
STUDIA MATHEMATICA 230 (3) (2015)

Weak amenability of weighted group algebras
on some discrete groups

by

Varvara Shepelska (Winnipeg)

Abstract. Weak amenability of `1(G,ω) for commutative groups G was completely
characterized by N. Gronbaek in 1989. In this paper, we study weak amenability of `1(G,ω)
for two important non-commutative locally compact groups G: the free group F2, which
is non-amenable, and the amenable (ax + b)-group. We show that the condition that
characterizes weak amenability of `1(G,ω) for commutative groupsG remains necessary for
the non-commutative case, but it is sufficient neither for `1(F2, ω) nor for `1((ax + b), ω)
to be weakly amenable. We prove that for several important classes of weights ω the
algebra `1(F2, ω) is weakly amenable if and only if the weight ω is diagonally bounded. In
particular, the polynomial weight ωα(x) = (1 + |x|)α, where |x| denotes the length of the
element x ∈ F2 and α > 0, never makes `1(F2, ωα) weakly amenable.

We also study weak amenability of an Abelian algebra `1(Z2, ω). We give an example
showing that weak amenability of `1(Z2, ω) does not necessarily imply weak amenability
of `1(Z, ωi), where ωi denotes the restriction of ω to the ith coordinate (i = 1, 2). We also
provide a simple procedure for verification whether `1(Z2, ω) is weakly amenable.

1. Introduction. Let A be a Banach algebra and let X be a Banach
A-bimodule. A linear map D : A → X is called a derivation if it satisfies
D(ab) = a · D(b) + D(a) · b for all a, b ∈ A. For every x ∈ X the map
a 7→ a · x − x · a is a continuous derivation, called an inner derivation.
The Banach algebra A is called amenable if every continuous derivation
from A to any dual Banach A-bimodule X∗ is inner; and A is called weakly
amenable if every continuous derivation from A into its Banach space dual
A∗ is inner. For the background and history of these notions see the mono-
graph [3].

Since the group algebra L1(G) and the weighted group algebra L1(G,ω)
are fundamental examples of Banach algebras, a number of studies were
conducted investigating amenability properties of these algebras (see [5]–[7]
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and [14]). In particular, it was proved that every group algebra L1(G), and
hence every discrete group algebra `1(G), is weakly amenable. In this pa-
per, we investigate weak amenability of the weighted discrete group algebra
`1(G,ω) for several important groups G.

Recall that a weight on a discrete group G is a function ω : G → R+

satisfying the weight inequality ω(xy) ≤ ω(x)ω(y) for x, y ∈ G. Given a
weight ω on G, consider

`1(G,ω) =
{
f =

∑
x∈G

f(x)δx ∈ CG :
∑
x∈G
|f(x)|ω(x) <∞

}
.

Equipped with the norm

‖f‖`1(G,ω) =
∑
x∈G
|f(x)|ω(x)

and the convolution product

(f ∗ g)(x) =
∑
y∈G

f(y−1x)g(y), x ∈ G,

`1(G,ω) becomes a Banach algebra, called a discrete Beurling algebra.

N. Gronbaek has characterized the weights ω making `1(G,ω) weakly
amenable in the case when the group G is Abelian.

Proposition 1.1 ([6, Corollary 4.8]). Let G be an Abelian discrete
group, and ω be a weight function on G. The Beurling algebra `1(G,ω)
is weakly amenable if and only if

(∗) sup
g∈G

|Φ(g)|
ω(g)ω(−g)

=∞

for every non-zero group homomorphism Φ : G→ C.

Note that in the above, C is considered as an additive group.

It was later proved that the condition that every non-zero homomor-
phism Φ : G → C satisfies (∗) remains necessary for weak amenability
of `1(G,ω) for arbitrary group G (see the PhD thesis of A. Pourabbas
[9, Proposition 3.2.3] or the PhD thesis of C. R. Borwick [2, Theorem 2.8]).
C. R. Borwick also shows that this condition is no longer sufficient for non-
Abelian groups G. He does this by constructing a family of polynomial type
weights ωα on SL2(R) for which `1(SL2(R), ωα) is not weakly amenable
[2, Theorem 2.24] and showing that there are no non-zero homomorphisms
Φ : SL2(R)→ C [2, Theorem 2.16], so that the condition of Proposition 1.1
is satisfied for any weight ω on SL2(R).

In this paper, we study weak amenability of `1(G,ω) for two important
non-commutative discrete groups: the free group F2 on two generators and
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the (ax + b)-group. We focus on these groups because F2 is the simplest
non-commutative and non-amenable group, and (ax + b)-group is one of
the simplest non-commutative non-compact but yet amenable groups.

In Section 3 we study polynomial weights on F2 and (ax + b). We show
that the corresponding discrete Beurling algebras are weakly amenable only
when the weight is constant. In particular, `1(F2, ωα) is not weakly amenable
for any weight of the form ωα(x) = (1 + |x|)α, α > 0, where |x| denotes the
length of the word x in F2. This contrasts with the following combination
of results proved in [1], [6], and [4] (see also [11] and [14]).

Proposition 1.2. Let G be either Z or R, α be a non-negative number,
and ωα(x) = (1 + |x|)α (x ∈ G). Then L1(G,ωα) is weakly amenable if and
only if 0 ≤ α < 1/2.

In particular, our results give rise to another family of examples show-
ing that the necessary and sufficient condition on ω for weak amenability
of `1(G,ω) given in Proposition 1.1 for Abelian groups G is no longer suf-
ficient for non-commutative groups. Moreover, some of our examples will
even deal with the weights that factor through the abelianization map
q : G → Gab, in which case the expression in (∗) only depends on Gab,
and so the expectations for the criterion from Proposition 1.1 to work are
even higher.

Section 4 is devoted to the study of weak amenability of `1(F2, ω) for
more general weights. The free group F2 is of special interest since it is the
source of many counterintuitive results. Some study concerning Beurling al-
gebras on F2 was conducted by H. G. Dales and A. T.-M. Lau [4], but the
questions regarding weak amenability of `1(F2, ω) remained open. We char-
acterize weak amenability of `1(F2, ω) for two important classes of weights.
For these weights ω we show that `1(F2, ω) is weakly amenable if and only if
ω is equivalent to a multiplicative weight, in which case `1(F2, ω) ∼= `1(F2).
The results obtained prompt us to conjecture that `1(F2, ω) is weakly ame-
nable if and only if ω is diagonally bounded.

Finally, in Section 5 we study weak amenability of `1(Z2, ω) on the
Abelian group Z2. It was proved in [14] that if ω is a weight on Z2 and
ωi denotes the restriction of ω to the ith coordinate, i = 1, 2, then weak
amenability of both `1(Z, ω1) and `1(Z, ω2) implies that of `1(Z2, ω).
We give an example showing that the converse is not true. We also
provide a simple procedure for verification whether `1(Z2, ω) is weakly ame-
nable.

Most of the results of this paper were obtained by the author during
her PhD program in the Department of Mathematics of the University of
Manitoba (see the thesis [12]).
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2. Preliminaries. We start with an easy technical observation.

Lemma 2.1. Let G be a discrete group, and ω be a weight on G. Suppose
a map D from {δx}x∈G to `∞(G, 1/ω) has the following properties:

D(δxy) = D(δx) · δy + δx ·D(δy), x, y ∈ G,(2.1)

‖D(δx)‖`∞(G,1/ω) ≤ Cω(x), x ∈ G,(2.2)

where C > 0 is a constant. Then D can be extended to a bounded derivation
from `1(G,ω) to `∞(G, 1/ω).

The next result shows that the necessity part of Proposition 1.1 still
holds for a general discrete group.

