Completely bounded lacunary sets for compact non-abelian groups

by
Kathryn Hare (Waterloo, Ont.) and Parasar Mohanty (Kanpur)

Abstract

In this paper, we introduce and study the notion of completely bounded Λ_{p} sets ($\Lambda_{p}^{\mathrm{cb}}$ for short) for compact, non-abelian groups G. We characterize $\Lambda_{p}^{\mathrm{cb}}$ sets in terms of completely bounded $L^{p}(G)$ multipliers. We prove that when G is an infinite product of special unitary groups of arbitrarily large dimension, there are sets consisting of representations of unbounded degree that are Λ_{p} sets for all $p<\infty$, but are not $\Lambda_{p}^{\text {cb }}$ for any $p \geq 4$. This is done by showing that the space of completely bounded $L^{p}(G)$ multipliers is a proper subset of the space of $L^{p}(G)$ multipliers.

1. Introduction. Sidon sets and Λ_{p} sets on compact abelian groups G have been thoroughly studied for many years. Every Sidon set is a Λ_{p} set for all $p<\infty$, but the converse is not true if G is an infinite group. Both classes of sets can be characterized in terms of L^{p} multipliers on G. In [11], Harcharras introduced the notion of completely bounded (non-commutative) Λ_{p} sets (called $\Lambda_{p}^{\mathrm{cb}}$ sets) for compact abelian groups. These are defined in terms of the canonical operator space structure on $L^{p}(G)$ obtained using Pisier's operator space complex interpolation. All Sidon sets are $\Lambda_{p}^{\mathrm{cb}}$ and all $\Lambda_{p}^{\mathrm{cb}}$ sets are Λ_{p}. Both inclusions are proper. The relationship between $\Lambda_{p}^{\mathrm{cb}}$ sets and completely bounded multipliers on $L^{p}(G)$ was studied by Harcharras and Pisier who showed, for example, that not all L^{p} multipliers are completely bounded. See [2], [6], 11], [12], 21] for proofs of these various facts.

Sidon and Λ_{p} sets have also been studied in the context of non-abelian, compact groups; [10] and [14] provide good overviews. In this paper, we introduce the analogous concept of completely bounded Λ_{p} sets for $2<p<\infty$, for such groups. These notions are more complicated than for abelian groups as the dual object of a non-abelian group does not have a group structure. As in the abelian case, we show that $\Lambda_{p}^{\mathrm{cb}}$ sets can be characterized in terms

[^0]of completely bounded $L^{p}(G)$ multipliers. Sidon sets are seen to be $\Lambda_{p}^{\mathrm{cb}}$ for all p and $\Lambda_{p}^{\mathrm{cb}}$ sets are always Λ_{p}.

In contrast to the case of abelian groups, not all infinite, compact, nonabelian groups admit infinite Sidon or even Λ_{p} sets. An important example of a group which does is an infinite product of special unitary groups. For these groups, we provide examples of sets of representations of unbounded degree that are Λ_{p} for all $p<\infty$, but are not $\Lambda_{p}^{\mathrm{cb}}$ for any $p \geq 4$. We do this by constructing an L^{p} multiplier which is not completely bounded. It would be interesting to know if there are any $\Lambda_{p}^{\mathrm{cb}}$ sets consisting of representations of unbounded degree that are not Sidon.

2. Preliminaries

2.1. Lacunary sets on compact groups. Let G be a compact group equipped with normalized Haar measure $d g$ and denote by \widehat{G} its dual object, the set of pairwise inequivalent, unitary, irreducible representations of G. For $\sigma \in \widehat{G}$, we let d_{σ} denote the dimension of the underlying Hilbert space \mathcal{H}_{σ}, known as the degree of σ. When G is abelian, \widehat{G} is a discrete group consisting of the continuous characters on G.

Given $f \in L^{1}(G)$ and $\sigma \in \widehat{G}$, the Fourier transform of f at σ is defined as

$$
\widehat{f}(\sigma)=\int_{G} f(x) \sigma\left(x^{-1}\right) d x
$$

$\widehat{f}(\sigma)$ being a matrix of size $d_{\sigma} \times d_{\sigma}$. We call f a trigonometric polynomial if $\widehat{f}(\sigma) \neq 0$ for only finitely many σ; then we have

$$
f(x)=\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{tr}(\widehat{f}(\sigma) \sigma(x))
$$

where tr denotes the usual matrix trace. (Of course, in the abelian case, for each $x, \widehat{f}(\sigma) \sigma(x)$ is a complex number.)

Let $E \subseteq \widehat{G}$. A trigonometric polynomial f is called an E-polynomial if $\hat{f}(\sigma)=0$ for all $\sigma \notin E$.

Definition 2.1.

(1) A set $E \subseteq \widehat{G}$ is called a Sidon set if there is a constant C such that

$$
\sum_{\sigma \in E} d_{\sigma} \operatorname{tr}\left[\left(\widehat{f}(\gamma) \widehat{f}(\gamma)^{*}\right)^{1 / 2}\right] \leq C\|f\|_{\infty}
$$

for all E-polynomials f.
(2) Let $2<p<\infty$. A set $E \subseteq \widehat{G}$ is called a Λ_{p} set if there is a constant C_{p} such that $\|f\|_{p} \leq C_{p}\|f\|_{2}$ for all E-polynomials f.

It is known that all Sidon sets are Λ_{p} for all $p<\infty$ and the compactness of G ensures that any Λ_{p} set is also a Λ_{q} set for any $q<p$. Every infinite abelian group admits an infinite Sidon set, as well as sets that are Λ_{p} for all $p<\infty$, but not Sidon. Proofs of these facts can be found in the standard references [14] and [16]. It is also known that for each infinite abelian group G and each $p>2$ there are Λ_{p} sets that are not Λ_{q} for any $q>p$. A constructive proof was given by Rudin [24] for G the circle group and even integers p. Using probabilistic arguments, Bourgain [4] proved the general case.

In contrast to the abelian case, there are non-abelian groups G which admit no infinite Sidon or even Λ_{p} sets. This is true, for instance, if G is a compact, connected, semisimple Lie group such as $S U(2)$ [15]. For the structure of groups which do admit infinite Sidon or Λ_{p} sets and for examples of both Sidon sets and Λ_{p} sets that are not Sidon see [5], 8] and [13].

Sidon and Λ_{p} sets play an important role in the study of multipliers. Given $E \subseteq \widehat{G}$ we denote

$$
l^{\infty}(E)=\left\{\phi=(\phi(\sigma))_{\sigma \in E} \in \prod B\left(\mathcal{H}_{\sigma}\right): \sup _{\sigma}\|\phi(\sigma)\|_{\mathcal{B}\left(\mathcal{H}_{\sigma}\right)}<\infty\right\}
$$

where $\|\cdot\|_{\mathcal{B}\left(\mathcal{H}_{\sigma}\right)}$ denotes the operator norm.
Definition 2.2. Suppose $\phi \in l^{\infty}(\widehat{G})$. An operator $T_{\phi}: L^{p}(G) \rightarrow L^{p}(G)$ defined by

$$
\widehat{T_{\phi} f}(\sigma)=\phi(\sigma) \widehat{f}(\sigma) \quad \forall f \in L^{p}
$$

is said to be a (left) L^{p} multiplier if it is bounded.
We denote the space of (left) L^{p} multipliers by $M_{p}(G)$. One can analogously define the space of right L^{p} multipliers, $M_{p}^{r}(G)$. It is well known that $M_{1}(G) \simeq M(G)$, the space of finite regular Borel measures on G, $M_{2}(G) \simeq l^{\infty}(\widehat{G})$ and $M_{p}(G) \simeq M_{p^{\prime}}^{r}(G)$ where $1 / p+1 / p^{\prime}=1$ (isometrically isomorphic in all cases).

