Non-existence of points rational over number fields on Shimura curves

by
Keisuke Arai (Tokyo)

1. Introduction. Let B be an indefinite quaternion division algebra over \mathbb{Q}, and $d(B)$ its discriminant. Fix a maximal order \mathcal{O} of B. A $Q M$ abelian surface with multiplication by \mathcal{O} over a field F is a pair (A, i) where A is a 2-dimensional abelian variety over F, and $i: \mathcal{O} \hookrightarrow \operatorname{End}_{F}(A)$ is an injective ring homomorphism satisfying $i(1)=\mathrm{id}$ (cf. [1, p. 591]). Here, $\operatorname{End}_{F}(A)$ is the ring of endomorphisms of A defined over F. We assume that A has a left \mathcal{O}-action. Let M^{B} be the Shimura curve over \mathbb{Q} associated to B, which parameterizes the isomorphism classes of QM-abelian surfaces with multiplication by \mathcal{O} (cf. [2, p. 93]). We know that M^{B} is a proper smooth curve over \mathbb{Q}, and that its isomorphism type over \mathbb{Q} depends only on $d(B)$, but not on the particular choice of B and \mathcal{O}.

For an imaginary quadratic field k, the set $M^{B}(k)$ of k-rational points on M^{B} is empty under a certain assumption ([2, Theorem 6.3], [4, Theorem 1.1]). We extend this result to the case where k is a number field of higher degree. The method of proof is based on the strategy in [2], and the key is to control the field of definition of the QM-abelian surface corresponding to a k-rational point on M^{B}. We also give counterexamples to the Hasse principle on M^{B} over number fields. We will discuss the relevance to the Manin obstruction (cf. [6]) in a forthcoming article.

For a prime number q, let $\mathcal{B}(q)$ be the set of the isomorphism classes of indefinite quaternion division algebras B over \mathbb{Q} such that

$$
\left\{\begin{aligned}
B \otimes \mathbb{Q} \mathbb{Q}(\sqrt{-q}) \neq \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-q})) & \text { if } q \neq 2, \\
B \otimes \mathbb{Q} \mathbb{Q}(\sqrt{-1}) \neq \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-1})) & \\
\quad \text { and } B \otimes \mathbb{Q} \mathbb{Q}(\sqrt{-2}) \neq \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-2})) & \text { if } q=2 .
\end{aligned}\right.
$$

[^0]For positive integers N and e, let

$$
\begin{aligned}
\mathcal{C}(N, e):=\left\{\alpha^{e}+\bar{\alpha}^{e} \in \mathbb{Z} \mid \alpha \in \mathbb{C} \text { is a root of } T^{2}+s T+N\right. \\
\text { for some } \left.s \in \mathbb{Z}, s^{2} \leq 4 N\right\} \\
\mathcal{D}(N, e):=\left\{a, a \pm N^{e / 2}, a \pm 2 N^{e / 2}, a^{2}-3 N^{e} \in \mathbb{R} \mid a \in \mathcal{C}(N, e)\right\}
\end{aligned}
$$

Here, $\bar{\alpha}$ is the complex conjugate of α. If e is even, then $\mathcal{D}(N, e) \subseteq \mathbb{Z}$. For a subset $\mathcal{D} \subseteq \mathbb{Z}$, let
$\mathcal{P}(\mathcal{D}):=\{$ prime divisors of some of the integers in $\mathcal{D} \backslash\{0\}\}$.
For a number field k and a prime \mathfrak{q} of k of residue characteristic q, define:

- $\kappa(\mathfrak{q})$: the residue field of \mathfrak{q},
- $\mathrm{N}_{\mathfrak{q}}$: the cardinality of $\kappa(\mathfrak{q})$,
- $e_{\mathfrak{q}}$: the ramification index of \mathfrak{q} in k / \mathbb{Q},
- $f_{\mathfrak{q}}$: the degree of the extension $\kappa(\mathfrak{q}) / \mathbb{F}_{q}$,
- $\mathcal{S}(k, \mathfrak{q})$: the set of the isomorphism classes of indefinite quaternion division algebras B over \mathbb{Q} such that any prime divisor of $d(B)$ belongs to

$$
\begin{cases}\mathcal{P}\left(\mathcal{D}\left(\mathrm{N}_{\mathfrak{q}}, e_{\mathfrak{q}}\right)\right) \cup\{q\} & \text { if } B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k) \text { and } e_{\mathfrak{q}} \text { is even }, \\ \mathcal{P}\left(\mathcal{D}\left(\mathrm{N}_{\mathfrak{q}}, 2 e_{\mathfrak{q}}\right)\right) \cup\{q\} & \text { if } B \otimes_{\mathbb{Q}} k \neq \mathrm{M}_{2}(k) .\end{cases}
$$