Lemma 2.2 (A. Pourabbas [9, Proposition 3.2.3]; see also [2, Theo-
rem 2.8]). Let G be a discrete group, and ω be a weight on G. If there
exists a non-zero group homomorphism Φ : G→ R such that

sup
x∈G

|Φ(x)|
ω(x)ω(x−1)

<∞,

then `1(G,ω) is not weakly amenable.

Proof. It suffices to construct a non-inner bounded derivationD : `1(G,ω)
→ `∞(G, 1/ω). We first define D on {δx}x∈G:

D(δx) = Φ(x)δx−1 , x ∈ G.
Since Φ is a group homomorphism and

δ(xy)−1(z) = δy−1x−1(z) = δx−1(yz) = δy−1(zx), x, y, z ∈ G,
we have

D(δxy)(z) = Φ(xy)δy−1x−1(z) = Φ(x)δx−1(yz) + Φ(y)δy−1(zx)

= D(δx)(yz) +D(δy)(zx) = (D(δx) · δy)(z) + (δx ·D(δy))(z), x, y, z ∈ G,
and so (2.1) holds. If we set

C = sup
x∈G

|Φ(x)|
ω(x)ω(x−1)

,

then for every x ∈ G we have

‖D(δx)‖`∞(G,1/ω) =
|Φ(x)|
ω(x−1)

= ω(x)
|Φ(x)|

ω(x)ω(x−1)
≤ Cω(x),

and (2.2) also holds. Therefore, due to Lemma 2.1, D can be extended to
a bounded derivation from `1(G,ω) to `∞(G, 1/ω). We now show that the
extended derivation is not inner. Assume, to the contrary, that there exists
ϕ ∈ `∞(G, 1/ω) such that D(h) = h · ϕ− ϕ · h for all h ∈ `1(G,ω). Then

(2.3) D(δx)(x−1) = (δx ·ϕ)(x−1)−(ϕ·δx)(x−1) = ϕ(e)−ϕ(e) = 0, x ∈G,
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where e denotes the identity of G. On the other hand, according to the def-
inition of D, we have D(δx)(x−1) = Φ(x). Combined with (2.3), this yields
Φ ≡ 0, which contradicts the assumption that Φ is a non-zero group homo-
morphism. So, D is not inner, and hence `1(G,ω) is not weakly amenable.

The following is another necessary condition for weak amenability of
`1(G,ω). It was first obtained by C. R. Borwick in his PhD thesis [2]. Since
this thesis is not easily accessible, we include a proof here for the sake of
completeness.

Lemma 2.3. Let G be a discrete group, and ω be a weight on G. If there
is a function ψ : G → R, x0 ∈ G, and a constant C > 0 such that ω is
bounded away from zero on the conjugacy class {yx0y−1}y∈G,

|ψ(xy)− ψ(yx)| ≤ Cω(x)ω(y), x, y ∈ G,(2.4)

sup
y∈G

|ψ(yx0y
−1)|

ω(yx0y−1)
=∞,(2.5)

then `1(G,ω) is not weakly amenable.

Proof. As usual, to show that `1(G,ω) is not weakly amenable we con-
struct a bounded derivation D : `1(G,ω)→ `∞(G, 1/ω) which is not inner.
We first define an operator D : {δx}x∈G → `∞(G, 1/ω) in the following way:

D(δx)(y) = ψ(xy)− ψ(yx) (= (ψ · δx)(y)− (δx · ψ)(y)), x, y ∈ G.

It is easy to see that D really ranges in `∞(G, 1/ω) because of (2.4):

‖D(δx)‖`∞(G,1/ω) = sup
y∈G

|D(δx)(y)|
ω(y)

= sup
y∈G

|ψ(xy)− ψ(yx)|
ω(y)

≤
(2.4)

sup
y∈G

Cω(x)ω(y)

ω(y)
= Cω(x) <∞.

At the same time, we have just proved that the operator D satisfies condi-
tion (2.2) of Lemma 2.1. So, if we show that D also satisfies (2.1), we will
be able to apply Lemma 2.1 to extend D by linearity and continuity to a
bounded derivation from `1(G,ω) to `∞(G, 1/ω). Indeed, we have

D(δxy)(t) = ψ(xyt)− ψ(txy) = (ψ(xyt)− ψ(ytx)) + (ψ(ytx)− ψ(txy))

= D(δx)(yt) +D(δy)(tx) = (D(δx) · δy)(t) + (δx ·D(δy))(t), x, y, t ∈ G,

and so D can be extended in the desired way. To finish the proof, we only
need to show that the extended derivation D is not inner. Suppose, to the
contrary, that D is inner. Then there exists a function ϕ ∈ `∞(G, 1/ω) such
that D(h) = ϕ · h− h · ϕ for all h ∈ `1(G,ω). In particular,

(2.6) D(δx)(y) = (ϕ · δx)(y)− (δx · ϕ)(y) = ϕ(xy)− ϕ(yx), x, y ∈ G.
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On the other hand, by definition of D we have D(δx)(y) = ψ(xy) − ψ(yx)
(x, y ∈ G). Taking x = x0y

−1, we obtain

ψ(x0)− ψ(yx0y
−1) = D(δx0y−1)(y) = ϕ(x0)− ϕ(yx0y

−1), y ∈ G,
which implies

ϕ(yx0y
−1) = ψ(yx0y

−1) + ϕ(x0)− ψ(x0), y ∈ G.
Then using (2.5) and the fact that infy∈G ω(yx0y

−1) > 0 we have

‖ϕ‖`∞(G,1/ω) = sup
x∈G

|ϕ(x)|
ω(x)

≥ sup
y∈G

|ϕ(yx0y
−1)|

ω(yx0y−1)

= sup
y∈G

∣∣ψ(yx0y
−1) +

(
ϕ(x0)− ψ(x0)

)∣∣
ω(yx0y−1)

≥ sup
y∈G

|ψ(yx0y
−1)|

ω(yx0y−1)
−
∣∣ϕ(x0)− ψ(x0)

∣∣ · sup
y∈G

1

ω(yx0y−1)
=∞,

contradicting ϕ ∈ `∞(G, 1/ω). This proves that D is not inner, and hence
`1(G,ω) is not weakly amenable.

3. Polynomial weights on F2 and (ax + b). In this section we con-
sider polynomial weights on two basic non-commutative groups: the free
group F2 and the (ax + b)-group. We show that contrary to the expecta-
tions based on the theory of weak amenability for Abelian discrete Beurling
algebras, the corresponding discrete weighted group algebras are not weakly
amenable.

We will make use of the following technical result.

Lemma 3.1. Let 0 < γ ≤ 1. Then
∣∣|x|γ−|y|γ∣∣ ≤ |x−y|γ for all x, y ∈ R.

Proof. It is enough to show that

(3.1) f(x, y) = xγ + yγ − (x+ y)γ ≥ 0, x, y ≥ 0.

Fix y ≥ 0. When x = 0, we have f(0, y) = 0, and (3.1) holds. We also have

∂f

∂x
(x, y) = γ(xγ−1 − (x+ y)γ−1) ≥ 0,

since 0 < γ ≤ 1 and y ≥ 0. This immediately implies (3.1) for arbitrary
x ≥ 0.

3.1. Polynomial weights on F2. First, let us define several notions.

Definition 3.2. Let a and b denote the two generators of the free
group F2. Then every x ∈ F2 can be written in a non-cancelable form
x = ak1bl1 . . . aknbln , i.e., ki, li ∈ Z, and all ki, li are non-zero except pos-
sibly k1 and ln, 1 ≤ i ≤ n, n ∈ N. We denote |x| =

∑n
i=1(|ki| + |li|) and

call it the length of x. The number
∑n

i=1 ki (resp.
∑n

i=1 li) will be called the
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total power of a (resp. the total power of b) in x, and we denote it by A(x)
(resp. B(x)). Note that both A and B are group homomorphisms from F2

to Z.