A duality argument can be used to show that if G is abelian, then $E \subseteq \widehat{G}$ is Sidon if and only if whenever $\phi \in l^{\infty}(E)$ there exists $\mu \in M(G)$ such that $\widehat{\mu}(\gamma)=\phi(\gamma)$ for all $\gamma \in E$. Thus Sidon sets are interpolation sets for $M(G)$. An application of Khintchine's inequality shows that Λ_{p} sets are interpolation sets for $M_{p}(G)$ when $p>2$ (see [11] for a proof).

In the case of a non-abelian group G, Figà-Talamanca and Rider proved the following analogous result.

Theorem 2.3 ([8]). Let $E \subseteq \widehat{G}$ and $2<p<\infty$.
(i) E is Λ_{p} if and only if whenever $\phi \in l^{\infty}(E)$, then there exists $\beta \in$ $l^{\infty}(\widehat{G})$ such that $\beta(\sigma)=\phi(\sigma)$ for all $\sigma \in E$ and $T_{\beta} \in M_{p}(G)$.
(ii) E is Sidon if and only if whenever $\phi \in l^{\infty}(E)$ there exists $\mu \in M(G)$ such that $\widehat{\mu}(\sigma)=\phi(\sigma)$ for all $\sigma \in E$.
2.2. Operator space structure for $L^{p}(G)$. For convenience, we will briefly discuss the basic theory of operator spaces. Let $\mathcal{B}(\mathcal{H})$ be the space of all bounded linear operators on \mathcal{H}. A closed subspace E of $\mathcal{B}(\mathcal{H})$ is called a concrete operator space. Given a concrete operator space $E \subset \mathcal{B}(\mathcal{H})$, let $\mathbb{M}_{n}(E)$ denote the set of all $n \times n$ matrices with entries in E. The space $\mathbb{M}_{n}(E)$ is naturally embedded into $\mathcal{B}\left(\mathcal{H}^{n}\right)$ and with the norm inherited from $\mathcal{B}\left(\mathcal{H}^{n}\right)$ is a Banach space.

Ruan [23] defined abstract operator spaces as follows. Let E be a Banach space with a sequence of norms $\|\cdot\|_{n}$ on $\mathbb{M}_{n}(E)$ satisfying
(1) $\left\|\begin{array}{l|l}x & 0 \\ \hline 0 & y\end{array}\right\|_{m+n}=\max \left(\|x\|_{m},\|y\|_{n}\right)$ and
(2) $\|\alpha x \beta\|_{n} \leq\|\alpha\|\|x\|_{n}\|\beta\|$ for all $\alpha, \beta \in \mathbb{M}_{n}(\mathbb{C})$ and $x \in \mathbb{M}_{n}(E)$.

If $\left(\mathbb{M}_{n}(E),\|\cdot\|_{n}\right)$ is a Banach space for each n, then E is called an operator space. The morphisms in the category of operator spaces are completely bounded maps. Ruan [23] proved that every abstract operator space is a concrete operator space.

We refer to [7] and [22] for more detailed information on operator spaces.
Definition 2.4. Let E_{1} and E_{2} be operator spaces. A linear map T : $E_{1} \rightarrow E_{2}$ is said to be completely bounded if the maps $T \otimes I_{\mathbb{M}_{n}}: \mathbb{M}_{n}\left(E_{1}\right) \rightarrow$ $\mathbb{M}_{n}\left(E_{2}\right)$ satisfy

$$
\|T\|_{\operatorname{cb}\left(E_{1}, E_{2}\right)}:=\sup _{n \geq 1}\left\|T \otimes I_{\mathbb{M}_{n}}\right\|_{\mathcal{B}\left(\mathbb{M}_{n}\left(E_{1}\right), \mathbb{M}_{n}\left(E_{2}\right)\right)}<\infty
$$

We will denote by $C B\left(E_{1}, E_{2}\right)$ the Banach space of all completely bounded maps from E_{1} to E_{2} with the norm $\|\cdot\|_{\mathrm{cb}\left(E_{1}, E_{2}\right)}$ defined above. The dual of the operator space E, denoted E^{*}, can be defined by taking $\mathbb{M}_{n}\left(E^{*}\right)=C B\left(E, \mathbb{M}_{n}(\mathbb{C})\right)$.

For any compact group $G, L^{\infty}(G)$ has a canonical operator space structure being a C^{*} algebra. Let $L^{1}(G)$ inherit the operator space structure from the dual space $L^{\infty}(G)^{*}$. By [3], $L^{1}(G)^{*}$ is completely isomorphic to $L^{\infty}(G)$. The canonical operator space structure on $L^{p}(G)$ is the interpolated operator space structure $\left(L^{1}, L^{\infty}\right)_{1 / p}$ as developed by Pisier [20].

For $1 \leq p<\infty$, let S_{p} be the space of compact operators on l^{2} with norm

$$
\|T\|_{S_{p}}:=\left(\operatorname{tr}|T|^{p}\right)^{1 / p}
$$

where $|T|=\left(T^{*} T\right)^{1 / 2}$. Denote by $L^{p}\left(G, S_{p}\right)$ (or $L^{p}\left(S_{p}\right)$ for short if G is clear) the Banach space of S_{p}-valued measurable functions f such that

$$
\|f\|_{L^{p}\left(G, S_{p}\right)}:=\left(\int_{G}\|f(x)\|_{S_{p}}^{p} d x\right)^{1 / p}<\infty
$$

and by $L_{E}^{p}\left(G, S_{p}\right)$ the set of $f \in L^{p}\left(G, S_{p}\right)$ with $\widehat{f}=0$ off E.

Pisier's result stated below provides a condition for a bounded map on L^{p} to be completely bounded.

Proposition 2.5 ([21]). Let $1 \leq p<\infty$. A linear map $T: L^{p}(G) \rightarrow$ $L^{p}(G)$ is completely bounded if and only if the mapping $T \otimes I_{S_{p}}$ is bounded on $L^{p}\left(G, S_{p}\right)$. Moreover,

$$
\|T\|_{\mathrm{cb}(p)}:=\|T\|_{\mathrm{cb}\left(L^{p}, L^{p}\right)}=\left\|T \otimes I_{S_{p}}\right\|_{L^{p}\left(S_{p}\right) \rightarrow L^{p}\left(S_{p}\right)}
$$

We write $M_{p}^{\mathrm{cb}}(G)$ for the completely bounded Fourier multipliers on L^{p},

$$
M_{p}^{\mathrm{cb}}(G):=\left\{T \in M_{p}(G):\|T\|_{\mathrm{cb}(p)}<\infty\right\} .
$$

When G is a compact group it is known that $M_{p}^{\mathrm{cb}}(G)=M_{p}(G)$ if $p=$ 1,2 ([21]). As $M_{p}^{\mathrm{cb}}(G) \subseteq M_{2}^{\mathrm{cb}}(G)$, an interpolation argument implies that $M_{q}^{\mathrm{cb}}(G) \subseteq M_{p}^{\mathrm{cb}}(G)$ when $q \geq p \geq 2([20])$. It was shown in [1], 6] and [21] that when G is abelian, then $M_{p}^{\mathrm{cb}}(G) \subsetneq M_{p}(G)$ for $1<p \neq 2<\infty$.
2.3. Completely bounded Λ_{p}-sets. The concept of a completely bounded Λ_{p} set, denoted $\Lambda_{p}^{\mathrm{cb}}$, was introduced in [11] for compact abelian groups.

