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EVOLUTION DIFFERENTIAL EQUATIONS IN
FRÉCHET SEQUENCE SPACES

BY

OLEG ZUBELEVICH (Moscow)

Abstract. We consider evolution differential equations in Fréchet spaces with un-
conditional Schauder basis, and construct a version of the majorant functions method
to obtain existence theorems for Cauchy problems. Applications to PDE are also consid-
ered.

1. Introduction. Countable systems of ordinary differential equations
appear in different areas of differential equations and applications: see, for
example, [10], [2].

The most famous problem which leads to such a system is the Cauchy–
Kovalevskaya problem in the case nonanalytic in time. To reduce this prob-
lem to a countable system of ODEs one must expand the solution in the
Taylor series in spatial variables and substitute this expansion to the corre-
sponding initial value problem; then the Taylor coefficients satisfy infinite
system of ODEs.

The Cauchy–Weierstrass–Kovalevskaya method of majorant functions
can be modified for the case nonanalytic in time to obtain the corresponding
existence theorem [17]. Generally, when applied to the Cauchy–Kovalevskaya
problem, this modification does not give anything different from the results
of Nirenberg and Nishida [8]. Nevertheless, in some cases this method allows
one to obtain global in time existence theorems or at least effective estimates
for the solution’s existence time [12].

Another application of the majorant functions method is to initial value
problems with non-Lipschitz right hand side. It is well known that in infinite-
dimensional spaces such problems in general do not have solutions. But the
majorant functions method allows one to prove existence theorems in some
special cases.
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This article is devoted to a generalisation of this method to countable
systems of ODEs in Fréchet spaces with Schauder bases.

For example, D(Tm), Tm = Rm/(2πZ)m, is a Fréchet space with the
unconditional Schauder basis {ei(k,x)}, k ∈ Zm. Other examples are given
below.

Note that our theorems are closely related to the results of Müller [7]
and Uhl [13]. Theorem 2.4 when applied to Rm turns out to be a special
case of Müller’s result.

A generalisation of Müller’s theorem is presented in [13]. In that article
ODEs in partially ordered Banach spaces are considered, and the main con-
ditions on the right side of the equation ẋ = f(t, x) are formulated in terms
of a measure of noncompactness (see also [14]). The results of [13], [14] do
not allow one to consider partial differential equations, in particular they do
not imply the Cauchy–Kovalevskaya theorem.

2. Main theorems. Let E stand for a Fréchet space. Its topology is
defined by a collection {‖ · ‖n}n∈N of seminorms.

Recall that such a space is completely metrizable by the metric

ρ(x, y) =
∞∑
k=1

1

2k
min{1, ‖x− y‖k}.

Definition 2.1. A sequence {ek}k∈N ⊂ E is called a Schauder basis in
E if for every x ∈ E there is a unique sequence {xk}k∈N of scalars such that

(2.1) x =

∞∑
k=1

xkek,

where the series is convergent in the topology of E.

We shall say that {ek}k∈N is an unconditional basis if for any x ∈ E and
any permutation π : N→ N the sum

∞∑
k=1

xπ(k)eπ(k)

is convergent.

In what follows we assume that E has an unconditional Schauder basis.

We write IT = [0, T ], T > 0, and I∞ = [0,∞). If not explicitly stated
otherwise, we assume that T <∞.

Definition 2.2. We shall say that an element y =
∑∞

k=1 ykek is a ma-
jorant for an element x =

∑∞
k=1 xkek, and write x� y, if

|xk| ≤ yk, k ∈ N.
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Definition 2.3. We shall say that x(·) ∈ C1(IT , E) if for each t ∈ IT
there exists an element ẋ(t) ∈ E such that for all i one has

(2.2) lim
h→0

∥∥∥∥x(t+ h)− x(t)

h
− ẋ(t)

∥∥∥∥
i

= 0,

and ẋ ∈ C(IT , E).
In (2.2) it is assumed that if t = 0 then h > 0, and h < 0 provided t = T .

Fix y ∈ E and let Xj [y] : E → E stand for the following affine mappings:

X1[y]x = y1e1 +
∞∑
k=2

xkek,

Xj [y]x =

j−1∑
k=1

xkek + yjej +

∞∑
k=j+1

xkek, j > 1.

Let X(·) =
∑∞

k=1Xk(·)ek ∈ C(IT , E) be such that

Xk(t) ≥ 0, k ∈ N, t ∈ IT ,
and Xk(·) ∈ C1(IT ). Set

WX = {(t, x) ∈ IT × E | x� X(t)}.
Consider the initial value problem

ẋ = f(t, x), x(0) = x̂,(2.3)

f(t, x) =

∞∑
k=1

fk(t, x)ek, f ∈ C(WX , E).

