, $\overline{\operatorname{End}_{\Lambda}\left(N_{\Lambda}\right)}$ contains a subfield which is isomorphic to $\operatorname{GF}\left(2^{m}\right)$.

We now consider the case when N_{Λ} is a decomposable Λ-module. Let d be the R-rank of N. Then $N_{\Lambda}=M \oplus V$, where M and V are indecomposable Λ-modules of $\hat{\mathbb{Z}}_{2}$-rank d and N is isomorphic to $R \otimes_{\hat{\mathbb{Z}}_{2}} M$. Denote by Δ a matrix $\hat{\mathbb{Z}}_{2}$-representation of the algebra Λ afforded by the Λ-module M. Let $\left\{u_{h}: h \in H\right\}$ be a canonical $\hat{\mathbb{Z}}_{2}$-basis of Λ, and

$$
\begin{aligned}
S & :=\left\{C \in \mathbb{M}_{d}\left(\hat{\mathbb{Z}}_{2}\right): C \Delta\left(u_{h}\right)=\Delta\left(u_{h}\right) C \text { for every } h \in H\right\} \\
S^{\prime} & :=\left\{C^{\prime} \in \mathbb{M}_{d}(R): C^{\prime} \Delta\left(u_{h}\right)=\Delta\left(u_{h}\right) C^{\prime} \text { for every } h \in H\right\}
\end{aligned}
$$

The ring S is isomorphic to $\operatorname{End}_{\Lambda}(M)$, and the ring S^{\prime} is isomorphic to $\operatorname{End}_{\Lambda^{\prime}}(N)$. Assume $C^{\prime}=C_{1}+\rho C_{2}$, where $\rho=(1+\sqrt{5}) / 2$ and $C_{1}, C_{2} \in$ $\mathbb{M}_{d}\left(\hat{\mathbb{Z}}_{2}\right)$. Because $\{1, \rho\}$ is a $\hat{\mathbb{Z}}_{2}$-basis of R, we conclude that $C^{\prime} \in S^{\prime}$ if and only if $C_{1}, C_{2} \in S$. Hence $S^{\prime}=S+\rho S$. By [17, Proposition 5.22 and Theorem 7.9], we may write $\overline{S^{\prime}} \cong \mathrm{GF}(4) \otimes_{\mathbb{Z}_{2}} \bar{S}$, consequently $\overline{\operatorname{End}_{\Lambda}(M)} \cong \operatorname{GF}\left(2^{m}\right)$.

LEMMA 4.3. Let $H=\langle a\rangle$ be a cyclic group of order 2^{n} and $\Lambda=\left[H, \hat{\mathbb{Z}}_{2}, 5^{2^{k}}\right]$, where $n \geq 3$ and $k \geq 1$. Then, for any odd number m, there is an indecomposable Λ-module M such that $\overline{\operatorname{End}_{\Lambda}(M)}$ contains a subfield isomorphic to $\mathrm{GF}\left(2^{m}\right)$.

Proof. In view of Lemmas 2.7 and 2.8, we may assume that $n=3$ and $k \in\{1,2\}$. Keeping the notation 4.1, suppose that $k=2$. The algebra $\Lambda^{\prime}=R \otimes_{\hat{\mathbb{Z}}_{2}} \Lambda$ is the group algebra of H over R. By Lemma 2.8 , there is an indecomposable Λ^{\prime}-module N such that $\overline{\operatorname{End}_{\Lambda^{\prime}}(N)}$ is isomorphic to GF $\left(2^{2 m}\right)$. Arguing as in the proof of Lemma 4.2, we deduce the assertion.

Now consider the case when $k=1$. Denote by θ_{1}, θ_{2} and θ_{3} roots of the irreducible polynomials $X^{2}-\sqrt{5}, X^{2}+\sqrt{5}$ and $X^{4}+5 \in R[X]$, respectively. Let $\Lambda^{\prime}=R \otimes_{\hat{\mathbb{Z}}_{2}} \Lambda$ and N be an underlying Λ^{\prime}-module of the matrix
representation Γ of Λ^{\prime} defined by the formula

$$
\Gamma\left(u_{a}\right)=\left(\begin{array}{ccc}
\widetilde{\theta}_{1} \dot{\times} E_{m} & \left\langle\pi_{1}\right\rangle \dot{\times} E_{m} & \langle 1\rangle \dot{\times} A_{f} \\
0 & \widetilde{\theta}_{2} \dot{\times} E_{m} & \left\langle\pi_{2}\right\rangle \dot{\times} E_{m} \\
0 & 0 & \widetilde{\theta}_{3} \dot{\times} E_{m}
\end{array}\right),
$$

where $\pi_{i}=1-\theta_{i}$ for $i=1,2$ and A_{f} is the matrix as in 2.1; see also the notation in the proof of Lemma 3.3. Arguing as in the latter proof, we show that N is an indecomposable module and $\overline{\operatorname{End}_{\Lambda^{\prime}}(N)} \cong \mathrm{GF}\left(2^{2 m}\right)$. By applying the same type of arguments as in the proof of Lemma 4.2, we finish the proof in this case.