Proposition 3.3. Let α > 0 and ωα be a function on F2 defined by
ωα(x) = (1 + |x|)α, x ∈ F2. Then ωα is a weight on F2 (called a polynomial
weight), and `1(F2, ωα) is not weakly amenable.

Proof. Since the length function | · | on F2 obviously satisfies the triangle
inequality |xy| ≤ |x|+ |y| (x, y ∈ F2), it follows that ωα is a weight on F2:

ωα(xy) = (1 + |xy|)α ≤ (1 + |x|+ |y|)α

≤ (1 + |x|)α(1 + |y|)α = ωα(x)ωα(y), x, y ∈ F2.

To prove that `1(F2, ωα) is not weakly amenable, we first consider the case
when α ≥ 1/2. Since |A(t)| ≤ |t| for every t ∈ F2, we have

sup
t∈F2

|A(t)|
ωα(t)ωα(t−1)

= sup
t∈F2

|A(t)|
(1 + |t|)2α

≤ sup
t∈F2

|t|
(1 + |t|)2α

<∞,

and because A : F2 → Z is a group homomorphism, Lemma 2.2 implies that
`1(F2, ωα) is not weakly amenable.

Now let 0 < α < 1/2. In this case we will use Lemma 2.3. Take an
arbitrary β ∈ (α, 2α), and consider the function ψ : F2 → R defined by

ψ(x) =

{
|t|β if x = tat−1, t ∈ F2, and the word tat−1 is non-cancelable,

0 otherwise.

We claim that ψ satisfies the conditions of Lemma 2.3 for x0 = a. The weight
ωα is obviously bounded away from zero on the whole F2, and in particular
on {yay−1}y∈F2 . Now we prove that ψ satisfies (2.4) for C = 1, i.e.,

(3.2) |ψ(xy)− ψ(yx)| ≤ ωα(x)ωα(y), x, y ∈ F2.

By the definition of ψ, it vanishes off the conjugacy class E = {tat−1}t∈F2 .
Since yx = y(xy)y−1, the elements xy and yx always belong to the same
conjugacy class, and so we only need to prove (3.2) in the case when both
xy and yx are in E. Let xy = uau−1 and yx = vav−1, both representa-
tions being non-cancelable. Assume without loss of generality that |u| ≤ |v|.
Because

vav−1 = yx = y(xy)y−1 = yuau−1y−1,

we have (u−1y−1v)a = a(u−1y−1v). So, the elements a and u−1y−1v com-
mute, which can happen in a free group only if both are powers of a third
element (see, for example, [8, Proposition 2.17]). Since a is one of the gen-
erators of F2, it is only a power of itself, which implies that u−1y−1v = ak

for some k ∈ Z. In other words, yu = va−k. We consider two cases: k = 0
and k 6= 0.



196 V. Shepelska

If k = 0, then y = vu−1 and x = (xy)y−1 = (uau−1)(uv−1) = uav−1. In
this case, the inequality (3.2) that we want to prove becomes∣∣|u|β − |v|β∣∣ ≤ (1 + |vu−1|)α(1 + |uav−1|)α.
Since 0 < α ≤ 1/2 and α < β < 2α, we see that 0 < β ≤ 1, and so∣∣|u|β − |v|β∣∣ ≤ ∣∣|u| − |v|∣∣β by Lemma 3.1. We also have |vu−1| ≥

∣∣|u| − |v|∣∣
and |uav−1| ≥

∣∣|u| − |v|∣∣− 1. Therefore,

(1 + |vu−1|)α(1 + |uav−1|)α ≥
(
1 +

∣∣|u| − |v|∣∣)α∣∣|u| − |v|∣∣α ≥ ∣∣|u| − |v|∣∣2α
≥
∣∣|u| − |v|∣∣β ≥ ∣∣|u|β − |v|β∣∣,

because β ≤ 2α and
∣∣|u|− |v|∣∣ ∈ N∪{0}. Hence, (3.2) is verified for the case

k = 0.
Now let k 6= 0. Then yu = va−k. Recall that both expressions uau−1 and

vav−1 were non-cancelable. This means that both u and v end with a non-
zero power of the second generator b of F2. Hence, the equality yu = va−k is
only possible for k 6= 0 if y = tu−1, and the expression tu−1 is non-cancelable.
In this case, t = va−k and |t| = |v| + |k|, implying that |v| = |t| − |k|. We
also have x = (xy)y−1 = (uau−1)(ut−1) = uat−1. Thus, the inequality (3.2)
that we want to prove becomes∣∣|u|β − (|t| − |k|)β

∣∣ ≤ (1 + |tu−1|)α(1 + |uat−1|)α.
Recall that we assumed from the very beginning that |u| ≤ |v| = |t| − |k|,
and so, using the same arguments as in the previous case, we obtain∣∣|u|β − (|t| − |k|)β

∣∣ = (|t| − |k|)β − |u|β ≤
∣∣|t| − |k| − |u|∣∣β ≤ ∣∣|t| − |u|∣∣β

≤ (1 + |tu−1|)α(1 + |uat−1|)α,
and (3.2) is verified for k 6= 0 as well.

Finally, we check that ψ satisfies (2.5) for x0 = a:

sup
y∈F2

|ψ(yay−1)|
ω(yay−1)

≥ sup
n∈N

|ψ(bnab−n)|
ω(bnab−n)

= sup
n∈N

nβ

(2n+ 2)α
=∞,

since β > α. So the function ψ satisfies all the conditions of Lemma 2.3, and
hence `1(F2, ωα) is not weakly amenable.

We will see later that Proposition 3.3 can also be obtained as a corollary
of a more general Theorem 4.2, but we believe that the direct proof given
above is of independent interest.

As was mentioned in the introduction, C. R. Borwick showed in [2, Chap-
ter 2] that the necessary and sufficient condition from Proposition 1.1 for
weak amenability of the Abelian discrete Beurling algebra `1(G,ω) is no
longer sufficient if the group G is not Abelian. Proposition 3.3 gives rise to
another family of examples illustrating this point.
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Example 3.4. If 0 < α < 1/2, then the weight ωα satisfies the condi-
tion from Proposition 1.1, but, according to Proposition 3.3, `1(F2, ωα) is
not weakly amenable. Indeed, if Φ : F2 → C is a non-trivial group homo-
morphism, then Φ(x) = c1A(x) + c2B(x) (x ∈ F2), where c1, c2 ∈ C and
|c1|2 + |c2|2 6= 0. Assuming without loss of generality that c1 6= 0, we have

sup
x∈F2

|Φ(x)|
ωα(x)ωα(x−1)

≥ sup
n∈N

|Φ(an)|
ωα(an)ωα(a−n)

= sup
n∈N

|c1|n
(1 + n)2α

=∞,

since α < 1/2.

Note that the group F2 is not amenable, which still leaves a possibility
for Proposition 1.1 to hold at least for amenable groups G. However, in the
next subsection we give an example of a weight ω on an amenable group G
that satisfies the conditions of Proposition 1.1 but still makes `1(G,ω) not
weakly amenable.

3.2. Polynomial weights on the (ax + b)-group. We consider the
non-commutative amenable group (ax + b) of all orientation-preserving
affine transformations x 7→ ax + b of R with a > 0 and b ∈ R, where
the map x 7→ ax+ b is identified with the pair (a, b). Multiplication in this
group is given by the composition of the corresponding transformations of R,
which can be expressed as

(a, b)(c, d) = (ac, ad+ b), a, c > 0, b, d ∈ R.

The identity of (ax + b) is the pair (1, 0) corresponding to the identity map
on R. Therefore,

(a, b)−1 =

(
1

a
,
−b
a

)
, a > 0, b ∈ R.

