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On universal enveloping algebras in a topological setting

by

Daniel Beltiţă (Bucureşti) and Mihai Nicolae (Ploieşti and Bucureşti)

Abstract. We study some embeddings of suitably topologized spaces of vector-valued
smooth functions on topological groups, where smoothness is defined via differentiability
along continuous one-parameter subgroups. As an application, we investigate the canonical
correspondences between the universal enveloping algebra, the invariant local operators,
and the convolution algebra of distributions supported at the unit element of any finite-
dimensional Lie group, when one passes from finite-dimensional Lie groups to pre-Lie
groups. The latter class includes for instance all locally compact groups, Banach–Lie
groups, additive groups underlying locally convex vector spaces, and also mapping groups
consisting of rapidly decreasing Lie group-valued functions.
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1. Introduction. It is well known that Lie theory and the related rep-
resentation theory have been successfully extended much beyond the classi-
cal setting of finite-dimensional real Lie groups, and this research area now
includes locally compact groups [HM07], [HM13], Lie groups modeled on
Banach spaces or even on locally convex spaces [KM97], [Bel06], [Ne06], and
some other classes of topological groups which may not be locally compact
[BCR81], [Gl02b], [HM05]. The differential calculus on topological groups,
involving functions which are smooth along one-parameter subgroups (Def-
inition 2.3), plays an important role for these extensions of Lie theory and
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has recently found remarkable applications also to supergroups and their
representation theory [NS13a], [NS13b]. We have merely mentioned here a
very few references that are closely related to the topics of our paper.

On the other hand, as one can see for instance in [War72] or [Ped94], a key
fact in harmonic analysis and representation theory is that the universal en-
veloping algebras of finite-dimensional Lie algebras can be realized by linear
functionals or operators on spaces of smooth functions on the corresponding
Lie groups, for instance as convolution algebras of distributions supported at
the unit element or as invariant linear differential operators. (See also [Gl12]
for situations of infinite-dimensional Lie algebras g whose universal envelop-
ing algebra can be made into a topological algebra as a quotient of the tensor
algebra of g; in particular, this is the case for any Banach–Lie algebra g.) It
is then natural to seek for such realizations beyond the classical setting of
finite-dimensional Lie groups, with motivation coming from the representa-
tion theory of groups of the aforementioned types. In the present paper we
begin an investigation of that question, oriented towards a pretty large class
of topological groups which have sufficiently many one-parameter subgroups,
namely the pre-Lie groups; see Definition 5.4 and Examples 5.6–5.9 below.

To this end, one needs a suitable notion of distributions with compact
support, that is, continuous linear functionals on the space of smooth func-
tions on the group under consideration. While spaces of smooth functions on
any topological group have already been studied in the literature, one still
needs to give these function spaces a topology adequate for the purposes of
turning their topological duals into associative algebras which act on func-
tion spaces by the natural operation of convolution. It should be pointed out
here that although convolution of functions on a topological group requires
some Haar measure on that group, this is not necessary for convolution of
functions with distributions or measures (see Definition 3.5).

One of the main technical novelties of our paper is the construction of
a suitable topology on the space of smooth functions on any topological
group and with values in any locally convex space Y, for which for arbitrary
topological groups G and H one has the canonical topological embedding of
spaces of smooth functions

C∞(H ×G,Y) ↪→ C∞(H, C∞(G,Y))

(Theorem 4.16 and Remark 4.17). By using that fact, we then prove that
for any topological group G, convolution with distributions with compact
support (that is, linear functionals which are continuous for the aforemen-
tioned topology) does preserve the space C∞(G) of smooth functions (Propo-
sition 5.1). By focusing on distributions supported at 1 ∈ G, we can thus
identify them with continuous linear operators on C∞(G) which commute
with left translations and are local, in the sense that they do not increase
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the support of functions (Theorem 5.2). Recall that Peetre’s theorem [Pee60]
ensures that the local operators on smooth manifolds are precisely the differ-
ential operators, not necessarily of finite order. If G is any finite-dimensional
Lie group, then we recover the natural correspondence between the distribu-
tions supported at 1 ∈ G and the left invariant differential operators on G.

The topology that we introduce on any function space C∞(G,Y) agrees
with the topology of uniform convergence of functions and their derivatives
on compact sets if G is any finite-dimensional real Lie group. However, unlike
most constructions of similar topologies on spaces of test functions from the
literature, our construction (Definition 3.1) does not need the group G to be
locally compact. In fact, spaces of test functions, distributions, and universal
enveloping algebras have already been investigated on locally compact groups
which are not necessarily Lie groups, for instance:

• Basic distribution theory on abelian locally compact groups by using
differentiability along one-parameter subgroupswas developed in [Ri53].
• Let G be any topological group which is a projective limit of Lie

groups. Under the additional hypotheses that G is simply connected,
locally compact, and separable, in [Ka59], [Ka61], [Ma61], [Br61], and
[BC75, Sect. 2] one endowed the space C∞(G) with the topology of
a locally convex space, which is nuclear if and only if every quotient
group of G whose Lie algebra is finite-dimensional is necessarily a Lie
group, as proved in [BC75, Sätze 3.3, 3.5].
• Some nuclear function spaces on locally compact groups that do not

use approximations by Lie groups were constructed in [Py74].
• Universal enveloping algebras of separable locally compact groups which

are projective limits of Lie groups were studied in [Br61], [MM64], and
[MM65].
• Differential operators in connection with distributions and convolutions

on locally compact groups were also studied in [Ed88] and [Ak95].
• Significant implications in representation theory and Lie theory were

recently investigated in [BB11], [BN15], [Nic14], and [Nic15].
• Also recently, Sobolev spaces on abelian locally compact groups, defined

via Fourier transforms, were studied with motivation coming from some
problems in mathematical physics; see [GPR13], [GoRe15], and the
references therein.

Our article is organized as follows: In Section 2 we provide some basic
definitions and auxiliary results from the differential calculus on topological
groups. Section 3 introduces the convolution of smooth functions with com-
pactly supported distributions and states one of the main problems which
motivated the present investigation (Problem 3.15). Section 4 is devoted
to proving the aforementioned embedding of spaces of smooth functions on
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topological groups (Theorem 4.16), which is our main technical result. Fi-
nally, in Section 5 we use that result to establish the structure of invariant
local operators (Theorem 5.2).

General notation. Throughout the present paper we denote by G, H
arbitrary topological groups, unless otherwise mentioned. We assume that
the topology of any topological group is separated. For any topological spaces
T and S we denote by C(T, S) the set of all continuous maps f : T → S.

2. Preliminaries. This section presents some ideas and notions of Lie
theory that play a key role in the present paper. Our basic references for
Lie theory of topological groups are [BCR81], [HM05], and [HM07]. See also
[BB11], [BN15], [Nic14], and [Nic15] for more recent developments.

The adjoint action of a topological group. Let G be any topological
group with the set of neighborhoods of 1 ∈ G denoted by VG(1). Define

L(G) = {γ ∈ C(R, G) | (∀t, s ∈ R) γ(t+ s) = γ(t)γ(s)}.
We endow L(G) with the topology of uniform convergence on compact sub-
sets of R. It can be described by neighborhood bases as follows. For n ∈ N
and U ∈ VG(1) denote

Wn,U = {(γ1, γ2) ∈ L(G)× L(G) | (∀t ∈ [−n, n]) γ2(t)γ1(t)
−1 ∈ U}.

For γ1 ∈ L(G) define Wn,U (γ1) = {γ2 ∈ L(G) | (γ1, γ2) ∈Wn,U}. Then there
exists a unique topology on L(G) such that for each γ ∈ L(G) the family
{Wn,U (γ) | n ∈ N, U ∈ VG(1)} is a fundamental system of neighborhoods
of γ.

Definition 2.1. The adjoint action of the topological group G is the
map

AdG : G× L(G)→ L(G), (g, γ) 7→ AdG(g)γ := gγ(·)g−1.
The map AdG indeed takes values in L(G) and is a group action, since the
action of G on itself by inner automorphisms, G×G→ G, (g, h) 7→ ghg−1,
is continuous.

We now recall the following result for later use:

Lemma 2.2. The adjoint action of every topological group is a continuous
mapping.

Proof. See [BCR81, Lemma 0.1.4.1].

Differentiability along one-parameter subgroups

Definition 2.3. Let G be a topological group, V ⊆ G an open subset,
and Y a real locally convex space. If ϕ : V → Y, γ ∈ L(G), and g ∈ V , then
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we denote

(2.1) (Dλ
γϕ)(g) = lim

t→0

ϕ(gγ(t))− ϕ(g)

t
if the limit exists.