Theorem 2.4. Suppose that Xk(t) > 0 for all k ∈ N and t ∈ IT , and
for each (t, x) ∈WX one has

±fk(t,Xk[±X(t)]x) ≤ Ẋk(t), x̂� X(0).

(Here and below, this means that for each k two inequalities hold.) Then
problem (2.3) has a solution x ∈ C1(IT , E) such that

x(t)� X(t), t ∈ IT .
Remark 2.5. The function X satisfying the conditions of Theorem 2.4

is called a majorant function for problem (2.3).

This theorem develops corresponding results of [17] and, like the theo-
rems from that article, implies the classical Cauchy–Kovalevskaya theorem
and a number of its generalisations.

Theorem 2.6. Suppose that T = ∞ and the function f is ω-periodic
(ω > 0) in t. Suppose also that Xk(t) > 0 for all k ∈ N and t ∈ IT , and for
each (t, x) ∈WX one has

±fk(t,Xk[±X(t)]x) ≤ Ẋk(t),
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and X(ω) � X(0). Then problem (2.3) has a solution x̃ ∈ C1(I∞, E) such
that

x̃(t)� X(t), x̃(t+ ω) = x̃(t), t ∈ I∞.

Theorems 2.4 and 2.6 are proved in Section 4.

The following technical proposition is useful for proving continuity of
some mappings.

Proposition 2.7. Let A =
∑∞

k=1Akek ∈ E with Ak ≥ 0 be a fixed
element. Assume that a sequence xn =

∑∞
k=1 xknek is contained in

KA =
{
y =

∞∑
k=1

ykek ∈ E
∣∣∣ |yk| ≤ Ak}

and is weakly convergent: for all k, we have xkn → xk as n → ∞. Then
x =

∑∞
k=1 xkek ∈ KA and the sequence {xn} is convergent in E, i.e.

ρ(xn, x)→ 0.

This is proved by the methods developed in Section 4.

2.1. Nonnegative solutions. In this section we formulate another pair
of theorems which belong to the same range of ideas. We do not give their
proofs since they repeat the argument of Section 4 up to evident modifica-
tions.

Endow the space E with a partial order ≺ by the following rule.

Definition 2.8. We shall write x =
∑∞

k=1 xkek ≺ y =
∑∞

k=1 ykek iff

xk ≤ yk, k ∈ N.

Set

W+
X = {(t, x) ∈ IT × E | 0 ≺ x ≺ X(t)}.

Assume that f ∈ C(W+
X , E).

Theorem 2.9. Suppose that Xk(t) > 0 for all k ∈ N and t ∈ IT , and
for each (t, x) ∈W+

X one has

fk(t,Xk[X(t)]x) ≤ Ẋk(t), 0 ≺ x̂ ≺ X(0),

and fk(t,Xk[0]x) ≥ 0. Then problem (2.3) has a solution x ∈ C1(IT , E) such
that

0 ≺ x(t) ≺ X(t), t ∈ IT .

Theorem 2.10. Suppose that T = ∞ and the function f is ω-periodic
(ω > 0) in t. Suppose also that Xk(t) > 0 for all k ∈ N and t ∈ IT , and for
each (t, x) ∈W+

X one has

fk(t,Xk[X(t)]x) ≤ Ẋk(t),
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and fk(t,Xk[0]x) ≥ 0. Moreover suppose that X(ω) � X(0). Then prob-
lem (2.3) has a solution x̃ ∈ C1(I∞, E) such that

0 ≺ x̃(t) ≺ X(t), x̃(t+ ω) = x̃(t), t ∈ I∞.

3. Applications

3.1. Linear PDEs. To avoid technical details we restrict ourselves to
the case of PDEs with one-dimensional spatial variable. However the propo-
sitions below can easily be proved for systems with multidimensional spatial
variable.

3.1.1. The existence theorem. Let O(C) stand for the space of entire
functions u : C→ C. This is a Fréchet space with seminorms

‖v‖n = max
|z|≤n

|v(z)|, n ∈ N,

and with Schauder basis ej = zj , j ∈ Z+ = {0, 1, 2, . . .}.
Let E ⊂ O(C) be the space of entire functions v : C → C such that

v(z) = v(z).