Note that $\mathcal{S}(k, \mathfrak{q})$ is a finite set. The main result of this article is:
Theorem 1.1. Let k be a number field of even degree, and q a prime number such that

- there is a unique prime \mathfrak{q} of k above q,
- $f_{\mathfrak{q}}$ is odd (and so $e_{\mathfrak{q}}$ is even), and
- $B \in \mathcal{B}(q) \backslash \mathcal{S}(k, \mathfrak{q})$.

Then $M^{B}(k)=\emptyset$.
Remark 1.2. (1) By [5, Theorem 0], we have $M^{B}(\mathbb{R})=\emptyset$.
(2) If k is of odd degree, then k has a real place, and so $M^{B}(k)=\emptyset$.
2. Canonical isogeny characters. In this section, we review canonical isogeny characters associated to QM-abelian surfaces, which were introduced in [2, §4]. Let K be a number field, \bar{K} an algebraic closure of $K, \mathrm{G}_{K}=$ $\operatorname{Gal}(\bar{K} / K)$ the absolute Galois group of K, \mathcal{O}_{K} the ring of integers of K, (A, i) a QM-abelian surface with multiplication by \mathcal{O} over K, and p a prime divisor of $d(B)$. The p-torsion subgroup $A[p](\bar{K})$ of A has exactly one nonzero proper left \mathcal{O}-submodule, which we shall denote by C_{p}. It has order p^{2}, and is stable under the action of G_{K}. Let $\mathfrak{P}_{\mathcal{O}} \subseteq \mathcal{O}$ be the unique left ideal of reduced norm $p \mathbb{Z}$. In fact, $\mathfrak{P}_{\mathcal{O}}$ is a two-sided ideal of \mathcal{O}. Then C_{p} is free of rank 1 over $\mathcal{O} / \mathfrak{P}_{\mathcal{O}}$. Fix an isomorphism $\mathcal{O} / \mathfrak{P}_{\mathcal{O}} \cong \mathbb{F}_{p^{2}}$. The action of G_{K}
on C_{p} yields a character

$$
\varrho_{p}: \mathrm{G}_{K} \rightarrow \operatorname{Aut}_{\mathcal{O}}\left(C_{p}\right) \cong \mathbb{F}_{p^{2}}^{\times}
$$

Here, $\operatorname{Aut}_{\mathcal{O}}\left(C_{p}\right)$ is the group of \mathcal{O}-linear automorphisms of C_{p}. The character ϱ_{p} depends on the choice of the isomorphism $\mathcal{O} / \mathfrak{R}_{\mathcal{O}} \cong \mathbb{F}_{p^{2}}$, but the pair $\left\{\varrho_{p},\left(\varrho_{p}\right)^{p}\right\}$ is independent of this choice. Either of the characters $\varrho_{p},\left(\varrho_{p}\right)^{p}$ is called a canonical isogeny character at p. We have an induced character

$$
\varrho_{p}^{\mathrm{ab}}: \mathrm{G}_{K}^{\mathrm{ab}} \rightarrow \mathbb{F}_{p^{2}}^{\times}
$$

where $\mathrm{G}_{K}^{\mathrm{ab}}$ is the Galois group of the maximal abelian extension K^{ab} / K.
For a prime \mathfrak{L} of K, let $\mathcal{O}_{K, \mathfrak{L}}$ be the completion of \mathcal{O}_{K} at \mathfrak{L}, and let

$$
r_{p}(\mathfrak{L}): \mathcal{O}_{K, \mathfrak{L}}^{\times} \xrightarrow{\omega_{\mathfrak{L}}} \mathrm{G}_{K}^{\mathrm{ab}} \xrightarrow{\varrho_{p}^{\mathrm{ab}}} \mathbb{F}_{p^{2}}^{\times} .
$$

Here, $\omega_{\mathfrak{L}}$ is the Artin map.
Proposition 2.1 ([2, Proposition 4.7(2)]). If $\mathfrak{L} \nmid p$, then $r_{p}(\mathfrak{L})^{12}=1$.
Fix a prime \mathfrak{P} of K above p. Then we have an isomorphism $\kappa(\mathfrak{P}) \cong \mathbb{F}_{p^{f} \mathfrak{F}}$ of finite fields. Let $t_{\mathfrak{F}}:=\operatorname{gcd}\left(2, f_{\mathfrak{F}}\right) \in\{1,2\}$.