We define C1(V,Y) as the set of all ϕ ∈ C(V,Y) for which the function

Dλϕ : V × L(G)→ Y, (Dλϕ)(g; γ) := (Dλ
γϕ)(g),

is well defined and continuous. We also denote Dλϕ = (Dλ)1ϕ.
Now let n ≥ 2 and assume the space Cn−1(V,Y) and the mapping

(Dλ)n−1 have been defined. Then we define Cn(V,Y) as the set of all func-
tions ϕ ∈ Cn−1(V,Y) for which the function

(Dλ)nϕ : V × L(G)× · · · × L(G)→ Y,
(g; γ1, . . . , γn) 7→ (Dλ

γn(Dλ
γn−1
· · · (Dλ

γ1ϕ) · · · ))(g),

is well defined and continuous.
Moreover we define C∞(V,Y) :=

⋂
n≥1 Cn(V,Y). If Y = C, then we write

simply Cn(G) := Cn(V,C) etc. for n = 1, 2, . . . ,∞.

Notation 2.4. It will be convenient to use the notation

Dλ
γϕ := Dλ

γn(Dλ
γn−1
· · · (Dλ

γ1ϕ) · · · ) : G→ Y
whenever γ := (γ1, . . . , γn) ∈ L(G)× · · · × L(G) and ϕ ∈ Cn(G,Y).

Some auxiliary facts. For later use we record the following well known
facts.

Lemma 2.5. Let X and T be topological spaces, Y be a locally convex
space, and f : X × T → Y be a continuous function. Pick x0 ∈ X and a
compact set K ⊆ T . Then for any continuous seminorm | · | on Y we have

(2.2) lim
x→x0

sup
t∈K
|f(x, t)− f(x0, t)| = 0.

Proof. This result is well known and is related to the exponential law for
continuous functions, C(X ×K,Y) ' C(X, C(K,Y)); see for instance [AD51,
Th. 4.21]. Alternatively, the assertion can be derived from the Wallace the-
orem [Ke75, Ch. 5, Th. 12].

In the following lemma we record the continuity with respect to parame-
ters for weak integrals in locally convex spaces which may not be complete;
see [Gl02a] for a thorough discussion of that integral, related differential
calculus, and applications to Lie theory.

Lemma 2.6. Let X be a topological space, Y be a locally convex space,
a, b ∈ R, a < b, and f : X× [a, b]→ Y be a continuous function such that the
weak integral h(x) =

	b
a f(x, t) dt exists for every x ∈ X. Then the resulting

function h : X → Y is continuous.
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Proof. To prove that h is continuous, let | · | be any continuous seminorm
on Y. It follows by [Gl02a, Lemma 1.7] that

(∀x, y ∈ X) |h(x)− h(y)| ≤ (b− a) sup
t∈[a,b]

|f(x, t)− f(y, t)|,

and now Lemma 2.5 shows that h : X → Y is continuous.

Lemma 2.7. Let H be a topological group, Y be a locally convex space,
and h ∈ C(H,Y). If X ∈ L(H) and the derivative Dλ

Xh : H → Y exists and
is continuous, then there exists a continuous function χ : R × H → Y such
that for all g ∈ H,

(∀t ∈ R) h(gX(t)) = h(g) + t(Dλ
Xh)(g) + tχ(t, g)

and χ(0, g) = 0.

Proof. This follows from [NS13a, Lemma 2.5]; see also [BB11, Prop. 2.3].

3. Distributions with compact support, convolutions, and local
operators. In this section we give a precise statement of the problem that
motivated the present paper (see Problem 3.15 below).

Topologies on spaces of smooth functions. Spaces of smooth func-
tions and their topologies play an important role in the theory of infinite-
dimensional Lie groups modeled on locally convex spaces; see for instance
[Ne06, Def. I.5.1]. We will now introduce a suitable topology on spaces of
smooth functions on any topological group G, by using compact subsets of
the space L(G) of one-parameter subgroups and its Cartesian powers. This
topology turns out to be suitable for establishing some embeddings of spaces
of smooth functions (Theorem 4.16 and Remark 4.17).

Definition 3.1. Let G be any topological group and denote

(∀k ≥ 1) Lk(G) := L(G)× · · · × L(G)︸ ︷︷ ︸
k times

.

Pick any open set V ⊆ G. If Y is any locally convex space, then for every
k ≥ 1, any compact subsets K1 ⊆ Lk(G) and K2 ⊆ V , and any continuous
seminorm | · | on Y we define

p
|·|
K1,K2

: C∞(V,Y)→ [0,∞), p
|·|
K1,K2

(f) = sup{|(Dλ
γf)(x)| | γ ∈K1, x ∈K2},

and

p
|·|
K2

: C∞(V,Y)→ [0,∞), p
|·|
K2

(f) = sup{|f(x)| | x ∈ K2}.
For simplicity we will always omit the seminorm | · | on Y from the above
notation and write simply pK1,K2 instead of p|·|K1,K2

and pK2 instead of p|·|K2
.

We endow the function space C∞(V,Y) with the locally convex topology
defined by the family of seminorms pK1,K2 and pK2 , and the resulting locally
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convex space will be denoted by E(V,Y). If Y = C then we write simply
E(V ) := E(V,Y).

We also denote by E ′(G) the topological dual of E(G) endowed with the
weak dual topology. This means that

E ′(G) = {u : E(G)→ C | u is linear and continuous}
as a linear space. This space is endowed with the locally convex topology
defined by the family of seminorms {qB | B finite ⊆ E(G)}, where for every
finite B ⊆ E(G) we define

qB : E ′(G)→ C, qB(u) := max
f∈B
|u(f)|.

The elements of E ′(G) will be called distributions with compact support.

Before we go further, we state an interesting problem related to the above
definition.

Problem 3.2. Find conditions on the topological group G ensuring that
every closed bounded subset of the locally convex space E(G) is compact.

The above problem will not be addressed in the present paper. Let us
just mention that an answer is known if G is any finite-dimensional Lie group
(see [Eh56]).

Definition 3.3. Assume the setting of Definition 3.1. The support of
any u ∈ E ′(G) is denoted by suppu and is defined as the set of all points
x ∈ G with the property that for every neighborhood U of x there exists
f ∈ E(G) such that supp f ⊆ U and u(f) 6= 0.

Remark 3.4. For every u ∈ E ′(G), from its continuity with respect to
the topology of E(G) introduced in Definition 3.1, it follows that there exist
a positive constant C > 0, an integer k ≥ 1, and some compact subsets
K1 ⊆ Lk(G) and K2 ⊆ G for which

(∀f ∈ E(G)) |u(f)| ≤ CpK1,K2(f).

This implies suppu ⊆ K2, hence suppu is compact in G, and this moti-
vates the terminology introduced in Definition 3.1. For every compact subset
K ⊆ G we denote

E ′K(G) := {u ∈ E ′(G) | suppu ⊆ K}.
In the case K = {1} we will denote simply E ′1(G) := E ′{1}(G).

Convolutions. We now introduce convolution of a smooth function
with a distribution with compact support.

Definition 3.5. Let G be any topological group. For all ϕ ∈ E(G) define
ϕ̌ ∈ E(G) by

(∀x ∈ G) ϕ̌(x) := ϕ(x−1).
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Then for every u ∈ E ′(G) we define ǔ ∈ E ′(G) by

(∀ϕ ∈ E(G)) ǔ(ϕ) := u(ϕ̌).

Finally, for all ϕ ∈ E(G) and u ∈ E ′(G) we define their convolution as the
function

ϕ ∗ u : G→ C, (ϕ ∗ u)(x) := ǔ(ϕ ◦ Lx),

where for all x ∈ G we define Lx : G → G, Lx(y) := xy. We will show in
Propositions 3.8 and 3.10 that these definitions are correct, in the sense that
ϕ̌, ϕ ◦ Lx ∈ E(G).

Remark 3.6. For later use we note that in Definition 3.5 for all ϕ ∈ E(G)
and u ∈ E ′(G) one has

supp(ϕ ∗ u) ⊆ (suppϕ) · (suppu) := {xy | x ∈ suppϕ, y ∈ suppu}.
To see this, we will prove that if w ∈ W := G \ ((suppϕ) · (suppu)) then
w 6∈ supp(ϕ ∗ u).

The set suppu is compact (by Remark 3.4) and suppϕ is closed, hence
the product (suppϕ) · (suppu) is closed (see for instance [HeRo63, Ch. II,
Th. 4.4]), and then its complement W is an open neighborhood of w.

We will show that (ϕ ∗ u)(x) = 0 for all x ∈ W . To this end it suffices
to check that supp(ϕ ◦ Lx) ∩ supp ǔ = ∅, because (ϕ ∗ u)(x) = ǔ(ϕ ◦ Lx).
It is easily seen that supp(ϕ ◦ Lx) = x−1 · suppϕ and supp ǔ = (suppu)−1,
hence we must prove that x 6∈ (suppϕ)·(suppu). But this holds true because
x ∈W = G \ ((suppϕ) · (suppu)).

In Definition 3.5, if G is a Lie group (see also [Eh56]), then ϕ̌, ϕ ◦ Lx ∈
E(G) for all x ∈ G and ϕ ∈ E(G). We will show in Propositions 3.8 and 3.10
that this property is shared by arbitrary topological groups. We begin by
the following simple computation.