Fix T > 0 and let a, b ∈ C(IT ,R). Consider the initial value problem

(3.1) vt(t, z) = b(t)v(t, z) + a(t)zm
∂Nv(t, z)

∂zN
, v(0, z) = v̂(z).

Here N > m ≥ 0 are some integers. Set

qjmN =
(j −m+N)!

(j −m)!
, j ≥ m, a∗ = ‖a‖C(IT ).

We assume that a∗ 6= 0. Take arbitrary positive constants U0, . . . , UN−1 and
define other constants recurrently by

Uj−m+N =
Uj

a∗qjmN
, j ≥ m.

It is not hard to show that U(z) :=
∑∞

j=0 Ujz
j ∈ E.

Proposition 3.1. Suppose that v̂ � U . Then problem (3.1) has a solu-

tion v(·, z) ∈ C1(IT , E) and v(t, z)� e
	t
0 b(s) ds+tU(z) for all t ∈ IT and all

z ∈ C.

Note that this proposition does not follow from the results of [1].

Indeed, after the change of variable v = e
	t
0 b(s) ds+tu problem (3.1) takes

the form

(3.2) ut(t, z) = −u(t, z) + a(t)zm
∂Nu(t, z)

∂zN
, u(0, z) = v̂(z).
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In coordinate notation problem (3.2) has the form u(t, z) =
∑∞

j=0 uj(t)z
j ,

where

(3.3)
u̇j = −uj , uj(0) = v̂j , j < m,

u̇j = −uj + qjmNa(t)uj−m+N , uj(0) = v̂j , j ≥ m.
To apply Theorem 2.4 to problem (3.3) observe that whenever |ul| ≤ Ul for
all l ≥ m, we have

±
(
−(±Uj) + a(t)qjmNuj−m+N

)
≤ −Uj + a∗qjmNUj−m+N = 0 = U̇j , j ≥ m,

completing the proof.

3.1.2. Periodic solutions. Let us redefine the sequence {Uk}. Take a se-
quence Fk ≥ 0, k ∈ N, and let U0, . . . , UN−1 be arbitrary positive constants.
Then set

Uj−m+N =
Uj

a∗qjmN + Fj
, j ≥ m.

It is not hard to show that U(z) :=
∑∞

j=0 Ujz
j ∈ E.

Consider the system

(3.4) ut(t, z) = −u(t, z) + a(t)zm
∂Nu(t, z)

∂zN
+ f(t, z).

Assume that

f(t, z) :=
∞∑
k=0

fk(t)z
k ∈ C(I∞, E)

and the fk are ω-periodic functions.

Proposition 3.2. Suppose that for j ≥ m,

max
t∈Iω
|fj(t)| ≤ FjUj−m+N .

Then system (3.4) has an ω-periodic solution u(·, z) ∈ C1(I∞, E).

In coordinate notation problem (3.4) has the form

(3.5)
u̇j = −uj + fj , j < m,

u̇j = −uj + qjmNa(t)uj−m+N + fj , j ≥ m.

To apply Theorem 2.6 to problem (3.5) observe that whenever |ul| ≤ Ul for
all l ≥ m, we have

±
(
−(±Uj) + a(t)qjmNuj−m+N + fj(t)

)
≤ −Uj + a∗qjmNUj−m+N + FjUj−m+N = 0 = U̇j , j ≥ m,

completing the proof.
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3.2. Periodic solutions to the Smoluchowski equation. In this
section we consider the IVP

(3.6) ẋk = ck +
1

2

∑
i+j=k

bijxixj − xk
∑
j

bkjxj , xk(0) = x̂k, i, j, k ∈ N.

The functions ci, bij ∈ C(IT ) are nonnegative, and

bij = bji, x̂k ≥ 0.

For this IVP, nonnegative solutions xk are of interest.

In [5], [16] existence theorems have been proved under the following
assumptions: bij(t) ≤ (i+ j)α with some α ∈ [0, 1] and x̂k, ck = O(c/kp) as
k → ∞, with some p > α. The solutions obtained are bounded in certain
norms on bounded intervals.

We do not assume anything about the growth of the coefficients bij for
i 6= j. On the other hand, we assume that the coefficients bkk grow fast
enough. Under these assumptions we prove the existence of global in time
bounded solutions and the existence of a periodic solution when the coeffi-
cients bij , ck are periodic.

Assume that

ck(t) ≤ Ck, bkk(t) ≥ βk, bij(t) ≤ Bij
for all i, j, k ∈ N and t ∈ IT , with some nonnegative constants Ck, Bij , βk.
Set

X1 =
√
C1/β1, Xk =

√
Ck + 1

2

∑
i+j=k BijXiXj

βk
, k = 2, 3, . . . .

