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Completely bounded lacunary sets for
compact non-abelian groups

by

Kathryn Hare (Waterloo, Ont.) and Parasar Mohanty (Kanpur)

Abstract. In this paper, we introduce and study the notion of completely bounded
Λp sets (Λcb

p for short) for compact, non-abelian groups G. We characterize Λcb
p sets in

terms of completely bounded Lp(G) multipliers. We prove that when G is an infinite
product of special unitary groups of arbitrarily large dimension, there are sets consisting
of representations of unbounded degree that are Λp sets for all p < ∞, but are not Λcb

p

for any p ≥ 4. This is done by showing that the space of completely bounded Lp(G)
multipliers is a proper subset of the space of Lp(G) multipliers.

1. Introduction. Sidon sets and Λp sets on compact abelian groups G
have been thoroughly studied for many years. Every Sidon set is a Λp set for
all p <∞, but the converse is not true if G is an infinite group. Both classes
of sets can be characterized in terms of Lp multipliers on G. In [11], Har-
charras introduced the notion of completely bounded (non-commutative) Λp
sets (called Λcb

p sets) for compact abelian groups. These are defined in terms
of the canonical operator space structure on Lp(G) obtained using Pisier’s
operator space complex interpolation. All Sidon sets are Λcb

p and all Λcb
p sets

are Λp. Both inclusions are proper. The relationship between Λcb
p sets and

completely bounded multipliers on Lp(G) was studied by Harcharras and
Pisier who showed, for example, that not all Lp multipliers are completely
bounded. See [2], [6], [11], [12], [21] for proofs of these various facts.

Sidon and Λp sets have also been studied in the context of non-abelian,
compact groups; [10] and [14] provide good overviews. In this paper, we in-
troduce the analogous concept of completely bounded Λp sets for 2 < p <∞,
for such groups. These notions are more complicated than for abelian groups
as the dual object of a non-abelian group does not have a group structure.
As in the abelian case, we show that Λcb

p sets can be characterized in terms
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of completely bounded Lp(G) multipliers. Sidon sets are seen to be Λcb
p for

all p and Λcb
p sets are always Λp.

In contrast to the case of abelian groups, not all infinite, compact, non-
abelian groups admit infinite Sidon or even Λp sets. An important example
of a group which does is an infinite product of special unitary groups. For
these groups, we provide examples of sets of representations of unbounded
degree that are Λp for all p <∞, but are not Λcb

p for any p ≥ 4. We do this
by constructing an Lp multiplier which is not completely bounded. It would
be interesting to know if there are any Λcb

p sets consisting of representations
of unbounded degree that are not Sidon.

2. Preliminaries

2.1. Lacunary sets on compact groups. Let G be a compact group
equipped with normalized Haar measure dg and denote by Ĝ its dual object,
the set of pairwise inequivalent, unitary, irreducible representations of G. For
σ ∈ Ĝ, we let dσ denote the dimension of the underlying Hilbert space Hσ,
known as the degree of σ. When G is abelian, Ĝ is a discrete group consisting
of the continuous characters on G.

Given f ∈ L1(G) and σ ∈ Ĝ, the Fourier transform of f at σ is defined
as

f̂(σ) =
�

G

f(x)σ(x−1) dx,

f̂(σ) being a matrix of size dσ × dσ. We call f a trigonometric polynomial

if f̂(σ) 6= 0 for only finitely many σ; then we have

f(x) =
∑
σ∈Ĝ

dσ tr(f̂(σ)σ(x))

where tr denotes the usual matrix trace. (Of course, in the abelian case, for

each x, f̂(σ)σ(x) is a complex number.)

Let E ⊆ Ĝ. A trigonometric polynomial f is called an E-polynomial if
f̂(σ) = 0 for all σ 6∈ E.

Definition 2.1.

(1) A set E ⊆ Ĝ is called a Sidon set if there is a constant C such that∑
σ∈E

dσ tr
[(
f̂(γ)f̂(γ)∗

)1/2] ≤ C‖f‖∞
for all E-polynomials f .

(2) Let 2 < p <∞. A set E ⊆ Ĝ is called a Λp set if there is a constant
Cp such that ‖f‖p ≤ Cp‖f‖2 for all E-polynomials f .
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It is known that all Sidon sets are Λp for all p <∞ and the compactness
of G ensures that any Λp set is also a Λq set for any q < p. Every infinite
abelian group admits an infinite Sidon set, as well as sets that are Λp for all
p < ∞, but not Sidon. Proofs of these facts can be found in the standard
references [14] and [16]. It is also known that for each infinite abelian groupG
and each p > 2 there are Λp sets that are not Λq for any q > p. A constructive
proof was given by Rudin [24] for G the circle group and even integers p.
Using probabilistic arguments, Bourgain [4] proved the general case.

