Non-existence of points rational over number fields on Shimura curves

by

KEISUKE ARAI (Tokyo)

1. Introduction. Let B be an indefinite quaternion division algebra over \mathbb{Q} , and d(B) its discriminant. Fix a maximal order \mathcal{O} of B. A QMabelian surface with multiplication by \mathcal{O} over a field F is a pair (A, i) where A is a 2-dimensional abelian variety over F, and $i : \mathcal{O} \hookrightarrow \operatorname{End}_F(A)$ is an injective ring homomorphism satisfying $i(1) = \operatorname{id}(\operatorname{cf.}[1, p. 591])$. Here, $\operatorname{End}_F(A)$ is the ring of endomorphisms of A defined over F. We assume that A has a left \mathcal{O} -action. Let M^B be the Shimura curve over \mathbb{Q} associated to B, which parameterizes the isomorphism classes of QM-abelian surfaces with multiplication by $\mathcal{O}(\operatorname{cf.}[2, p. 93])$. We know that M^B is a proper smooth curve over \mathbb{Q} , and that its isomorphism type over \mathbb{Q} depends only on d(B), but not on the particular choice of B and \mathcal{O} .

For an imaginary quadratic field k, the set $M^B(k)$ of k-rational points on M^B is empty under a certain assumption ([2, Theorem 6.3], [4, Theorem 1.1]). We extend this result to the case where k is a number field of higher degree. The method of proof is based on the strategy in [2], and the key is to control the field of definition of the QM-abelian surface corresponding to a k-rational point on M^B . We also give counterexamples to the Hasse principle on M^B over number fields. We will discuss the relevance to the Manin obstruction (cf. [6]) in a forthcoming article.

For a prime number q, let $\mathcal{B}(q)$ be the set of the isomorphism classes of indefinite quaternion division algebras B over \mathbb{Q} such that

$$\begin{cases} B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \not\cong \mathrm{M}_2(\mathbb{Q}(\sqrt{-q})) & \text{if } q \neq 2, \\ B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-1}) \not\cong \mathrm{M}_2(\mathbb{Q}(\sqrt{-1})) & \\ \text{and } B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-2}) \not\cong \mathrm{M}_2(\mathbb{Q}(\sqrt{-2})) & \text{if } q = 2. \end{cases}$$

Received 2 February 2015; revised 15 October 2015. Published online 20 January 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 11G18, 14G05; Secondary 11G10, 11G15. Key words and phrases: rational points, Shimura curves, QM-abelian surfaces, Hasse principle.

For positive integers N and e, let

 $\mathcal{C}(N,e) := \{ \alpha^e + \overline{\alpha}^e \in \mathbb{Z} \mid \alpha \in \mathbb{C} \text{ is a root of } T^2 + sT + N \}$

for some
$$s \in \mathbb{Z}, s^2 \leq 4N$$
},

$$\mathcal{D}(N, e) := \{ a, a \pm N^{e/2}, a \pm 2N^{e/2}, a^2 - 3N^e \in \mathbb{R} \mid a \in \mathcal{C}(N, e) \}.$$

Here, $\overline{\alpha}$ is the complex conjugate of α . If e is even, then $\mathcal{D}(N, e) \subseteq \mathbb{Z}$. For a subset $\mathcal{D} \subseteq \mathbb{Z}$, let

 $\mathcal{P}(\mathcal{D}) := \{ \text{prime divisors of some of the integers in } \mathcal{D} \setminus \{0\} \}.$

For a number field k and a prime \mathfrak{q} of k of residue characteristic q, define:

- $\kappa(q)$: the residue field of q,
- $N_{\mathfrak{q}}$: the cardinality of $\kappa(\mathfrak{q})$,
- $e_{\mathfrak{q}}$: the ramification index of \mathfrak{q} in k/\mathbb{Q} ,
- $f_{\mathfrak{q}}$: the degree of the extension $\kappa(\mathfrak{q})/\mathbb{F}_q$,
- S(k, q): the set of the isomorphism classes of indefinite quaternion division algebras B over \mathbb{Q} such that any prime divisor of d(B) belongs to

$$\begin{cases} \mathcal{P}(\mathcal{D}(\mathrm{N}_{\mathfrak{q}}, e_{\mathfrak{q}})) \cup \{q\} & \text{ if } B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k) \text{ and } e_{\mathfrak{q}} \text{ is even,} \\ \mathcal{P}(\mathcal{D}(\mathrm{N}_{\mathfrak{q}}, 2e_{\mathfrak{q}})) \cup \{q\} & \text{ if } B \otimes_{\mathbb{Q}} k \ncong \mathrm{M}_{2}(k). \end{cases}$$