We assume that the constants βk are so large that

bk =

∞∑
j=1

BkjXj <∞.

Set

Ak = Ck +
1

2

∑
i+j=k

BijXiXj +Xkbk, Fk = max{1, Ak, Xk}.

We introduce a Banach space E of all sequences x = {xk} with

‖x‖ =

∞∑
k=1

1

k2Fk
|xk| <∞.

Evidently, this space possesses an unconditional Schauder basis ej = {δij}i∈N.
Note that

A =
∑
k∈N

Akek, X =
∑
k∈N

Xkek ∈ E.
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Proposition 3.3. Assume that x̂ ≺ X. Then problem (3.6) has a solu-
tion x ∈ C1(IT , E) such that

0 ≤ xk(t) ≤ Xk, t ∈ IT .
Moreover, if the functions bij and cj are ω-periodic then there is a solution
x̃ ∈ C1(I∞, E) that is also ω-periodic and 0 ≤ x̃k(t) ≤ Xk for all k.

Proof. We wish to apply Theorems 2.9 and 2.10.
For 0 ≤ xs ≤ Xs, s ∈ N, and xk = 0 one assumption of the theorems is

satisfied identically:

ck +
1

2

∑
i+j=k

bijxixj ≥ 0.

Another assumption to check is for 0 ≤ xs ≤ Xs, s ∈ N, and xk = Xk:

ck +
1

2

∑
i+j=k

bijxixj − xk
∑
j

bkjxj

≤ Ck +
1

2

∑
i+j=k

BijXiXj −X2
kβk ≤ Ẋk = 0.

It remains to show that the mapping

f(t, x) =
∞∑
k=1

fk(t, x)ek, fk = ck +
1

2

∑
i+j=k

bijxixj − xk
∑
j

bkjxj ,

is continuous from W+
X to E. Observe that f(t, x)� A for each (t, x) ∈W+

X .
Now the continuity follows from Proposition 2.7.

4. Proof of main theorems

4.0.1. A short digression in functional analysis. Let Pn : E → E be the
projection

Pn
( ∞∑
k=1

xkek

)
=

n∑
k=1

xkek.

Set Qn = id− Pn.
Theorem 4.1. Let λ = {λj}j∈N ∈ `∞ and define

Mλx =

∞∑
k=1

λkxkek.

Then for any i′ ∈ N there exist i ∈ N and a positive constant c, both inde-
pendent of λ, such that

‖Mλx‖i′ ≤ c‖λ‖∞ · ‖x‖i.
In particular, Theorem 4.1 implies that the operators Pn,Qn are contin-

uous. Theorem 4.1 is proved in Section 6.
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Lemma 4.2. The set WX is compact in IT × E.

Proof. Consider the continuous mappings

vn : IT → E, vn(t) = QnX(t).

This sequence is pointwise convergent to zero: vn(t) → 0 as n → ∞ for
any fixed t ∈ IT . On the other hand, this sequence is uniformly continuous
on IT .

Indeed, by Theorem 4.1 the mappings Qn are uniformly continuous, so
for any i′ there exist a constant c > 0 and i such that

‖vn(t′)− vn(t′′)‖i′ ≤ c‖X(t′)−X(t′′)‖i.
But the mapping X is uniformly continuous on the compact set IT .

Consequently, vn(t)→ 0 uniformly in IT [11].
Evidently, the set WX is closed. We will prove the lemma if we show that

the sets
An = {(t,Pnx) ∈ IT × E | x� X(t)}

form a sequence of compact ε-nets in WX .
Indeed, each set An is closed and bounded in Rn+1.
Let (t, x) ∈WX and employ Theorem 4.1 with

λk(t) = xk/Xk(t), |λk(t)| ≤ 1.

Then it follows that for any i′ ∈ N there exist i ∈ N and a constant c such
that

‖x− Pnx‖i′ = ‖Mλ(t)QnX(t)‖i′ ≤ c‖vn(t)‖i.
Therefore sup(t,x)∈WX

‖x− Pnx‖i′ → 0 as n→∞, proving the lemma.
By an analogous argument one obtains the following lemma.

Lemma 4.3. Let U =
∑

k=1 Ukek with Uk ≥ 0. Then the set

KU = {u ∈ E | u� U}
is compact.