In contrast to the abelian case, there are non-abelian groups G which
admit no infinite Sidon or even Λp sets. This is true, for instance, if G
is a compact, connected, semisimple Lie group such as SU(2) [15]. For the
structure of groups which do admit infinite Sidon or Λp sets and for examples
of both Sidon sets and Λp sets that are not Sidon see [5], [8] and [13].

Sidon and Λp sets play an important role in the study of multipliers.

Given E ⊆ Ĝ we denote

l∞(E) =
{
φ = (φ(σ))σ∈E ∈

∏
B(Hσ) : sup

σ
‖φ(σ)‖B(Hσ) <∞

}
where ‖ · ‖B(Hσ) denotes the operator norm.

Definition 2.2. Suppose φ ∈ l∞(Ĝ). An operator Tφ : Lp(G)→ Lp(G)
defined by

T̂φf(σ) = φ(σ)f̂(σ) ∀f ∈ Lp

is said to be a (left) Lp multiplier if it is bounded.

We denote the space of (left) Lp multipliers by Mp(G). One can anal-
ogously define the space of right Lp multipliers, M r

p (G). It is well known
that M1(G) ' M(G), the space of finite regular Borel measures on G,

M2(G) ' l∞(Ĝ) and Mp(G) ' M r
p′(G) where 1/p + 1/p′ = 1 (isometri-

cally isomorphic in all cases).

A duality argument can be used to show that if G is abelian, then E ⊆ Ĝ
is Sidon if and only if whenever φ ∈ l∞(E) there exists µ ∈ M(G) such
that µ̂(γ) = φ(γ) for all γ ∈ E. Thus Sidon sets are interpolation sets for
M(G). An application of Khintchine’s inequality shows that Λp sets are
interpolation sets for Mp(G) when p > 2 (see [11] for a proof).

In the case of a non-abelian group G, Figà-Talamanca and Rider proved
the following analogous result.

Theorem 2.3 ([8]). Let E ⊆ Ĝ and 2 < p <∞.

(i) E is Λp if and only if whenever φ ∈ l∞(E), then there exists β ∈
l∞(Ĝ) such that β(σ) = φ(σ) for all σ ∈ E and Tβ ∈Mp(G).

(ii) E is Sidon if and only if whenever φ ∈ l∞(E) there exists µ ∈M(G)
such that µ̂(σ) = φ(σ) for all σ ∈ E.
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2.2. Operator space structure for Lp(G). For convenience, we will
briefly discuss the basic theory of operator spaces. Let B(H) be the space
of all bounded linear operators on H. A closed subspace E of B(H) is called
a concrete operator space. Given a concrete operator space E ⊂ B(H), let
Mn(E) denote the set of all n × n matrices with entries in E. The space
Mn(E) is naturally embedded into B(Hn) and with the norm inherited from
B(Hn) is a Banach space.

Ruan [23] defined abstract operator spaces as follows. Let E be a Banach
space with a sequence of norms ‖ · ‖n on Mn(E) satisfying

(1)

∥∥∥∥x 0

0 y

∥∥∥∥
m+n

= max(‖x‖m, ‖y‖n) and

(2) ‖αxβ‖n ≤ ‖α‖‖x‖n‖β‖ for all α, β ∈Mn(C) and x ∈Mn(E).

If (Mn(E), ‖·‖n) is a Banach space for each n, then E is called an operator
space. The morphisms in the category of operator spaces are completely
bounded maps. Ruan [23] proved that every abstract operator space is a
concrete operator space.

We refer to [7] and [22] for more detailed information on operator spaces.

Definition 2.4. Let E1 and E2 be operator spaces. A linear map T :
E1 → E2 is said to be completely bounded if the maps T ⊗ IMn : Mn(E1)→
Mn(E2) satisfy

‖T‖cb(E1,E2) := sup
n≥1
‖T ⊗ IMn‖B(Mn(E1),Mn(E2)) <∞.

We will denote by CB(E1, E2) the Banach space of all completely
bounded maps from E1 to E2 with the norm ‖ · ‖cb(E1,E2) defined above.
The dual of the operator space E, denoted E∗, can be defined by taking
Mn(E∗) = CB(E,Mn(C)).