Throughout the remainder of this subsection for the sake of notational
convenience we denote the group (ax + b) by G.

Theorem 3.5. Let α be a positive number, and ωα be the function on G
defined by ωα(a, b) = (1 + |log a|)α, (a, b) ∈ G. Then ωα is a weight on G,
and `1(G,ωα) is not weakly amenable.

Proof. To verify the weight inequality for ωα, let (a, b), (c, d) ∈ G. Then

ωα((a, b)(c, d)) = ωα(ac, ad+ b) = (1 + |log(ac)|)α ≤ (1 + |log a|+ |log c|)α

≤ (1 + |log a|)α(1 + |log c|)α = ωα(a, b)ωα(c, d).

The proof of the fact that `1(G,ωα) is not weakly amenable will be very
similar to the corresponding part of the proof of Proposition 3.3. Again, we
consider two possibilities: α ≥ 1/2 and 0 < α < 1/2. Suppose first that
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α ≥ 1/2. Then

sup
(a,b)∈G

|log a|
ωα(a, b)ωα((a, b)−1)

= sup
a>0

|log a|
(1 + |log a|)α(1 + |log(1/a)|)α

= sup
a>0

|log a|
(1 + |log a|)2α

<∞,

and since (a, b) 7→ log a is a group homomorphism from G to C, we conclude
that `1(G,ωα) is not weakly amenable by Lemma 2.2.

Now suppose that 0 < α < 1/2. In this case we use Lemma 2.3. We
define the function ψ : G→ R as follows:

ψ(a, b) =

{
|log b|2α if a = 1, b > 0,

0 otherwise.

We claim that ψ satisfies all conditions of Lemma 2.3 for x0 = (1, 1).
Again, as in Proposition 3.3, ωα is bounded away from zero on the whole G,
and in particular on {yx0y−1}y∈G. Next we show that ψ satisfies (2.4) for
C = 1, i.e.,

(3.3) |ψ(uv)− ψ(vu)| ≤ ωα(u)ωα(v), v, u ∈ G.
Let u = (a, b) and v = (c, d), where a, c > 0, b, d ∈ R. Then uv = (ac, ad+b)
and vu = (ac, bc + d). If ac 6= 1, then ψ(uv) = ψ(vu) = 0, and (3.3) holds
automatically. Suppose now that ac = 1. Then

c = 1/a, bc+ d = b/a+ d = (ad+ b)/a.

Since a > 0, either both ad+ b and bc+ d are negative, in which case (3.3)
again holds automatically, or both ad + b and bc + d are positive. In the
latter case, applying Lemma 3.1 to γ = 2α ∈ (0, 1), we obtain

|ψ(uv)− ψ(vu)| =
∣∣∣∣ψ(1, ad+ b)− ψ

(
1,
ad+ b

a

)∣∣∣∣
=

∣∣∣∣|log(ad+ b)|2α −
∣∣∣∣log

ad+ b

a

∣∣∣∣2α∣∣∣∣
=
∣∣|log(ad+ b)|2α − |log(ad+ b)− log a|2α

∣∣ ≤ (1 + |log a|)2α

= ωα(a, b)ωα(1/a, d) = ωα(a, b)ωα(c, d) = ωα(u)ωα(v),

and (3.3) is verified.
Finally, we check that ψ satisfies (2.5) for x0 = (1, 1). For this we note

that {(a, b)(1, 1)(a, b)−1}(a,b)∈G = {(1, a)}a>0, implying

sup
y∈G

|ψ(yx0y
−1)|

ωα(yx0y−1)
= sup

a>0

|ψ(1, a)|
ωα(1, a)

= sup
a>0
|log a|2α =∞,

and (2.5) is also verified. Hence, ψ satisfies all the conditions of Lemma 2.3,
which means that `1(G,ωα) is not weakly amenable.
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Example 3.6. It is natural to call the weight ωα defined in Theo-
rem 3.5 a polynomial weight on (ax + b). Note that, unlike F2, the group
(ax + b) is amenable. Theorem 3.5 demonstrates that even a “nice” weight
on an amenable group may still make the corresponding weighted group
algebra not weakly amenable. It also shows that Proposition 1.1 does not
hold for general amenable non-commutative groups. Indeed, since it is easy
to see that a group homomorphism Φ : (ax + b) → C must have the
form Φ(a, b) = c log a, c ∈ C, the algebra `1((ax + b), ω1/3) is not weakly
amenable, although ω1/3 satisfies the conditions of Proposition 1.1.

Remark 3.7. In fact, the proof of Theorem 3.5 can be adopted to
produce an example of a finitely generated (and hence separable) non-

commutative amenable group G̃ such that Proposition 1.1 does not hold
for G̃. Indeed, all our arguments will work for the subgroup

G̃ = {(2n, b) : n ∈ Z, b ∈ Z[1/2]} = 〈(2, 0), (1, 1)〉

of the (ax + b)-group and the weight ω1/3 restricted to G̃. This shows
that the pathology of the example is really the result of non-commutativity
rather than of non-separability of the group. The author would like to thank
N. Spronk for this observation.

4. Weak amenability of `1(F2, ω) for more general weights. The
only known sufficient condition for weak amenability of L1(G,ω), and hence
for weak amenability of `1(G,ω), when G is not necessarily Abelian is the
following direct extension of weak amenability of non-weighted group alge-
bras. Recall that a weight ω on a group G is called diagonally bounded if
the function x 7→ ω(x)ω(x−1) is bounded on G.

Proposition 4.1 ([10, Theorem 3.14]). Let G be a locally compact group
and ω be a diagonally bounded weight on G. Then the Beurling algebra
L1(G,ω) is weakly amenable.

In fact, one only needs to slightly modify the proof by M. Despić and
F. Ghahramani [5] for weak amenability of the group algebra L1(G) to obtain
Proposition 4.1.

Using Proposition 4.1, Lemma 2.3, and Lemma 2.2 we can show that for
two natural classes of weights ω the algebra `1(F2, ω) is weakly amenable if
and only if ω is diagonally bounded.

Again, the generators of F2 are denoted by a and b. We continue to use
the notation from Definition 3.2: |x| stands for the length of x, and A(x)
and B(x) for the total powers of a and b in x respectively, x ∈ F2.

Theorem 4.2. Let ω be a weight on F2 such that there exists an in-
creasing function W from N ∪ {0} to [1,∞) and constants c1, c2 > 0 such
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that
c1W (|x|) ≤ ω(x) ≤ c2W (|x|), x ∈ F2,

where |x| is the length of x ∈ F2. Then `1(F2, ω) is weakly amenable if and
only if ω is bounded.

Before proving Theorem 4.2, we establish the following auxiliary result.

Lemma 4.3. Let W : N ∪ {0} → [1,∞) be an increasing function such
that

sup
n∈N

W (n) = sup
n∈N

n

W (n)
=∞.

Then there exists a function f : N∪ {0} → [1,∞) with the following proper-
ties:

f is increasing;(4.1)

f(m+ n)− f(m− n) ≤W (m)W (n), m, n ∈ N, m ≥ n;(4.2)

sup
n∈N

f(n)

W (n)
=∞.(4.3)

Proof. The idea of the proof is to define f inductively to be as large
as possible subject to (4.2), and then show that such a function will also
satisfy (4.1) and (4.3).

For technical convenience, we extend W to an increasing function from
[0,∞) to [1,∞) using piecewise-linear interpolation. Then we inductively
define f : N ∪ {0} → [1,∞) and F : {(j, k) ∈ (N ∪ {0})2 : 0 ≤ j ≤ k − 1}
→ [1,∞) by the following formulas:

f(0) = 1,

F (j, k) = W

(
k + j

2

)
W

(
k − j

2

)
+ f(j), 0 ≤ j ≤ k − 1,

f(k) = min
0≤j≤k−1

F (j, k).