Note that $\mathcal{S}(k, \mathfrak{q})$ is a finite set. The main result of this article is:

THEOREM 1.1. Let k be a number field of even degree, and q a prime number such that

- there is a unique prime q of k above q,
- $f_{\mathfrak{q}}$ is odd (and so $e_{\mathfrak{q}}$ is even), and
- $B \in \mathcal{B}(q) \setminus \mathcal{S}(k, \mathfrak{q}).$

Then $M^B(k) = \emptyset$.

REMARK 1.2. (1) By [5, Theorem 0], we have $M^B(\mathbb{R}) = \emptyset$. (2) If k is of odd degree, then k has a real place, and so $M^B(k) = \emptyset$.

2. Canonical isogeny characters. In this section, we review canonical isogeny characters associated to QM-abelian surfaces, which were introduced in [2, §4]. Let K be a number field, \overline{K} an algebraic closure of K, $G_K = \text{Gal}(\overline{K}/K)$ the absolute Galois group of K, \mathcal{O}_K the ring of integers of K, (A, i) a QM-abelian surface with multiplication by \mathcal{O} over K, and p a prime divisor of d(B). The p-torsion subgroup $A[p](\overline{K})$ of A has exactly one nonzero proper left \mathcal{O} -submodule, which we shall denote by C_p . It has order p^2 , and is stable under the action of G_K . Let $\mathfrak{P}_{\mathcal{O}} \subseteq \mathcal{O}$ be the unique left ideal of reduced norm $p\mathbb{Z}$. In fact, $\mathfrak{P}_{\mathcal{O}}$ is a two-sided ideal of \mathcal{O} . Then C_p is free of rank 1 over $\mathcal{O}/\mathfrak{P}_{\mathcal{O}}$. Fix an isomorphism $\mathcal{O}/\mathfrak{P}_{\mathcal{O}} \cong \mathbb{F}_{p^2}$. The action of G_K

244

on C_p yields a character

$$\varrho_p : \mathcal{G}_K \to \operatorname{Aut}_{\mathcal{O}}(C_p) \cong \mathbb{F}_{p^2}^{\times}.$$

Here, $\operatorname{Aut}_{\mathcal{O}}(C_p)$ is the group of \mathcal{O} -linear automorphisms of C_p . The character ϱ_p depends on the choice of the isomorphism $\mathcal{O}/\mathfrak{P}_{\mathcal{O}} \cong \mathbb{F}_{p^2}$, but the pair $\{\varrho_p, (\varrho_p)^p\}$ is independent of this choice. Either of the characters $\varrho_p, (\varrho_p)^p$ is called a *canonical isogeny character* at p. We have an induced character

$$\varrho_p^{\mathrm{ab}}: \mathbf{G}_K^{\mathrm{ab}} \to \mathbb{F}_{p^2}^{\times},$$

where G_K^{ab} is the Galois group of the maximal abelian extension K^{ab}/K .

For a prime \mathfrak{L} of K, let $\mathcal{O}_{K,\mathfrak{L}}$ be the completion of \mathcal{O}_K at \mathfrak{L} , and let

$$r_p(\mathfrak{L}): \mathcal{O}_{K,\mathfrak{L}}^{\times} \xrightarrow{\omega_{\mathfrak{L}}} \mathcal{G}_K^{\mathrm{ab}} \xrightarrow{\varrho_p^{\mathrm{ab}}} \mathbb{F}_{p^2}^{\times}.$$

Here, $\omega_{\mathfrak{L}}$ is the Artin map.

PROPOSITION 2.1 ([2, Proposition 4.7(2)]). If $\mathfrak{L} \nmid p$, then $r_p(\mathfrak{L})^{12} = 1$.