Lemma 4.4. Let $H=\langle a\rangle$ be a cyclic group of order 2^{n} and $\Lambda=\left[H, \hat{\mathbb{Z}}_{2}, 5\right]$. Then:
(i) $\overline{\operatorname{End}_{\Lambda}(M)}$ is isomorphic to a subfield of the field $\mathrm{GF}(4)$ for any indecomposable Λ-module M.
(ii) There exists an indecomposable Λ-module M_{0} such that $\overline{\operatorname{End}_{\Lambda}\left(M_{0}\right)}$ $\cong \mathrm{GF}(4)$.
Proof. Let R be the ring as in 4.1). Denote by θ and σ roots of the polynomials $X^{2^{n-1}}-\sqrt{5}$ and $X^{2^{n-1}}+\sqrt{5}$, respectively. The fields $\hat{\mathbb{Q}}_{2}(\theta)$ and $\hat{\mathbb{Q}}_{2}(\sigma)$ are totally ramified extensions of $\hat{\mathbb{Q}}_{2}(\sqrt{5})$ of degree 2^{n-1}, and $R[\theta]$, $R[\sigma]$ are the rings of all integral elements of $\hat{\mathbb{Q}}_{2}(\theta)$ and $\hat{\mathbb{Q}}_{2}(\sigma)$, respectively. Clearly, $\theta^{2^{n}}=5$ and $\Lambda \cong \hat{\mathbb{Z}}_{2}[\theta]$. Since $R[\theta]=\hat{\mathbb{Z}}_{2}[\theta]+\rho \hat{\mathbb{Z}}_{2}[\theta]$, the $\hat{\mathbb{Z}}_{2}$-order $\hat{\mathbb{Z}}_{2}[\theta]$ is of cyclic index in the maximal $\hat{\mathbb{Z}}_{2}$-order $R[\theta]$ in the $\hat{\mathbb{Q}}_{2}$-algebra $\hat{\mathbb{Q}}_{2}(\theta)$. By a result of Borevich-Faddeev (see [17, p. 789]), every Λ-module is isomorphic to a direct sum of ideals of Λ. It follows that the $\hat{\mathbb{Z}}_{2}$-rank of any indecomposable Λ-module is 2^{n}.

Write $\Lambda^{\prime}=R \otimes_{\hat{\mathbb{Z}}_{2}} \Lambda$. Applying the arguments used in the proof of Lemma 3.1, we can prove that, up to equivalence, the indecomposable matrix R representations of Λ^{\prime} are the following:

$$
\Gamma_{1}: u_{a} \mapsto \widetilde{\theta}, \quad \Gamma_{2}: u_{a} \mapsto \widetilde{\sigma}, \quad \Gamma_{3+k}: u_{a} \mapsto\left(\begin{array}{cc}
\widetilde{\theta} & \left\langle t^{k}\right\rangle \\
0 & \widetilde{\sigma}
\end{array}\right), \quad \text { where } t=1-\theta,
$$

$k=0,1, \ldots, 2^{n-1}-1$ (see the notation in (3.1) and in Lemma 3.1). Arguing as in the proof of Lemma 3.2, we can show that $\overline{\operatorname{End}_{\Lambda^{\prime}}(U)} \cong \overline{R=G F}(4)$ for every indecomposable Λ^{\prime}-module U.

Assume that N is an underlying Λ^{\prime}-module of the representation Γ_{j}, where $j \in\{1,2\}$. Then N_{Λ} is an indecomposable Λ-module. The Λ^{\prime}-module $V:=R \otimes_{\hat{\mathbb{Z}}_{2}} N_{\Lambda}$ decomposes into a direct sum of two mutually non-isomorphic indecomposable Λ^{\prime}-modules of R-rank 2^{n-1}. It follows that $\overline{\operatorname{End}_{\Lambda^{\prime}}(V)} \cong$ $\mathrm{GF}(4) \times \mathrm{GF}(4)$. The argument given in the proof of Lemma 4.2 shows that $\overline{\operatorname{End}_{\Lambda^{\prime}}(V)} \cong \bar{R} \otimes_{\mathbb{Z}_{2}} \overline{\operatorname{End}_{\Lambda}\left(N_{\Lambda}\right)}$. Consequently, $\overline{\operatorname{End}_{\Lambda}\left(N_{\Lambda}\right)} \cong \operatorname{GF}(4)$.