Definition 2.6. Let $2<p<\infty$ and G be a compact abelian group. A subset $E \subseteq \widehat{G}$ is called a $\Lambda_{p}^{\mathrm{cb}}$ set if there exists a constant C, depending only on p and E, such that

$$
\begin{equation*}
\|f\|_{L^{p}\left(G, S_{p}\right)} \leq C\left(\left\|\left(\sum_{\gamma \in E} \widehat{f}(\gamma)^{*} \widehat{f}(\gamma)\right)^{1 / 2}\right\|_{S_{p}}+\left\|\left(\sum_{\gamma \in E} \widehat{f}(\gamma) \widehat{f}(\gamma)^{*}\right)^{1 / 2}\right\|_{S_{p}}\right) \tag{2.1}
\end{equation*}
$$

for all S_{p}-valued E-polynomials f defined on G.
REMARK 2.7. (1) By considering $f=g \otimes x$, where g is an E-polynomial on G and $x \in S_{p}$ with $\|x\|_{S_{p}}=1$, it is straightforward to see that $\Lambda_{p}^{\mathrm{cb}} \subseteq \Lambda_{p}$.
(2) An application of the operator version of Jensen's inequality shows that the right hand side of (2.1) is dominated by $\|f\|_{L^{p}\left(G, S_{p}\right)}$.
(3) Unlike the situation in the classical setting, the fact that $S_{2} \subsetneq S_{p}$ for $p>2$ implies we never have $L_{E}^{p}\left(G, S_{p}\right) \approx L_{E}^{2}\left(G, S_{2}\right)$. However, if E is $\Lambda_{p}^{\mathrm{cb}}$, then $L_{E}^{2}\left(G, S_{2}\right) \subseteq L_{E}^{p}\left(G, S_{p}\right)$.

Completely bounded Λ_{p} sets in \mathbb{Z} were extensively studied by Harcharras [11]. Motivated by Rudin's work [24] on Λ_{p} sets in \mathbb{Z}, Harcharras gave a sufficient combinatorial criterion for the construction of $\Lambda_{2 s}^{\mathrm{cb}}$ sets for integers s, and she used this to show that there are $\Lambda_{2 s}^{\mathrm{cb}}$ sets that are not Λ_{q} for any $q>2 s$. She also showed that Sidon sets in \mathbb{Z} are $\Lambda_{p}^{\mathrm{cb}}$ for all $p<\infty$; there are Λ_{p} sets that are not $\Lambda_{p}^{\mathrm{cb}}$; and with Banks [2], that there are non-Sidon $\Lambda_{p}^{\mathrm{cb}}$ sets in \mathbb{Z}. Subsequently, it was shown in [12] that every infinite compact abelian group admits a non-Sidon, $\Lambda_{p}^{\mathrm{cb}}$ set.

The goal of this paper is to study analogous notions on compact nonabelian groups. To motivate the definition, we first discuss the Fourier transform of S_{p}-valued functions on G.

Let $f \in L^{1}\left(G, S_{p}\right)$. The vector-valued Fourier transform of f at $\sigma \in \widehat{G}$ is defined as

$$
\widehat{f}(\sigma)=\int_{G} f(x) \otimes \sigma\left(x^{-1}\right) d x
$$

where the integral is understood as an element of $M_{d_{\sigma}}\left(S_{p}\right)$, the $d_{\sigma} \times d_{\sigma}$ matrices with entries in S_{p}. It is convenient to view $\widehat{f}(\sigma)$ as a $d_{\sigma} \times d_{\sigma}$ matrix with entries from S_{p}. For general properties of this Fourier transform we refer the reader to [9].

Given an S_{p}-valued matrix $A=\left(A_{i j}\right)_{i, j=1}^{n}$ with $A_{i j} \in S_{p}$, we define $\operatorname{Tr} A=\sum_{i=1}^{n} A_{i i}$. With this notation, the S_{p}-valued polynomial f has Fourier series

$$
f(x)=\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr}(\widehat{f}(\sigma) \sigma(x))
$$

As before, we call f an E-polynomial if $\widehat{f}(\sigma)=0$ whenever $\sigma \notin E$.
We are now ready to extend the definition of $\Lambda_{p}^{\mathrm{cb}}$ to the setting of a non-abelian compact group. Note that the adjoint of $A=\left(A_{i j}\right) \in M_{d_{\sigma}}\left(S_{p}\right)$ can be identified with $B=\left(B_{i j}\right)$ where $B_{i j}=\left(A_{j i}\right)^{*}$ and $|A|^{2}=A^{*} A$.

Definition 2.8. Let $E \subseteq \widehat{G}$ and $2<p<\infty$. We say that E is a completely bounded Λ_{p} set $\left(\overline{\Lambda_{p}^{\mathrm{cb}}}\right.$ set) if there exists a constant C such that

$$
\begin{align*}
& \|f\|_{L^{p}\left(G, S_{p}\right)} \tag{2.2}\\
& \quad \leq C\left(\left\|\left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}|\widehat{f}(\sigma)|^{2}\right)^{1 / 2}\right\|_{S_{p}}+\left\|\left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left|(\widehat{f}(\sigma))^{*}\right|^{2}\right)^{1 / 2}\right\|_{S_{p}}\right)
\end{align*}
$$

whenever $f=\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}(\widehat{f}(\sigma) \sigma)$ is an S_{p}-valued trigonometric E-polynomial.

Remark 2.9. (1) The definition reduces to that in Definition 2.6 when G is abelian.
(2) In Prop. 3.2 we show that the opposite inequality always holds.
3. A multiplier characterization of $\Lambda_{p}^{\mathrm{cb}}$ sets. The goal of this section is to obtain an L^{p} multiplier space characterization of $\Lambda_{p}^{\mathrm{cb}}$ in the spirit of Theorem 2.3(i). In order to prove Theorem 2.3(i), Figà-Talamanca and Rider [8] (see also [18, Remark 2.7]) obtained a non-abelian variation on Khintchine's inequality. To be precise, they showed that if A_{σ} is a $d_{\sigma} \times d_{\sigma}$ matrix and $\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{tr}\left(A_{\sigma} A_{\sigma}^{*}\right)<\infty$, then given any $p<\infty$ there exist unitary transformations $\left\{U_{\sigma}\right\}$ such that $\sum d_{\sigma} \operatorname{tr}\left(U_{\sigma} A_{\sigma} \sigma(x)\right)$ is the Fourier series
of an $L^{p}(G)$ function. For this, they considered certain lacunary subsets of the set of irreducible unitary representations of the compact group

$$
\mathcal{G}=\prod_{\sigma \in \widehat{G}} U\left(d_{\sigma}\right)
$$

where $U(d)$ denotes the group of $d \times d$ unitary matrices. Motivated by their strategy, we first obtain the following estimate, which was the genesis of the definition of $\Lambda_{p}^{\mathrm{cb}}$.