Remark 3.7. If ϕ ∈ C1(G,Y), x ∈ G, and γ ∈ L(G), then

(Dλ
γ ϕ̌)(x) = lim

t→0

ϕ(γ(−t) · x−1)− ϕ(x−1)

t

= − lim
t→0

ϕ(γ(t) · x−1)− ϕ(x−1)

t

= − lim
t→0

ϕ(x−1 · (AdG(x)γ)(t))− ϕ(x−1)

t

= −(Dλ
AdG(x)γ

ϕ)(x−1).

Similarly, if n ≥ 1, ϕ ∈ C∞(G,Y), and γ1, . . . , γn ∈ L(G), then for all x ∈ G,

(Dλ
γ1 · · ·D

λ
γnϕ)(x) = (−1)n(Dλ

AdG(x)γn
· · ·Dλ

AdG(x)γn
ϕ)(x−1)

(see [BCR81, p. 45]).
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Proposition 3.8. If G is any topological group, then for all ϕ ∈ E(G)
we have ϕ̌ ∈ E(G). Moreover, the mapping E(G) → E(G), ϕ 7→ ϕ̌, is an
isomorphism of locally convex spaces.

Proof. The linear map ϕ 7→ ϕ̌ is equal to its inverse, hence it suffices to
prove that it is continuous. To this end define Ψ0 : G→ G, Ψ0(x) = x−1, and
for n ≥ 1,

Ψn : L(G)× · · · × L(G)×G→ L(G)× · · · × L(G)×G,
Ψn(γ1, . . . , γn, x) = (AdG(x)γ1, . . . ,AdG(x)γn, x

−1).

It follows directly from Lemma 2.2 that Ψn is a homeomorphism for all
n ≥ 0, hence for every ϕ ∈ C(G) we have ϕ̌ = ϕ ◦ Ψ0 ∈ C(G). Moreover, by
Remark 3.7, for all n ≥ 1 and ϕ ∈ Cn(G) we have
(3.1) (Dλ)nϕ̌ = (−1)n((Dλ)nϕ) ◦ Ψn,
hence ϕ̌ ∈ Cn(G). This shows that if ϕ ∈ E(G), then ϕ̌ ∈ E(G).

To check that the map E(G) → E(G), ϕ 7→ ϕ̌, is also continuous, let
k ≥ 1 be any integer and pick compact sets K1 ⊆ Lk(G) and K2 ⊆ G.
Define

K ′1 := {(AdG(x)γ1, . . . ,AdG(x)γk) | x ∈ K2, (γ1, . . . , γk) ∈ K1}
andK ′2 := {x−1 | x ∈ K2}. Since both the inversion mapping and the adjoint
action of G are continuous (Lemma 2.2), the sets K ′1 and K ′2 are compact.
Moreover, by (3.1) along with Definition 3.1,

(∀ϕ ∈ E(G)) pK1,K2(ϕ̌) ≤ pK′1,K′2(ϕ) and pK2(ϕ̌) = pK′2(ϕ),

hence the map E(G)→ E(G), ϕ 7→ ϕ̌, is indeed continuous.

Remark 3.9. If ϕ ∈ C1(G,Y), x, g ∈ G, and γ ∈ L(G), then

(Dλ
γ (ϕ ◦ Lx))(g) = lim

t→0

ϕ(xgγ(t))− ϕ(xg)

t
= (Dλ

γϕ)(xg).

Therefore Dλ
γ (ϕ ◦ Lx) = (Dλ

γϕ) ◦ Lx.
Proposition 3.10. If G is a topological group and Y is a locally convex

space, then for every x ∈ G the map

Λx : C∞(G,Y)→ C∞(G,Y), Λx(ϕ) = ϕ ◦ Lx,
is well defined and is an isomorphism of locally convex spaces.

Proof. For every n ≥ 1 we have the homeomorphism
F xn : L(G)× · · · × L(G)×G→ L(G)× · · · × L(G)×G,

F xn (γ1, . . . , γn, g) = (γ1, . . . , γn, xg).

On the other hand, iterating Remark 3.9, we see that for every ϕ ∈ C∞(G,Y)
we have (Dλ)n(ϕ◦Lx) = ((Dλ)nϕ)◦F xn , hence (Dλ)n(ϕ◦Lx) is a continuous
function, so ϕ ◦ Lx ∈ C∞(G,Y).



10 D. Beltiţă and M. Nicolae

Since F xn is a homeomorphism, it easily follows by the above formula for
derivatives (similarly to the proof of Proposition 3.8) that the map Λx is
continuous. Replacing x by x−1, we see that these properties are shared by
Λx−1 = Λ−1x , and this completes the proof.

As already mentioned, Propositions 3.8 and 3.10 imply in particular that
Definition 3.5 is correct. For later use we now record the version of these
results for the multiplication map (see also Remark 5.5 below).

Proposition 3.11. If G is a topological group with multiplication m :
G × G → G, (x, y) 7→ xy, then for any locally convex space Y the linear
mapping

E(G,Y)→ E(G×G,Y), ϕ 7→ ϕ ◦m,
is well defined and continuous.

Proof. Recall from [BCR81, p. 46] (see also [Nic14]) that for all ϕ ∈
C∞(G,Y), α1, . . . , αk, β1, . . . , βk ∈ L(G), x, y ∈ G, k ≥ 1, we have

((Dλ)k(ϕ ◦m))(x, y; (α1, β1), . . . , (αk, βk))

=
k∑
`=0

∑
i1<···<i`
i`+1<···<ik

((Dλ)`ϕ)(xy;βi1 , . . . , βi` ,AdG(y−1)αi`+1
, . . . ,AdG(y−1)αik),

where we assume {i1, . . . , i`, i`+1, . . . , ik} = {1, . . . , k}. With this formula at
hand, the continuity of ϕ 7→ ϕ ◦m can be checked just as the continuity of
ϕ 7→ ϕ̌ in the proof of Proposition 3.8.

Algebras of local operators

Definition 3.12. Let G be a topological group. A local operator on G
is any continuous linear operator D : E(G)→ E(G) with the property

(∀f ∈ E(G)) supp(Df) ⊆ supp f.

We denote by Loc(G) the set of all local operators on G. It is easily seen
that Loc(G) is a unital associative algebra of continuous linear operators on
the function space E(G).

Remark 3.13. It follows from [Pee60] that if G is any finite-dimensional
Lie group, then Loc(G) is precisely the set of linear differential operators
(possibly of infinite order) on G. Some generalizations of that statement for
locally compact groups were obtained in [Ak95, Th. 2.3] and [Ed88, Th. 2.3].
See also [WD73] and [LW11] for generalizations to G = (X ,+) for Ba-
nach spaces X that admit suitable bump functions (in particular for Hilbert
spaces). Infinite-dimensional versions of the results of [Pee60] on local oper-
ators were also discussed in [Da15].
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Definition 3.14. Let G be any topological group and recall the notation
(∀x ∈ G) Lx : G→ G, Lx(y) = xy.

The left-invariant local operators on G are the elements of the set
U(G) := {D ∈ Loc(G) | (∀x ∈ G)(∀f ∈ C∞(G)) D(f ◦ Lx) = (Df) ◦ Lx}.

We note that U(G) is a unital associative subalgebra of Loc(G).
For every γ ∈ L(G) we have Dλ

γ ∈ U(G) by Remark 3.9. We de-
note by U0(G) the unital associative subalgebra of U(G) generated by
{Dλ

γ | γ ∈ L(G)}.
We can now state one of the main problems that have motivated the

present paper. We will address this problem in Theorem 5.2 and Corollary 5.3
below.

Problem 3.15. For any topological group G we have the following in-
clusions of unital associative algebras:

U0(G) ⊆ U(G) ⊆ Loc(G).

Investigate the gap between U0(G) and U(G), and in particular find necessary
or sufficient conditions on G for the equality U0(G) = U(G) to hold.

Remark 3.16. If G is any finite-dimensional Lie group, then it fol-
lows from the Poincaré–Birkhoff–Witt theorem (see also Remark 3.13) that
U0(G) = U(G), and this is precisely the complexified universal enveloping
algebra U(gC) of the Lie algebra g of G. Hence the difficulty of Problem 3.15
lies in extending the Poincaré–Birkhoff–Witt theorem from Lie groups to
topological groups.

If G is a pre-Lie group (Definition 5.4) with L(G) = g or a locally
convex Lie group, then [BCR81, Sect. 1.3.1, (4̃)] shows that the mapping
L(G) → U0(G), γ 7→ Dλ

γ , extends to a natural surjective homomorphism
of unital associative algebras U(gC) → U0(G), whose injectivity can be es-
tablished under the additional assumption that C∞(G) contains sufficiently
many functions, in some sense. (See the method of proof of the Poincaré–
Birkhoff–Witt theorem in [CW99] and also [BCR81, Cor. 4.1.1.7].)