Now, assume that N is an underlying Λ^{\prime}-module of the representation Γ_{j}, where $j \in\left\{3, \ldots, 2+2^{n-1}\right\}$. Then the $\hat{\mathbb{Z}}_{2}$-rank of N_{Λ} is equal to 2^{n+1}, and therefore $N_{\Lambda}=M \oplus V$, where M and V are indecomposable Λ-modules of $\hat{\mathbb{Z}}_{2}$-rank 2^{n}. By a result of Jacobinski (see [17, pp. 697-698]), the Λ^{\prime}-module

$$
\overline{\operatorname{End}_{\Lambda^{\prime}}\left(R \otimes_{\hat{\mathbb{Z}}_{2}} M\right)} \cong \bar{R} \otimes_{\mathbb{Z}_{2}} \overline{\operatorname{End}_{\Lambda}(M)},
$$

we conclude that $\overline{\operatorname{End}_{\Lambda}(M)} \cong \mathbb{Z}_{2}$.
Lemma 4.5. Let $H=\langle a\rangle$ be a cyclic group of order 4 and $\Lambda=\left[H, \hat{\mathbb{Z}}_{2}, 5^{2}\right]$. Then:
(i) $\overline{\operatorname{End}_{\Lambda}(M)}$ is isomorphic to a subfield of GF(4) for every indecomposable Λ-module M.
(ii) There is an indecomposable Λ-module M_{0} such that

$$
\overline{\operatorname{End}_{\Lambda}\left(M_{0}\right)} \cong \mathrm{GF}(4) .
$$

Proof. Denote by η_{1}, η_{2} some roots of the polynomials $X^{2}-5$ and $X^{2}+5$, respectively. Let

$$
\begin{array}{rlrl}
\widetilde{\eta}_{1}=\left(\begin{array}{ll}
0 & 5 \\
1 & 0
\end{array}\right), & \widetilde{\eta}_{2}=\left(\begin{array}{rr}
0 & -5 \\
1 & 0
\end{array}\right), & \Delta=\left(\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right), \\
D & =\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right), & S=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), & T=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
\end{array}
$$

By [6, Lemma 3.9], up to equivalence, the indecomposable matrix $\hat{\mathbb{Z}}_{2}$-representations of the algebra Λ are the following:

$$
\begin{array}{lll}
\Gamma_{i}: u_{a} \mapsto \widetilde{\eta}_{i}(i=1,2), & \Gamma_{3}: u_{a} \mapsto \Delta, & \Gamma_{4}: u_{a} \mapsto\left(\begin{array}{cc}
\widetilde{\eta}_{1} & D \\
0 & \widetilde{\eta}_{2}
\end{array}\right), \\
\Gamma_{5}: u_{a} \mapsto\left(\begin{array}{cc}
\widetilde{\eta}_{1} & S \\
0 & \widetilde{\eta}_{2}
\end{array}\right), & \Gamma_{6}: u_{a} \mapsto\left(\begin{array}{cc}
\Delta & S \\
0 & \widetilde{\eta}_{2}
\end{array}\right), & \Gamma_{7}: u_{a} \mapsto\left(\begin{array}{ccc}
\Delta & S & T \\
0 & \widetilde{\eta}_{2} & 0 \\
0 & 0 & \widetilde{\eta}_{2}
\end{array}\right) .
\end{array}
$$

Let M_{i} be the underlying Λ-module of the representation Γ_{i} and $d_{i}=$ $\operatorname{rank}_{\hat{\mathbb{Z}}_{2}} M_{i}$. Denote by R_{i} the set of all matrices $C \in \mathbb{M}_{d_{i}}\left(\hat{\mathbb{Z}}_{2}\right)$ such that $C \Gamma_{i}\left(u_{a}\right)=\Gamma_{i}\left(u_{a}\right) C$. Then R_{i} is a free $\hat{\mathbb{Z}}_{2}$-algebra and $R_{i} \cong \operatorname{End}_{\Lambda}\left(M_{i}\right)$. By Lemma 2.6, R_{i} is a local algebra.

We have shown in the proof of Lemma 4.1 that $\bar{R}_{3} \cong \mathrm{GF}(4)$.
If $C \in R_{6}$, then

$$
C=\left(\begin{array}{cc}
C_{1} & C_{2} \\
0 & C_{3}
\end{array}\right), \quad \text { where } C_{3}=\left(\begin{array}{cc}
x & -5 y \\
y & x
\end{array}\right) \text { with } x, y \in \hat{\mathbb{Z}}_{2} .
$$

Let $A=x E_{4}+y \Gamma_{6}\left(u_{a}\right)$. Then $A \in R_{6}$ and $C-A \in \operatorname{rad} R_{6}$. Since $\Gamma_{6}\left(u_{a}\right)^{4} \equiv$ $E_{4}(\bmod 2)$, it follows that $C+\operatorname{rad} R_{6}=(x+y) E_{4}+\operatorname{rad} R_{6}$. Consequently, $\bar{R}_{6} \cong \mathbb{Z}_{2}$.

If $C \in R_{7}$, then

$$
C=\left(\begin{array}{cc}
C_{1} & C_{2} \\
0 & C_{3}
\end{array}\right), \quad \text { where } C_{1}=\left(\begin{array}{cc}
x & y \\
y & x-y
\end{array}\right) \text { with } x, y \in \hat{\mathbb{Z}}_{2} .
$$

Let $A=x E_{6}+y L$, where

$$
L=\left(\begin{array}{cc}
L_{1} & 0 \\
0 & L_{2}
\end{array}\right) \quad \text { with } L_{1}=\left(\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right), L_{2}=E_{2} \dot{\times} L_{1} .
$$

Then $A \in R_{7}$ and $C-A \in \operatorname{rad} R_{7}$. By $(4.2), L^{2}+L=E_{6}$. Therefore $\bar{R}_{7} \cong \mathrm{GF}(4)$. Similarly we can show that $\bar{R}_{i} \cong \mathbb{Z}_{2}$ for each $i \in\{1,2,4,5\}$.