Fix a prime \mathfrak{P} of K above p. Then we have an isomorphism $\kappa(\mathfrak{P}) \cong \mathbb{F}_{p^{f_{\mathfrak{P}}}}$ of finite fields. Let $t_{\mathfrak{P}} := \gcd(2, f_{\mathfrak{P}}) \in \{1, 2\}.$

PROPOSITION 2.2 ([2, Proposition 4.8]).

- (1) There is a unique element $c_{\mathfrak{P}} \in \mathbb{Z}/(p^{t_{\mathfrak{P}}}-1)\mathbb{Z}$ satisfying $r_p(\mathfrak{P})(u) = \operatorname{Norm}_{\kappa(\mathfrak{P})/\mathbb{F}_{p^{t_{\mathfrak{P}}}}}(\widetilde{u})^{-c_{\mathfrak{P}}}$ for any $u \in \mathcal{O}_{K,\mathfrak{P}}^{\times}$. Here, $\widetilde{u} \in \kappa(\mathfrak{P})^{\times}$ is the reduction of u modulo \mathfrak{P} .
- (2) $2c_{\mathfrak{P}}/t_{\mathfrak{P}} \equiv e_{\mathfrak{P}} \mod (p-1).$

COROLLARY 2.3. For any prime number $l \neq p$, we have $r_p(\mathfrak{P})(l^{-1})^2 \equiv l^{e_{\mathfrak{P}}f_{\mathfrak{P}}} \mod p$.

 $\begin{array}{l} Proof. \quad r_p(\mathfrak{P})(l^{-1})^2 = (\operatorname{Norm}_{\kappa(\mathfrak{P})/\mathbb{F}_p{}^t\mathfrak{P}}(l^{-1})^{-c_{\mathfrak{P}}})^2 = \operatorname{Norm}_{\mathbb{F}_p{}^f\mathfrak{P}}/\mathbb{F}_p{}^t\mathfrak{P}}(l)^{2c_{\mathfrak{P}}} \\ \equiv l^{2c_{\mathfrak{P}}f_{\mathfrak{P}}/t_{\mathfrak{P}}} = l^{e_{\mathfrak{P}}f_{\mathfrak{P}}} \mod p. \quad \bullet \end{array}$

For a prime number l, the action of G_K on the l-adic Tate module T_lA yields a representation

$$R_l: \mathbf{G}_K \to \operatorname{Aut}_{\mathcal{O}}(T_l A) \cong \mathcal{O}_l^{\times} \subseteq B_l^{\times},$$

where $\operatorname{Aut}_{\mathcal{O}}(T_lA)$ is the group of \mathcal{O} -linear automorphisms of T_lA , and $\mathcal{O}_l = \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_l, B_l = B \otimes_{\mathbb{Q}} \mathbb{Q}_l$. Let $\operatorname{Nrd}_{B_l/\mathbb{Q}_l}$ be the reduced norm on B_l . Let \mathfrak{M} be a prime of K, and $F_{\mathfrak{M}} \in \mathcal{G}_K$ a Frobenius element at \mathfrak{M} . For each $e \geq 1$, there is an integer $a(F_{\mathfrak{M}}^e)$ satisfying

$$\operatorname{Nrd}_{B_l/\mathbb{Q}_l}(T - R_l(F^e_{\mathfrak{M}})) = T^2 - a(F^e_{\mathfrak{M}})T + (N_{\mathfrak{M}})^e \in \mathbb{Z}[T]$$

for any l prime to \mathfrak{M} .

PROPOSITION 2.4 ([2, Proposition 5.3]).

(1) $a(F_{\mathfrak{M}}^e)^2 \leq 4(N_{\mathfrak{M}})^e$ for any positive integer e.

(2) Assume $\mathfrak{M} \nmid p$. Then

 $a(F_{\mathfrak{M}}^{e}) \equiv \varrho_{p}(F_{\mathfrak{M}}^{e}) + (\mathcal{N}_{\mathfrak{M}})^{e} \varrho_{p}(F_{\mathfrak{M}}^{e})^{-1} \mod p$

for any positive integer e.