For any compact group G, L∞(G) has a canonical operator space struc-
ture being a C∗ algebra. Let L1(G) inherit the operator space structure from
the dual space L∞(G)∗. By [3], L1(G)∗ is completely isomorphic to L∞(G).
The canonical operator space structure on Lp(G) is the interpolated opera-
tor space structure (L1, L∞)1/p as developed by Pisier [20].

For 1 ≤ p <∞, let Sp be the space of compact operators on l2 with norm

‖T‖Sp := (tr |T |p)1/p

where |T | = (T ∗T )1/2. Denote by Lp(G,Sp) (or Lp(Sp) for short if G is clear)
the Banach space of Sp-valued measurable functions f such that

‖f‖Lp(G,Sp) :=
( �

G

‖f(x)‖pSp dx
)1/p

<∞,

and by LpE(G,Sp) the set of f ∈ Lp(G,Sp) with f̂ = 0 off E.
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Pisier’s result stated below provides a condition for a bounded map on
Lp to be completely bounded.

Proposition 2.5 ([21]). Let 1 ≤ p < ∞. A linear map T : Lp(G) →
Lp(G) is completely bounded if and only if the mapping T ⊗ ISp is bounded
on Lp(G,Sp). Moreover,

‖T‖cb(p) := ‖T‖cb(Lp,Lp) = ‖T ⊗ ISp‖Lp(Sp)→Lp(Sp).

We write M cb
p (G) for the completely bounded Fourier multipliers on Lp,

M cb
p (G) := {T ∈Mp(G) : ‖T‖cb(p) <∞}.

When G is a compact group it is known that M cb
p (G) = Mp(G) if p =

1, 2 ([21]). As M cb
p (G) ⊆ M cb

2 (G), an interpolation argument implies that

M cb
q (G) ⊆ M cb

p (G) when q ≥ p ≥ 2 ([20]). It was shown in [1], [6] and [21]

that when G is abelian, then M cb
p (G) (Mp(G) for 1 < p 6= 2 <∞.

2.3. Completely bounded Λp-sets. The concept of a completely
bounded Λp set, denoted Λcb

p , was introduced in [11] for compact abelian
groups.

Definition 2.6. Let 2 < p < ∞ and G be a compact abelian group.
A subset E ⊆ Ĝ is called a Λcb

p set if there exists a constant C, depending
only on p and E, such that

(2.1) ‖f‖Lp(G,Sp) ≤ C
(∥∥∥(∑

γ∈E
f̂(γ)∗f̂(γ)

)1/2∥∥∥
Sp

+
∥∥∥(∑

γ∈E
f̂(γ)f̂(γ)∗

)1/2∥∥∥
Sp

)
for all Sp-valued E-polynomials f defined on G.

Remark 2.7. (1) By considering f = g⊗x, where g is an E-polynomial
on G and x ∈ Sp with ‖x‖Sp = 1, it is straightforward to see that Λcb

p ⊆ Λp.
(2) An application of the operator version of Jensen’s inequality shows

that the right hand side of (2.1) is dominated by ‖f‖Lp(G,Sp).
(3) Unlike the situation in the classical setting, the fact that S2 ( Sp for

p > 2 implies we never have LpE(G,Sp) ≈ L2
E(G,S2). However, if E is Λcb

p ,

then L2
E(G,S2) ⊆ LpE(G,Sp).

Completely bounded Λp sets in Z were extensively studied by Harchar-
ras [11]. Motivated by Rudin’s work [24] on Λp sets in Z, Harcharras gave a
sufficient combinatorial criterion for the construction of Λcb

2s sets for integers
s, and she used this to show that there are Λcb

2s sets that are not Λq for any
q > 2s. She also showed that Sidon sets in Z are Λcb

p for all p < ∞; there

are Λp sets that are not Λcb
p ; and with Banks [2], that there are non-Sidon

Λcb
p sets in Z. Subsequently, it was shown in [12] that every infinite compact

abelian group admits a non-Sidon, Λcb
p set.



270 K. Hare and P. Mohanty

The goal of this paper is to study analogous notions on compact non-
abelian groups. To motivate the definition, we first discuss the Fourier trans-
form of Sp-valued functions on G.