For instance, assume that there exists a smooth function on g which is
equal to 1 on some neighborhood of 0 ∈ g and has bounded support. Then
the above natural homomorphism is an isomorphism U(gC)

∼→U0(G) for any
locally exponential Lie group G (in the sense of [Ne06, Sect. IV]) whose Lie
algebra is g, which includes in particular all Banach–Lie groups. Note how-
ever that this method is not always applicable since there exist Banach spaces
that do not admit any nontrivial smooth function with bounded support, for
instance `1(N); see [BF66, Sect. 2, Ex. (i)].

On the other hand, a result of the type U(gC)
∼→U0(G) = U(G) was

obtained in [Ak95, Cor. 2.5] in the case when G is any locally compact
group, by using the Lie algebra g = L(G) discovered in [Glu57] and [La57].
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4. Some embeddings of spaces of smooth functions on topologi-
cal groups. The main result of this section is Theorem 4.16, which provides
a kind of weak exponential law for smooth functions on topological groups,
which suffices for our purposes in Section 5. See for instance [KM97, Ch. I, §3]
for a broad discussion of the exponential law for smooth functions on open
subsets of locally convex spaces. Further information and references on this
topic can be found in [AlS15], [KMR15], [Gl13], and [Al13].

Notation 4.1. Let G and H be topological groups. For any locally con-
vex space Y and ϕ ∈ C∞(G×H,Y) we define

ϕ̃ : G→ C∞(H,Y), ϕ̃(x)(y) = ϕ(x, y).

This notation will be preserved throughout the present section.

Some basic formulas on partial derivatives. We now give a defini-
tion whose correctness is established in Lemma 4.4 below.

Definition 4.2. Let ϕ ∈ C∞(H×G,Y). For n ≥ 1 we define the partial
derivatives (Dλ

1 )nϕ : H×G×Ln(H)→ Y and (Dλ
2 )nϕ : H×G×Ln(G)→ Y

as follows.
For n = 1, β ∈ L(H), and α ∈ L(G),

(Dλ
1ϕ)(x, g;β) =

d

dt

∣∣∣
t=0

ϕ(xβ(t), g),

(Dλ
2ϕ)(x, g;α) =

d

dt

∣∣∣
t=0

ϕ(x, gα(t)).

Furthermore, we define inductively

((Dλ
1 )n+1ϕ)(x, g;β1, . . . , βn, βn+1)=

d

dt

∣∣∣
t=0

((Dλ
1 )nϕ)(xβn+1(t), g;β1, . . . , βn)

and

((Dλ
2 )n+1ϕ)(x, g;α1, . . . , αn, αn+1)

=
d

dt

∣∣∣
t=0

((Dλ
2 )nϕ)(x, gαn+1(t);α1, . . . , αn).

Notation 4.3. By 1 ∈ L(G) we denote the constant function from R to
G given by 1(t) = 1 ∈ G for all t ∈ R.

The following lemma ensures the existence and continuity of the maps
(Dλ

1 )nϕ and (Dλ
2 )nϕ from Definition 4.2.

Lemma 4.4. Let ϕ ∈ C∞(H ×G,Y), x ∈ H, g ∈ G, and n ≥ 1.

(a) For all β1, . . . , βn ∈ L(H) we have

((Dλ
1 )nϕ)(x, g;β1, . . . , βn) = ((Dλ)nϕ)(x, g; (β1,1), . . . , (βn,1)).

(b) For all α1, . . . , αn ∈ L(G) we have

((Dλ
2 )nϕ)(x, g;α1, . . . , αn) = ((Dλ)nϕ)(x, g; (1, α1), . . . , (1, αn)).
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(c) The maps
(Dλ

1 )nϕ : H ×G× Ln(H)→ Y
and

(Dλ
2 )nϕ : H ×G× Ln(G)→ Y

are continuous.

Proof. Assertions (a) and (b) are straightforward, and (c) follows from
(a) and (b), by using the hypothesis ϕ ∈ C∞(H ×G,Y).

Proposition 4.5. For all ϕ ∈ C∞(H × G,Y), n ≥ 1, and β1, . . . , βn
∈ L(H),

((Dλ)nϕ̃)(x;β1, . . . , βn)(g) = ((Dλ
1 )nϕ)(x, g;β1, . . . , βn)

= ((Dλ)nϕ)(x, g; (β1,1), . . . , (βn,1)).

Proof. The last equality follows from Lemma 4.4(a). For the first equality
we use induction on n.

The case n = 1: For x ∈ H, g ∈ G, and β ∈ L(H) we have

(Dλϕ̃)(x;β)(g) =
d

dt

∣∣∣
t=0

ϕ̃(xβ(t))(g) =
d

dt

∣∣∣
t=0

ϕ(xβ(t), g) = (Dλ
1ϕ)(x, g;β).

Now suppose that the assertion is already proved for n. Then

((Dλ)n+1ϕ̃)(x;β1, . . . , βn, βn+1)(g)

=
d

dt

∣∣∣
t=0

((Dλ)nϕ̃)(xβn+1(t);β1, . . . , βn)(g)

=
d

dt

∣∣∣
t=0

((Dλ
1 )nϕ)(xβn+1(t), g;β1, . . . , βn)

= ((Dλ
1 )n+1ϕ)(x, g;β1, . . . , βn, βn+1).

The proof is complete.

Remark 4.6. The formula from Proposition 4.5 gives us the point values
of the derivatives of the function ϕ̃ introduced in Notation 4.1. We still have
to show that the convergence of the differential quotients to these values
holds in the topology of E(G,Y). This will be done in Proposition 4.14.

Lemma 4.7. If ϕ ∈ C∞(H × G,Y), then for all x ∈ H, g ∈ G, n ≥ 1,
and α1, . . . , αn ∈ L(G) we have

((Dλ)n(ϕ̃(x)))(g;α1, . . . , αn) = ((Dλ
2 )nϕ)(x, g;α1, . . . , αn)

= ((Dλ)nϕ)(x, g; (1, α1), . . . , (1, αn)).

Proof. The proof is similar to the one of Proposition 4.5.

Remark 4.8. It follows from Lemmas 4.7 and 4.4(c) that if ϕ ∈
C∞(H × G,Y), then ϕ̃(x) := ϕ(x, ·) ∈ C∞(G,Y) for all x ∈ G, hence the
function ϕ̃ : H → E(G,Y) (see Notation 4.1) is well defined.
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Continuity of ϕ̃

Proposition 4.9. If ϕ ∈ C∞(H × G,Y), then ϕ̃ : H → E(G,Y) (see
Notation 4.1) is continuous.

Proof. We will show that for any seminorm p on E(G,Y) of the form pK2

or pK1,K2 as in Definition 3.1 we have limx→x0 p(ϕ̃(x) − ϕ̃(x0)) = 0, which
is tantamount to the following condition:

(∀x0 ∈ H)(∀ε > 0)(∃U ∈ V(x0))(∀x ∈ U) p(ϕ̃(x)− ϕ̃(x0)) ≤ ε.

We will analyze the two types of seminorms separately. Let x0 ∈ H and
ε > 0 be fixed throughout the proof.

Case (a): p= pK2 , whereK2⊆G is compact. Set E(x) := p(ϕ̃(x)− ϕ̃(x0)).
Then

E(x) = sup
g∈K2

|ϕ̃(x)(g)− ϕ̃(x0)(g)| = sup
g∈K2

|ϕ(x, g)− ϕ(x0, g)|,

hence the conclusion follows directly by applying Lemma 2.5 with x0 ∈ X
= H, T = G, K = K2, and f = ϕ : H × G → Y, which is a continuous
function since ϕ ∈ C∞(H ×G,Y).

Case (b): p = pK1,K2 for compact K2 ⊆ G and K1 ⊆ Ln(G), n ≥ 1.
Denote again E(x) := p(ϕ̃(x)− ϕ̃(x0)). In this case we have

E(x) = sup{|((Dλ)n(ϕ̃(x)− ϕ̃(x0)))(g; γ)| | g ∈ K2, γ ∈ K1}
= sup{|((Dλ)n(ϕ̃(x)))(g; γ)− ((Dλ)n(ϕ̃(x0)))(g; γ)| | g ∈ K2, γ ∈ K1}.

Using Lemma 4.7 we obtain

E(x) = sup{|((Dλ
2 )nϕ)(x, g; γ)− ((Dλ

2 )nϕ)(x0, g; γ)| | g ∈ K2, γ ∈ K1},

hence the conclusion follows by applying Lemma 2.5 with x0 ∈ X = H,
T = G × Ln(G), and the compact set K = K2 × K1 ⊆ T , since f =
(Dλ

2 )nϕ : H ×G× Ln(G)→ Y is continuous by Lemma 4.4(c).

Smoothness of ϕ̃

Definition 4.10. LetG be a topological group. We say that α, β ∈ L(G)
commute if

(∀s, t ∈ R) α(t)β(s) = β(s)α(t).