Proposition 2.2 ([2, Proposition 4.8]).
(1) There is a unique element $c_{\mathfrak{P}} \in \mathbb{Z} /\left(p^{t_{\mathfrak{F}}}-1\right) \mathbb{Z}$ satisfying $r_{p}(\mathfrak{P})(u)=$ $\operatorname{Norm}_{\kappa(\mathfrak{P}) / \mathbb{F}_{p} t_{\mathfrak{P}}}(\widetilde{u})^{-C_{\mathfrak{F}}}$ for any $u \in \mathcal{O}_{K, \mathfrak{P}}^{\times}$. Here, $\widetilde{u} \in \kappa(\mathfrak{P})^{\times}$is the reduction of u modulo \mathfrak{P}.
(2) $2 c_{\mathfrak{F}} / t_{\mathfrak{F}} \equiv e_{\mathfrak{F}} \bmod (p-1)$.

Corollary 2.3. For any prime number $l \neq p$, we have $r_{p}(\mathfrak{P})\left(l^{-1}\right)^{2} \equiv$ $l^{e_{\mathfrak{F}} f_{\mathfrak{F}}} \bmod p$.

Proof. $\quad r_{p}(\mathfrak{P})\left(l^{-1}\right)^{2}=\left(\operatorname{Norm}_{\kappa(\mathfrak{F}) / \mathbb{F}_{p} t_{\mathfrak{F}}}\left(l^{-1}\right)^{-\mathcal{C W}_{\mathfrak{F}}}\right)^{2}=\operatorname{Norm}_{\mathbb{F}_{p} f_{\mathfrak{F}} / \mathbb{F}_{p} t_{\mathfrak{F}}}(l)^{2 c_{\mathfrak{F}}}$ $\equiv l^{2 c_{\mathfrak{F}} f_{\mathfrak{F}} / t_{\mathfrak{P}}}=l^{e_{\mathfrak{W}} f_{\mathfrak{F}}} \bmod p$.

For a prime number l, the action of G_{K} on the l-adic Tate module $T_{l} A$ yields a representation

$$
R_{l}: \mathrm{G}_{K} \rightarrow \operatorname{Aut}_{\mathcal{O}}\left(T_{l} A\right) \cong \mathcal{O}_{l}^{\times} \subseteq B_{l}^{\times},
$$

where $\operatorname{Aut}_{\mathcal{O}}\left(T_{l} A\right)$ is the group of \mathcal{O}-linear automorphisms of $T_{l} A$, and $\mathcal{O}_{l}=\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_{l}, B_{l}=B \otimes_{\mathbb{Q}} \mathbb{Q}_{l}$. Let $\operatorname{Nrd}_{B_{l} / \mathbb{Q}_{l}}$ be the reduced norm on B_{l}. Let \mathfrak{M} be a prime of K, and $F_{\mathfrak{M}} \in \mathrm{G}_{K}$ a Frobenius element at \mathfrak{M}. For each $e \geq 1$, there is an integer $a\left(F_{\mathfrak{M}}^{e}\right)$ satisfying

$$
\operatorname{Nrd}_{B_{l} / \mathbb{Q}_{l}}\left(T-R_{l}\left(F_{\mathfrak{M}}^{e}\right)\right)=T^{2}-a\left(F_{\mathfrak{M}}^{e}\right) T+\left(\mathrm{N}_{\mathfrak{M}}\right)^{e} \in \mathbb{Z}[T]
$$

for any l prime to \mathfrak{M}.
Proposition 2.4 ([2, Proposition 5.3]).
(1) $a\left(F_{\mathfrak{M}}^{e}\right)^{2} \leq 4\left(\mathrm{~N}_{\mathfrak{M}}\right)^{e}$ for any positive integer e.
(2) Assume $\mathfrak{M} \nmid p$. Then

$$
a\left(F_{\mathfrak{M}}^{e}\right) \equiv \varrho_{p}\left(F_{\mathfrak{M}}^{e}\right)+\left(\mathrm{N}_{\mathfrak{M}}\right)^{e} \varrho_{p}\left(F_{\mathfrak{M}}^{e}\right)^{-1} \bmod p
$$