Theorem 4.4 (Arzelà–Ascoli, [11]). Let K ⊂ C(IT , E). Suppose that

• for any t ∈ IT the set Kt = {x(t) | x(·) ∈ K} ⊂ E is compact;
• for any ε > 0 and any n ∈ N there exists a constant δ > 0 such that

if t′, t′′ ∈ IT with |t′ − t′′| < δ then

‖x(t′)− x(t′′)‖n ≤ ε.
Then K is compact.

4.0.2. Back to the proof of Theorem 2.4. We approximate problem (2.3)
by the following finite-dimensional ones:

(4.1) ẏn = Pnf(t, yn), yn(0) = ŷn = Pnx̂, yn =
n∑
j=1

yjej .
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By Theorem 5.1 all the problems (4.1) have solutions yn ∈ C1(IT ,Rn) and

(4.2) (t, yn(t)) ∈WX , t ∈ IT .
By Theorem 4.1 and Lemma 4.2 for any i′ ∈ N there is i ∈ N and a

constant c such that

sup{‖ẏn(t)‖i′ | n ∈ N, t ∈ IT } ≤ sup{‖Pnf(t, x)‖i′ | (t, x) ∈WX , n ∈ N}
≤ c sup

(t,x)∈WX

‖f(t, x)‖i ≤ Ci′ <∞.

For any t′, t′′ ∈ IT this implies

‖yn(t′)− yn(t′′)‖i′ =
∥∥∥ t′′�
t′

ẏn(s) ds
∥∥∥
i′
≤ Ci′ |t′ − t′′|.

By Theorem 4.4 and Lemma 4.3 the sequence {yn} contains a subsequence
(not relabelled) that is convergent in C(IT , E):

yn(·)→ x(·) in C(IT , E).

Since the operators Pn are continuous, (4.2) implies x(t)� X(t) for t ∈ IT .
Our next goal is to show that x(·) is the desired solution to problem

(2.3). Rewrite problem (4.1) as

(4.3) yn(t)− ŷn =

t�

0

Pnf(s, yn(s)) ds.

Letting n→∞ in the left hand side we obtain x(t)− x̂.
Consider the right hand side of (4.3).

Lemma 4.5. For all i ∈ N and t ∈ IT ,∥∥∥ t�
0

Pnf(s, yn(s)) ds−
t�

0

f(s, x(s)) ds
∥∥∥
i
→ 0

as n→∞. The integrals are understood in the sense of Millionshchikov [6].

Proof. Estimate this expression by parts∥∥∥ t�
0

Pnf(s, yn(s)) ds−
t�

0

f(s, x(s)) ds
∥∥∥
i
≤

t�

0

∥∥Pn(f(s, yn(s))− f(s, x(s))
)∥∥
i
ds

+

t�

0

‖Qnf(s, x(s))‖i ds.

Then due to Theorem 4.1 we have∥∥Pn(f(s, yn(s))− f(s, x(s))
)∥∥
i
≤ ci‖f(s, yn(s))− f(s, x(s))‖i′ → 0.

Since f is uniformly continuous in the compact set WX , this limit is uniform
in s ∈ IT .
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The set f(WX) is a compact set as the continuous image of a compact set.
The operators Qn are uniformly continuous (Theorem 4.1). Consequently,
the convergence ‖Qnf(s, x(s))‖i → 0 is uniform in s ∈ IT [11], proving the
lemma.

From Lemma 4.5 and formula (4.3) it follows that

x(t)− x̂ =

t�

0

f(s, x(s)) ds.

Consequently, x(·) ∈ C1(IT , E) and ẋ(t) = f(t, x(t)) [6].
In coordinate notation this implies

xk(t)− x̂k =

t�

0

fk(s, x(s)) ds,

or
ẋk(t) = fk(t, x(t)), xk(0) = x̂k.

This in particular implies that the series
∑∞

k=1 ẋk(t)ek is convergent for
each t.

Theorem 2.4 is proved.

4.0.3. Proof of Theorem 2.6. By Theorem 5.2 all the problems (4.1)
have ω-periodic solutions ỹn(t) such that

ỹn(t)� X(t).

By the same argument as above, the set {ỹn(·)} is relatively compact in
C(Iω, E). Let y∗(·) be an accumulation point of this set. Then the function

x̃(t) = y∗(τ), τ ∈ Iω, t = τ (mod ω)

is a periodic solution, completing the proof.

5. Finite-dimensional case. In this section we consider ordinary dif-
ferential equations in Rm and formulate several known results needed in the
proof of infinite-dimensional theorems.