Given $V \in \mathcal{G}$, we write $V=\left(V_{\sigma}\right)_{\sigma \in \widehat{G}}$ where $V_{\sigma} \in U\left(d_{\sigma}\right)$ and denote by $d V$ the Haar probability measure on \mathcal{G}.

TheOrem 3.1. Let G be any compact group and $\mathcal{G}=\prod_{\sigma \in \widehat{G}} U\left(d_{\sigma}\right)$. For each $p>2$ there is a constant $C=C(p)$ such that given any finite collection $\left\{A^{\sigma}\right\}_{\sigma \in \widehat{G}}$, with $A^{\sigma} \in M_{d_{\sigma}}\left(S_{p}\right)$, we have

$$
\begin{align*}
& \int_{\mathcal{G}}\left\|\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} V_{\sigma}\right\|_{S_{p}}^{p} d V \tag{3.1}\\
& \quad \leq C \operatorname{tr}\left[\left(\sum_{\sigma} d_{\sigma} \sum_{j, l}\left|A_{j l}^{\sigma}\right|^{2}\right)^{p / 2}+\left(\sum_{\sigma} d_{\sigma} \sum_{j, l}\left|\left(A_{j l}^{\sigma}\right)^{*}\right|^{2}\right)^{p / 2}\right] .
\end{align*}
$$

Proof. Let $\left\{x_{j k}^{\sigma}: 1 \leq j, k \leq d_{\sigma}, \sigma \in \widehat{G}\right\}$ be a collection of independent, complex-valued, Gaussian random variables with mean zero and variance 1, defined on a probability space $\left(\Omega_{1}, P_{1}\right)$. For each $\omega \in \Omega_{1}$, let $X_{\sigma}(\omega)$ be the random operator on the Hilbert space $\mathcal{H}_{d_{\sigma}}$ represented by the matrix

$$
\left\{\frac{1}{\sqrt{d_{\sigma}}} x_{j k}^{\sigma}(\omega): 1 \leq j, k \leq d_{\sigma}\right\}
$$

with respect to the standard basis. These are independent random operators.
Let $\pi_{\sigma}: \mathcal{G} \rightarrow U\left(d_{\sigma}\right)$ be the projection maps, so that $\pi_{\sigma}(V)=V_{\sigma}$. These are independent random variables that are uniformly distributed on $U\left(d_{\sigma}\right)$.

Now view the $\left\{X_{\sigma}\right\}$ and $\left\{\pi_{\sigma}\right\}$ as independent random variables defined in the obvious way on the probability space (Ω, P), where $\Omega=\Omega_{1} \times \mathcal{G}$ and P is the product measure.

We have

$$
\int_{\Omega}\left\|\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} \pi_{\sigma}(\omega)\right\|_{S_{p}}^{p} d P(\omega)=\int_{\mathcal{G}}\left\|\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} V_{\sigma}\right\|_{S_{p}}^{p} d V
$$

hence upon applying [18, Cor. 2.4, p. 84], we see that for each $2 \leq p<\infty$
there is a constant $c=c(p)$ such that

$$
\begin{aligned}
\int_{\mathcal{G}}\left\|\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} V_{\sigma}\right\|_{S_{p}}^{p} d V & =\int_{\Omega}\left\|\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} \pi_{\sigma}\right\|_{S_{p}}^{p} d P \\
& \leq c \int_{\Omega}\left\|\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} X_{\sigma}\right\|_{S_{p}}^{p} d P .
\end{aligned}
$$

Expanding out gives

$$
\operatorname{Tr} A^{\sigma} X_{\sigma}=\sum_{j, k} \frac{1}{\sqrt{d_{\sigma}}} A_{j k}^{\sigma} x_{j k}^{\sigma}
$$

Applying Lust-Piquard's non-commutative Khintchine inequality [17] (see also [21, p. 105]), for another constant $C=C(p)$ we deduce that

$$
\begin{aligned}
& \int_{\mathcal{G}}\left\|\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} V_{\sigma}\right\|_{S_{p}}^{p} d V \leq c \int_{\Omega}\left\|\sum_{\sigma \in \widehat{G}} \sqrt{d_{\sigma}} \sum_{j, k} A_{j k}^{\sigma} x_{j k}^{\sigma}\right\|_{S_{p}}^{p} d P \\
& \leq \\
& \leq \operatorname{tr}\left[\left(\sum_{\sigma} d_{\sigma} \sum_{j, l}\left|A_{j l}^{\sigma}\right|^{2}\right)^{p / 2}+\left(\sum_{\sigma} d_{\sigma} \sum_{j, l}\left|\left(A_{j l}^{\sigma}\right)^{*}\right|^{2}\right)^{p / 2}\right]
\end{aligned}
$$

We also need the following proposition, a vector-valued Jensen inequality. This is known in more generality, but for the sake of completeness we include the proof for the version we use.

Proposition 3.2. Let G be a compact group and $A^{\sigma} \in M_{d_{\sigma}}\left(S_{p}\right)$ for each $\sigma \in \widehat{G}$. If $p>2$, then

$$
\begin{aligned}
& \left\|\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr}\left(A^{\sigma} \sigma\right)\right\|_{L^{p}\left(G, S_{p}\right)}^{p} \\
& \quad \geq \frac{1}{2} \operatorname{tr}\left[\left(\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr}\left|A^{\sigma}\right|^{2}\right)^{p / 2}+\left(\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr}\left|\left(A^{\sigma}\right)^{*}\right|^{2}\right)^{p / 2}\right]
\end{aligned}
$$

Proof. Since G is compact, the vector-valued Jensen's inequality (c.. [19]) implies

$$
\begin{aligned}
I & :=\left\|\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr}\left(A^{\sigma} \sigma\right)\right\|_{L^{p}\left(G, S_{p}\right)}^{p} \\
& =\int \operatorname{tr}\left[\left(\sum_{\sigma \in \widehat{G}} d_{\sigma}\left(\operatorname{Tr}\left(A^{\sigma} \sigma\right)\right)^{*} \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr}\left(A^{\sigma} \sigma\right)\right)^{p / 2}\right] d g \\
& \geq \operatorname{tr}\left[\left(\sum_{\sigma, \psi} d_{\sigma} d_{\psi} \int\left(\operatorname{Tr} A^{\sigma} \sigma(g)\right)^{*}\left(\operatorname{Tr} A^{\psi} \psi(g)\right) d g\right)^{p / 2}\right] .
\end{aligned}
$$

Upon expanding the Tr function and using orthogonality of the coordinate
functions, it follows that

$$
I \geq \operatorname{tr}\left(\sum_{\sigma} d_{\sigma}^{2} \int_{G} \sum_{k, l}\left|A_{k l}^{\sigma}\right|^{2}\left|\sigma_{l k}(g)\right|^{2} d g\right)^{p / 2}=\operatorname{tr}\left(\sum_{\sigma} d_{\sigma} \operatorname{Tr}\left|A^{\sigma}\right|^{2}\right)^{p / 2}
$$

We can similarly deduce that $I \geq \operatorname{tr}\left(\sum_{\sigma} d_{\sigma} \operatorname{Tr}\left|\left(A^{\sigma}\right)^{*}\right|^{2}\right)^{p / 2}$ using commutativity, and this completes the proof. -

Here is our multiplier characterization of $\Lambda_{p}^{\mathrm{cb}}$ sets, the non-commutative analogue of Theorem 2.3(i).