Let $\alpha_{\mathfrak{M}}, \overline{\alpha}_{\mathfrak{M}} \in \mathbb{C}$ be the roots of $T^2 - a(F_{\mathfrak{M}})T + N_{\mathfrak{M}}$. Then $\alpha_{\mathfrak{M}} + \overline{\alpha}_{\mathfrak{M}} = a(F_{\mathfrak{M}})$ and $\alpha_{\mathfrak{M}}\overline{\alpha}_{\mathfrak{M}} = N_{\mathfrak{M}}$. We see that the roots of $T^2 - a(F_{\mathfrak{M}}^e)T + (N_{\mathfrak{M}})^e$ are $\alpha_{\mathfrak{M}}^e, \overline{\alpha}_{\mathfrak{M}}^e$. Then $\alpha_{\mathfrak{M}}^e + \overline{\alpha}_{\mathfrak{M}}^e = a(F_{\mathfrak{M}}^e)$. We have the following corollary to Proposition 2.4(1):

COROLLARY 2.5. $a(F_{\mathfrak{M}}^e) \in \mathcal{C}(N_{\mathfrak{M}}, e)$ for any positive integer e.

For later use, we give the following lemma:

LEMMA 2.6. Let m be the residue characteristic of \mathfrak{M} . Then the following conditions are equivalent:

- (i) $m \mid a(F_{\mathfrak{M}})$.
- (ii) $m \mid a(F_{\mathfrak{M}}^e)$ for a positive integer e.
- (iii) $m \mid a(F_{\mathfrak{M}}^e)$ for any positive integer e.

Proof. For each $e \geq 1$, there is a polynomial $P_e(S,T) \in \mathbb{Z}[S,T]$ such that $(S+T)^e = S^e + T^e + STP_e(S+T,ST)$. Then $a(F_{\mathfrak{M}})^e = a(F_{\mathfrak{M}}^e) + N_{\mathfrak{M}}P_e(a(F_{\mathfrak{M}}), N_{\mathfrak{M}})$. Since $m \mid N_{\mathfrak{M}}$, we have $m \mid a(F_{\mathfrak{M}})$ if and only if $m \mid a(F_{\mathfrak{M}}^e)$.

3. Proof of the main result. Now we prove Theorem 1.1. Suppose that the assumptions of Theorem 1.1 hold. Assume that there is a point $x \in M^B(k)$. When $B \otimes_{\mathbb{Q}} k \cong M_2(k)$, let K_0 be a quadratic extension of k satisfying $B \otimes_{\mathbb{Q}} K_0 \cong M_2(K_0)$. Let

$$K := \begin{cases} k & \text{if } B \otimes_{\mathbb{Q}} k \cong M_2(k), \\ K_0 & \text{if } B \otimes_{\mathbb{Q}} k \not\cong M_2(k). \end{cases}$$

Note that the degree $[K : \mathbb{Q}]$ is even. Then x is represented by a QM-abelian surface (A, i) with multiplication by \mathcal{O} over K (see [2, Theorem 1.1]). Recall that \mathfrak{q} denotes the unique prime of k above q. Since $B \notin \mathcal{S}(k, \mathfrak{q})$, there is a prime divisor p of d(B) such that $p \neq q$ and p does not belong to

$$\begin{cases} \mathcal{P}(\mathcal{D}(\mathcal{N}_{\mathfrak{q}}, e_{\mathfrak{q}})) & \text{if } B \otimes_{\mathbb{Q}} k \cong \mathcal{M}_{2}(k), \\ \mathcal{P}(\mathcal{D}(\mathcal{N}_{\mathfrak{q}}, 2e_{\mathfrak{q}})) & \text{if } B \otimes_{\mathbb{Q}} k \ncong \mathcal{M}_{2}(k). \end{cases}$$

Fix such a p, and let $\varrho_p : \mathbf{G}_K \to \mathbb{F}_{p^2}^{\times}$ be a canonical isogeny character at p associated to (A, i).