We now verify (4.2). Let m ≥ n be natural numbers. Then 0 ≤ m− n ≤
m+ n− 1, and so

f(m+n) = min
0≤j≤m+n−1

F (j,m+n) ≤ F (m−n,m+n) =W (m)W (n)+f(m−n),

which immediately implies (4.2).
Next we show that f is increasing. Obviously, it is enough to show that

f(k + 1) ≥ f(k) for every k ∈ N ∪ {0}. For k = 0 we have

f(1) = F (0, 1) =

(
W

(
1

2

))2

+ f(0) ≥ f(0).

Now let k ∈ N. Then

f(k + 1) = min
0≤j≤k

F (j, k + 1), f(k) = min
0≤j≤k−1

F (j, k).
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Since W is a positive increasing function, for each j ∈ [0, k − 1] we have

F (j, k + 1) = W

(
(k + 1) + j

2

)
W

(
(k + 1)− j

2

)
+ f(j)

≥W
(
k + j

2

)
W

(
k − j

2

)
+ f(j) = F (j, k).

Hence, in order to prove that f(k + 1) ≥ f(k), it is enough to show that
F (k, k + 1) ≥ f(k). But

F (k, k + 1) = W

(
2k + 1

2

)
W

(
1

2

)
+ f(k) ≥ f(k),

since W is positive, and so f is indeed an increasing function.

Finally, we prove (4.3). Suppose, to the contrary, that there exists a
positive integer N such that

(4.4) sup
n∈N

f(n)

W (n)
≤ N.

Our goal is to show that in this case for sufficiently large m we will have
f(3m) ≥ 3NW (m). Then, using (4.4) and the fact that W is increasing, we
will conclude that supn∈N n/W (n) <∞, contradicting the growth constraint
on W .

By definition,

f(k) = min
0≤j≤k−1

W

(
k + j

2

)
W

(
k − j

2

)
+ f(j), k ∈ N.

Hence, for each k ∈ N there exists J(k) ∈ [0, k − 1] such that

(4.5) f(k) = W

(
k + J(k)

2

)
W

(
k − J(k)

2

)
+ f(J(k)).

Since W is unbounded, there exists n0 ∈ N such that W (n0) ≥ 3N . We are
going to prove that

(4.6) f(3m) ≥ 3NW (m) for m ≥ 6n0N.

Fix some m ≥ 6n0N . Applying (4.5) to k = 3m and using the monotonicity
of W , we obtain

f(3m) = W

(
3m+ J(3m)

2

)
W

(
3m− J(3m)

2

)
+ f(J(3m))(4.7)

≥W (m)W

(
3m− J(3m)

2

)
+ f(J(3m)).

If J(3m) < 3m− 2n0, then (3m− J(3m))/2 > n0, and using the facts that
f is positive, W is increasing, and W (n0) ≥ 3N , we deduce from (4.7) that

f(3m) ≥W (m)W (n0) ≥ 3NW (m).
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Thus, (4.6) is verified in this case. Now assume that J(3m) ≥ 3m− 2n0 and
set j1 = J(3m). Since W ≥ 1, it follows from (4.7) that

(4.8) f(3m) ≥W (m) + f(j1).

By our assumption m ≥ 6n0N , and so

(4.9) 2n0 ≤
m

3N
.

Then since j1 = J(3m) ≥ 3m− 2n0, we have

j1
2
≥

3m− m
3N

2
≥ m.

Applying (4.5) to k = j1 and using the monotonicity of W we then obtain

f(j1) = W

(
j1 + J(j1)

2

)
W

(
j1 − J(j1)

2

)
+ f(J(j1))

≥W (m)W

(
j1 − J(j1)

2

)
+ f(J(j1)).

Combined with (4.8) this yields

f(3m) ≥W (m) +W (m)W

(
j1 − J(j1)

2

)
+ f(J(j1)).(4.10)

If J(j1) < j1 − 2n0, it follows that

f(3m) ≥W (m)W (n0) ≥ NW (m),

and (4.6) is verified. If J(j1) ≥ j1− 2n0, we set j2 = J(j1) and repeat for j2
the steps we performed for j1. Namely, from (4.10) we obtain

f(3m) ≥ 2W (m) + f(j2);

then applying (4.9) we get

j2
2
≥ j1 − 2n0

2
≥ 3m− 2 · 2n0

2
≥

3m− 2m
3N

2
≥ m,

which combined with (4.5) for k = j2 implies

f(3m) ≥ 2W (m) +W (m)W

(
j2 − J(j2)

2

)
+ f(J(j2)).(4.11)

And again, if J(j2) < j2−2n0 then (4.6) is verified, while if J(j2) > j2−2n0
we set j3 = J(j2) and repeat the whole procedure. Continuing, we either
end up with some jq (q < 3N) such that J(jq) < jq − 2n0 and then (4.6)
will be verified since

jq
2
≥ 3m− q · 2n0

2
≥

3m− qm
3N

2
≥ m,
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or we get to j3N for which, analogously to (4.11), we will have

f(3m) ≥ 3NW (m) +W (m)W

(
j3N − J(j3N )

2

)
+ f(J(j3N )),

and (4.6) will follow just from the positivity of W and f . So, (4.6) is proved.

We will now use (4.6) to obtain a contradiction with supn∈N n/W (n) =∞.
It follows from (4.4) and (4.6) that

W (3m) ≥ f(3m)

N
≥ 3W (m) for m ≥ 6n0N.

If we set m0 = 6n0N, then it is easy to show by induction that W (3pm0)
≥ 3pW (m0) for all p ∈ N ∪ {0}. For each integer n ≥ m0 there exists a
unique p ∈ N ∪ {0} such that 3pm0 ≤ n < 3p+1m0. Using the monotonicity
of W we obtain

n

W (n)
≤ 3p+1m0

W (3pm0)
≤ 3p+1m0

3pW (m0)
=

3m0

W (m0)
,

which immediately implies that supn∈N n/W (n) <∞ and gives the desired
contradiction. Thus, supk∈N f(k)/W (k) =∞, and the proof is complete.

Proof of Theorem 4.2. If ω is a bounded weight, then `1(F2, ω) is isomor-
phic to `1(F2), and `1(F2, ω) is weakly amenable due to weak amenability
of `1(F2). So, the non-trivial part is to prove that if ω is not bounded and sat-
isfies the conditions of Theorem 4.2, then `1(F2, ω) is not weakly amenable.

As noted above, the function A of total power of the generator a is a
continuous homomorphism from F2 to Z ⊂ C. By Lemma 2.2, `1(F2, ω) is
not weakly amenable if

sup
x∈F2

|A(x)|
ω(x)ω(x−1)

<∞.

Assume now that

sup
x∈F2

|A(x)|
ω(x)ω(x−1)

=∞.

Since obviously |A(x)| ≤ |x|, |x−1| = |x|, and ω(x) ≥ c1W (|x|), it follows
that

sup
x∈F2

|x|
(W (|x|))2

=∞,

and hence

sup
n∈N

n

W (n)
≥ sup

n∈N

√
n

W (n)
=∞.

Therefore, we can apply Lemma 4.3 to the function W to get an increasing
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function f : N ∪ {0} → R such that

f(m+ n)− f(m− n) ≤W (m)W (n), m, n ∈ N, m ≥ n,(4.12)

sup
n∈N

f(n)

W (n)
=∞.(4.13)

We will show that ψ(x) = f(|x|) satisfies the conditions of Lemma 2.3 either
for x0 = a, or for x0 = a2, implying that `1(F2, ω) is not weakly amenable.
Note that because ω(x) ≥ c1W (|x|) and W : N∪ {0} → R+ is an increasing
function, the weight ω is bounded away from zero on the whole group F2,
and in particular on any conjugacy class {yx0y−1}y∈F2 .