ThEOREM 3.3. Let $p>2$. The subset $E \subseteq \widehat{G}$ is $\Lambda_{p}^{\mathrm{cb}}$ if and only if whenever $\phi \in l^{\infty}(E)$, then there exists $\beta \in l^{\infty}(\widehat{G})$ such that $\left.\beta\right|_{E}=\phi$ and $T_{\beta} \in M_{p}^{\mathrm{cb}}(G)$.

Proof. Suppose E is $\Lambda_{p}^{\mathrm{cb}}$. Assume first that $\phi(\sigma)=U_{\sigma}$ is a unitary matrix for each $\sigma \in E$. Set $\beta(\sigma)=\phi(\sigma)$ for all $\sigma \in E$ and $\beta(\sigma)=0$ otherwise. Let

$$
F(g)=\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr}\left(A_{\sigma} \sigma(g)\right) \in L^{p}\left(G, S_{p}\right)
$$

As E is $\Lambda_{p}^{\mathrm{cb}}$ and $T_{\beta} \otimes I_{S_{p}}(F)=\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left(U_{\sigma} A_{\sigma} \sigma\right)$ is an E-function, there is a constant C (independent of F) such that

$$
\begin{aligned}
& \left\|T_{\beta} \otimes I_{S_{p}}(F)\right\|_{L^{p}\left(S_{p}\right)}^{p} \\
& \quad \leq C \operatorname{tr}\left[\left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left|U_{\sigma} A_{\sigma}\right|^{2}\right)^{p / 2}+\left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left|\left(U_{\sigma} A_{\sigma}\right)^{*}\right|^{2}\right)^{p / 2}\right]
\end{aligned}
$$

Because U_{σ} is unitary, $\operatorname{Tr}\left|U_{\sigma} A_{\sigma}\right|^{2}=\operatorname{Tr}\left|A_{\sigma}\right|^{2}$ and $\operatorname{Tr}\left|\left(U_{\sigma} A_{\sigma}\right)^{*}\right|^{2}=\operatorname{Tr}\left|A_{\sigma}^{*}\right|^{2}$. From Prop. 3.2 we deduce that

$$
\left\|T_{\beta} \otimes I_{S_{p}}(F)\right\|_{L^{p}\left(S_{p}\right)}^{p} \leq 2^{s} C\|F\|_{L^{p}\left(S_{p}\right)}^{p},
$$

proving that $T_{\beta} \otimes I_{S_{p}}$ is a bounded operator from $L^{p}\left(S_{p}\right)$ to $L^{p}\left(S_{p}\right)$. Thus $T_{\beta} \in M_{p}^{\mathrm{cb}}(G)$.

Since any ϕ in the unit ball of $l^{\infty}(E)$ can be written as the average of four functions, $\phi_{j} \in l^{\infty}(E)$, where $\phi_{j}(\sigma)$ is unitary for every $\sigma \in E$, the same conclusion follows by the triangle inequality for all ϕ.

Conversely, assume that given any $\phi \in l^{\infty}(E)$ there exists $\beta \in l^{\infty}(\widehat{G})$ such that $\left.\beta\right|_{E}=\phi$ and $T_{\beta} \in M_{p}^{\mathrm{cb}}(G)$. Let $V=\left\{T_{\phi} \in M_{p}^{\mathrm{cb}}(G):\left.\phi\right|_{E}=0\right\} \subseteq$ $M_{p}^{\mathrm{cb}}(G)$. It is easy to see that V is a closed subspace of $M_{p}^{\mathrm{cb}}(G)$.

Now consider the map $Q: l^{\infty}(E) \rightarrow M_{p}^{\mathrm{cb}}(G) / V$ that sends ϕ to the equivalence class of $T_{\beta} \in M_{p}^{\mathrm{cb}}(G)$ with $\left.\beta\right|_{E}=\phi$. An application of the closed graph theorem shows that this map is bounded. Hence there is a constant C_{0} such that given $\phi \in l^{\infty}(E)$, there is a choice of $\beta \in l^{\infty}(E)$ such
that $\left.\beta\right|_{E}=\phi$ and

$$
\left\|T_{\beta}\right\|_{\mathrm{cb}(p)} \leq C_{0}\|\phi\|_{\infty}
$$

Let $f=\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left(A_{\sigma} \sigma\right) \in L_{E}^{p}\left(G, S_{p}\right)$ be an E-polynomial. Set $B_{\sigma}(g)$ $=A_{\sigma} \sigma(g)$ and define F on $G \times \prod_{\sigma \in \widehat{G}} U\left(d_{\sigma}\right)$ by

$$
F(g, U):=\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left(U_{\sigma} A_{\sigma} \sigma(g)\right)=\left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left(B_{\sigma}^{*} U_{\sigma}^{*}\right)\right)^{*}
$$

Let $\mathcal{G}=\prod_{\sigma \in \widehat{G}} U\left(d_{\sigma}\right)$ and define F_{g} on \mathcal{G} by $F_{g}(U)=F(g, U)$. By Theorem 3.1 there is a constant C such that for any (fixed) $g \in G$,

$$
\begin{aligned}
\left\|F_{g}(U)\right\|_{L^{p}\left(\mathcal{G}, S_{p}\right)}^{p} & \leq C \operatorname{tr}\left[\left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left|B_{\sigma}\right|^{2}\right)^{p / 2}+\left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left|B_{\sigma}^{*}\right|^{2}\right)^{p / 2}\right] \\
& =C \operatorname{tr}\left[\left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left|A_{\sigma}\right|^{2}\right)^{p / 2}+\left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left|A_{\sigma}^{*}\right|^{2}\right)^{p / 2}\right]=: \text { RHS }
\end{aligned}
$$

and the latter is finite by Prop. 3.2. Integrating both the sides over G gives

$$
\iint_{G \mathcal{G}}\left\|F_{g}(U)\right\|_{S_{p}}^{p} d U d g=\int_{G}\|F(g, U)\|_{L^{p}\left(\mathcal{G}, S_{p}\right)}^{p} d g \leq \mathrm{RHS}
$$

Hence there exists some $U \in \mathcal{G}$ such that

$$
\int_{G}\|F(g, U)\|_{S_{p}}^{p} d g \leq \mathrm{RHS}
$$

But $F(g, U)=T_{U} \otimes I_{S_{p}}(f)(g)$ (understanding $U=\left(U_{\sigma}\right) \in l^{\infty}(\widehat{G})$ in the natural sense), thus

$$
\left\|T_{U} \otimes I_{S_{p}}(f)\right\|_{L^{p}\left(G, S_{p}\right)}^{p}=\int_{G}\|F(g, U)\|_{S_{p}}^{p} d g \leq \mathrm{RHS}<\infty
$$