By Proposition 2.1, the character g_p^{12} is unramified outside p. Hence it can be identified with a character $\mathfrak{I}_K(p) \to \mathbb{F}_{p^2}^{\times}$, where $\mathfrak{I}_K(p)$ is the group of fractional ideals of K prime to p. When $B \otimes_{\mathbb{Q}} k \not\cong M_2(k)$, we may assume that \mathfrak{q} is ramified in K/k by replacing K_0 if necessary. In any case, let \mathfrak{Q}

246

be the unique prime of K above \mathfrak{q} . Note that \mathfrak{Q} is the unique prime of K above q, and so $q\mathcal{O}_K = \mathfrak{Q}^{e_{\mathfrak{Q}}}$ and $(N_{\mathfrak{Q}})^{e_{\mathfrak{Q}}} = (q^{f_{\mathfrak{Q}}})^{e_{\mathfrak{Q}}} = q^{[K:\mathbb{Q}]}$. Then by Corollary 2.3, we have

$$\begin{split} \varrho_p^{12}(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) &= \varrho_p^{12}(\mathfrak{Q}^{e_{\mathfrak{Q}}}) = \varrho_p^{12}(q\mathcal{O}_K) = \varrho_p^{12}(1,\dots,1,q,\dots,q,\dots) \\ &= \varrho_p^{12}(q^{-1},\dots,q^{-1},1,\dots,1,\dots) = \prod_{\mathfrak{P}|p} r_p(\mathfrak{P})^{12}(q^{-1}) \equiv \prod_{\mathfrak{P}|p} q^{6e_{\mathfrak{P}}f_{\mathfrak{P}}} \\ &= q^{6[K:\mathbb{Q}]} \mod p. \end{split}$$

Here, $(1, \ldots, 1, q, \ldots, q, \ldots)$ (resp. $(q^{-1}, \ldots, q^{-1}, 1, \ldots, 1, \ldots)$) is the idèle of K where the components above p are 1 and the others are q (resp. where the components above p are q^{-1} and the others are 1), and \mathfrak{P} runs through the primes of K above p. On the other hand,

$$a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \equiv \varrho_p(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) + (\mathcal{N}_{\mathfrak{Q}})^{e_{\mathfrak{Q}}} \varrho_p(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}})^{-1} = \varrho_p(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) + q^{[K:\mathbb{Q}]} \varrho_p(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}})^{-1} \mod p$$

by Proposition 2.4(2). Let $\varepsilon := q^{-[K:\mathbb{Q}]/2} \varrho_p(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \in \mathbb{F}_{p^2}^{\times}$. Then

$$\varepsilon^{12} = 1$$
 and $a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \equiv (\varepsilon + \varepsilon^{-1})q^{[K:\mathbb{Q}]/2} \mod p.$

Therefore

$$a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \equiv 0, \pm q^{[K:\mathbb{Q}]/2}, \pm 2q^{[K:\mathbb{Q}]/2} \mod p \quad \text{or} \quad a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}})^2 \equiv 3q^{[K:\mathbb{Q}]} \mod p.$$

By Corollary 2.5, we have $a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \in \mathcal{C}(\mathcal{N}_{\mathfrak{Q}}, e_{\mathfrak{Q}}).$ Moreover,

$$N_{\mathfrak{Q}} = N_{\mathfrak{q}} \quad \text{and} \quad e_{\mathfrak{Q}} = \begin{cases} e_{\mathfrak{q}} & \text{if } B \otimes_{\mathbb{Q}} k \cong M_2(k), \\ 2e_{\mathfrak{q}} & \text{if } B \otimes_{\mathbb{Q}} k \ncong M_2(k). \end{cases}$$

Then

$$\begin{split} &a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}), a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \pm q^{[K:\mathbb{Q}]/2}, a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \pm 2q^{[K:\mathbb{Q}]/2}, a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}})^2 - 3q^{[K:\mathbb{Q}]} \in \mathcal{D}(\mathcal{N}_{\mathfrak{Q}}, e_{\mathfrak{Q}}).\\ &\text{Since } p \notin \mathcal{P}(\mathcal{D}(\mathcal{N}_{\mathfrak{q}}, e_{\mathfrak{Q}})), \text{ we have} \end{split}$$

(1) $a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) = 0, \pm q^{[K:\mathbb{Q}]/2}, \pm 2q^{[K:\mathbb{Q}]/2}, \text{ or}$ (2) $a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}})^2 = 3q^{[K:\mathbb{Q}]}.$

Case (1). In this case, we have $q \mid a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}})$. Then $q \mid a(F_{\mathfrak{Q}})$ by Lemma 2.6. Since $f_{\mathfrak{Q}} (= f_{\mathfrak{q}})$ is odd, we obtain $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong M_2(\mathbb{Q}(\sqrt{-q}))$ or (q = 2 and $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-1}) \cong M_2(\mathbb{Q}(\sqrt{-1})))$ (see [2, Theorem 2.1, Propositions 2.3 and 5.1(1)]). This contradicts $B \in \mathcal{B}(q)$.