Our second main result of this paper is the following theorem.
Theorem 4.6. Let $G_{2}=\langle a\rangle$ be a cyclic group of order $2^{n}, G=G_{2} \times B$, $\mu \in Z^{2}\left(G_{2}, U\left(\hat{\mathbb{Z}}_{2}\right)\right), \lambda=\mu \times 1 \in Z^{2}\left(G, U\left(\hat{\mathbb{Z}}_{2}\right)\right)$ and $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}=\left[G_{2}, \hat{\mathbb{Z}}_{2}, \alpha\right]$. The algebra $\hat{\mathbb{Z}}_{2}^{\lambda} G$ is of OTP representation type if and only if one of the following conditions is satisfied:
(i) $\alpha \not \equiv 1(\bmod 4)$;
(ii) $\alpha \equiv 1(\bmod 4), \alpha \not \equiv 1(\bmod 8)$ and the center of $\hat{\mathbb{Q}}_{2} B$ is 2 -irreducible;
(iii) $n \leq 2$ and $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}=\hat{\mathbb{Z}}_{2} G_{2}$;
(iv) $n=2, \alpha \equiv 1(\bmod 8), \alpha \not \equiv 1(\bmod 16)$ and the center of $\hat{\mathbb{Q}}_{2} B$ is 2-irreducible;
(v) $\hat{\mathbb{Q}}_{2}$ is a splitting field for $\hat{\mathbb{Q}}_{2} B$.

Proof. Assume that $\alpha \not \equiv 1(\bmod 4)$. Denote by θ a root of the irreducible polynomial $X^{2^{n}}-\alpha \in \hat{\mathbb{Z}}_{2}[X]$. Then $\hat{\mathbb{Q}}_{2}(\theta)$ is a totally ramified field extension of $\hat{\mathbb{Q}}_{2}$ and $\hat{\mathbb{Z}}_{2}[\theta]$ is the ring of all integral elements of $\hat{\mathbb{Q}}_{2}(\theta)$ (see [27, p. 192]). Because $\hat{\mathbb{Z}}_{2}^{\mu} G_{2} \cong \hat{\mathbb{Z}}_{2}[\theta]$, and $\hat{\mathbb{Z}}_{2}[\theta]$ is a principal ideal domain, every indecomposable $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$-module is isomorphic to the regular module. Since $\operatorname{End}_{\hat{\mathbb{Z}}_{2}^{\mu} G_{2}}\left(\hat{\mathbb{Z}}_{2}^{\mu} G_{2}\right) \cong \mathbb{Z}_{2}$, the algebra $\hat{\mathbb{Z}}_{2}^{\lambda} G_{2}$ is of OTP representation type, by Lemmas 2.3, 2.4, 2.6.

Assume now that $\alpha \equiv 1(\bmod 4)$, i.e. $\mu \in Z^{2}\left(G_{2}, U_{f}\left(\hat{\mathbb{Z}}_{2}\right)\right)$. It is easy to show that $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}=\left[G_{2}, \hat{\mathbb{Z}}_{2}, 5^{2^{k}}\right]$, where $k=0$ if $\alpha \not \equiv 1(\bmod 8) ; k=1$ if $\alpha \equiv 1(\bmod 8)$ and $\alpha \not \equiv 1(\bmod 16) ; k \geqslant 2$ if $\alpha \equiv 1(\bmod 16)$. If one of the conditions (ii)-(v) is satisfied, then $\hat{\mathbb{Z}}_{2}^{\lambda} G$ is of OTP representation type, by Lemmas 2.3 2.6, 2.10 and 4.4, 4.5. Conversely, let $\hat{\mathbb{Z}}_{2}^{\lambda} G$ be of OTP representation type. If μ is a 2-coboundary, then $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}=\hat{\mathbb{Z}}_{2} G_{2}$, and in view of Lemma 2.10, one of conditions (iii), (v) is satisfied. Suppose μ is not
a 2-coboundary. By Lemma 4.1, the center of $\hat{\mathbb{Q}}_{2} B$ is 2 -irreducible. Suppose that $\alpha \equiv 1(\bmod 8)$. If $n=2$ then $\alpha \not \equiv 1(\bmod 16)$. If $n \geq 3$ then, by Lemmas 2.3. 2.6, 4.3 and Proposition 2.12, condition (v) is satisfied.

Under the identification of the field $\hat{\mathbb{Q}}_{2}$ with the field $\left\{\alpha u_{e}: \alpha \in \hat{\mathbb{Q}}_{2}\right\}$, we can reformulate Theorem 4.6 as follows.