Let $\phi \in l^{\infty}(E)$ be defined by $\phi(\sigma)=U_{\sigma}^{*}$ for all $\sigma \in E$. As $\|\phi\| \leq 1$, there exists $\beta \in l^{\infty}(\widehat{G})$ such that $\left.\beta\right|_{E}=\phi, T_{\beta} \in M_{p}^{\mathrm{cb}}(G)$ and

$$
\left\|T_{\beta}\right\|_{\mathrm{cb}(p)}=\left\|T_{\beta} \otimes I_{S_{p}}\right\|_{L^{p}\left(S_{p}\right) \rightarrow L^{p}\left(S_{p}\right)} \leq C_{0}
$$

where C_{0} is the constant found above. Since $\beta(\sigma) U_{\sigma}=I_{d_{\sigma}}$ for all $\sigma \in E$, one can easily see that $f=T_{\beta} \otimes I_{S_{p}} \circ T_{U} \otimes I_{S_{p}}(f)$. Thus

$$
\begin{aligned}
\|f\|_{L^{p}\left(G, S_{p}\right)}^{p} & =\left\|T_{\beta} \otimes I_{S_{p}} \circ T_{U} \otimes I_{S_{p}}(f)\right\|_{L^{p}\left(S_{p}\right)}^{p} \leq C_{0}\left\|T_{U} \otimes I_{S_{p}}(f)\right\|_{L^{p}\left(S_{p}\right)}^{p} \\
& \leq C C_{0} \operatorname{tr}\left[\left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left|A_{\sigma}\right|^{2}\right)^{s}+\left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}\left|A_{\sigma}^{*}\right|^{2}\right)^{s}\right]
\end{aligned}
$$

Since f was an arbitrary E-polynomial, this proves E is $\Lambda_{p}^{\mathrm{cb}}$.
We can quickly deduce from this that the $\Lambda_{p}^{\mathrm{cb}}$ sets are nested, as expected.
Corollary 3.4. If $2<p<q<\infty$ and E is $\Lambda_{q}^{\mathrm{cb}}$, then E is $\Lambda_{p}^{\mathrm{cb}}$.

Proof. Assume E is $\Lambda_{q}^{\mathrm{cb}}$ and let $\phi \in l^{\infty}(E)$. Obtain $\beta \in l^{\infty}$ such that $\left.\beta\right|_{E}=\phi$ and $T_{\beta} \in M_{q}^{\mathrm{cb}}(G)$. But $M_{q}^{\mathrm{cb}}(G) \subseteq M_{p}^{\mathrm{cb}}(G)$, thus the other direction of the theorem implies E is $\Lambda_{p}^{\mathrm{cb}}$.

Theorem 3.1 implies that if $G=\prod_{j} U\left(n_{j}\right)$ and $E=\left\{\pi_{j}\right\}$ where π_{j} is the unitary representation on G defined by $\pi_{j}(U)=U_{j}$, then E is a $\Lambda_{p}^{\mathrm{cb}}$ set. In fact, E is known to be a Sidon set [8]. More generally, one can deduce from the previous theorem that all Sidon sets are $\Lambda_{p}^{\mathrm{cb}}$.

Corollary 3.5. Let G be a compact group. Then any Sidon set is $\Lambda_{p}^{\mathrm{cb}}$ for all $p>2$.

Proof. If E is Sidon, then the multiplier characterization of Sidon (Thm. (2.3) implies that for every $\phi \in l^{\infty}(E)$ there is a finite, regular, Borel measure μ such that $\left.\widehat{\mu}\right|_{E}=\phi$. It is known that all such measures act as completely bounded operators on L^{1} and L^{∞}, and hence on all L^{p} by Pisier's complex interpolation theorem [20]. By Theorem 3.3, E is $\Lambda_{p}^{\mathrm{cb}}$ for all $p>2$.
4. Multipliers that are not completely bounded; Λ_{p} sets that are not $\Lambda_{4}^{\mathrm{cb}}$. It is well known that there are infinite, compact, non-abelian groups that do not admit infinite Sidon or even Λ_{p} sets. The product group $G=\prod_{j} S U\left(n_{j}\right)$ is the prototypical example of a group that does. Indeed, let $\pi_{j}: G \rightarrow S U\left(n_{j}\right)$ be the projection onto the j th factor. The set $\left\{\pi_{j}, \overline{\pi_{j}}\right.$: $j=1,2, \ldots\}$ is known as the $F T R$ set (for Figà-Talamanca and Rider). As explained in [5], it is the prototypical example of a Sidon set in the non-abelian setting. When $n_{j} \rightarrow \infty$, the set $E=\left\{\pi_{2 j} \times \pi_{2 j+1}: j=1,2, \ldots\right\}$ is known to be Λ_{p} for all $p<\infty$, but not Sidon [13]. In this section we will show that E is not $\Lambda_{p}^{\mathrm{cb}}$ for any $p \geq 4$. Our method is inspired by Pisier's construction of a Λ_{p}, non- $\Lambda_{p}^{\mathrm{cb}}$ set in the abelian setting [21].

For notational simplicity we will write $\pi_{2 J}=\chi^{J}$ and $\pi_{2 J+1}=\psi^{J}$. There is no loss in assuming $4<n_{2 J} \leq n_{2 J+1}$. If we represent $\chi^{J} \times \psi^{J}$ as a matrix with respect to the standard basis, then the diagonal entries are $\left(\chi^{J}\right)_{j j}\left(\psi^{J}\right)_{k k}$ where $j=1, \ldots, n_{2 J}, k=1, \ldots, n_{2 J+1}$ and $\left(\chi^{J}\right)_{j j},\left(\psi^{J}\right)_{k k}$ are the diagonal entries of the standard matrix representations of χ^{J} and ψ^{J}, respectively. We will refer to $\left(\chi^{J}\right)_{j j}\left(\psi^{J}\right)_{k k}$ as the (j, k) diagonal entry.

For $j, k=1, \ldots, n_{2 J}$, let $u_{j k}^{J}=n_{2 J}^{-1 / 2} \exp \left(2 \pi i j k / n_{2 J}\right), b_{j k}^{J}=n_{2 J}^{-1 / 4} u_{j k}^{J}$ and $a_{j k}^{J}=n_{2 J}^{1 / 2} \overline{u_{j k}^{J}}$. For $j=1, \ldots, n_{2 J}, k=n_{2 J}+1, \ldots, n_{2 J+1}$, let $a_{j k}^{J}=1$. Note that $\left(u_{j k}^{J}\right)_{j, k=1}^{n_{2 J}}$ is an $n_{2 J} \times n_{2 J}$ unitary matrix. We define a multiplier T_{ϕ} by setting $\phi\left(\chi^{J} \times \psi^{J}\right)$ to be the diagonal matrix whose (j, k) diagonal entry is $a_{j k}^{J}$. Define $\phi(\sigma)=0$ for $\sigma \notin E$. Since $\left|a_{j k}\right|=1$, each $\phi\left(\chi^{J} \times \psi^{J}\right)$ is a unitary matrix. Because E is Λ_{p} for all $p<\infty$, we have $T_{\phi} \in M_{p}(G)$.