Remark 4.11. If G and H are topological groups, then every α ∈ L(G)
commutes with 1 ∈ L(G), and for every α ∈ L(G) and β ∈ L(H) the
elements (1, α) and (β,1) from L(H ×G) commute.

Lemma 4.12. Let H be a topological group, n≥ 2, and γ1, . . . , γn ∈L(H).
Assume that γi commutes with γi+1 for some i ∈ {1, . . . , n − 1}. Then for
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any f ∈ Cn(H,Y) and x ∈ H we have

((Dλ)nf)(x; γn, . . . , γi+2, γi+1, γi, γi−1, . . . , γ1)

= ((Dλ)nf)(x; γn, . . . , γi+2, γi, γi+1, γi−1, . . . , γ1).

Proof. The function

(t1, . . . , tn) 7→ f(xγ1(t1)γ2(t2) · · · γn(tn))

belongs to Cn(Rn,Y) by [BCR81, Prop. 1.2.2.1]. Therefore

((Dλ)nf)(x; γn, . . . , γi+2, γi+1, γi, γi−1, . . . , γ1)

=
∂n

∂t1 · · · ∂ti−1∂ti∂ti+1∂ti+2 . . . ∂tn

∣∣∣∣
t1=···=tn=0

f(xγ1(t1) · · · γn(tn))

=
∂n

∂t1 · · · ∂ti−1∂ti+1∂ti∂ti+2 · · · ∂tn

∣∣∣∣
t1=···=tn=0

f(xγ1(t1) · · · γn(tn))

=
∂n

∂t1 · · · ∂ti−1∂ti+1∂ti∂ti+2 · · · ∂tn

∣∣∣∣
t1=···=tn=0

f(xγ1(t1) · · · γi−1(ti−1)γi+1(ti+1)γi(ti)γi+2(ti+2) · · · γn(tn))

= ((Dλ)nf)(x; γn, . . . , γi+2, γi, γi+1, γi−1, . . . , γ1).

Lemma 4.13. Let G and H be topological groups and ϕ ∈ C∞(H×G,Y).
For some s ≥ 1 let α1, . . . , αs ∈ L(G). Then the following assertions hold
for all x ∈ H and g ∈ G:

(a) For every β ∈ L(H) we have

((Dλ)s+1ϕ)(x, g; (β,1), (1, α1), . . . , (1, αs))

= ((Dλ)s+1ϕ)(x, g; (1, α1), . . . , (1, αs), (β,1)).

(b) For every n ≥ 1 and β1, . . . , βn+1 ∈ L(H) we have

((Dλ)n+s+1ϕ)(x, g; (β1,1), . . . , (βn,1), (βn+1,1), (1, α1), . . . , (1, αs))=

((Dλ)n+s+1ϕ)(x, g; (β1,1), . . . , (βn,1), (1, α1), . . . , (1, αs), (βn+1,1)).

Proof. In both assertions one starts from the right-hand side of the equal-
ity to be proved, and uses Remark 4.11 and Lemma 4.12 for H replaced by
H ×G for the pairs (1, αi) and (βn+1,1).

We are now in a position to solve the problem mentioned in Remark 4.6.

Proposition 4.14. Let G and H be topological groups, Y be a locally
convex space, and for any ϕ ∈ C∞(H × G,Y) define ϕ̃ : H → E(G,Y),
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ϕ̃(x)(g) = ϕ(x, g). Then for all x0 ∈ G and β01 , . . . , β
0
n+1 ∈ L(H) we have

lim
t→0

((Dλ)nϕ̃)(x0β
0
n+1(t);β

0
1 , . . . , β

0
n)− ((Dλ)nϕ̃)(x0;β

0
1 , . . . , β

0
n)

t

= ((Dλ
1 )n+1ϕ)(x0, • ;β01 , . . . , β

0
n, β

0
n+1)

in the topology of E(G,Y) from Definition 3.1.

Proof. Define h : R→ E(G,Y) by

h(t) =
((Dλ)nϕ̃)(x0β

0
n+1(t);β

0
1 , . . . , β

0
n)− ((Dλ)nϕ̃)(x0;β

0
1 , . . . , β

0
n)

t
if t 6= 0,

((Dλ
1 )n+1ϕ)(x0, • ;β01 , . . . , β

0
n, β

0
n+1) if t = 0.

We must prove that limt→0 h(t) = h(0) in E(G,Y), that is, for every semi-
norm p (see Definition 3.1) we have limt→0 p(h(t)− h(0)) = 0.

Again we distinguish two cases.

Case 1: p = pK2 for a compact set K2 ⊆ G. Set E(t) = p(h(t)− h(0));
then

E(t) = sup{|h(t)(g)− h(0)(g)| | g ∈ K2}

= sup

{∣∣∣∣((Dλ
1 )nϕ)(x0β

0
n+1(t), g;β01 , . . . , β

0
n)− ((Dλ

1 )nϕ)(x0, g;β01 , . . . , β
0
n)

t

− ((Dλ
1 )n+1ϕ)(x0, g;β01 , . . . , β

0
n, β

0
n+1)

∣∣∣∣ ∣∣∣∣ g ∈ K2

}
= sup{|F (t, g)− F (0, g)| | g ∈ K2}

where F : R×G→ Y is defined by

F (t, g) =
((Dλ

1)nϕ)(x0β
0
n+1(t), g;β01 , . . . , β

0
n)− ((Dλ

1 )nϕ)(x0, g;β01 , . . . , β
0
n)

t
if t 6= 0,

((Dλ
1 )n+1ϕ)(x0, g;β01 , . . . , β

0
n, β

0
n+1) if t= 0.

The desired property limt→0E(t) = 0 will follow by an application of Lem-
ma 2.5 forX = R, T = G, x0 = 0 ∈ R,K = K2 ⊆ G, and f = F : R×G→ Y,
as soon as we check that F is continuous.

To this end, first note that for g ∈ G we have

lim
t→0

F (t, g) =
d

dt

∣∣∣
t=0

((Dλ
1 )nϕ)(x0β

0
n+1(t), g;β01 , . . . , β

0
n)

= ((Dλ
1 )n+1ϕ)(x0, g;β01 , . . . , β

0
n, β

0
n+1) = F (0, g).
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Next, we will show that Lemma 2.7 applies with H replaced by H × G,
(x0, g) ∈ H ×G, X = (β0n+1,1) ∈ L(H ×G), and f : H ×G→ Y, f(x, y) =

((Dλ
1 )nϕ)(x, y;β01 , . . . , β

0
n), which is continuous since ϕ ∈ C∞(H × G,Y).

Note that the derivative Dλ
Xf : H × G → Y is given by (Dλ

Xf)(x, y) =
((Dλ

1 )n+1ϕ)(x, y;β01 , . . . , β
0
n, β

0
n+1), and this is a continuous function since

ϕ ∈ C∞(H ×G,Y).
Therefore Lemma 2.7 provides a continuous function χ : R×G→ Y such

that χ(0, g) = 0 and f(x0β
0
n+1(t), g) = f(x0, g)+ t(Dλ

Xf)(x0, g)+ tχ(t, g) for
all g ∈ G. We have

(Dλ
Xf)(x0, g) = (Dλf)(x0, g;β0n+1, 1) =

d

dt

∣∣∣
t=0

f(x0β
0
n+1(t), g)

=
d

dt

∣∣∣
t=0

((Dλ
1 )nϕ)(x0β

0
n+1(t), g;β01 , . . . , β

0
n)

= ((Dλ
1 )n+1ϕ)(x0, g;β01 , . . . , β

0
n, β

0
n+1) = F (0, g)

and F (t, g) = F (0, g) + χ(t, g), hence F is the sum of two continuous func-
tions, since χ is continuous by Lemma 2.7 and

g 7→ F (0, g) = ((Dλ
1 )n+1ϕ)(x0, g;β01 , . . . , β

0
n, β

0
n+1)

is continuous since ϕ ∈ C∞(H ×G,Y). This settles Case 1.