Let f ∈ L1(G,Sp). The vector-valued Fourier transform of f at σ ∈ Ĝ is
defined as

f̂(σ) =
�

G

f(x)⊗ σ(x−1) dx,

where the integral is understood as an element of Mdσ(Sp), the dσ × dσ
matrices with entries in Sp. It is convenient to view f̂(σ) as a dσ×dσ matrix
with entries from Sp. For general properties of this Fourier transform we
refer the reader to [9].

Given an Sp-valued matrix A = (Aij)
n
i,j=1 with Aij ∈ Sp, we define

TrA =
∑n

i=1Aii.With this notation, the Sp-valued polynomial f has Fourier
series

f(x) =
∑
σ∈Ĝ

dσ Tr(f̂(σ)σ(x)).

As before, we call f an E-polynomial if f̂(σ) = 0 whenever σ /∈ E.
We are now ready to extend the definition of Λcb

p to the setting of a
non-abelian compact group. Note that the adjoint of A = (Aij) ∈ Mdσ(Sp)
can be identified with B = (Bij) where Bij = (Aji)

∗ and |A|2 = A∗A.

Definition 2.8. Let E ⊆ Ĝ and 2 < p < ∞. We say that E is a
completely bounded Λp set (Λcb

p set) if there exists a constant C such that

(2.2) ‖f‖Lp(G,Sp)

≤ C
(∥∥∥(∑

σ∈E
dσ Tr |f̂(σ)|2

)1/2∥∥∥
Sp

+
∥∥∥(∑

σ∈E
dσ Tr |(f̂(σ))∗|2

)1/2∥∥∥
Sp

)
whenever f =

∑
σ∈E dσ Tr(f̂(σ)σ) is an Sp-valued trigonometric E-poly-

nomial.

Remark 2.9. (1) The definition reduces to that in Definition 2.6 when
G is abelian.

(2) In Prop. 3.2 we show that the opposite inequality always holds.

3. A multiplier characterization of Λcb
p sets. The goal of this sec-

tion is to obtain an Lp multiplier space characterization of Λcb
p in the spirit

of Theorem 2.3(i). In order to prove Theorem 2.3(i), Figà-Talamanca and
Rider [8] (see also [18, Remark 2.7]) obtained a non-abelian variation on
Khintchine’s inequality. To be precise, they showed that if Aσ is a dσ × dσ
matrix and

∑
σ∈Ĝ dσ tr(AσA

∗
σ) <∞, then given any p <∞ there exist uni-

tary transformations {Uσ} such that
∑
dσ tr(UσAσσ(x)) is the Fourier series
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of an Lp(G) function. For this, they considered certain lacunary subsets of
the set of irreducible unitary representations of the compact group

G =
∏
σ∈Ĝ

U(dσ),

where U(d) denotes the group of d× d unitary matrices. Motivated by their
strategy, we first obtain the following estimate, which was the genesis of the
definition of Λcb

p .

Given V ∈ G, we write V = (Vσ)
σ∈Ĝ where Vσ ∈ U(dσ) and denote by

dV the Haar probability measure on G.

Theorem 3.1. Let G be any compact group and G =
∏
σ∈Ĝ U(dσ). For

each p > 2 there is a constant C = C(p) such that given any finite collection
{Aσ}

σ∈Ĝ, with Aσ ∈Mdσ(Sp), we have

(3.1)
�

G

∥∥∥∑
σ∈Ĝ

dσ TrAσVσ

∥∥∥p
Sp
dV

≤ C tr
[(∑

σ

dσ
∑
j,l

|Aσjl|2
)p/2

+
(∑

σ

dσ
∑
j,l

|(Aσjl)∗|2
)p/2]

.

Proof. Let {xσjk : 1 ≤ j, k ≤ dσ, σ ∈ Ĝ} be a collection of independent,

complex-valued, Gaussian random variables with mean zero and variance 1,
defined on a probability space (Ω1, P1). For each ω ∈ Ω1, let Xσ(ω) be the
random operator on the Hilbert space Hdσ represented by the matrix{

1√
dσ
xσjk(ω) : 1 ≤ j, k ≤ dσ

}
with respect to the standard basis. These are independent random operators.

Let πσ : G → U(dσ) be the projection maps, so that πσ(V ) = Vσ. These
are independent random variables that are uniformly distributed on U(dσ).

Now view the {Xσ} and {πσ} as independent random variables defined
in the obvious way on the probability space (Ω ,P ), where Ω = Ω1×G and
P is the product measure.