Case (2). In this case, q = 3 and $[K : \mathbb{Q}]$ is odd, a contradiction. Therefore we conclude $M^B(k) = \emptyset$.

4. Counterexamples to the Hasse principle. We have computed the sets $\mathcal{C}(N, e), \mathcal{D}(N, e), \mathcal{P}(\mathcal{D}(N, e))$ in several cases as seen in Table 1. Then we obtain the following counterexamples to the Hasse principle on M^B over number fields:

(N, e)	$\mathcal{C}(N,e)$	$\mathcal{D}(N,e)$	$\mathcal{P}(\mathcal{D}(N,e))$
(2, 2)	0, -3, -4	$0, \pm 1, \pm 2, -3, \pm 4, -5, -6, -7, -8, -12$	2, 3, 5, 7
(2, 4)	$1, \pm 8$	$0, 1, -3, \pm 4, 5, -7, \pm 8, 9, \pm 12, \pm 16, -47$	2, 3, 5, 7, 47
(2, 6)	0, 9, -16	$\begin{array}{c} 0, \ 1, \ -7, \ \pm 8, \ 9, \ \pm 16, \ 17, \ -24, \ 25, \ -32, \\ 64, \ -111, \ -192 \end{array}$	2, 3, 5, 7, 17, 37
(2,8)	-31, 32	$\begin{matrix} 0, \ 1, \ -15, \ 16, \ -31, \ 32, \ -47, \ 48, \ -63, \ 64, \\ 193, \ 256 \end{matrix}$	2, 3, 5, 7, 31, 47, 193
(2, 10)	0, 57, -64	$\begin{array}{c} 0, \ -7, \ 25, \ \pm 32, \ 57, \ \pm 64, \ 89, \ -96, \ 121, \\ -128, \ 177, \ 1024, \ -3072 \end{array}$	$2, 3, 5, 7, 11, 19, 59, \\89$
(2, 12)	$-47, \pm 128$	$\begin{array}{c} 0, \ 17, \ -47, \ \pm 64, \ 81, \ -111, \ \pm 128, \ -175, \\ \pm 192, \ \pm 256, \ 4096, \ -10079 \end{array}$	$\begin{array}{c} 2, 3, 5, 7, 17, 37, 47, \\ 10079 \end{array}$
(2, 14)	0, -87, -256	$\begin{array}{c} 0,41,-87,\pm128,169,-215,\pm256,-343,\\ -384,-512,16384,-41583,-49152 \end{array}$	2, 3, 5, 7, 13, 29, 41, 43, 83, 167
(2, 16)	449, 512	$\begin{array}{c} 0, \ -63, \ 193, \ 256, \ 449, \ 512, \ 705, \ 768, \ 961, \\ 1024, \ 4993, \ 65536 \end{array}$	$2, 3, 5, 7, 31, 47, \\193, 449, 4993$
(3, 2)	$ \begin{array}{c} -2, 3, -5, \\ -6 \end{array} $	$\begin{array}{c} 0, \ 1, \ -2, \ \pm 3, \ 4, \ -5, \ \pm 6, \ -8, \ \pm 9, \ -11, \\ -12, \ -18, \ -23 \end{array}$	2, 3, 5, 11, 23