for any positive integer e.
Let $\alpha_{\mathfrak{M}}, \bar{\alpha}_{\mathfrak{M}} \in \mathbb{C}$ be the roots of $T^{2}-a\left(F_{\mathfrak{M}}\right) T+\mathrm{N}_{\mathfrak{M}}$. Then $\alpha_{\mathfrak{M}}+\bar{\alpha}_{\mathfrak{M}}=$ $a\left(F_{\mathfrak{M}}\right)$ and $\alpha_{\mathfrak{M}} \bar{\alpha}_{\mathfrak{M}}=\mathrm{N}_{\mathfrak{M}}$. We see that the roots of $T^{2}-a\left(F_{\mathfrak{M}}^{e}\right) T+\left(\mathrm{N}_{\mathfrak{M}}\right)^{e}$ are $\alpha_{\mathfrak{M}}^{e}, \bar{\alpha}_{\mathfrak{M}}^{e}$. Then $\alpha_{\mathfrak{M}}^{e}+\bar{\alpha}_{\mathfrak{M}}^{e}=a\left(F_{\mathfrak{M}}^{e}\right)$. We have the following corollary to Proposition 2.4(1):

Corollary 2.5. $a\left(F_{\mathfrak{M}}^{e}\right) \in \mathcal{C}\left(\mathrm{N}_{\mathfrak{M}}, e\right)$ for any positive integer e.
For later use, we give the following lemma:
Lemma 2.6. Let m be the residue characteristic of \mathfrak{M}. Then the following conditions are equivalent:
(i) $m \mid a\left(F_{\mathfrak{M}}\right)$.
(ii) $m \mid a\left(F_{\mathfrak{M}}^{e}\right)$ for a positive integer e.
(iii) $m \mid a\left(F_{\mathfrak{M}}^{e}\right)$ for any positive integer e.

Proof. For each $e \geq 1$, there is a polynomial $P_{e}(S, T) \in \mathbb{Z}[S, T]$ such that $(S+T)^{e}=S^{e}+T^{e}+S T P_{e}(S+T, S T)$. Then $a\left(F_{\mathfrak{M}}\right)^{e}=$ $a\left(F_{\mathfrak{M}}^{e}\right)+\mathrm{N}_{\mathfrak{M}} P_{e}\left(a\left(F_{\mathfrak{M}}\right), \mathrm{N}_{\mathfrak{M}}\right)$. Since $m \mid \mathrm{N}_{\mathfrak{M}}$, we have $m \mid a\left(F_{\mathfrak{M}}\right)$ if and only if $m \mid a\left(F_{\mathfrak{M}}^{e}\right)$.
3. Proof of the main result. Now we prove Theorem 1.1. Suppose that the assumptions of Theorem 1.1 hold. Assume that there is a point $x \in M^{B}(k)$. When $B \otimes_{\mathbb{Q}} k \not \not \mathrm{M}_{2}(k)$, let K_{0} be a quadratic extension of k satisfying $B \otimes_{\mathbb{Q}} K_{0} \cong \mathrm{M}_{2}\left(K_{0}\right)$. Let

$$
K:= \begin{cases}k & \text { if } B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k) \\ K_{0} & \text { if } B \otimes_{\mathbb{Q}} k \not \approx \mathrm{M}_{2}(k)\end{cases}
$$

Note that the degree $[K: \mathbb{Q}]$ is even. Then x is represented by a QM-abelian surface (A, i) with multiplication by \mathcal{O} over K (see [2, Theorem 1.1]). Recall that \mathfrak{q} denotes the unique prime of k above q. Since $B \notin \mathcal{S}(k, \mathfrak{q})$, there is a prime divisor p of $d(B)$ such that $p \neq q$ and p does not belong to

$$
\begin{cases}\mathcal{P}\left(\mathcal{D}\left(\mathrm{N}_{\mathfrak{q}}, e_{\mathfrak{q}}\right)\right) & \text { if } B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k), \\ \mathcal{P}\left(\mathcal{D}\left(\mathrm{N}_{\mathfrak{q}}, 2 e_{\mathfrak{q}}\right)\right) & \text { if } B \otimes_{\mathbb{Q}} k \neq \mathrm{M}_{2}(k)\end{cases}
$$

Fix such a p, and let $\varrho_{p}: \mathrm{G}_{K} \rightarrow \mathbb{F}_{p^{2}}^{\times}$be a canonical isogeny character at p associated to (A, i).