We have
�

Ω

∥∥∥∑
σ∈Ĝ

dσ TrAσπσ(ω)
∥∥∥p
Sp
dP (ω) =

�

G

∥∥∥∑
σ∈Ĝ

dσ TrAσVσ

∥∥∥p
Sp
dV,

hence upon applying [18, Cor. 2.4, p. 84], we see that for each 2 ≤ p < ∞
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there is a constant c = c(p) such that
�

G

∥∥∥∑
σ∈Ĝ

dσ TrAσVσ

∥∥∥p
Sp
dV =

�

Ω

∥∥∥∑
σ∈Ĝ

dσ TrAσπσ

∥∥∥p
Sp
dP

≤ c
�

Ω

∥∥∥∑
σ∈Ĝ

dσ TrAσXσ

∥∥∥p
Sp
dP.

Expanding out gives

TrAσXσ =
∑
j,k

1√
dσ
Aσjkx

σ
jk.

Applying Lust-Piquard’s non-commutative Khintchine inequality [17] (see
also [21, p. 105]), for another constant C = C(p) we deduce that

�

G

∥∥∥∑
σ∈Ĝ

dσ TrAσVσ

∥∥∥p
Sp
dV ≤ c

�

Ω

∥∥∥∑
σ∈Ĝ

√
dσ
∑
j,k

Aσjkx
σ
jk

∥∥∥p
Sp
dP

≤ C tr
[(∑

σ

dσ
∑
j,l

|Aσjl|2
)p/2

+
(∑

σ

dσ
∑
j,l

|(Aσjl)∗|2
)p/2]

.

We also need the following proposition, a vector-valued Jensen inequality.
This is known in more generality, but for the sake of completeness we include
the proof for the version we use.

Proposition 3.2. Let G be a compact group and Aσ ∈ Mdσ(Sp) for

each σ ∈ Ĝ. If p > 2, then∥∥∥∑
σ∈Ĝ

dσ Tr(Aσσ)
∥∥∥p
Lp(G,Sp)

≥ 1

2
tr
[(∑

σ∈Ĝ

dσ Tr |Aσ|2
)p/2

+
(∑
σ∈Ĝ

dσ Tr |(Aσ)∗|2
)p/2]

.

Proof. SinceG is compact, the vector-valued Jensen’s inequality (c.. [19])
implies

I :=
∥∥∥∑
σ∈Ĝ

dσ Tr(Aσσ)
∥∥∥p
Lp(G,Sp)

=
�
tr
[(∑

σ∈Ĝ

dσ(Tr(Aσσ))∗
∑
σ∈Ĝ

dσ Tr(Aσσ)
)p/2]

dg

≥ tr
[(∑

σ,ψ

dσdψ
�
(TrAσσ(g))∗(TrAψψ(g)) dg

)p/2]
.

Upon expanding the Tr function and using orthogonality of the coordinate
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functions, it follows that

I ≥ tr
(∑

σ

d2σ

�

G

∑
k,l

|Aσkl|2|σlk(g)|2 dg
)p/2

= tr
(∑

σ

dσ Tr |Aσ|2
)p/2

.

We can similarly deduce that I ≥ tr(
∑

σ dσ Tr |(Aσ)∗|2)p/2 using commuta-
tivity, and this completes the proof.

Here is our multiplier characterization of Λcb
p sets, the non-commutative

analogue of Theorem 2.3(i).

Theorem 3.3. Let p > 2. The subset E ⊆ Ĝ is Λcb
p if and only if

whenever φ ∈ l∞(E), then there exists β ∈ l∞(Ĝ) such that β|E = φ and
Tβ ∈M cb

p (G).

Proof. Suppose E is Λcb
p . Assume first that φ(σ) = Uσ is a unitary

matrix for each σ ∈ E. Set β(σ) = φ(σ) for all σ ∈ E and β(σ) = 0
otherwise. Let

F (g) =
∑
σ∈Ĝ

dσ Tr(Aσσ(g)) ∈ Lp(G,Sp).

As E is Λcb
p and Tβ ⊗ ISp(F ) =

∑
σ∈E dσ Tr(UσAσσ) is an E-function,

there is a constant C (independent of F ) such that

‖Tβ ⊗ ISp(F )‖pLp(Sp)

≤ C tr
[(∑

σ∈E
dσ Tr |UσAσ|2

)p/2
+
(∑
σ∈E

dσ Tr |(UσAσ)∗|2
)p/2]

.