Case 2: p = pK1,K2 for compact sets K2 ⊆ G and K1 ⊆ Ls(G), where
s ≥ 1. Denote again E(t) = p(h(t)− h(0)) for t ∈ R. Then

E(t) = sup
g,α
|((Dλ)s(h(t))(g;α1, . . . , αs)− ((Dλ)s(h(0))(g;α1, . . . , αs)|

where g ∈ K2 and α = (α1, . . . , αs) ∈ K1. Until the end of this proof it is
convenient to denote k := n+ s. Then E(t) is the supremum of the values of
the seminorm | · | involved in the definition of p = pK1,K2 (see Definition 3.1)
on the vectors in Y of the form
1

t

(
((Dλ)kϕ)(x0β

0
n+1(t), g; (β01 ,1), . . . , (β0n,1), (1, α1), . . . , (1, αs))

− ((Dλ)kϕ)(x0, g; (β01 ,1), . . . , (β0n,1), (1, α1), . . . , (1, αs))
)

− ((Dλ)k+1ϕ)(x0, g; (β01 ,1), . . . , (β0n,1), (β0n+1,1), (1, α1), . . . , (1, αs))

where again g ∈ K2 and α = (α1, . . . , αs) ∈ K1.
Therefore E(t) = sup{|F (t, g, α) − F (0, g, α)| | g ∈ K2, α ∈ K1} where

F : R×G× Ls(G)→ Y is given by

F (t, g, α)

=
1

t

(
((Dλ)kϕ)(x0β

0
n+1(t), g; (β01 , 1), . . . , (β0n,1), (1, α1), . . . , (1, αs))

− ((Dλ)kϕ)(x0, g; (β01 ,1), . . . , (β0n,1), (1, α1), . . . , (1, αs))
)
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if t 6= 0, and

F (t, g, α)

= ((Dλ)k+1ϕ)(x0, g; (β01 ,1), . . . , (β0n,1), (β0n+1,1), (1, α1), . . . , (1, αs))

if t = 0.
The desired property limt→0E(t) = 0 then follows by an application

of Lemma 2.5 for X = R, T = G × Ls(G), x0 = 0 ∈ R, the compact
K = K2 ×K1 ⊆ G × Ls(G), and the function f = F , as soon as we prove
that F is continuous.

Just as in Case 1, we first note that

lim
t→0

F (t, g, α)

=
d

dt

∣∣∣
t=0

((Dλ)kϕ)(x0β
0
n+1(t), g; (β01 ,1), . . . , (β0n,1), (1, α1), . . . , (1, αs))

= ((Dλ)k+1ϕ)(x0, g; (β01 ,1), . . . , (β0n,1), (1, α1), . . . , (1, αs), (β
0
n+1,1))

= F (0, g, α)

by using Lemma 4.13(b).
Now define B : R→ Y by

B(t) = ((Dλ)kϕ)(x0β
0
n+1(t), g; (β01 ,1), . . . , (β0n,1), (1, α1), . . . , (1, αs)).

Since ϕ ∈ C∞(H × G,Y), we have B ∈ C1(R,Y), B′(0) = F (0, g, α) by
Lemma 4.13(b) and

B′(t)

= ((Dλ)kϕ)(x0β
0
n+1(t), g; (β01 ,1), . . . , (β0n,1), (1, α1), . . . , (1, αs), (β

0
n+1,1)).

The fundamental theorem of calculus for functions with values in the space Y
which may not be complete (see [Gl02a, Th. 1.5]) yields

B(t) = B(0) + t

1�

0

B′(tz) dz = B(0) + tB′(0) + t

1�

0

B′(tz) dz − tB′(0)

and therefore

(4.1) F (t, g, α) = F (0, g, α) + χ(g, t, α)

where χ : G× R× Ls(G)→ Y is given by

χ(g, t, α)

=

1�

0

((Dλ)k+1ϕ)(x0β
0
n+1(tz), g; (β0j ,1)j=1,...,n, (1, αi)i=1,...,s, (β

0
n+1,1)) dz

− ((Dλ)k+1ϕ)(x0, g; (β0j ,1)j=1,...,n, (1, αi)i=1,...,s, (β
0
n+1,1))
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with

(β0j ,1)j=1,...,n := ((β01 ,1), . . . , (β0n,1)),

(1, αi)i=1,...,s := ((1, α1), . . . , (1, αs)).

We have χ(g, 0, α) = 0 and χ is continuous by Lemma 2.6 applied for X =
G× R× Ls(G) and f : G× R× Ls(G)× [0, 1]→ Y given by

f(g, t, α, z)

= ((Dλ)k+1ϕ)(x0β
0
n+1(tz), g; (β0j ,1)j=1,...,n, (1, αi)i=1,...,s, (β

0
n+1,1)),

which is continuous since ϕ ∈ C∞(H ×G,Y).
Finally, by (4.1), F is the sum of two continuous functions, which com-

pletes the proof.

Lemma 4.15. If ϕ ∈ C∞(H ×G,Y), then the following assertions hold.

(a) Let x ∈ H and β1, . . . , βn ∈ L(H). Then the function

h := ((Dλ
1 )nϕ)(x, • ;β1, . . . , βn) : G→ Y

belongs to C∞(G,Y) and for all s ≥ 1 and α1, . . . , αs ∈ L(G) we
have

((Dλ)sh)(g;α1, . . . , αs)

= ((Dλ)n+sϕ)(x, g; (β1,1), . . . , (βn,1), (1, α1), . . . , (1, αs)).

(b) Let x ∈ H, β1, . . . , βn ∈ L(H), and γ1, . . . , γn ∈ L(G). Then the
function

h := ((Dλ)nϕ)(x, • ; (β1, γ1), . . . , (βn, γn)) : G→ Y
is in C∞(G,Y) and for every s ≥ 1 and α1, . . . , αs ∈ L(G) we have

((Dλ)sh)(g;α1, . . . , αs)

= ((Dλ)n+sϕ)(x, g; (β1, γ1), . . . , (βn, γn), (1, α1), . . . , (1, αs)).

Proof. Assertion (a) follows from (b) for γ1 = · · · = γn = 1 ∈ L(G), by
using Lemma 4.4(a).

We prove (b) by induction on s ≥ 1. Since ϕ ∈ C∞(H × G,Y) and
h(g) = ((Dλ)nϕ)(x, g; (β1, γ1), . . . , (βn, γn)) it follows that h is continuous.

The case s = 1: We have

(Dλh)(g;α) =
d

dt

∣∣∣
t=0

h(gα(t))

=
d

dt

∣∣∣
t=0

((Dλ)nϕ)(x, gα(t); (β1, γ1), . . . , (βn, γn))

= ((Dλ)n+1ϕ)(x, g; (β1, γ1), . . . , (βn, γn), (1, α)),

and since ϕ ∈ C∞(H ×G,Y) we obtain h ∈ C1(G,Y).
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Now suppose the assertion has been proved for s. Then

((Dλ)s+1h)(g;α1, . . . , αs, αs+1)

=
d

dt

∣∣∣
t=0

((Dλ)sh)(gαs+1(t);α1, . . . , αs)

=
d

dt

∣∣∣
t=0

((Dλ)n+sϕ)(x, gαs+1(t); (β1, γ1), . . . , (βn, γn), (1, α1), . . . , (1, αs))

= ((Dλ)n+s+1ϕ)(x, g; (β1, γ1), . . . , (βn, γn), (1, α1), . . . , (1, αs), (1, αs+1))

as desired.
Moreover, since ϕ ∈ C∞(H × G,Y), we obtain h ∈ Cs(G,Y) for every

s ≥ 1. This shows that h ∈ C∞(G,Y), and the proof is complete.

Theorem 4.16. Let G and H be topological groups and Y be a locally
convex space. Then the following assertions hold:

(i) For every ϕ ∈ C∞(H ×G,Y), the function

ϕ̃ : H → C∞(G,Y), ϕ̃(x)(g) := ϕ(x, g),

belongs to C∞(H, E(G,Y)).
(ii) The map

Φ : E(H ×G,Y)→ E(H, E(G,Y)), ϕ 7→ ϕ̃,

is a linear topological embedding of locally convex spaces.

Proof. To prove (i), let ϕ ∈ C∞(H×G,Y). The fact that ϕ̃ is continuous
follows by Proposition 4.9. We will show that for every n ≥ 1 the derivative
(Dλ)nϕ̃ : H × Ln(H) → E(G,Y) exists and is continuous. The existence
follows from Proposition 4.14. The fact that the derivative takes values in
E(G,Y) is a consequence of Lemma 4.15(a).

For the continuity we will prove that for every seminorm p on E(G,Y)
as in Definition 3.1 and every x0 ∈ H, β01 , . . . , β0n ∈ L(H) and ε > 0 there
exists a neighborhood U of (x;β01 , . . . , β

0
n) ∈ H ×Ln(H) such that for every

(x;β1, . . . , βn) ∈ U we have

p(((Dλ)nϕ̃)(x;β1, . . . , βn)− ((Dλ)nϕ̃)(x0;β
0
1 , . . . , β

0
n)) ≤ ε.

Case (a): p = pK2 with K2 ⊆ G compact. As in the proof of Proposi-
tion 4.9, we denote

E(x;β1, . . . , βn)

:= sup
g∈K2

|((Dλ)nϕ̃)(x;β1, . . . , βn)(g)− ((Dλ)nϕ̃)(x0;β
0
1 , . . . , β

0
n)(g)|.
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Applying Proposition 4.5 we obtain

E(x;β1, . . . , βn)

= sup
g∈K2

|((Dλ
1 )nϕ)(x, g;β1, . . . , βn)− ((Dλ

1 )nϕ)(x0, g;β01 , . . . , β
0
n)|.

Now the conclusion follows by applying Lemma 2.5 for (x0;β
0
1 , . . . , β

0
n) ∈

H × Ln(H) = X, K = K2 compact in T = G, and

f : H × Ln(H)×G→ Y, f(x;β1, . . . , βn, g) = ((Dλ
1 )nϕ)(x, g;β1, . . . , βn),

which is continuous since (Dλ
1 )nϕ : H × G × Ln(H) → Y is continuous by

Lemma 4.4(c).