By Proposition 2.1, the character ϱ_{p}^{12} is unramified outside p. Hence it can be identified with a character $\mathfrak{I}_{K}(p) \rightarrow \mathbb{F}_{p^{2}}^{\times}$, where $\mathfrak{I}_{K}(p)$ is the group of fractional ideals of K prime to p. When $B \otimes_{\mathbb{Q}} k \not \not \mathrm{M}_{2}(k)$, we may assume that \mathfrak{q} is ramified in K / k by replacing K_{0} if necessary. In any case, let \mathfrak{Q}
be the unique prime of K above \mathfrak{q}. Note that \mathfrak{Q} is the unique prime of K above q, and so $q \mathcal{O}_{K}=\mathfrak{Q}^{e_{\mathfrak{Q}}}$ and $\left(\mathrm{N}_{\mathfrak{Q}}\right)^{e_{\mathfrak{Q}}}=\left(q^{f_{\mathfrak{Q}}}\right)^{e_{\mathfrak{Q}}}=q^{[K: \mathbb{Q}]}$. Then by Corollary 2.3, we have

$$
\begin{aligned}
\varrho_{p}^{12}\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right) & =\varrho_{p}^{12}\left(\mathfrak{Q}^{e_{\mathfrak{Q}}}\right)=\varrho_{p}^{12}\left(q \mathcal{O}_{K}\right)=\varrho_{p}^{12}(1, \ldots, 1, q, \ldots, q, \ldots) \\
& =\varrho_{p}^{12}\left(q^{-1}, \ldots, q^{-1}, 1, \ldots, 1, \ldots\right)=\prod_{\mathfrak{P} \mid p} r_{p}(\mathfrak{P})^{12}\left(q^{-1}\right) \equiv \prod_{\mathfrak{P} \mid p} q^{6 e_{\mathfrak{B}} f_{\mathfrak{P}}} \\
& =q^{6[K: \mathbb{Q}]} \bmod p .
\end{aligned}
$$

Here, $(1, \ldots, 1, q, \ldots, q, \ldots)\left(\operatorname{resp} .\left(q^{-1}, \ldots, q^{-1}, 1, \ldots, 1, \ldots\right)\right)$ is the idèle of K where the components above p are 1 and the others are q (resp. where the components above p are q^{-1} and the others are 1), and \mathfrak{P} runs through the primes of K above p. On the other hand, $a\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right) \equiv \varrho_{p}\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right)+\left(\mathrm{N}_{\mathfrak{Q}}\right)^{e_{\mathfrak{Q}}} \varrho_{p}\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right)^{-1}=\varrho_{p}\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right)+q^{[K: \mathbb{Q}]} \varrho_{p}\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right)^{-1} \bmod p$ by Proposition $2.4(2)$. Let $\varepsilon:=q^{-[K: \mathbb{Q}] / 2} \varrho_{p}\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right) \in \mathbb{F}_{p^{2}}^{\times}$. Then

$$
\varepsilon^{12}=1 \quad \text { and } \quad a\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right) \equiv\left(\varepsilon+\varepsilon^{-1}\right) q^{[K: \mathbb{Q}] / 2} \bmod p
$$

Therefore

$$
a\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right) \equiv 0, \pm q^{[K: \mathbb{Q}] / 2}, \pm 2 q^{[K: \mathbb{Q}] / 2} \bmod p \quad \text { or } \quad a\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right)^{2} \equiv 3 q^{[K: \mathbb{Q}]} \bmod p
$$

By Corollary 2.5, we have $a\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right) \in \mathcal{C}\left(\mathrm{N}_{\mathfrak{Q}}, e_{\mathfrak{Q}}\right)$. Moreover,

$$
\mathrm{N}_{\mathfrak{Q}}=\mathrm{N}_{\mathfrak{q}} \quad \text { and } \quad e_{\mathfrak{Q}}= \begin{cases}e_{\mathfrak{q}} & \text { if } B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k), \\ 2 e_{\mathfrak{q}} & \text { if } B \otimes_{\mathbb{Q}} k \not \mathrm{M}_{2}(k) .\end{cases}
$$