Set

Rm+ = {x = (x1, . . . , xm) ∈ Rm | xk ≥ 0 for k = 1, . . . ,m}, IT = [0, T ].

We shall say that a vector X = (X1, . . . , Xm) ∈ Rm+ majorizes a vector
x = (x1, . . . , xm) ∈ Rm, written x� X, if

|xk| ≤ Xk, k = 1, . . . ,m.

Let X(·) ∈ C1(IT ,Rm) be such that X(t) ∈ Rm+ for all t ∈ IT . Define

WX = {(t, x) ∈ IT × Rm | x� X(t)}.
In this section we assume that f ∈ C(WX ,Rm) and consider the problem

(5.1) ẋ = f(t, x), x(0) = x̂, x = (x1, . . . , xm).
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Theorem 5.1 ([7]). Suppose that Xk(t) > 0 for all k = 1, . . . ,m and
t ∈ IT , and for each (t, x) ∈WX ,

±fk(t, x1, . . . , xk−1,±Xk(t), xk+1, . . . , xm) ≤ Ẋk(t), x̂� X(0).

Then problem (5.1) has a solution x(·) ∈ C1(IT ,Rm) such that x(t)�X(t)
for all t ∈ IT .

The following theorem is a consequence of Theorem 5.1, Brouwer’s fixed
point theorem and uniform approximation of f by locally Lipschitz contin-
uous functions.

Theorem 5.2. Suppose that T = ∞ and in addition to conditions of
Theorem 5.1 assume the function f is ω-periodic (ω > 0) in t:

f(t+ ω, x) = f(t, x)

and X(ω) � X(0). Then problem (5.1) has a solution x̃(·) ∈ C1(IT ,Rm)
such that x̃(t)� X(t) for all t ∈ IT and x̃(t+ ω) = x̃(t).

6. Appendix: Proof of Theorem 4.1. Let us note that Theorem 4.1
remains valid for the space E over the field C, with λ = {λj}, λj ∈ C. This
case can be reduced to the real one by considering the realification of the
space E with the Schauder basis {ek, iek}, i2 = −1.

For the Banach space version of Theorem 4.1 see [3]. The Fréchet space
version follows from a lemma of L. Weill.

Let S stand for the set {±1}N.

Lemma 6.1 (L. Weill, [15]). For any i ∈ N there are a constant c > 0
and i′ ∈ N such that for all x ∈ E,

sup
θ∈S
‖Mθx‖i ≤ c‖x‖i′ .

Now let us prove the theorem. Let us show that the operator Mλ is
defined for all x ∈ E. Set

bnm =
∑

n≤k≤m
λkxkek, anm =

∑
n≤k≤m

xkek.

We wish to show that for each j ∈ N,

‖bnm‖j → 0 as n,m→∞.

There exists f ∈ E∗ (E∗ stands for the algebraic dual space of E) such that
f(bnm) = ‖bnm‖j and |f(x)| ≤ ‖x‖j for all x ∈ E [9]. The element f depends
on bnm, j.

Then f(bnm) =
∑

n≤k≤m λkxkf(ek). Define a sequence θ ∈ S as follows.
Set θk = 1 for xkf(ek) ≥ 0, and θk = −1 otherwise.
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Thus

‖bnm‖j ≤ sup
k
|λk|

∑
n≤k≤m

θkxkf(ek).

From this formula it follows that

‖bnm‖j ≤ ‖λ‖∞f(Mθanm) ≤ ‖λ‖∞‖Mθanm‖j .
By Lemma 6.1 there is i ∈ N and a constant c > 0 such that

‖Mθanm‖j ≤ c‖anm‖i.
The parameters i, c are independent of anm and θ ∈ S. Since the series (2.1)
is convergent, anm → 0 as n,m → ∞, and so Mθanm → 0. Thus Mλx is
defined for all x ∈ E and λ ∈ `∞.

Now replacing bnm with the partial sums bn =
∑n

k=1 λkxkek and repeat-
ing the previous argument we obtain the assertion of the theorem.
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[11] L. Schwartz, Analyse mathématique, Vol. 2, Hermann, 1967.
[12] D. Treschev and O. Zubelevich, Introduction to the Perturbation Theory of Hamil-

tonian Systems, Springer, 2003.
[13] R. Uhl, An extension of Max Müller’s theorem to differential equations in ordered

Banach spaces, Funkcial. Ekvac. 39 (1996), 203–216.
[14] P. Volkmann, Ausdehnung eines Satzes von Max Müller auf unendliche Systeme von
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