Theorem 4.7. Let G_{2} be a cyclic group of order $2^{n}, G=G_{2} \times B$, $\mu \in Z^{2}\left(G_{2}, U\left(\hat{\mathbb{Z}}_{2}\right)\right), \nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{2}\right)\right)$ and $\lambda=\mu \times \nu$. The algebra $\hat{\mathbb{Z}}_{2}^{\lambda} G$ is of OTP representation type if and only if one of the following conditions is satisfied:
(i) $\hat{\mathbb{Q}}_{2}^{\mu} G_{2}$ is a totally ramified field extension of $\hat{\mathbb{Q}}_{2}$;
(ii) $\widehat{\mathbb{Q}}_{2}^{\mu} G_{2}$ is a field and the center of $\hat{\mathbb{Q}}_{2} B$ is 2 -irreducible;
(iii) $n \leq 2$ and $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$ is the group algebra of G_{2} over $\hat{\mathbb{Z}}_{2}$;
(iv) $n=2$, the number of simple blocks of $\hat{\mathbb{Q}}_{2}^{\mu} G_{2}$ is 2 and the center of $\widehat{\mathbb{Q}}_{2} B$ is 2 -irreducible;
(v) $\widehat{\mathbb{Q}}_{2}$ is a splitting field for $\hat{\mathbb{Q}}_{2} B$.

Proposition 4.8. Let G_{2} be a non-cyclic 2-group, $G=G_{2} \times B, \mu \in$ $Z^{2}\left(G_{2}, U_{f}\left(\hat{\mathbb{Z}}_{2}\right)\right)$ and $\lambda=\mu \times 1 \in Z^{2}\left(G, U_{f}\left(\hat{\mathbb{Z}}_{2}\right)\right)$. The algebra $\hat{\mathbb{Z}}_{2}^{\lambda} G$ is of OTP representation type if and only if $\hat{\mathbb{Q}}_{2}$ is a splitting field for $\hat{\mathbb{Q}}_{2} B$.

Proof. By Lemmas 2.2 and 2.10, we may assume that G_{2} is abelian and $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$ is not the group algebra $\mathbb{Z}_{2} G_{2}$. Denote by H the socle of G_{2}. If H is of type $(2,2)$ and $\hat{\mathbb{Z}}_{2}^{\mu} H$ is not $\hat{\mathbb{Z}}_{2} H$, the assertion follows from Lemmas 2.3 2.6, 4.1, 4.2 and Proposition 2.13. Let $|H|>4$. There exists a non-cyclic subgroup D of H such that $\hat{\mathbb{Z}}_{2}^{\mu} D$ is $\mathbb{Z}_{2} D$. By applying Lemmas 2.5, 2.10 and Proposition 2.13, the proof follows in this case.

Proposition 4.9. Let G_{2} be an abelian 2-group, $G=G_{2} \times B, \mu \in$ $Z^{2}\left(G_{2}, U_{t}\left(\hat{\mathbb{Z}}_{2}\right)\right)$ and $\lambda=\mu \times 1 \in Z^{2}\left(G, U_{t}\left(\mathbb{Z}_{2}\right)\right)$. Assume that $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$ is a commutative algebra. Then $\hat{\mathbb{Z}}_{2}^{\lambda} G$ is of OTP representation type if and only if one of the following conditions is satisfied:
(i) G_{2} is cyclic and μ is not a 2-coboundary;
(ii) G_{2} is cyclic of order 2 or 4 ;
(iii) G_{2} is of type $\left(2^{n}, 2\right)$ and the number of simple blocks of $\hat{\mathbb{Q}}_{2}^{\mu} G_{2}$ is 2 ;
(iv) $\widehat{\mathbb{Q}}_{2}$ is a splitting field for $\hat{\mathbb{Q}}_{2} B$.

Proof. If G_{2} has at least three invariants, there is a non-cyclic subgroup H of G_{2} such that $\hat{\mathbb{Z}}_{2}^{\mu} H=\hat{\mathbb{Z}}_{2} H$. Applying Lemma 2.10 and Proposition 2.13. we deduce the proposition.

Assume that G_{2} has two invariants and μ is not a 2 -coboundary. Then $G_{2}=\langle a\rangle \times\langle b\rangle$ and $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}=\left[G_{2}, \hat{\mathbb{Z}}_{2},-1,1\right]$. Let $|a|=2^{n}$ and $|b|=2^{m}$. Arguing as in the proof of Lemma 3.4, we conclude that if $m \geq 2$ then, for
any finite field F of characteristic 2 , there is an indecomposable $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$-module M such that $\overline{\operatorname{End}_{\mathbb{\mathbb { Z }}_{2}^{\mu} G_{2}}(M) \cong F \text {. In view of Lemmas } 2.3,2.6, \hat{\mathbb{Z}}_{2}^{\lambda} G \text { is of OTP }}$ representation type if and only if $\hat{\mathbb{Q}}_{2}$ is a splitting field for $\hat{\mathbb{Q}}_{2} B$.