(3,4)	7, -9, -14, 18	$\begin{array}{c} 0, \ -2, \ 4, \ -5, \ 7, \ \pm 9, \ -11, \ -14, \ 16, \ \pm 18, \\ -23, \ 25, \ \pm 27, \ -32, \ 36, \ -47, \ 81, \ -162, \\ -194 \end{array}$	2, 3, 5, 7, 11, 23, 47, 97
(3, 6)	10, 46, -54	$\begin{matrix} 0, -8, 10, -17, 19, -27, 37, -44, 46, -54, \\ 64, -71, 73, -81, 100, -108, 729, -2087 \end{matrix}$	$\begin{array}{c} 2, 3, 5, 11, 17, 19, \\ 23, 37, 71, 73, 2087 \end{array}$
(3, 8)	34, -81, -113, 162	$\begin{array}{c} 0, \ -32, \ 34, \ -47, \ 49, \ \pm 81, \ -113, \ 115, \\ -128, \ \pm 162, \ -194, \ 196, \ \pm 243, \ -275, \ 324, \\ 6561, \ -6914, \ -13122, \ -18527 \end{array}$	$\begin{array}{c} 2,\ 3,\ 5,\ 7,\ 11,\ 17,\ 23,\\ 47,\ 97,\ 113,\ 191,\\ 3457\end{array}$
(3, 10)	243, 475, -482, -486	$\begin{array}{c} 0,4,-11,232,-239,\pm 243,475,-482,\\ \pm 486,718,-725,\pm 729,961,-968,-972,\\ 48478,55177,59049,-118098 \end{array}$	2, 3, 5, 11, 19, 23, 29, 31, 239, 241, 359, 2399, 24239
(3, 12)	658, -1358, 1458	$\begin{array}{l} 0, \ -71, \ 100, \ -629, \ 658, \ 729, \ -800, \\ -1358, \ 1387, \ 1458, \ -2087, \ 2116, \ 2187, \\ -2816, \ 2916, \ 249841, \ 531441, \ -1161359 \end{array}$	2, 3, 5, 7, 11, 17, 19, 23, 37, 47, 71, 73, 97, 433, 577, 1009, 1151, 2087
(3, 14)	$2187, \\2515, \\3022, \\-4374$	$\begin{array}{c} 0,\ 328,\ 835,\ -1352,\ -1859,\ \pm 2187,\ 2515,\\ 3022,\ \pm 4374,\ 4702,\ 5209,\ \pm 6561,\ 6889,\\ 7396,\ -8748,\ 4782969,\ -5216423,\\ -8023682,\ -9565938 \end{array}$	$\begin{array}{c} 2,\ 3,\ 5,\ 11,\ 13,\ 23,\\ 41,\ 43,\ 83,\ 167,\ 337,\\ 503,\ 673,\ 1511,\ 2351,\\ 5209,\ 24023 \end{array}$
(3, 16)	-353, -6561, -11966, 13122	$\begin{array}{c} 0, -353, 1156, -5405, 6208, \pm 6561, \\ -6914, -11966, 12769, \pm 13122, -13475, \\ -18527, \pm 19683, -25088, 26244, \\ 14044993, 43046721, -86093442, \\ -129015554 \end{array}$	$\begin{array}{c} 2,\ 3,\ 5,\ 7,\ 11,\ 17,\ 23,\\ 31,\ 47,\ 97,\ 113,\ 191,\\ 193,\ 353,\ 383,\ 2113,\\ 3457,\ 30529,\ 36671 \end{array}$