Case (b): p = pK1,K2 with compact sets K2 ⊆ G and K1 ⊆ Ls(G), where
s ≥ 1. We denote

E(x;β1, . . . , βn) = sup{|((Dλ)s((Dλ)nϕ̃)(x;β1, . . . , βn))(g; γ1, . . . , γs)

− ((Dλ)s((Dλ)nϕ̃)(x0;β
0
1 , . . . , β

0
n))(g; γ1, . . . , γs)| |

g ∈ K2, γ = (γ1, . . . , γs) ∈ K1}.
By Proposition 4.5 we obtain

E(x;β1, . . . , βn) = sup{|((Dλ)s((Dλ
1 )nϕ)(x, • ;β1, . . . , βn))(g; γ1, . . . , γs)

− ((Dλ)s((Dλ
1 )nϕ)(x0, • ;β01 , . . . , β

0
n))(g; γ1, . . . , γs)| |

g ∈ K2, γ = (γ1, . . . , γs) ∈ K1}.
Furthermore, by Lemma 4.15(a),

E(x;β1, . . . , βn)

= sup{|((Dλ)n+sϕ)(x, g; (β1,1), . . . , (βn,1), (1, γ1), . . . , (1, γs))

− ((Dλ)n+sϕ)(x0, g; (β01 ,1), . . . , (β0n,1), (1, γ1), . . . , (1, γs))| |
g ∈ K2, γ = (γ1, . . . , γs) ∈ K1}.

The conclusion now follows by Lemma 2.5 for T = G×Ls(G), K = K2×K1,
(x0;β

0
1 , . . . , β

0
n) ∈ H × Ln(H) = X, and f : H × Ln(H) × G × Ls(G) → Y

given by

f(x, β1, . . . , βn, g, γ1, . . . , γs)

= ((Dλ)n+sϕ)(x, g; (β1,1), . . . , (βn,1), (1, γ1), . . . , (1, γs)).

The function f is continuous since (Dλ)n+sϕ is continuous as a consequence
of the hypothesis ϕ ∈ C∞(H × G,Y), and this concludes the proof of the
fact that ϕ̃ ∈ E(H, E(G,Y)).

For (ii), note that the inverse map

RanΦ→ E(H ×G,Y), ϕ̃ 7→ ϕ,
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is well defined. Moreover, the continuity of ϕ 7→ ϕ̃ and ϕ̃ 7→ ϕ follows easily
by taking into account the relations between the derivatives of ϕ and ϕ̃ pro-
vided by Proposition 4.5 and Lemma 4.4 (see also [BCR81, Prop. 1.2.1.5]).

Remark 4.17. It is easily seen that the proof of Theorem 4.16 has a
local character, in the sense that it actually leads to a more general result:

LetG andH be any topological groups and Y be any locally convex space.
Pick any open sets V ⊆ G andW ⊆ H. Then for any ϕ ∈ C∞(W ×V,Y), the
function ϕ̃ : W → C∞(V,Y), ϕ̃(x)(g) := ϕ(x, g), belongs to C∞(W, E(V,Y)).
Moreover, the map

E(W × V,Y)→ E(W, E(V,Y)), ϕ 7→ ϕ̃,

is a linear topological embedding of locally convex spaces.
We also note that the map Φ of Theorem 4.16(ii) may not be surjective;

see [AlS15] for details.

5. Structure of invariant local operators. In this final section, we
establish the structure of invariant local operators on an arbitrary topological
group G (Theorem 5.2) and we use that result to compare to some extent the
two candidates U0(G) ⊆ U(G) for the role of universal enveloping algebra
of G; cf. Problem 3.15. Our main result in this connection is Corollary 5.3
below.

General results

Proposition 5.1. If G is a topological group, then for every f ∈ E(G)
and u ∈ E ′(G) we have f ∗ u ∈ E(G).

Proof. Let m : G×G→ G, m(x, y) = xy. By denoting ǔ = v ∈ E ′(G) we
have v̌ = u and (f ∗u)(x) = ǔ(f ◦Lx) = v(f ◦Lx). Now define ϕ : G×G→ C,
ϕ(x, y) = f(xy). Since ϕ = f ◦ m, it follows by Proposition 3.11 that
ϕ ∈ C∞(G × G). If we define ϕ̃ : G → C∞(G), ϕ̃(x)(y) = ϕ(x, y), as in
Notation 4.1, then by using Theorem 4.16(i) we obtain ϕ̃ ∈ C∞(G, E(G)).

Since ϕ̃(x)(y) = f(xy) = (f ◦Lx)(y), we have ϕ̃(x) = f ◦Lx for all x ∈ G,
and therefore f ∗ u = v ◦ ϕ̃. As ϕ̃ ∈ C∞(G, E(G)) by Theorem 4.16(i), we
obtain f ∗ u ∈ E(G).

We can now prove the following theorem, which extends a well known
property of finite-dimensional Lie groups.

Theorem 5.2. Let G be a topological group and for every u ∈ E ′(G)
define the linear operator Du : C∞(G) → C∞(G), Duf = f ∗ u. Then the
operator Ψ : E ′1(G) → U(G), Ψ(u) = Du, is well defined, invertible, and its
inverse is

Ψ−1 : U(G)→ E ′1(G), (Ψ−1(D))(f) = (Df̌)(1) for f ∈ C∞(G), D ∈ U(G).
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Proof. We organize the proof in three steps.

Step 1: We show that Ψ is well defined, that is, Du ∈ U(G) for all
u ∈ E ′1(G). In fact, Du(f ◦Lx)(y) = ((f ◦Lx) ∗u)(y) = ǔ(f ◦Lx ◦Ly) and on
the other hand (Du(f)◦Lx)(y) = (f ∗u)(xy) = ǔ(f ◦Lxy) = ǔ(f ◦Lx ◦Ly) =
Du(f ◦ Lx)(y), hence Du(f ◦ Lx) = Du(f) ◦ Lx.

From u ∈ E ′1(G) it follows that suppu ⊆ {1} ⊆ G, hence

supp(Duf) = supp(f ∗ u) ⊆ (supp f)(suppu)

by Remark 3.6, and therefore supp(Duf) ⊆ (supp f){1} = supp f . Moreover,
Du is continuous as a direct consequence of Propositions 3.8 and 3.10. Thus
Du ∈ U(G).

Step 2: We show that the mapping

Φ : U(G)→ E ′1(G), (Φ(D))(f) = (Df̌)(1) for f ∈ C∞(G) and D ∈ U(G),

is well defined, that is, for every D ∈ U(G) the functional u : E(G) → C,
u(f) = (Df̌)(1), is in E ′1(G).

To this end note that if supp f ⊆ U then G \ U ⊆ {x ∈ G | f(x) = 0}.
Now let x ∈ G with x 6= 1. Since the topology of G is assumed to be
separated, there exists an open neighborhood U of x with 1 /∈ U . For every
f ∈ C∞(G) with supp f ⊆ U we have supp f̌ = (supp f)−1 ⊆ U−1, and so
supp(Df̌) ⊆ supp f̌ ⊆ U−1. Thus G \ U−1 ⊆ {y ∈ G | (Df̌)(y) = 0}.

Since 1 /∈ U and 1 /∈ U−1, we have (Df̌)(1) = 0, hence x /∈ suppu for
all x ∈ G \ {1}, and thus suppu ⊆ {1}. That is, u ∈ E ′1(G).

Step 3: We show that Ψ ◦ Φ = idU(G) and Φ ◦ Ψ = idE ′1(G).
To this end, let D ∈ U(G) and denote Φ(D) = u. We have u(f) =

(Df̌)(1) and Ψ(u) = Du, where

(Duf)(x) = (f ∗ u)(x) = ǔ(f ◦ Lx) = D(f ◦ Lx)(1) = ((Df) ◦ Lx)(1)

= (Df)(x).

Hence Duf = Df and Du = D and we obtain Ψ ◦ Φ = idU(G).
Now let u ∈ E ′1(G), hence Ψ(u) = Du. For v := Φ(Du) ∈ E ′1(G), we have

v(f) = (Duf̌)(1) = (f̌ ∗ u)(1) = ǔ(f̌ ◦ L1) = ǔ(f̌) = u(f). Hence v = u and
Φ ◦ Ψ = idE ′1(G).

If G is any pre-Lie group, then one can use Theorem 5.2 to endow U(G)
with a natural topology for which Ψ is a homeomorphism if E ′1(G) car-
ries the weak dual topology which it inherits as a closed linear subspace
of E ′(G) (see Definition 3.1). The topology of U(G) can be equivalently de-
scribed as the locally convex topology determined by the family of seminorms
{D 7→ |(Df)(1)|}f∈E(G).