Let $m=1$. Denote by ξ a root of the polynomial $X^{2^{n}}+1$. The field $\hat{\mathbb{Q}}_{2}(\xi)$ is a totally ramified extension of $\hat{\mathbb{Q}}_{2}$ of degree 2^{n}, and $R:=\hat{\mathbb{Z}}_{2}[\xi]$ is the ring of all integral elements of $\hat{\mathbb{Q}}_{2}(\xi)$. One can view $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$ as the group algebra $R H$ of the group $H=\langle b\rangle$ of order 2 over R. Up to equivalence, the indecomposable matrix R-representations of $R H$ are the following:

$$
\Gamma_{1}: u_{b} \mapsto 1, \quad \Gamma_{2}: u_{b} \mapsto-1, \quad \Gamma_{j+3}: u_{b} \mapsto\left(\begin{array}{cc}
1 & \pi^{j} \\
0 & -1
\end{array}\right)
$$

where $\pi=1-\xi$ and $j=0,1, \ldots, 2^{n}-1$. Denote by M_{i} the underlying $R H$ module of the representation Γ_{i} for $i \in\left\{1, \ldots, 2^{n}+2\right\}$. Since $\overline{\operatorname{End}_{R H}\left(M_{i}\right)} \cong$ $\bar{R}=\mathbb{Z}_{2}$ for every i, we see that $\hat{\mathbb{Z}}_{2}^{\lambda} G$ is of OTP representation type, by Lemmas 2.3 2.6. Note that in this case the number of simple blocks of $\hat{\mathbb{Q}}_{2}^{\mu} G_{2}$ equals 2 .

In the case when G_{2} is a cyclic group of order 2^{n} and μ is not a 2-coboundary we have $\hat{\mathbb{Z}}_{2}^{\mu} G_{2} \cong \hat{\mathbb{Z}}_{2}[\xi]$, where $\xi^{2^{n}}=-1$. Because $\hat{\mathbb{Z}}_{2}[\xi]$ is a principal ideal domain, each indecomposable $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$-module is isomorphic to the regular module. Moreover, $\overline{\operatorname{End}_{\hat{\mathbb{Z}}_{2}^{\mu} G_{2}}\left(\hat{\mathbb{Z}}_{2}^{\mu} G_{2}\right)} \cong \mathbb{Z}_{2}$. By Lemmas 2.3 2.4 and 2.6. $\hat{\mathbb{Z}}_{2}^{\lambda} G$ is of OTP representation type.

Proposition 4.10. Let G_{2} be an abelian 2-group, $G=G_{2} \times B, \mu \in$ $Z^{2}\left(G_{2}, U\left(\hat{\mathbb{Z}}_{2}\right)\right)$ and $\lambda=\mu \times 1 \in Z^{2}\left(G, U\left(\hat{\mathbb{Z}}_{2}\right)\right)$. Assume that the algebra $\hat{\mathbb{Z}}_{2}^{\mu} G_{2}$ is commutative and the number of invariants of G_{2} is at least 3. Then $\hat{\mathbb{Z}}_{2}^{\lambda} G$ is of OTP representation type if and only if $\hat{\mathbb{Q}}_{2}$ is a splitting field for $\hat{\mathbb{Q}}_{2} B$.

Proof. Let $D=\operatorname{soc} G_{2}$. There is a subgroup T of type $(2,2)$ in D such that $\hat{\mathbb{Z}}_{2}^{\mu} T$ is either the group algebra, or the algebra as in Lemma 4.2. Now we may apply Lemmas 2.3 2.6 and Proposition 2.13 .
5. Finite groups of OTP projective representation type. First we remark that, in view of (2.2), Propositions $2.2-2.9$ in [5] relating to splitting fields for a twisted group algebra $K^{\nu} B$, where K is a field of characteristic p and B is a finite p^{\prime}-group, remain valid also in the case when $K=\hat{\mathbb{Q}}_{p}$ and $\nu \in Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$.

Proposition 5.1. Let $p \neq 2$ and $G=G_{p} \times B$ with G_{p} / G_{p}^{\prime} not of type $\left(p^{n}, p\right)$. The group G is of OTP projective $\hat{\mathbb{Z}}_{p}$-representation type if and only if one of the following conditions is satisfied:
(i) G_{p} is cyclic;
(ii) $\hat{\mathbb{Q}}_{p}$ is a splitting field of $\hat{\mathbb{Q}}_{p}^{\nu} B$ for certain $\nu \in Z^{2}\left(B, U_{t}\left(\hat{\mathbb{Z}}_{p}\right)\right)$.

Proof. Apply Theorems 3.5 and 3.8 .
Proposition 5.2. Let $p \neq 2, G=G_{p} \times B$ be an abelian group with G_{p} not of type (p^{n}, p). The group G is of OTP projective $\hat{\mathbb{Z}}_{p}$-representation type if and only if one of the following conditions is satisfied:
(i) G_{p} is cyclic;
(ii) B has a subgroup H such that B / H is of symmetric type, i.e. $B / H \cong$ $D \times D$, and $p-1$ is divisible by $m:=\max \{\exp H, \exp (B / H)\}$.

Proof. Apply Theorems 3.5, 3.8 and [5, Proposition 2.5].
Proposition 5.3. Let $p \neq 2, G_{p}$ be an abelian p-group, B be a nilpotent p^{\prime}-group and $G=G_{p} \times B$. Assume that G_{p} is not of type $\left(p^{n}, p\right)$ and $p-1$ is not divisible by q for some prime q dividing $|B|$. The group G is of OTP projective $\hat{\mathbb{Z}}_{p}$-representation type if and only if G_{p} is cyclic.