Because Uσ is unitary, Tr |UσAσ|2 = Tr |Aσ|2 and Tr |(UσAσ)∗|2 = Tr |A∗σ|2.
From Prop. 3.2 we deduce that

‖Tβ ⊗ ISp(F )‖pLp(Sp) ≤ 2sC‖F‖pLp(Sp),

proving that Tβ ⊗ ISp is a bounded operator from Lp(Sp) to Lp(Sp). Thus

Tβ ∈M cb
p (G).

Since any φ in the unit ball of l∞(E) can be written as the average of
four functions, φj ∈ l∞(E), where φj(σ) is unitary for every σ ∈ E, the
same conclusion follows by the triangle inequality for all φ.

Conversely, assume that given any φ ∈ l∞(E) there exists β ∈ l∞(Ĝ)
such that β|E = φ and Tβ ∈ M cb

p (G). Let V = {Tφ ∈ M cb
p (G) : φ|E = 0} ⊆

M cb
p (G). It is easy to see that V is a closed subspace of M cb

p (G).

Now consider the map Q : l∞(E) → M cb
p (G)/V that sends φ to the

equivalence class of Tβ ∈ M cb
p (G) with β|E = φ. An application of the

closed graph theorem shows that this map is bounded. Hence there is a
constant C0 such that given φ ∈ l∞(E), there is a choice of β ∈ l∞(E) such
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that β|E = φ and

‖Tβ‖cb(p) ≤ C0‖φ‖∞.

Let f =
∑

σ∈E dσ Tr(Aσσ) ∈ LpE(G,Sp) be an E-polynomial. Set Bσ(g)
= Aσσ(g) and define F on G×

∏
σ∈Ĝ U(dσ) by

F (g, U) :=
∑
σ∈E

dσ Tr(UσAσσ(g)) =
(∑
σ∈E

dσ Tr(B∗σU
∗
σ)
)∗
.

Let G =
∏
σ∈Ĝ U(dσ) and define Fg on G by Fg(U) = F (g, U). By Theorem

3.1 there is a constant C such that for any (fixed) g ∈ G,

‖Fg(U)‖pLp(G,Sp) ≤ C tr
[(∑
σ∈E

dσ Tr |Bσ|2
)p/2

+
(∑
σ∈E

dσ Tr |B∗σ|2
)p/2]

= C tr
[(∑
σ∈E

dσ Tr |Aσ|2
)p/2

+
(∑
σ∈E

dσ Tr |A∗σ|2
)p/2]

=: RHS,

and the latter is finite by Prop. 3.2. Integrating both the sides over G gives�

G

�

G
‖Fg(U)‖pSp dU dg =

�

G

‖F (g, U)‖pLp(G,Sp) dg ≤ RHS.

Hence there exists some U ∈ G such that�

G

‖F (g, U)‖pSp dg ≤ RHS.

But F (g, U) = TU ⊗ ISp(f)(g) (understanding U = (Uσ) ∈ l∞(Ĝ) in the
natural sense), thus

‖TU ⊗ ISp(f)‖pLp(G,Sp) =
�

G

‖F (g, U)‖pSp dg ≤ RHS <∞.

Let φ ∈ l∞(E) be defined by φ(σ) = U∗σ for all σ ∈ E. As ‖φ‖ ≤ 1, there

exists β ∈ l∞(Ĝ) such that β|E = φ, Tβ ∈M cb
p (G) and

‖Tβ‖cb(p) = ‖Tβ ⊗ ISp‖Lp(Sp)→Lp(Sp) ≤ C0

where C0 is the constant found above. Since β(σ)Uσ = Idσ for all σ ∈ E,
one can easily see that f = Tβ ⊗ ISp ◦ TU ⊗ ISp(f). Thus

‖f‖pLp(G,Sp) = ‖Tβ ⊗ ISp ◦ TU ⊗ ISp(f)‖pLp(Sp) ≤ C0‖TU ⊗ ISp(f)‖pLp(Sp)

≤ CC0 tr
[(∑

σ∈E
dσ Tr |Aσ|2

)s
+
(∑
σ∈E

dσ Tr |A∗σ|2
)s]

.

Since f was an arbitrary E-polynomial, this proves E is Λcb
p .

We can quickly deduce from this that the Λcb
p sets are nested, as expected.

Corollary 3.4. If 2 < p < q <∞ and E is Λcb
q , then E is Λcb

p .
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Proof. Assume E is Λcb
q and let φ ∈ l∞(E). Obtain β ∈ l∞ such that

β|E = φ and Tβ ∈M cb
q (G). But M cb

q (G) ⊆M cb
p (G), thus the other direction

of the theorem implies E is Λcb
p .