We now aim to find a constant C > 0 such that

(4.14) |ψ(xy)− ψ(yx)| ≤ Cω(x)ω(y), x, y ∈ F2.

Let x, y ∈ F2 be given. According to the definition of ψ, we have

|ψ(xy)− ψ(yx)| =
∣∣f(|xy|)− f(|yx|)

∣∣.
Let |x| = m, |y| = n, and assume without loss of generality that m ≥ n. By
the triangle inequality,

m− n =
∣∣|x| − |y|∣∣ ≤ |xy|, |yx| ≤ |x|+ |y| = m+ n.

Since f is an increasing function, it follows that∣∣f(|xy|)− f(|yx|)
∣∣ ≤ f(m+ n)− f(m− n).

Together with (4.12) and the inequality ω(t) ≥ c1W (|t|) (t ∈ F2), this implies
the desired inequality (4.14) with C = 1/c21:

|ψ(xy)− ψ(yx)| =
∣∣f(|xy|)− f(|yx|)

∣∣ ≤ f(m+ n)− f(m− n)

≤W (m)W (n) = W (|x|)W (|y|) ≤ 1

c21
ω(x)ω(y).

Finally, we check condition (2.5) of Lemma 2.3 for the function ψ. We
take x0 to be either a or a2, and consider the conjugacy classes {xax−1}x∈F2

and {xa2x−1}x∈F2 :

sup
y∈G

ψ(yay−1)

ω(yay−1)
≥ sup

n∈N

ψ(bnab−n)

ω(bnab−n)
≥ sup

n∈N

f(2n+ 1)

c2W (2n+ 1)
=

1

c2
sup
n∈N

f(2n+ 1)

W (2n+ 1)
,

sup
y∈G

ψ(ya2y−1)

ω(ya2y−1)
≥ sup

n∈N

ψ(bna2b−n)

ω(bna2b−n)
≥ 1

c2
sup
n∈N

f(2n+ 2)

W (2n+ 2)
.

Therefore, it is enough to show that either

sup
n∈N

f(2n+ 1)

W (2n+ 1)
=∞ or sup

n∈N

f(2n+ 2)

W (2n+ 2)
=∞.

But this is a direct consequence of (4.13), and the proof is complete.
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One can now obtain Proposition 3.3 as an easy corollary of Theorem 4.2.

Remark 4.4. In fact, Theorem 4.2 can be extended to a more general
class of groups including all finitely generated free groups (see [12, Proposi-
tion 4.11]).

Since weak amenability of `1(G,ω) is completely characterized in the case
when the group G is Abelian, it is natural to look for some commutativity
when studying weak amenability of `1(F2, ω). This motivates the study of a
special class of weights ω on F2 that depend only on the abelianization of F2.
Because the abelianization of the free group F2 is a free Abelian group on
two generators, we consider the weights ω of the form ω(x) = W (A(x), B(x))
(x ∈ F2). We characterize the weights of this type that make `1(F2, ω) weakly
amenable.

Theorem 4.5. Let ω be a weight on F2 of the form ω(x) = W (A(x), B(x)),
x ∈ F2, for some function W : Z2 → R+. Then the Beurling algebra `1(F2, ω)
is weakly amenable if and only if ω is diagonally bounded.

Proof. The sufficiency part is a direct consequence of Proposition 4.1.
So, we only need to show that if ω is not diagonally bounded, then `1(F2, ω)
is not weakly amenable. Let x = aba−1b−1 ∈ F2. We show that the function

ψ(t) =

{
log(ω(y)ω(y−1)) if t = yxy−1,

0 otherwise,

satisfies the conditions of Lemma 2.3 for the conjugacy class {yxy−1}y∈F2 .
First, we note that since ω(x) = W (A(x), B(x)) and both A and B are group
homomorphisms, it follows that ω is constant, and hence bounded away
from zero, on each conjugacy class, in particular on {yxy−1}y∈F2 . Next we
check that ψ is well-defined, i.e., if t ∈ F2 has two different representations
t = y1xy

−1
1 = y2xy

−1
2 , then ψ(y1xy

−1
1 ) = ψ(y2xy

−1
2 ). To this end, it is

enough to show that A(y1) = A(y2) and B(y1) = B(y2). We only show that
A(y1) = A(y2), since the proof of the fact that B(y1) = B(y2) is completely
analogous. Note that

(4.15) (y1xy
−1
2 )(y2y

−1
1 ) = y1xy

−1
1 = y2xy

−1
2 = (y2y

−1
1 )(y1xy

−1
2 ),

which means that the elements y1xy
−1
2 and y2y

−1
1 commute. In a free group

two elements commute if and only if both of them are powers of a third
element (see, for example, [8, Proposition 2.17]). So, since F2 is a free group,

(4.15) implies the existence of u ∈ F2 and integers k, l such that y1xy
−1
2 = uk

and y2y
−1
1 = ul. Because A is a group homomorphism, we have

A(y2)−A(y1) = A(y2y
−1
1 ) = lA(u).

Hence, to prove that A(y1) = A(y2), it suffices to show that A(u) = 0. Since
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x = aba−1b−1, we have A(x) = 0, and so

0 = A(x) = A(y1xy
−1
1 ) = A((y1xy

−1
2 )(y2y

−1
1 )) = A(uk+l) = (k + l)A(u).

When k + l 6= 0, it immediately follows that A(u) = 0, and our claim is
proved. If k + l = 0, then y1xy

−1
1 = uk+l = e, which implies that x = e,

contradicting the choice of x. This proves that the function ψ is well-defined.

Our next goal is to show that ψ satisfies the conditions of Lemma 2.3.
First, we prove that there exists a constant C > 0 such that

|ψ(uv)− ψ(vu)| ≤ Cω(u)ω(v), u, v ∈ F2.

Since ψ is non-zero only on the conjugacy class {yxy−1}y∈F2 , and the ele-
ments uv and vu always belong to the same conjugacy class (vu = v(uv)v−1),
we only need to consider the case when uv, vu ∈ {yxy−1}y∈F2 . Let uv =
yxy−1. Then vu = (vy)x(vy)−1, and we have

|ψ(uv)− ψ(vu)| = |ψ(yxy−1)− ψ((vy)x(vy)−1)|
=
∣∣log(ω(y)ω(y−1))− log

(
ω(vy)ω((vy)−1)

)∣∣
=

∣∣∣∣log
ω(y)ω(y−1)

ω(vy)ω(y−1v−1)

∣∣∣∣.
Using the weight inequality for ω, we obtain

ω(y) ≤ ω(v−1)ω(vy), ω(y−1) ≤ ω(y−1v−1)ω(v),

which implies

(4.16)
ω(y)ω(y−1)

ω(vy)ω(y−1v−1)
≤ ω(v−1)ω(v).

We also have

ω(vy) ≤ ω(v)ω(y), ω(y−1v−1) ≤ ω(y−1)ω(v−1),

yielding

(4.17)
ω(vy)ω(y−1v−1)

ω(y)ω(y−1)
≤ ω(v)ω(v−1).

From the inequalities (4.16) and (4.17) it follows that∣∣∣∣log
ω(y)ω(y−1)

ω(vy)ω(y−1v−1)

∣∣∣∣ ≤ log(ω(v)ω(v−1)).

Since ω(v)ω(v−1) ≥ ω(e) = const > 0, by elementary calculus there exists a
constant C > 0 such that

(4.18) log(ω(v)ω(v−1)) ≤ Cω(v)ω(v−1).