Then
$a\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right), a\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right) \pm q^{[K: \mathbb{Q}] / 2}, a\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right) \pm 2 q^{[K: \mathbb{Q}] / 2}, a\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right)^{2}-3 q^{[K: \mathbb{Q}]} \in \mathcal{D}\left(\mathrm{N}_{\mathfrak{Q}}, e_{\mathfrak{Q}}\right)$.
Since $p \notin \mathcal{P}\left(\mathcal{D}\left(\mathrm{~N}_{\mathfrak{q}}, e_{\mathfrak{Q}}\right)\right)$, we have
(1) $a\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right)=0, \pm q^{[K: \mathbb{Q}] / 2}, \pm 2 q^{[K: \mathbb{Q}] / 2}$, or
(2) $a\left(F_{\mathfrak{Q}}^{\mathcal{E}_{\mathfrak{Q}}}\right)^{2}=3 q^{[K: \mathbb{Q}]}$.

Case (1). In this case, we have $q \mid a\left(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}\right)$. Then $q \mid a\left(F_{\mathfrak{Q}}\right)$ by Lemma 2.6. Since $f_{\mathfrak{Q}}\left(=f_{\mathfrak{q}}\right)$ is odd, we obtain $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-q}))$ or $(q=2$ and $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-1}) \cong \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-1}))$) (see [2, Theorem 2.1, Propositions 2.3 and $5.1(1)]$). This contradicts $B \in \mathcal{B}(q)$.

Case (2). In this case, $q=3$ and $[K: \mathbb{Q}]$ is odd, a contradiction.
Therefore we conclude $M^{B}(k)=\emptyset$.
4. Counterexamples to the Hasse principle. We have computed the sets $\mathcal{C}(N, e), \mathcal{D}(N, e), \mathcal{P}(\mathcal{D}(N, e))$ in several cases as seen in Table 1 . Then we obtain the following counterexamples to the Hasse principle on M^{B} over number fields:

Table 1. Examples of $\mathcal{P}(\mathcal{D}(N, e))$

(N, e)	$\mathcal{C}(N, e)$	$\mathcal{D}(N, e)$	$\mathcal{P}(\mathcal{D}(N, e))$
$(2,2)$	0, -3, -4	$0, \pm 1, \pm 2,-3, \pm 4,-5,-6,-7,-8,-12$	2, 3, 5, 7
$(2,4)$	1, ± 8	$0,1,-3, \pm 4,5,-7, \pm 8,9, \pm 12, \pm 16,-47$	2, 3, 5, 7, 47
$(2,6)$	0, 9, -16	$\begin{aligned} & 0,1,-7, \pm 8,9, \pm 16,17,-24,25,-32, \\ & 64,-111,-192 \end{aligned}$	$2,3,5,7,17,37$
$(2,8)$	-31, 32	$\begin{aligned} & 0,1,-15,16,-31,32,-47,48,-63,64, \\ & 193,256 \end{aligned}$	2, 3, 5, 7, 31, 47, 193
$(2,10)$	0, 57, -64	$\begin{aligned} & 0,-7,25, \pm 32,57, \pm 64,89,-96,121 \text {, } \\ & -128,177,1024,-3072 \end{aligned}$	$\begin{aligned} & 2,3,5,7,11,19,59, \\ & 89 \end{aligned}$
$(2,12)$	$\begin{aligned} & -47, \\ & \pm 128 \end{aligned}$	$\begin{aligned} & 0,17,-47, \pm 64,81,-111, \pm 128,-175, \\ & \pm 192, \pm 256,4096,-10079 \end{aligned}$	$\begin{aligned} & 2,3,5,7,17,37,47, \\ & 10079 \end{aligned}$
$(2,14)$	$\begin{aligned} & 0,-87, \\ & -256 \end{aligned}$	$\begin{aligned} & 0,41,-87, \pm 128,169,-215, \pm 256,-343 \\ & -384,-512,16384,-41583,-49152 \end{aligned}$	$\begin{aligned} & 2,3,5,7,13,29,41, \\ & 43,83,167 \end{aligned}$
$(2,16)$	449, 512	$\begin{aligned} & 0,-63,193,256,449,512,705,768,961, \\ & 1024,4993,65536 \end{aligned}$	$\begin{aligned} & 2,3,5,7,31,47, \\ & 193,449,4993 \end{aligned}$
$(3,2)$	$\begin{aligned} & -2,3,-5, \\ & -6 \end{aligned}$	$\begin{aligned} & 0,1,-2, \pm 3,4,-5, \pm 6,-8, \pm 9,-11, \\ & -12,-18,-23 \end{aligned}$	2, 3, 5, 11, 23
$(3,4)$	$\begin{aligned} & 7,-9, \\ & -14,18 \end{aligned}$	$\begin{aligned} & 0,-2,4,-5,7, \pm 9,-11,-14,16, \pm 18 \text {, } \\ & -23,25, \pm 27,-32,36,-47,81,-162, \\ & -194 \end{aligned}$	$\begin{aligned} & 2,3,5,7,11,23,47 \text {, } \\ & 97 \end{aligned}$
$(3,6)$	$\begin{aligned} & 10,46, \end{aligned}$	$\begin{aligned} & 0,-8,10,-17,19,-27,37,-44,46,-54 \\ & 64,-71,73,-81,100,-108,729,-2087 \end{aligned}$	$\begin{aligned} & 2,3,5,11,17,19 \\ & 23,37,71,73,2087 \end{aligned}$
$(3,8)$	$\begin{aligned} & 34,-81 \\ & -113,162 \end{aligned}$	$\begin{aligned} & 0,-32,34,-47,49, \pm 81,-113,115, \\ & -128, \pm 162,-194,196, \pm 243,-275,324, \\ & 6561,-6914,-13122,-18527 \end{aligned}$	$\begin{aligned} & 2,3,5,7,11,17,23, \\ & 47,97,113,191, \\ & 3457 \end{aligned}$
$(3,10)$	$\begin{aligned} & 243,475, \\ & -482, \\ & -486 \end{aligned}$	$\begin{aligned} & 0,4,-11,232,-239, \pm 243,475,-482 \\ & \pm 486,718,-725, \pm 729,961,-968,-972, \\ & 48478,55177,59049,-118098 \end{aligned}$	$\begin{aligned} & 2,3,5,11,19,23, \\ & 29,31,239,241,359, \\ & 2399,24239 \end{aligned}$
$(3,12)$	658, -1358, 1458	$0,-71,100,-629,658,729,-800$, -1358, 1387, 1458, -2087, 2116, 2187, -2816, 2916, 249841, 531441, -1161359	$2,3,5,7,11,17,19$, 23, 37, 47, 71, 73, 97, 433, 577, 1009, 1151, 2087
$(3,14)$	$\begin{aligned} & 2187, \\ & 2515, \\ & 3022, \\ & -4374 \end{aligned}$	$\begin{aligned} & 0,328,835,-1352,-1859, \pm 2187,2515, \\ & 3022, \pm 4374,4702,5209, \pm 6561,6889, \\ & 7396,-8748,4782969,-5216423, \\ & -8023682,-9565938 \end{aligned}$	$\begin{aligned} & 2,3,5,11,13,23, \\ & 41,43,83,167,337, \\ & 503,673,1511,2351, \\ & 5209,24023 \end{aligned}$
$(3,16)$	$\begin{aligned} & -353, \\ & -6561, \\ & -11966, \\ & 13122 \end{aligned}$	$\begin{aligned} & 0,-353,1156,-5405,6208, \pm 6561, \\ & -6914,-11966,12769, \pm 13122,-13475, \\ & -18527, \pm 19683,-25088,26244, \\ & 14044993,43046721,-86093442, \\ & -129015554 \end{aligned}$	$2,3,5,7,11,17,23$, 31, 47, 97, 113, 191, 193, 353, 383, 2113, 3457, 30529, 36671

Proposition 4.1.

(1) Assume $d(B)=39$, and let $k=\mathbb{Q}(\sqrt{2}, \sqrt{-13})$ or $\mathbb{Q}(\sqrt{-2}, \sqrt{-13})$. Then $B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k), M^{B}(k)=\emptyset$ and $M^{B}\left(k_{v}\right) \neq \emptyset$ for any place v of k. Here, k_{v} is the completion of k at v.
(2) Let L be the subfield of $\mathbb{Q}\left(\zeta_{9}\right)$ satisfying $[L: \mathbb{Q}]=3$, where ζ_{9} is a primitive 9 th root of unity. Assume $(d(B), k)=(62, L(\sqrt{-39}))$ or $(86, L(\sqrt{-15}))$. Then $B \otimes_{\mathbb{Q}} k \neq \mathrm{M}_{2}(k), M^{B}(k)=\emptyset$ and $M^{B}\left(k_{v}\right) \neq \emptyset$ for any place v of k.
Proof. (1) The prime number 3 (resp. 13) is inert (resp. ramified) in $\mathbb{Q}(\sqrt{-13})$. Thus $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-13}) \cong \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-13}))$, and so $B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k)$.

