Completely bounded lacunary sets for compact non-abelian groups

by

KATHRYN HARE (Waterloo, Ont.) and PARASAR MOHANTY (Kanpur)

Abstract. In this paper, we introduce and study the notion of completely bounded Λ_p sets ($\Lambda_p^{\rm cb}$ for short) for compact, non-abelian groups G. We characterize $\Lambda_p^{\rm cb}$ sets in terms of completely bounded $L^{p}(G)$ multipliers. We prove that when G is an infinite product of special unitary groups of arbitrarily large dimension, there are sets consisting of representations of unbounded degree that are Λ_p sets for all $p < \infty$, but are not Λ_p^{cb} for any $p \geq 4$. This is done by showing that the space of completely bounded $L^p(G)$ multipliers is a proper subset of the space of $L^{p}(G)$ multipliers.

1. Introduction. Sidon sets and Λ_p sets on compact abelian groups G have been thoroughly studied for many years. Every Sidon set is a Λ_p set for all $p < \infty$, but the converse is not true if G is an infinite group. Both classes of sets can be characterized in terms of L^p multipliers on G. In [11], Harcharras introduced the notion of completely bounded (non-commutative) Λ_p sets (called $\Lambda_n^{\rm cb}$ sets) for compact abelian groups. These are defined in terms of the canonical operator space structure on $L^p(G)$ obtained using Pisier's operator space complex interpolation. All Sidon sets are $\Lambda_p^{\rm cb}$ and all $\Lambda_p^{\rm cb}$ sets are Λ_p . Both inclusions are proper. The relationship between Λ_p^{cb} sets and completely bounded multipliers on $L^p(G)$ was studied by Harcharras and Pisier who showed, for example, that not all L^p multipliers are completely bounded. See [2], [6], [11], [12], [21] for proofs of these various facts.

Sidon and Λ_p sets have also been studied in the context of non-abelian, compact groups; [10] and [14] provide good overviews. In this paper, we introduce the analogous concept of completely bounded Λ_p sets for 2 ,for such groups. These notions are more complicated than for abelian groups as the dual object of a non-abelian group does not have a group structure. As in the abelian case, we show that $\Lambda_p^{\rm cb}$ sets can be characterized in terms

2010 Mathematics Subject Classification: Primary 43A46; Secondary 46L07, 47L25. Key words and phrases: lacunary set, completely bounded multiplier, Sidon set.

[265]

Received 10 September 2015; revised 6 January 2016.

Published online 27 January 2016.

of completely bounded $L^p(G)$ multipliers. Sidon sets are seen to be $\Lambda_p^{\rm cb}$ for all p and $\Lambda_p^{\rm cb}$ sets are always Λ_p .

In contrast to the case of abelian groups, not all infinite, compact, nonabelian groups admit infinite Sidon or even Λ_p sets. An important example of a group which does is an infinite product of special unitary groups. For these groups, we provide examples of sets of representations of unbounded degree that are Λ_p for all $p < \infty$, but are not Λ_p^{cb} for any $p \ge 4$. We do this by constructing an L^p multiplier which is not completely bounded. It would be interesting to know if there are any Λ_p^{cb} sets consisting of representations of unbounded degree that are not Sidon.

2. Preliminaries

2.1. Lacunary sets on compact groups. Let G be a compact group equipped with normalized Haar measure dg and denote by \widehat{G} its dual object, the set of pairwise inequivalent, unitary, irreducible representations of G. For $\sigma \in \widehat{G}$, we let d_{σ} denote the dimension of the underlying Hilbert space \mathcal{H}_{σ} , known as the *degree* of σ . When G is abelian, \widehat{G} is a discrete group consisting of the continuous characters on G.

Given $f \in L^1(G)$ and $\sigma \in \widehat{G}$, the Fourier transform of f at σ is defined as

$$\widehat{f}(\sigma) = \int_{G} f(x)\sigma(x^{-1}) \, dx,$$

 $\widehat{f}(\sigma)$ being a matrix of size $d_{\sigma} \times d_{\sigma}$. We call f a trigonometric polynomial if $\widehat{f}(\sigma) \neq 0$ for only finitely many σ ; then we have

$$f(x) = \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{tr}(\widehat{f}(\sigma)\sigma(x))$$

where tr denotes the usual matrix trace. (Of course, in the abelian case, for each x, $\hat{f}(\sigma)\sigma(x)$ is a complex number.)

Let $E \subseteq \widehat{G}$. A trigonometric polynomial f is called an *E-polynomial* if $\widehat{f}(\sigma) = 0$ for all $\sigma \notin E$.

Definition 2.1.

(1) A set $E \subseteq \widehat{G}$ is called a *Sidon set* if there is a constant C such that

$$\sum_{\sigma \in E} d_{\sigma} \operatorname{tr} \left[\left(\widehat{f}(\gamma) \widehat{f}(\gamma)^* \right)^{1/2} \right] \le C \|f\|_{\infty}$$

for all E-polynomials f.