Table 1. Examples of $\mathcal{P}(\mathcal{D}(N, e))$

PROPOSITION 4.1.

- (1) Assume d(B) = 39, and let $k = \mathbb{Q}(\sqrt{2}, \sqrt{-13})$ or $\mathbb{Q}(\sqrt{-2}, \sqrt{-13})$. Then $B \otimes_{\mathbb{Q}} k \cong M_2(k)$, $M^B(k) = \emptyset$ and $M^B(k_v) \neq \emptyset$ for any place v of k. Here, k_v is the completion of k at v.
- (2) Let L be the subfield of $\mathbb{Q}(\zeta_9)$ satisfying $[L:\mathbb{Q}] = 3$, where ζ_9 is a primitive 9th root of unity. Assume $(d(B), k) = (62, L(\sqrt{-39}))$ or $(86, L(\sqrt{-15}))$. Then $B \otimes_{\mathbb{Q}} k \not\cong M_2(k)$, $M^B(k) = \emptyset$ and $M^B(k_v) \neq \emptyset$ for any place v of k.

Proof. (1) The prime number 3 (resp. 13) is inert (resp. ramified) in $\mathbb{Q}(\sqrt{-13})$. Thus $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-13}) \cong M_2(\mathbb{Q}(\sqrt{-13}))$, and so $B \otimes_{\mathbb{Q}} k \cong M_2(k)$.

Applying Theorem 1.1 with q = 2, we obtain $M^B(k) = \emptyset$. In fact, $(e_{\mathfrak{q}}, f_{\mathfrak{q}}) = (4, 1)$ where \mathfrak{q} is the unique prime of k above q = 2, and the prime divisor 13 of d(B) does not belong to $\mathcal{P}(\mathcal{D}(2, 4)) \cup \{2\}$ (see Table 1). Since 3 (resp. 13) splits in $\mathbb{Q}(\sqrt{-2})$ (resp. $\mathbb{Q}(\sqrt{-1})$), we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-2}) \not\cong$ $M_2(\mathbb{Q}(\sqrt{-2}))$ (resp. $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-1}) \not\cong M_2(\mathbb{Q}(\sqrt{-1}))$).

By [2, p. 94], we have $M^B(\mathbb{Q}(\sqrt{-13})_w) \neq \emptyset$ for any place w of $\mathbb{Q}(\sqrt{-13})$ (cf. [3]). Therefore $M^B(k_v) \neq \emptyset$ for any place v of k.

(2) Assume $(d(B), k) = (62, L(\sqrt{-39}))$ (resp. $(86, L(\sqrt{-15})))$. First, we prove $B \otimes_{\mathbb{Q}} k \ncong M_2(k)$. The prime number 2 splits in k as a product of two distinct primes with inertial degree 3. Then we let v be the place corresponding to one of these primes. By [7, Chapitre II, Théorème 1.3], we have $B \otimes_{\mathbb{Q}} k_v \ncong M_2(k_v)$. Therefore $B \otimes_{\mathbb{Q}} k \ncong M_2(k)$.

Applying Theorem 1.1 with q = 3, we obtain $M^B(k) = \emptyset$. In fact, $(e_{\mathfrak{q}}, f_{\mathfrak{q}}) = (6, 1)$ where \mathfrak{q} is the unique prime of k above q = 3, and the prime divisor 31 (resp. 43) of d(B) does not belong to $\mathcal{P}(\mathcal{D}(3, 12)) \cup \{3\}$. Since 31 (resp. 43) splits in $\mathbb{Q}(\sqrt{-3})$, we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-3}) \not\cong M_2(\mathbb{Q}(\sqrt{-3}))$.

By [4, Table 1], we have $M^B(\mathbb{Q}(\sqrt{-39})_w) \neq \emptyset$ (resp. $M^B(\mathbb{Q}(\sqrt{-15})_w) \neq \emptyset$) for any place w of $\mathbb{Q}(\sqrt{-39})$ (resp. $\mathbb{Q}(\sqrt{-15})$). Therefore $M^B(k_v) \neq \emptyset$ for any place v of k.

Acknowledgments. The author would like to thank the anonymous referee for helpful comments.

References

- K. Buzzard, Integral models of certain Shimura curves, Duke Math. J. 87 (1997), 591–612.
- B. Jordan, Points on Shimura curves rational over number fields, J. Reine Angew. Math. 371 (1986), 92–114.
- B. Jordan and R. Livné, Local Diophantine properties of Shimura curves, Math. Ann. 270 (1985), 235–248.
- [4] V. Rotger and C. de Vera-Piquero, Galois representations over fields of moduli and rational points on Shimura curves, Canad. J. Math. 66 (2014), 1167–1200.

K. Arai

- [5] G. Shimura, On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann. 215 (1975), 135–164.
- [6] A. Skorobogatov, Shimura coverings of Shimura curves and the Manin obstruction, Math. Res. Lett. 12 (2005), 779–788.
- [7] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Math. 800, Springer, Berlin, 1980.

Keisuke Arai

Department of Mathematics School of Science and Technology for Future Life Tokyo Denki University 5 Senju Asahi-cho, Adachi-ku Tokyo 120-8551, Japan E-mail: araik@mail.dendai.ac.jp

250