Combining all of the above, we get

|ψ(uv)− ψ(vu)| ≤ Cω(v)ω(v−1).
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Recalling that uv = yxy−1, we obtain v−1 = yx−1y−1u, and soA(v−1) =A(u)
and B(v−1) = B(u), since A(x) = B(x) = 0 and both A and B are group
homomorphisms. Hence,

ω(v−1) = W (A(v−1), B(v−1)) = W (A(u), B(u)) = ω(u),

which implies the desired inequality

|ψ(uv)− ψ(vu)| ≤ Cω(u)ω(v).

Finally, we show that supy∈F2
ψ(yxy−1)/ω(yxy−1) = ∞. Since ω factors

through the abelianization map from F2 to Z2, it is constant on conjugacy
classes. Therefore,

sup
y∈F2

ψ(yxy−1)

ω(yxy−1)
= sup

y∈F2

log(ω(y)ω(y−1))

ω(x)

=
1

ω(x)
log
(

sup
y∈F2

ω(y)ω(y−1)
)

=∞,

since ω is not diagonally bounded. Applying Lemma 2.3, we conclude that
`1(F2, ω) is not weakly amenable, and the proposition is proved.

Remark 4.6. The diagonal boundedness of ω is obviously equivalent to
the diagonal boundedness of W , which is a weight on an amenable group Z2.
As follows from [13, Lemma 1], W is diagonally bounded if and only if it
is equivalent to a multiplicative weight. Hence, under conditions of Theo-
rem 4.5, `1(F2, ω) is weakly amenable if and only if `1(F2, ω) ∼= `1(F2).

Remark 4.7. Theorems 3.5 and 4.5 give rise to examples of weights ω
that factor through the abelianization map q : G→ Gab, but for which the
criterion from Proposition 1.1 still fails.

The results of Proposition 4.1, Theorem 4.2, and Theorem 4.5 naturally
lead us to the following conjecture.

Conjecture 4.8. Let ω be a weight on F2. Then `1(F2, ω) is weakly
amenable if and only if ω is diagonally bounded.

Remark 4.9. Based on ideas of B. E. Johnson and M. C. White, it was
shown by several authors that a diagonally bounded weight on F2 does not
have to be equivalent to a multiplicative weight (see, for instance, [4, Ex-
ample 10.1] or [10, Example 3.15]). At the same time we note that every
diagonally bounded weight on an amenable group is equivalent to a multi-
plicative weight. Indeed, if the group G is amenable and ω is a weight on G,
then according to [13, Lemma 1] there exists a continuous character function
φ : G→ R+ (i.e., φ(xy) = φ(x)φ(y), x, y ∈ G) such that φ ≤ ω on G. So, if
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ω is diagonally bounded, we have

φ(x) ≤ ω(x) =
ω(x)ω(x−1)

ω(x−1)
≤ ω(x)ω(x−1)

φ(x−1)
= φ(x)ω(x)ω(x−1)

≤ φ(x) sup
y∈G

ω(y)ω(y−1) = cφ(x), c = const.

This precisely means that ω is equivalent to a multiplicative weight φ on G.

5. Weak amenability of `1(Z2, ω). It was proved in [14] that if ω is a
weight on Z2 such that both `1(Z, ω1) and `1(Z, ω2) are weakly amenable,
where ωi denotes the restriction of ω to the ith coordinate, i = 1, 2, i.e.,
ω1(k) = ω(k, 0), ω2(k) = ω(0, k), k ∈ Z, then `1(Z2, ω) is also weakly
amenable. We present an example showing that the converse is not true.

Consider the function ω on Z2 defined by

(5.1) ω(k,m) = (1 + |k|)1/3(1 + |k +m|)1/3, k,m ∈ Z.
It is easy to see that ω is a weight on Z2. This follows from the fact that
both mappings (k,m) 7→ k and (k,m) 7→ k+m from Z2 to Z are linear, and
from the obvious inequality

(1 + |a+ b|) ≤ (1 + |a|)(1 + |b|), a, b ∈ Z.
Example 5.1. For the weight ω defined by (5.1), the algebra `1(Z2, ω)

is weakly amenable, but the algebra `1(Z, ω1) is not weakly amenable.

Proof. The weight ω1 is precisely given by ω1(k) = ω(k, 0) = (1+ |k|)2/3,
k ∈ Z, and so `1(Z, ω1) is not weakly amenable by Proposition 1.2. We now
prove that `1(Z2, ω) is weakly amenable. According to Proposition 1.1, it is
enough to show that

sup
t∈Z2

|Φ(t)|
ω(t)ω(−t)

=∞

for every non-trivial group homomorphism Φ : Z2 → C. Since every such
homomorphism is of the form Φ(k,m) = ck+dm, k,m ∈ Z, for some complex
numbers c, d with |c|2 + |d|2 6= 0, we only need to show that

sup
k,m∈Z

|ck + dm|
ω(k,m)ω(−k,−m)

= sup
k,m∈Z

|ck + dm|
(1 + |k|)2/3(1 + |k +m|)2/3

=∞

for all c, d ∈ C with |c|2 + |d|2 6= 0. If d 6= 0, then

sup
k,m∈Z

|ck + dm|
(1 + |k|)2/3(1 + |k +m|)2/3

≥
set k=0

sup
m∈Z

|d| · |m|
(1 + |m|)2/3

=∞.

Now, if d = 0, then c 6= 0 since |c|2 + |d|2 6= 0, and we have

sup
k,m∈Z

|ck + dm|
(1 + |k|)2/3(1 + |k +m|)2/3

≥
set m=−k

sup
k∈Z

|c| · |k|
(1 + |k|)2/3

=∞.
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So, we conclude that

sup
k,m∈Z

|ck + dm|
(1 + |k|)2/3(1 + |k +m|)2/3

=∞

for all non-trivial pairs (c, d) ∈ C2. Hence, `1(Z2, ω) is indeed weakly amen-
able.

Remark 5.2. In fact, in the forthcoming paper of Y. Zhang and the
author, the idea of the construction of the weight ω in Example 5.1 has been
generalized to show that, for any Abelian locally compact groups G1 and
G2 admitting non-trivial continuous group homomorphisms into C, weak
amenability of L1(G1×G2, ω) does not imply weak amenability of L1(Gi, ωi)
(i = 1, 2) (see also [12, Proposition 5.11]).

The rest of this section is devoted to developing an easy procedure for
verification whether `1(Z2, ω) is weakly amenable.

First we note that the complex-valued homomorphisms Φ in the charac-
terization of weak amenability of `1(G,ω) for Abelian groups G from Propo-
sition 1.1 can be replaced with real-valued homomorphisms, see [14, Theo-
rem 3.5]. It follows that `1(Z2, ω) is weakly amenable if and only if for every
non-trivial group homomorphism Φ : Z2 → R we have

sup
t∈Z2

|Φ(t)|
ω(t)ω(−t)

=∞.

Because every such homomorphism has the form Φ(k,m) = ck+dm for some
c, d ∈ R with c2 + d2 6= 0, the group algebra `1(Z2, ω) is weakly amenable if
and only if

sup
k,m∈Z

|ck + dm|
ω(k,m)ω(−k,−m)

=∞

for every pair (c, d) ∈ R2 such that c2 + d2 6= 0. We aim to find a procedure
that allows us to determine weak amenability of `1(Z2, ω) by checking the
supremums for only two pairs (c, d), instead of all non-trivial pairs (c, d).
This will significantly simplify the verification process in most cases. We
start by proving the following simple technical lemma.

Lemma 5.3. Suppose that ω is a weight on Z2. Let c1, d1, c2, d2 be real
numbers satisfying the relation c1d2 − c2d1 6= 0 and such that

sup
k,m∈Z

|cik + dim|
ω(k,m)ω(−k,−m)

<∞, i = 1, 2.