Proof. Apply Theorems 3.5, 3.8 and [5, Proposition 2.7].
Our final main result of this paper is the following theorem.
Theorem 5.4. The group $G=G_{p} \times B$ is of purely OTP projective $\hat{\mathbb{Z}}_{p}$-representation type if and only if one of the following conditions is satisfied:
(i) $p \neq 2$ and G_{p} is a cyclic group of order p or p^{2};
(ii) $p=2, G_{2}$ is a cyclic group of order 2 or 4 and the center of $\hat{\mathbb{Q}}_{2} B$ is 2 -irreducible;
(iii) $p \neq 2$ and there exists a finite central group extension $1 \rightarrow A \rightarrow$ $\widehat{B} \rightarrow B \rightarrow 1$ such that any projective $\widehat{\mathbb{Q}}_{p}$-representation of B with a 2 -cocycle in $Z^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)$ lifts projectively to an ordinary $\widehat{\mathbb{Q}}_{p^{-}}$ representation of \widehat{B} and $\widehat{\mathbb{Q}}_{p}$ is a splitting field for $\widehat{\mathbb{Q}}_{p} \widehat{B}$;
(iv) $p=2$ and $\hat{\mathbb{Q}}_{2}$ is a splitting field for $\hat{\mathbb{Q}}_{2} B$.

Proof. Apply Lemma 2.10. Theorems 3.5, 4.6 and [5, Proposition 2.9]. .
Corollary 5.5. Let $G=G_{p} \times B$ and $B^{\prime} \neq B$. The group G is of purely OTP projective $\hat{\mathbb{Z}}_{p}$-representation type if and only if one of the following conditions is satisfied:
(i) $p \neq 2$ and G_{p} is a cyclic group of order p or p^{2};
(ii) $p=2, G_{2}$ is a cyclic group of order 2 or 4 and the center of $\hat{\mathbb{Q}}_{2} B$ is 2-irreducible.

Proof. Let $p \neq 2$. There is a normal subgroup H of B such that $\bar{B}:=$ B / H is a cyclic group of order q, where q is a prime divisor of $|B|$. Let $p-1=q^{m} k$, where $m \geq 1$ and $(q, k)=1$. Denote by ξ a primitive q^{m} th root
of 1 and by $\hat{\mathbb{Z}}_{p}^{\bar{\nu}} \bar{B}$ the algebra

$$
\bigoplus_{i=0}^{q-1} \hat{\mathbb{Z}}_{p} u^{i}, \quad u^{q}=\xi
$$

Since $\hat{\mathbb{Q}}_{p}$ is not a splitting field for $\hat{\mathbb{Q}}_{p}^{\bar{\nu} \bar{B}}=\hat{\mathbb{Q}}_{p} \otimes_{\hat{\mathbb{Z}}_{p}} \hat{\mathbb{Z}}_{p}^{\bar{\nu}} \bar{B}$, there is a twisted group algebra $\hat{\mathbb{Z}}_{p}^{\nu} B$ such that $\hat{\mathbb{Q}}_{p}$ is not a splitting field for $\hat{\mathbb{Q}}_{p}^{\nu} B$. If q does not divide $p-1$, then $\hat{\mathbb{Q}}_{p}$ is not a splitting field for $\hat{\mathbb{Q}}_{p} \bar{B}$. It follows that $\hat{\mathbb{Q}}_{p}$ is not a splitting field for $\hat{\mathbb{Q}}_{p} B$. Applying Theorem 5.4, we conclude that G is of purely OTP projective $\hat{\mathbb{Z}}_{p}$-representation type if and only if G_{p} is a cyclic group of order p or p^{2}. In the case when $p=2$ the corollary follows in a similar way.

Corollary 5.6. Let $p \neq 2$ and $G=G_{p} \times B$. Assume that $p-1$ is not divisible by every prime q dividing $|B|$. Then $\mathrm{H}^{2}\left(B, U\left(\hat{\mathbb{Z}}_{p}\right)\right)=1$ and G is of purely OTP projective $\hat{\mathbb{Z}}_{p}$-representation type if and only if either $\hat{\mathbb{Q}}_{p}$ is a splitting field for $\widehat{\mathbb{Q}}_{p} B$, or G_{p} is a cyclic group of order $p^{r}, r \leq 2$.