Theorem 3.1 implies that if G =
∏
j U(nj) and E = {πj} where πj is the

unitary representation on G defined by πj(U) = Uj , then E is a Λcb
p set. In

fact, E is known to be a Sidon set [8]. More generally, one can deduce from
the previous theorem that all Sidon sets are Λcb

p .

Corollary 3.5. Let G be a compact group. Then any Sidon set is Λcb
p

for all p > 2.

Proof. If E is Sidon, then the multiplier characterization of Sidon (Thm.
2.3) implies that for every φ ∈ l∞(E) there is a finite, regular, Borel measure
µ such that µ̂|E = φ. It is known that all such measures act as completely
bounded operators on L1 and L∞, and hence on all Lp by Pisier’s complex
interpolation theorem [20]. By Theorem 3.3, E is Λcb

p for all p > 2.

4. Multipliers that are not completely bounded; Λp sets that
are not Λcb

4 . It is well known that there are infinite, compact, non-abelian
groups that do not admit infinite Sidon or even Λp sets. The product group
G =

∏
j SU(nj) is the prototypical example of a group that does. Indeed,

let πj : G→ SU(nj) be the projection onto the jth factor. The set {πj , πj :
j = 1, 2, . . .} is known as the FTR set (for Figà-Talamanca and Rider).
As explained in [5], it is the prototypical example of a Sidon set in the
non-abelian setting. When nj →∞, the set E = {π2j ×π2j+1 : j = 1, 2, . . .}
is known to be Λp for all p <∞, but not Sidon [13]. In this section we will
show that E is not Λcb

p for any p ≥ 4. Our method is inspired by Pisier’s

construction of a Λp, non-Λcb
p set in the abelian setting [21].

For notational simplicity we will write π2J = χJ and π2J+1 = ψJ . There
is no loss in assuming 4 < n2J ≤ n2J+1. If we represent χJ × ψJ as a
matrix with respect to the standard basis, then the diagonal entries are
(χJ)jj(ψ

J)kk where j = 1, . . . , n2J , k = 1, . . . , n2J+1 and (χJ)jj , (ψJ)kk are
the diagonal entries of the standard matrix representations of χJ and ψJ ,
respectively. We will refer to (χJ)jj(ψ

J)kk as the (j, k) diagonal entry.

For j, k = 1, . . . , n2J , let uJjk = n
−1/2
2J exp(2πijk/n2J), bJjk = n

−1/4
2J uJjk

and aJjk = n
1/2
2J u

J
jk. For j = 1, . . . , n2J , k = n2J + 1, . . . , n2J+1, let aJjk = 1.

Note that (uJjk)
n2J
j,k=1 is an n2J × n2J unitary matrix. We define a multiplier

Tφ by setting φ(χJ × ψJ) to be the diagonal matrix whose (j, k) diagonal
entry is aJjk. Define φ(σ) = 0 for σ /∈ E. Since |ajk| = 1, each φ(χJ × ψJ) is
a unitary matrix. Because E is Λp for all p <∞, we have Tφ ∈Mp(G).
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Consider the functions FJ : G→ S4 given by

FJ(g) =

n2J∑
j,k=1

bjkEjkχ
J
jjψ

J
kk(g),

where {Ejk} is the canonical basis for S4. The functions FJ are E-functions
and the multiplier Tφ acts on FJ by

Tφ(FJ)(g) =

n2J∑
j,k=1

ajkbjkEjkχ
J
jj(g)ψJkk(g).

We will show that

(4.1)
‖Tφ(FJ)‖L4(S4)

‖FJ‖L4(S4)
→∞ as J →∞.

If β|E = φ, then Tβ(FJ) = Tφ(FJ), hence Tβ /∈ M cb
4 (G). It follows from

Theorem 3.3 that E is not Λcb
4 .

We will use the following calculations.

Lemma 4.1.

(i)
	
SU(N) |Vkk|

4 dV = 2/(N(N + 1)) for all k = 1, . . . , N.

(ii)
	
SU(N) |Vkk|

2|Vmm|2 dV = 1/(N2 − 1) for k 6= m.

Proof. Part (i) is [14, Lemma 29.10]. (It is proven there for U(N), but
the same arguments hold for SU(N)).