Consider the functions $F_{J}: G \rightarrow S_{4}$ given by

$$
F_{J}(g)=\sum_{j, k=1}^{n_{2 J}} b_{j k} E_{j k} \chi_{j j}^{J} \psi_{k k}^{J}(g),
$$

where $\left\{E_{j k}\right\}$ is the canonical basis for S_{4}. The functions F_{J} are E-functions and the multiplier T_{ϕ} acts on F_{J} by

$$
T_{\phi}\left(F_{J}\right)(g)=\sum_{j, k=1}^{n_{2 J}} a_{j k} b_{j k} E_{j k} \chi_{j j}^{J}(g) \psi_{k k}^{J}(g) .
$$

We will show that

$$
\begin{equation*}
\frac{\left\|T_{\phi}\left(F_{J}\right)\right\|_{L^{4}\left(S_{4}\right)}}{\left\|F_{J}\right\|_{L^{4}\left(S_{4}\right)}} \rightarrow \infty \quad \text { as } J \rightarrow \infty . \tag{4.1}
\end{equation*}
$$

If $\left.\beta\right|_{E}=\phi$, then $T_{\beta}\left(F_{J}\right)=T_{\phi}\left(F_{J}\right)$, hence $T_{\beta} \notin M_{4}^{\mathrm{cb}}(G)$. It follows from Theorem 3.3 that E is not $\Lambda_{4}^{\mathrm{cb}}$.

We will use the following calculations.
Lemma 4.1.
(i) $\int_{S U(N)}\left|V_{k k}\right|^{4} d V=2 /(N(N+1))$ for all $k=1, \ldots, N$.
(ii) $\int_{S U(N)}\left|V_{k k}\right|^{2}\left|V_{m m}\right|^{2} d V=1 /\left(N^{2}-1\right)$ for $k \neq m$.

Proof. Part (i) is [14, Lemma 29.10]. (It is proven there for $U(N)$, but the same arguments hold for $S U(N)$).

For (ii), fix $p \neq 1,2$ and write $n_{p}=1$ and $n_{j}=j$ for $j \neq p$. Set $a_{2}=1$ and $a_{j}=0$ for $j \neq 2$. Then $\prod_{j=1}^{N}\left|V_{n_{j} j}\right|^{2 a_{j}}=\left|V_{22}\right|^{2}$, so the same reasoning as for [14, Lemma 29.8] implies that

$$
\begin{aligned}
\int\left|V_{11}\right|^{2}\left|V_{22}\right|^{2} & =\left(1+a_{p}\right) \int\left|V_{11}\right|^{2} \prod\left|V_{n_{j} j}\right|^{2 a_{j}} \\
& =\left(1+a_{1}\right) \int\left|V_{n_{p} p}\right|^{2} \prod\left|V_{n_{j} j}\right|^{2 a_{j}}=\int\left|V_{1 p}\right|^{2}\left|V_{22}\right|^{2} .
\end{aligned}
$$

Summing over $p \neq 2$ and using the fact that $\sum_{p=1}^{N}\left|V_{1 p}\right|^{2}=1$ gives

$$
\begin{aligned}
\int\left|V_{11}\right|^{2}\left|V_{22}\right|^{2} & =\frac{1}{N-1} \sum_{p \neq 2} \int\left|V_{1 p}\right|^{2}\left|V_{22}\right|^{2} \\
& =\frac{1}{N-1}\left(\sum_{p} \int\left|V_{1 p}\right|^{2}\left|V_{22}\right|^{2}-\left|V_{12}\right|^{2}\left|V_{22}\right|^{2}\right) \\
& =\frac{1}{N-1}\left(\int\left|V_{22}\right|^{2}-\int\left|V_{12}\right|^{2}\left|V_{22}\right|^{2}\right) \\
& =\frac{1}{N-1}\left(\frac{1}{N}-\frac{(N-1)!}{(N+2-1)!}\right)=\frac{1}{N^{2}-1}
\end{aligned}
$$

where the last but one equality comes from [14, 29.9 and 29.10].

We will temporarily fix J. For notational convenience we will omit the subscripts or superscripts J and write $N=n_{2 J}, M=n_{2 J+1}$. To prove (4.1), we begin by noting that since $E_{k j} E_{m n}=0$ if $j \neq m, E_{k j} E_{m n}=E_{k n}$ if $j=m$, and $E_{j k}^{*}=E_{k j}$, we have

$$
\begin{aligned}
\|F\|_{S_{4}}^{4} & =\operatorname{tr}\left[\left(\sum_{j, k=1}^{N}\left(b_{j k} E_{j k} \chi_{j j} \psi_{k k}\right)^{*} \sum_{m, n} b_{m n} E_{m n} \chi_{m m} \psi_{n n}\right)^{2}\right] \\
& =\operatorname{tr}\left[\left(\sum_{j, k, n} \overline{b_{j k}} b_{j n} E_{k n}\left|\chi_{j j}\right|^{2} \overline{\psi_{k k}} \psi_{n n}\right)^{2}\right] \\
& =\sum_{j, k, n, r=1}^{N} \overline{b_{j k}} b_{j n} \overline{b_{r n}} b_{r k}\left|\chi_{j j}\right|^{2}\left|\chi_{r r}\right|^{2}\left|\psi_{k k}\right|^{2}\left|\psi_{n n}\right|^{2}
\end{aligned}
$$

After substituting for the coefficients $b_{j k}$ etc. we see that

$$
\|F\|_{L^{4}\left(G, S_{4}\right)}^{4}=\sum_{j, k, n, r} N^{-1} \overline{u_{j k}} u_{j n} \overline{u_{r n}} u_{r k} \int_{G}\left|\chi_{j j}\right|^{2}\left|\chi_{r r}\right|^{2}\left|\psi_{k k}\right|^{2}\left|\psi_{n n}\right|^{2} d g
$$

Now

$$
\int_{G}\left|\chi_{j j}\right|^{2}\left|\chi_{r r}\right|^{2}\left|\psi_{k k}\right|^{2}\left|\psi_{n n}\right|^{2} d g=\int_{S U(N)}\left|\chi_{j j}\right|^{2}\left|\chi_{r r}\right|^{2} d g_{1} \int_{S U(M)}\left|\psi_{k k}\right|^{2}\left|\psi_{n n}\right|^{2} d g_{2}
$$

and these integrals depend on whether or not $j=r$ and/or $k=n$. Thus we write

$$
\|F\|_{L^{4}\left(G, S_{4}\right)}^{4}=N^{-1} \sum_{k, n=1}^{N} \int_{S U(M)}\left|\psi_{k k}\right|^{2}\left|\psi_{n n}\right|^{2}\left(I+I^{\prime}\right) d g_{2}
$$

where

$$
\begin{aligned}
I & =\sum_{j=1}^{N}\left|u_{j k}\right|^{2}\left|u_{j n}\right|^{2} \int_{S U(N)}\left|\chi_{j j}\right|^{4} d g_{1}=\frac{2}{N^{2}(N+1)} \\
I^{\prime} & =\sum_{j \neq r} \overline{u_{j k}} u_{j n} \overline{u_{r n}} u_{r k} \int_{S U(N)}\left|\chi_{j j}\right|^{2}\left|\chi_{r r}\right|^{2} d g_{1}
\end{aligned}
$$