Then for all c, d ∈ R we have

sup
k,m∈Z

|ck + dm|
ω(k,m)ω(−k,−m)

<∞.
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Proof. Denote

Mi = sup
k,m∈Z

|cik + dim|
ω(k,m)ω(−k,−m)

, i = 1, 2.

Then for every k,m ∈ Z we have

|cik + dim| ≤Miω(k,m)ω(−k,−m), i = 1, 2.

Since c1d2 − c2d1 6= 0, the vectors (c1, d1) and (c2, d2) are linearly indepen-
dent in R2. Fix arbitrary (c, d) ∈ R2. Then there exist real coefficients α, β
such that

(c, d) = α(c1, d1) + β(c2, d2),

and we obtain

|ck + dm| = |α(c1k + d1m) + β(c2k + d2m)|
≤ |α| · |c1k + d1m|+ |β| · |c2k + d2m|
≤ (|α|M1 + |β|M2)ω(k,m)ω(−k,−m), k,m ∈ Z.

This immediately implies that

sup
k,m∈Z

|ck + dm|
ω(k,m)ω(−k,−m)

≤ |α|M1 + |β|M2 <∞.

It follows from Lemma 5.3 that for any weight ω on Z2 there are three
possible situations:

S1. For every non-trivial pair (c, d) ∈ R2,

sup
k,m∈Z

|ck + dm|
ω(k,m)ω(−k,−m)

=∞,

and `1(Z2, ω) is weakly amenable. (For example, this is the case for
the weight ω(k,m) = (1 + |k|+ |m|)1/3.)

S2. For every pair (c, d) ∈ R2,

sup
k,m∈Z

|ck + dm|
ω(k,m)ω(−k,−m)

<∞,

and `1(Z2, ω) is not weakly amenable. (For example, this holds for
the weight ω(k,m) = (1 + |k|+ |m|)2/3.)

S3. There is a unique, up to a non-zero multiple, non-trivial pair (c, d)∈R2

such that

sup
k,m∈Z

|ck + dm|
ω(k,m)ω(−k,−m)

<∞,

and `1(Z2, ω) is not weakly amenable. (For example, this is the sit-
uation with the weight ω(k,m) = (1 + |k +m|)2/3.)

Employing this observation, we can prove the following result.
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Proposition 5.4. Let ω be a weight on Z2 which is symmetric and
even, i.e.,

(5.2) ω(k,m) = ω(k,−m) = ω(m, k), k,m ∈ Z.
Then `1(Z2, ω) is weakly amenable if and only if there exist c, d ∈ R such
that

(5.3) sup
k,m∈Z

|ck + dm|
ω(k,m)ω(−k,−m)

=∞.

Remark 5.5. The conclusion of Proposition 5.4 means that if (5.3) holds
for one pair (c, d), then it holds for all pairs (c, d) of real numbers. So in prac-
tice, if ω is symmetric and even, then one simply computes the supremum
from (5.3) for any single non-trivial pair (c, d) ∈ R2 to determine whether
`1(Z2, ω) is weakly amenable. If the supremum is infinite, then `1(Z2, ω) is
weakly amenable; if the supremum is finite, then `1(Z2, ω) is not weakly
amenable.

Proof of Proposition 5.4. We only need to prove that S3 is not possible
for any weight ω satisfying (5.2). According to Lemma 5.3, it is enough to
show that if for some non-trivial pair (c0, d0) ∈ R2 the corresponding supre-
mum is finite, then there exists another pair (c, d) ∈ R2, not proportional
to (c0, d0), for which the supremum is also finite.

First we consider the case when c0 6= ± d0. Then the pair (d0, c0) is not
proportional to (c0, d0), and for this pair we still have

sup
k,m∈Z

|d0k + c0m|
ω(k,m)ω(−k,−m)

=
ω(k,m)=ω(m,k)

sup
k,m∈Z

|d0k + c0m|
ω(m, k)ω(−m,−k)

=
k↔m

sup
k,m∈Z

|c0k + d0m|
ω(k,m)ω(−k,−m)

<∞.

Now, if c0 = d0 or c0 = −d0, then d0 6= 0 (since the pair (c0, d0) is non-
trivial), and so the pair (c0,−d0) is not proportional to (c0, d0). For this pair
we still have

sup
k,m∈Z

|c0k − d0m|
ω(k,m)ω(−k,−m)

=
ω(k,m)=ω(k,−m)

sup
k,m∈Z

|c0k − d0m|
ω(k,−m)ω(−k,m)

=
m↔−m

sup
k,m∈Z

|c0k + d0m|
ω(k,m)ω(−k,−m)

<∞.

The proof is complete.

Remark 5.6. In particular, Proposition 5.4 holds for any weight of the
form ω(k,m) = W (‖(k,m)‖), i.e., any weight depending only on the norm

‖(k,m)‖ =
√
k2 +m2, k,m ∈ Z.

Now let us consider situation S3 in more detail. Let ω be a weight for
which we have this situation. Without loss of generality, we can assume that
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the corresponding supremum is finite for a pair (c, d) with c = 1, i.e., that
there exists d ∈ R such that

sup
k,m∈Z

|k + dm|
ω(k,m)ω(−k,−m)

= M <∞.

This implies

(5.4)
1

M
|k + dm| ≤ ω(k,m)ω(−k,−m), k,m ∈ Z.

Since we are in situation S3, the supremum is infinite for every pair (c′, d′)
that is not proportional to (1, d), in particular for the pair (0, 1). So, we
have

sup
k,m∈Z

|m|
ω(k,m)ω(−k,−m)

=∞.

This means that there exists a sequence {(kn,mn)}∞n=1 ⊂ Z2 such that

|mn|
ω(kn,mn)ω(−kn,−mn)

> n,

and hence
|mn|
n

> ω(kn,mn)ω(−kn,−mn), n ∈ N.

Combining the last inequality with (5.4), we obtain

1

M
|kn + dmn| ≤ ω(kn,mn)ω(−kn,−mn) <

|mn|
n

, n ∈ N.

Dividing by (non-zero) |mn| and multiplying by M , we finally get∣∣∣∣ knmn
+ d

∣∣∣∣ < M

n
, n ∈ N.

It follows that d = − limn→∞ kn/mn.
Now we are ready to formulate the aforementioned procedure involving

calculation of at most two supremums.

Procedure for verification of whether `1(Z2, ω) is weakly amen-
able:

Step 1. We calculate

sup
k,m∈Z

|m|
ω(k,m)ω(−k,−m)

.

If it is finite, then `1(Z2, ω) is not weakly amenable. If it is infinite, then we
are either in situation S1 or in situation S3, and we proceed to the second
step.

Step 2. We choose {(kn,mn)}∞n=1 ⊂ Z2 such that

|mn|
ω(kn,mn)ω(−kn,−mn)

> n, n ∈ N,
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and consider limn→∞ kn/mn. If the limit does not exist or is infinite, then,
according to what we have discussed above, we cannot be in situation S3.
This means that we are in situation S1, and so `1(Z2, ω) is weakly amenable.
Now, if limn→∞ kn/mn exists and is finite, we denote it by −d and proceed
to the last step.

Step 3. We calculate

sup
k,m∈Z

|k + dm|
ω(k,m)ω(−k,−m)

.

If it is finite, then `1(Z2, ω) is not weakly amenable. On the other hand, if
it is infinite, we cannot be in situation S3, so we must be in situation S1,
which means that `1(Z2, ω) is weakly amenable.

Remark 5.7. The procedure above will also work if in the first step we
start from any other

sup
k,m∈Z

|ck + dm|
ω(k,m)ω(−k,−m)

instead of sup
k,m∈Z

|m|
ω(k,m)ω(−k,−m)

,

with minor adjustments in the subsequent steps.
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