In the statement of the following corollary, we say that a Banach space X
admits bump functions if there exists ϕ ∈ C∞(X ) which is equal to 1 on



24 D. Beltiţă and M. Nicolae

some neighborhood of 0 ∈ X , has the support contained in some ball, and
supx∈X ‖ dkxφ‖ <∞ for every k ≥ 1. Every Hilbert space admits bump func-
tions; see [WD73] and [LW11] for more details and examples. In this setting,
we will provide the following partial answer to Problem 3.15.

Corollary 5.3. Let G be a Banach–Lie group whose Lie algebra admits
bump functions. Then U0(G) is a dense subalgebra of U(G).

Proof. By the Hahn–Banach theorem, it suffices to show that if a contin-
uous linear functional θ : U(G)→ C vanishes on U0(G), then θ = 0. To this
end note that, using the above family of seminorms describing the topology
of U(G), one can find some functions f1, . . . , fn ∈ E(G) with

|θ(D)| ≤ |(Df1)(1)|+ · · ·+ |(Dfn)(1)| for all D ∈ U(G).

Then θ = θ1+ · · ·+θn for some linear functionals θ1, . . . , θn : U(G)→ C with
|θj(D)| ≤ |(Dfj)(1)| for j = 1, . . . , n (see for instance [SZ79, Lemma 1.1]).
Then the kernel of the linear functional D 7→ (Dfj)(1) is contained in Ker θj ,
and since both these kernels are closed 1-codimensional subspaces of U(G),
it follows that, after replacing fj by cfj for a suitable c ∈ C, we have θj(D) =
(Dfj)(1) for all D ∈ U(G). Hence for f = f1 + · · · + fn one has θ(D) =
(Df)(1) for all D ∈ U(G).

The assumption θ(D) = 0 for all D ∈ U0(G) is then equivalent to the
fact that for all k ≥ 1 we have (dk(f ◦ expG))(0) = 0, where expG : g → G
is the exponential map of G, which is a local diffeomorphism at 0 ∈ g. Now
the hypothesis that the Lie algebra g admits bump functions allows us to
use [LW11, Prop. 3], which ensures that for every local operator T on g we
have (T (f ◦ expG))(0) = 0.

We will check that (Df)(1) = 0 for every local operator D on G. To this
end pick open sets U and V for which expG : V → U is a diffeomorphism
with inverse denoted by logG, where 1 ∈ U ⊆ G and 0 ∈ V ⊆ g. Then use
the hypothesis on g to find ψ ∈ C∞(g) with suppψ ⊆ V and ψ = 1 on some
neighborhood of 0 ∈ g. Denote φ := ψ ◦ logG ∈ C∞(U) and extend it by 0
on G \ U . Then φ ∈ C∞(G), suppφ ⊆ U , φ = 1 on some neighborhood of
1 ∈ U ⊆ G, and ψ = φ ◦ expG. Now define

T : C∞(g)→ C∞(g), Th = D(((ψh) ◦ logG)φ),

where the function (ψh)◦ logG ∈ C∞(V ) is extended by 0 on g\V . Since D is
a local operator, so is T , and hence by the above observation (T (f ◦expG))(0)
= 0, which is equivalent to (Df)(1) = 0. That is, θ(D) = 0 for all D ∈ U(G),
which concludes the proof.

Pre-Lie groups. In order to illustrate the above general results and re-
late them to the earlier literature, we conclude by some specific examples of
topological groups which can be studied from the perspective of Lie theory
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(see also Remark 3.16). This is the case of the class of pre-Lie groups in-
troduced in [BR80] and [BCR81], closed with respect to several natural op-
erations that may not preserve the locally compact or Lie groups, as for
instance taking closed subgroups, infinite direct products, or projective lim-
its [BCR81, Prop. 1.3.1]. Some specific pre-Lie groups are briefly mentioned
in Examples 5.6–5.9 below. See also [HM07] and [Gl02b] for further infor-
mation on Lie theory for topological groups which may not be Lie groups.

Definition 5.4. A pre-Lie group is any topological group G such that:

(1) The topological space L(G) has the structure of a locally convex
Lie algebra over R, whose scalar multiplication, vector addition, and
bracket satisfy the following conditions for all t, s ∈ R and all γ1, γ2
in L(G):

(t · γ1)(s) = γ1(ts);

(γ1 + γ2)(t) = lim
n→∞

(γ1(t/n)γ2(t/n))n;

[γ1, γ2](t
2) = lim

n→∞
(γ1(t/n)γ2(t/n)γ1(−t/n)γ2(−t/n))n

2
,

where the convergence is assumed to be uniform on compact subsets
of R.

(2) For every nontrivial γ ∈ L(G) there exists a function ϕ of class C∞
on some neighborhood of 1 ∈ G such that (Dλ

γϕ)(1) 6= 0.

Remark 5.5. If G is a pre-Lie group, then the multiplication mapping
m : G × G → G, (x, y) 7→ xy, is smooth by [BCR81, Th. 1.3.2.2 and Sub-
sect. 1.1.2] (or alternatively [BR80, Th. and Sect. 1]). In particular, by using
the chain rule contained in condition (dcm) of [BCR81, Subsect. 1.3.2] (or
alternatively the proof of (v) in [BR80, Th.]), we easily recover in this special
case the result of Proposition 3.11, to the effect that for any locally convex
space Y the linear mapping E(G,Y) → E(G × G,Y), ϕ 7→ ϕ ◦ m, is well
defined and continuous.

In connection with the above discussion, it is useful to recall here from
[BCR81] (see also [Nic14]) the definition of differentiability of maps between
open subsets of pre-Lie groups. Let G1, G2 be pre-Lie groups, X1 ⊆ G1 and
X2 ⊆ G2 open sets, and f : X1 → X2 be any continuous function. We
say that f is of class Ck if there exist maps D`f : X1 × Λ`(G1) → Λ(G2),
` = 1, . . . , k, such that for every locally convex space Y and every ϕ ∈
C`(X2,Y), 0 ≤ ` ≤ k, we have ϕ ◦ f ∈ C`(X1 ∩ f−1(X2),Y) and for every
γ = (γ1, . . . , γ`) ∈ Λ`(G1) one has the chain rule

(5.1) D`(ϕ ◦ f)(x; γ) =
∑̀
k=1

∑
(A1,...,Ak)

DDA1(γ)f(x) · · ·DDAj(γ)f(x)ϕ(f(x)).
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The second summation in the above formula is over all partitions {1, . . . , `}
= A1 t · · · t Ak into nonempty subsets with minA1 > · · · > minAk. For
any fixed k ∈ {1, . . . , `} and every j = 1, . . . , k, we have denoted Aj =

{ij1, . . . , i
j
mj} ⊆ {1, . . . , `}, with ij1 < · · · < ijmj , and moreover Aj(γ) :=

(γ
ij1
, . . . , γ

ijmj
) ∈ Lmj (G1) and

DAj(γ)f(x) := Dmjf(x;Aj(γ)) ∈ L(G2).

Note that mj = |Aj | for j = 1, . . . , k, hence 1 ≤ m1, . . . ,mk ≤ ` with
m1 + · · ·+mk = `.

Example 5.6. Every locally compact group (in particular, every finite-
dimensional Lie group) is a pre-Lie group (see [BCR81, p. 41]). In this special
case our Theorem 5.2 agrees with [Ed88, Th. 1.4] and [Ak95, Cor. 2.6].

Example 5.7. Every Banach–Lie group is a pre-Lie group (see [BCR81,
p. 41]). In this special case, we are unable to provide any earlier reference
for the result of our Theorem 5.2.

Example 5.8. If X is any locally convex space, then the abelian locally
convex Lie group (X ,+) is a pre-Lie group (see [BCR81, p. 41]). In this case,
we are again unable to provide any earlier reference for Theorem 5.2. See
however [Du73, Th. 3.4] for a related result on real Hilbert spaces.

Example 5.9. Other examples of locally convex Lie groups which are
pre-Lie groups are the so-called groups of Γ -rapidly decreasing mappings
with values in some Lie groups (see [BCR81, Subsect. 4.2.2]).

For completeness, we briefly recall the construction of such groups in a
very special situation. Let n ≥ 1 be any integer and Γ = {γk | k ≥ 0}, where

(∀k ≥ 0) γk(·) = (1 + | · |)k

and | · | stands for the Euclidean norm on Rn. Let (A, ‖ · ‖) be any unital
associative Banach algebra with some fixed norm that defines its topology,
let A× denote the group of invertible elements in A, and set

G := {f ∈ C∞(Rn,A×) | (∀α ∈ Nn) sup
x∈Rn

γk(x)‖∂α(f − 1)(x)‖ <∞},

endowed with pointwise multiplication and inversion, where ∂α denote par-
tial derivatives. Then the group G of Γ -rapidly decreasing A×-valued map-
pings has the natural structure of a pre-Lie group. This is a very special
case of [BCR81, Cor. 4.1.1.7 and Th. 4.2.2.3]. Weighted mapping groups and
groups of rapidly decreasing mappings were also studied in more general
form in [Wal12].
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