(The calculation of I follows from Lemma 4.1(i) and the fact that $\left|u_{j k}\right|=$ $N^{-1 / 2}$.) To calculate I^{\prime}, we use the fact that $\left(u_{j k}\right)$ is unitary so

$$
\sum_{j \neq r} \overline{u_{j k}} u_{j n} \overline{u_{r n}} u_{r k}=\sum_{j=1}^{N} \overline{u_{j k}} u_{j n}\left(\delta_{k n}-\overline{u_{j n}} u_{j k}\right)=\delta_{k n}-N^{-1}
$$

where $\delta_{k n}=1$ if $k=n$ and 0 else. Consequently, Lemma 4.1(ii) implies

$$
I^{\prime}=\frac{1}{N^{2}-1}\left(\delta_{k n}-N^{-1}\right)
$$

Applying Lemma 4.1 again to evaluate $\int_{S U(M)}\left|\psi_{k k}\right|^{2}\left|\psi_{n n}\right|^{2} d g_{2}$, we deduce that there is a constant c_{1}, independent of N, M, such that

$$
\begin{equation*}
\|F\|_{L^{4}\left(S_{4}\right)}^{4} \leq c_{1} N^{-2} M^{-2} . \tag{4.2}
\end{equation*}
$$

Similar arguments establish that

$$
\left\|T_{\phi}(F)\right\|_{S_{4}}^{4}=\sum_{j, k, n, r} \overline{c_{j k}} c_{j n} \overline{c_{r n}} c_{r k} \int_{G}\left|\chi_{j j}\right|^{2}\left|\chi_{r r}\right|^{2}\left|\psi_{k k}\right|^{2}\left|\psi_{n n}\right|^{2}
$$

where $c_{j k}=a_{j k} b_{j k}=N^{-3 / 4}$. After applying Lemma 4.1 one final time we see that there is a constant $c_{2}>0$ (independent of N, M) such that $\left\|T_{\phi}(F)\right\|_{L^{4}\left(S_{4}\right)}^{4} \geq c_{2} N^{-1} M^{-2}$. This bound, coupled with (4.2), certainly implies 4.1. To summarize, we have just proven that $T_{\phi} \notin \bar{M}_{4}^{\mathrm{cb}}(G)$ and hence E is not $\Lambda_{4}^{\mathrm{cb}}$. Moreover, the nestedness of the spaces $M_{p}^{\mathrm{cb}}(G)$ implies the following:

Theorem 4.2. Let $G=\prod_{j} S U\left(n_{j}\right)$. If $n_{j} \rightarrow \infty$, the group G admits a set of representations of unbounded degree that is Λ_{p} for all $1<p<\infty$, but not $\Lambda_{p}^{\mathrm{cb}}$ for any $p \geq 4$. Further, $M_{p}^{\mathrm{cb}}(G) \subsetneq M_{p}(G)$ for all $p \geq 4$.

Acknowledgements. The authors are grateful to J. Parcet for pointing out a flaw in an earlier version of this manuscript and for helpful suggestions.

This research was supported in part by NSERC grant 44597-2011. The second author thanks the University of Waterloo for their hospitality.

References

[1] C. Arhancet, Fourier multipliers and Schur multipliers, Colloq. Math. 127 (2012), 17-37.
[2] W. D. Banks and A. Harcharras, New examples of noncommutative $\Lambda(p)$ sets, Illinois J. Math. 47 (2003), 1063-1078.
[3] D. P. Blecher, The standard dual of an operator space, Pacific J. Math. 153 (1992), 15-30.
[4] J. Bourgain, Bounded orthogonal systems and the $\Lambda(p)$-set problem, Acta Math. 162 (1989), 227-245.
[5] D. I. Cartwright and J. R. McMullen, A structural criterion for the existence of infinite Sidon sets, Pacific J. Math. 96 (1981), 301-317.
[6] S. Dutta, P. Mohanty and U. B. Tewari, Multipliers which are not completely bounded, Illinois J. Math. 56 (2012), 571-578.
[7] E. G. Effros and Z. J. Ruan, Operator Spaces, London Math. Soc. Monogr. 23, Oxford Univ. Press, New York, 2000.
[8] A. Figà-Talamanca and D. Rider, A theorem of Littlewood and lacunary series for compact groups, Pacific J. Math. 16 (1966), 505-514.
[9] J. García-Cuerva and J. Parcet, Vector-valued Hausdorff-Young inequality on compact groups, Proc. London Math. Soc. (3) 88 (2004), 796-816.
[10] C. C. Graham and K. E. Hare, Interpolation and Sidon Sets for Compact Groups, Springer, New York, 2013.
[11] A. Harcharras, Fourier analysis, Schur multipliers on S^{p} and non-commutative Λ_{p}-sets, Studia Math. 137 (1999), 203-258.
[12] K. E. Hare and P. Mohanty, Completely bounded Λ_{p} sets that are not Sidon, Proc. Amer. Math. Soc., to appear.
[13] K. E. Hare and D. C. Wilson, A structural criterion for the existence of infinite central $\Lambda(p)$ sets, Trans. Amer. Math. Soc. 337 (1993), 907-925.
[14] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Springer, New York, 1970.
[15] M. F. Hutchinson, Non-tall compact groups admit infinite Sidon sets, J. Austral. Math. Soc. Ser. A 23 (1977), 467-475.
[16] J. M. Lopez and K. A. Ross, Sidon Sets, Lecture Notes in Pure Appl. Math. 13, Dekker, New York, 1975.
[17] F. Lust-Piquard, Inégalités de Khintchine dans $C_{p}(1<p<\infty)$, C. R. Acad. Sci. Paris 303 (1986), 42-53.
[18] M. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Ann. of Math. Stud. 101, Princeton Univ. Press, 1981.
[19] M. Perlman, Jensen's inequality for a convex vector-valued function on an infinite dimensional space, J. Multivariate Anal. 4 (1974), 52-65.
[20] G. Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (1996), no. 585.
[21] G. Pisier, Non-commutative vector valued L_{p}-spaces and completely p-summing maps, Astérisque 247 (1998).
[22] G. Pisier, Introduction to Operator Space Theory, London Math. Soc. Lecture Note Ser. 294, Cambridge Univ. Press, Cambridge, 2003.
[23] Z. J. Ruan, Subspaces of C^{*}-algebras, J. Funct. Anal. 76 (1988), 217-230.
[24] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.

Kathryn Hare
Department of Pure Mathematics
University of Waterloo
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
E-mail: kehare@uwaterloo.ca

Parasar Mohanty
Department of Mathematics and Statistics
Indian Institute of Technology Kanpur, U.P., 208016, India E-mail: parasar@iitk.ac.in

[^0]: 2010 Mathematics Subject Classification: Primary 43A46; Secondary 46L07, 47L25.
 Key words and phrases: lacunary set, completely bounded multiplier, Sidon set. Received 10 September 2015; revised 6 January 2016.
 Published online 27 January 2016.