Proof. Apply [29, Theorem 1.7, p. 11] and Theorem 5.4

References

[1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2006.
[2] L. F. Barannyk, Modular projective representations of direct products of finite groups, Publ. Math. Debrecen 63 (2003), 537-554.
[3] L. F. Barannyk, Finite-dimensional twisted group algebras of semi-wild representation type, Colloq. Math. 120 (2010), 277-298.
[4] L. F. Barannyk, Indecomposable projective representations of direct products of finite groups over a field of characteristic p, Comm. Algebra 40 (2012), 2540-2556.
[5] L. F. Barannyk, Finite groups of OTP projective representation type, Colloq. Math. 126 (2012), 35-51.
[6] L. F. Barannyk and P. M. Gudyvok, Projective representations of finite groups over number rings, Mat. Sb. 82 (124) (1970), 423-443 (in Russian); English transl.: Math. USSR-Sb. 11 (1970), 391-410.
[7] L. F. Barannyk and D. Klein, Indecomposable projective representations of direct products of finite groups over a ring of formal power series, Prace Nauk. Akad. Jana Długosza Częstochowa Mat. 15 (2010), 9-24.
[8] L. F. Barannyk and D. Klein, On twisted group algebras of OTP representation type, Colloq. Math. 127 (2012), 213-232.
[9] L. F. Barannyk and D. Klein, Finite groups of OTP projective representation type over a complete discrete valuation domain of positive characteristic, Colloq. Math. 129 (2012), 173-187.
[10] L. F. Barannyk and D. Klein, Twisted group algebras of strongly unbounded representation type of finite groups over a commutative local noetherian ring of characteristic p^{k}, Comm. Algebra 42 (2014), 4131-4147.
[11] S. D. Berman and P. M. Gudyvok, Indecomposable representations of finite groups over the ring of p-adic integers, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 875-910 (in Russian); English transl.: Amer. Math. Soc. Transl. Ser. (2) 50 (1966), 77-113.
[12] H. I. Blau, Indecomposable modules for direct products of finite groups, Pacific J. Math. 54 (1974), 39-44.
[13] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, 1966.
[14] R. Brauer and W. Feit, An analogue of Jordan's theorem in characteristic p, Ann. of Math. 84 (1966), 119-131.
[15] P. M. Cohn, Algebra, Vol. 1, Wiley, 1982.
[16] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, 1962.
[17] C. W. Curtis and I. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 1, Wiley, 1981.
[18] C. W. Curtis and I. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 2, Wiley, 1987.
[19] P. Dowbor and D. Simson, Quasi-Artin species and rings of finite representation type, J. Algebra 63 (1980), 435-443.
[20] P. Dowbor and D. Simson, A characterization of hereditary rings of finite representation type, Bull. Amer. Math. Soc. 2 (1980), 300-302.
[21] Yu. A. Drozd, Cohen-Macaulay modules and vector bundles, in: Interactions between Ring Theory and Representations of Algebras (Murcia), Lecture Notes in Pure Appl. Math. 210, Dekker, 2000, 107-130.
[22] Yu. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras, Springer, 1994.
[23] P. M. Gudyvok, On modular and integral representations of finite groups, Dokl. Akad. Nauk SSSR 214 (1974), 993-996 (in Russian); English transl.: Soviet Math. Dokl. 15 (1974), 264-269.
[24] P. M. Gudyvok, On modular and integral P-adic representations of a direct product of groups, Ukr. Math. Zh. 29 (1977), 580-588 (in Russian); English transl.: Ukr. Math. J. 29 (1977), 443-450.
[25] P. M. Gudyvok, On representations of a direct product of groups over complete discretely normed rings, Dokl. Akad. Nauk SSSR 237 (1977), 25-27 (in Russian); English transl.: Soviet Math. Dokl. 18 (1977), 1388-1391.
[26] P. M. Gudyvok, On representations of a direct product of finite groups over complete discrete valuation rings, Ukr. Math. Bull. 2 (2005), 67-75; transl. of: Ukr. Mat. Visn. 2 (2005), 65-73.
[27] H. Hasse, Zahlentheorie, Akademie-Verlag, 1969.
[28] G. Karpilovsky, Group Representations. Vol. 1. Part B, North-Holland Math. Stud. 175, North-Holland, 1992.
[29] G. Karpilovsky, Group Representations. Vol. 2, North-Holland Math. Stud. 177, North-Holland, 1993.
[30] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992.
[31] D. Simson, Cohen-Macaulay modules over classical orders, in: Interactions Between Ring Theory and Representations of Algebras (Murcia), Lecture Notes in Pure Appl. Math. 210, Dekker, 2000, 345-382.
[32] D. Simson, On Corner type endo-wild algebras, J. Pure Appl. Algebra 202 (2005), 118-132.
[33] D. Simson and A. Skowroński, The Jacobson radical power series of module categories and the representation type, Bol. Soc. Mat. Mexicana (3) 5 (1999), 223-236.
[34] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 3: Representation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge Univ. Press, 2007.
[35] Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Math. Soc. Lecture Note Ser. 146, Cambridge Univ. Press, 1990.

Leonid F. Barannyk, Dariusz Klein
Institute of Mathematics
Pomeranian University of Słupsk
Arciszewskiego 22d
76-200 Słupsk, Poland
E-mail: barannykleo@poczta.onet.pl darekklein@poczta.onet.pl

[^0]: 2010 Mathematics Subject Classification: Primary 16G60; Secondary 20C20, 20C25.
 Key words and phrases: outer tensor product, projective representation, representation type, twisted group algebra.
 Received 9 July 2015; revised 9 November 2015.