For (ii), fix p 6= 1, 2 and write np = 1 and nj = j for j 6= p. Set a2 = 1

and aj = 0 for j 6= 2. Then
∏N
j=1 |Vnjj |2aj = |V22|2, so the same reasoning

as for [14, Lemma 29.8] implies that�
|V11|2|V22|2 = (1 + ap)

�
|V11|2

∏
|Vnjj |2aj

= (1 + a1)
�
|Vnpp|2

∏
|Vnjj |2aj =

�
|V1p|2|V22|2.

Summing over p 6= 2 and using the fact that
∑N

p=1 |V1p|2 = 1 gives
�
|V11|2|V22|2 =

1

N − 1

∑
p 6=2

�
|V1p|2|V22|2

=
1

N − 1

(∑
p

�
|V1p|2|V22|2 − |V12|2|V22|2

)
=

1

N − 1

( �
|V22|2 −

�
|V12|2|V22|2

)
=

1

N − 1

(
1

N
− (N − 1)!

(N + 2− 1)!

)
=

1

N2 − 1
,

where the last but one equality comes from [14, 29.9 and 29.10].
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We will temporarily fix J . For notational convenience we will omit the
subscripts or superscripts J and write N = n2J , M = n2J+1. To prove (4.1),
we begin by noting that since EkjEmn = 0 if j 6= m, EkjEmn = Ekn if
j = m, and E∗jk = Ekj , we have

‖F‖4S4
= tr

[( N∑
j,k=1

(bjkEjkχjjψkk)
∗
∑
m,n

bmnEmnχmmψnn

)2]
= tr

[(∑
j,k,n

bjkbjnEkn|χjj |2ψkkψnn
)2]

=
N∑

j,k,n,r=1

bjkbjnbrnbrk|χjj |2|χrr|2|ψkk|2|ψnn|2.

After substituting for the coefficients bjk etc. we see that

‖F‖4L4(G,S4)
=
∑
j,k,n,r

N−1ujkujnurnurk
�

G

|χjj |2|χrr|2|ψkk|2|ψnn|2 dg.

Now�

G

|χjj |2|χrr|2|ψkk|2|ψnn|2 dg =
�

SU(N)

|χjj |2|χrr|2dg1
�

SU(M)

|ψkk|2|ψnn|2 dg2,

and these integrals depend on whether or not j = r and/or k = n. Thus we
write

‖F‖4L4(G,S4)
= N−1

N∑
k,n=1

�

SU(M)

|ψkk|2|ψnn|2(I + I ′) dg2

where

I =
N∑
j=1

|ujk|2|ujn|2
�

SU(N)

|χjj |4 dg1 =
2

N2(N + 1)
,

I ′ =
∑
j 6=r

ujkujnurnurk
�

SU(N)

|χjj |2|χrr|2 dg1.

(The calculation of I follows from Lemma 4.1(i) and the fact that |ujk| =

N−1/2.) To calculate I ′, we use the fact that (ujk) is unitary so∑
j 6=r

ujkujnurnurk =

N∑
j=1

ujkujn(δkn − ujnujk) = δkn −N−1

where δkn = 1 if k = n and 0 else. Consequently, Lemma 4.1(ii) implies

I ′ =
1

N2 − 1
(δkn −N−1).
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Applying Lemma 4.1 again to evaluate
	
SU(M) |ψkk|

2|ψnn|2dg2, we deduce

that there is a constant c1, independent of N , M, such that

(4.2) ‖F‖4L4(S4)
≤ c1N−2M−2.

Similar arguments establish that

‖Tφ(F )‖4S4
=
∑
j,k,n,r

cjkcjncrncrk
�

G

|χjj |2|χrr|2|ψkk|2|ψnn|2

where cjk = ajkbjk = N−3/4. After applying Lemma 4.1 one final time
we see that there is a constant c2 > 0 (independent of N,M) such that
‖Tφ(F )‖4L4(S4)

≥ c2N−1M−2. This bound, coupled with (4.2), certainly im-

plies (4.1). To summarize, we have just proven that Tφ /∈M cb
4 (G) and hence

E is not Λcb
4 . Moreover, the nestedness of the spaces M cb

p (G) implies the
following:

Theorem 4.2. Let G =
∏
j SU(nj). If nj → ∞, the group G admits a

set of representations of unbounded degree that is Λp for all 1 < p <∞, but
not Λcb

p for any p ≥ 4. Further, M cb
p (G) (Mp(G) for all p ≥ 4.
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