Applying Theorem 1.1 with $q=2$, we obtain $M^{B}(k)=\emptyset$. In fact, $\left(e_{\mathfrak{q}}, f_{\mathfrak{q}}\right)=(4,1)$ where \mathfrak{q} is the unique prime of k above $q=2$, and the prime divisor 13 of $d(B)$ does not belong to $\mathcal{P}(\mathcal{D}(2,4)) \cup\{2\}$ (see Table 1). Since 3 (resp. 13) splits in $\mathbb{Q}(\sqrt{-2})$ (resp. $\mathbb{Q}(\sqrt{-1})$), we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-2}) \neq$ $\mathrm{M}_{2}(\mathbb{Q}(\sqrt{-2}))\left(\right.$ resp. $\left.B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-1}) \neq \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-1}))\right)$.

By [2, p. 94], we have $M^{B}\left(\mathbb{Q}(\sqrt{-13})_{w}\right) \neq \emptyset$ for any place w of $\mathbb{Q}(\sqrt{-13})$ (cf. [3]). Therefore $M^{B}\left(k_{v}\right) \neq \emptyset$ for any place v of k.
(2) Assume $(d(B), k)=(62, L(\sqrt{-39}))$ (resp. $(86, L(\sqrt{-15})))$. First, we prove $B \otimes_{\mathbb{Q}} k \not \not \mathrm{M}_{2}(k)$. The prime number 2 splits in k as a product of two distinct primes with inertial degree 3 . Then we let v be the place corresponding to one of these primes. By [7, Chapitre II, Théorème 1.3], we have $B \otimes_{\mathbb{Q}} k_{v} \not \neq \mathrm{M}_{2}\left(k_{v}\right)$. Therefore $B \otimes_{\mathbb{Q}} k \neq \mathrm{M}_{2}(k)$.

Applying Theorem 1.1 with $q=3$, we obtain $M^{B}(k)=\emptyset$. In fact, $\left(e_{\mathfrak{q}}, f_{\mathfrak{q}}\right)=(6,1)$ where \mathfrak{q} is the unique prime of k above $q=3$, and the prime divisor 31 (resp. 43) of $d(B)$ does not belong to $\mathcal{P}(\mathcal{D}(3,12)) \cup\{3\}$. Since 31 (resp. 43) splits in $\mathbb{Q}(\sqrt{-3})$, we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-3}) \not \not \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-3}))$.

By [4, Table 1], we have $M^{B}\left(\mathbb{Q}(\sqrt{-39})_{w}\right) \neq \emptyset\left(\operatorname{resp} . M^{B}\left(\mathbb{Q}(\sqrt{-15})_{w}\right) \neq \emptyset\right)$ for any place w of $\mathbb{Q}(\sqrt{-39})$ (resp. $\mathbb{Q}(\sqrt{-15})$). Therefore $M^{B}\left(k_{v}\right) \neq \emptyset$ for any place v of k.

Acknowledgments. The author would like to thank the anonymous referee for helpful comments.

References

[1] K. Buzzard, Integral models of certain Shimura curves, Duke Math. J. 87 (1997), 591-612.
[2] B. Jordan, Points on Shimura curves rational over number fields, J. Reine Angew. Math. 371 (1986), 92-114.
[3] B. Jordan and R. Livné, Local Diophantine properties of Shimura curves, Math. Ann. 270 (1985), 235-248.
[4] V. Rotger and C. de Vera-Piquero, Galois representations over fields of moduli and rational points on Shimura curves, Canad. J. Math. 66 (2014), 1167-1200.
[5] G. Shimura, On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann. 215 (1975), 135-164.
[6] A. Skorobogatov, Shimura coverings of Shimura curves and the Manin obstruction, Math. Res. Lett. 12 (2005), 779-788.
[7] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Math. 800, Springer, Berlin, 1980.

Keisuke Arai
Department of Mathematics
School of Science and Technology for Future Life
Tokyo Denki University
5 Senju Asahi-cho, Adachi-ku
Tokyo 120-8551, Japan
E-mail: araik@mail.dendai.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary 11G18, 14G05; Secondary 11G10, 11G15. Key words and phrases: rational points, Shimura curves, QM-abelian surfaces, Hasse principle.
 Received 2 February 2015; revised 15 October 2015.
 Published online 20 January 2016.