(2) Let $2 . A set <math>E \subseteq \widehat{G}$ is called a Λ_p set if there is a constant C_p such that $\|f\|_p \leq C_p \|f\|_2$ for all *E*-polynomials *f*.

266

It is known that all Sidon sets are Λ_p for all $p < \infty$ and the compactness of G ensures that any Λ_p set is also a Λ_q set for any q < p. Every infinite abelian group admits an infinite Sidon set, as well as sets that are Λ_p for all $p < \infty$, but not Sidon. Proofs of these facts can be found in the standard references [14] and [16]. It is also known that for each infinite abelian group Gand each p > 2 there are Λ_p sets that are not Λ_q for any q > p. A constructive proof was given by Rudin [24] for G the circle group and even integers p. Using probabilistic arguments, Bourgain [4] proved the general case.

In contrast to the abelian case, there are non-abelian groups G which admit no infinite Sidon or even Λ_p sets. This is true, for instance, if Gis a compact, connected, semisimple Lie group such as SU(2) [15]. For the structure of groups which do admit infinite Sidon or Λ_p sets and for examples of both Sidon sets and Λ_p sets that are not Sidon see [5], [8] and [13].

Sidon and Λ_p sets play an important role in the study of multipliers. Given $E \subseteq \widehat{G}$ we denote

$$l^{\infty}(E) = \left\{ \phi = (\phi(\sigma))_{\sigma \in E} \in \prod B(\mathcal{H}_{\sigma}) : \sup_{\sigma} \|\phi(\sigma)\|_{\mathcal{B}(\mathcal{H}_{\sigma})} < \infty \right\}$$

where $\|\cdot\|_{\mathcal{B}(\mathcal{H}_{\sigma})}$ denotes the operator norm.

DEFINITION 2.2. Suppose $\phi \in l^{\infty}(\widehat{G})$. An operator $T_{\phi}: L^{p}(G) \to L^{p}(G)$ defined by

$$\widehat{T_{\phi}f}(\sigma) = \phi(\sigma)\widehat{f}(\sigma) \quad \forall f \in L^p$$

is said to be a (left) L^p multiplier if it is bounded.

We denote the space of (left) L^p multipliers by $M_p(G)$. One can analogously define the space of right L^p multipliers, $M_p^r(G)$. It is well known that $M_1(G) \simeq M(G)$, the space of finite regular Borel measures on G, $M_2(G) \simeq l^{\infty}(\widehat{G})$ and $M_p(G) \simeq M_{p'}^r(G)$ where 1/p + 1/p' = 1 (isometrically isomorphic in all cases).

A duality argument can be used to show that if G is abelian, then $E \subseteq \widehat{G}$ is Sidon if and only if whenever $\phi \in l^{\infty}(E)$ there exists $\mu \in M(G)$ such that $\widehat{\mu}(\gamma) = \phi(\gamma)$ for all $\gamma \in E$. Thus Sidon sets are interpolation sets for M(G). An application of Khintchine's inequality shows that Λ_p sets are interpolation sets for $M_p(G)$ when p > 2 (see [11] for a proof).

In the case of a non-abelian group G, Figà-Talamanca and Rider proved the following analogous result.

THEOREM 2.3 ([8]). Let $E \subseteq \widehat{G}$ and 2 .

- (i) E is Λ_p if and only if whenever $\phi \in l^{\infty}(E)$, then there exists $\beta \in l^{\infty}(\widehat{G})$ such that $\beta(\sigma) = \phi(\sigma)$ for all $\sigma \in E$ and $T_{\beta} \in M_p(G)$.
- (ii) E is Sidon if and only if whenever $\phi \in l^{\infty}(E)$ there exists $\mu \in M(G)$ such that $\hat{\mu}(\sigma) = \phi(\sigma)$ for all $\sigma \in E$.

2.2. Operator space structure for $L^p(G)$. For convenience, we will briefly discuss the basic theory of operator spaces. Let $\mathcal{B}(\mathcal{H})$ be the space of all bounded linear operators on \mathcal{H} . A closed subspace E of $\mathcal{B}(\mathcal{H})$ is called a *concrete operator space*. Given a concrete operator space $E \subset \mathcal{B}(\mathcal{H})$, let $\mathbb{M}_n(E)$ denote the set of all $n \times n$ matrices with entries in E. The space $\mathbb{M}_n(E)$ is naturally embedded into $\mathcal{B}(\mathcal{H}^n)$ and with the norm inherited from $\mathcal{B}(\mathcal{H}^n)$ is a Banach space.

Ruan [23] defined abstract operator spaces as follows. Let E be a Banach space with a sequence of norms $\|\cdot\|_n$ on $\mathbb{M}_n(E)$ satisfying

(1)
$$\left\| \frac{x \mid 0}{0 \mid y} \right\|_{m+n} = \max(\|x\|_m, \|y\|_n)$$
 and

(2) $\|\alpha x\beta\|_n \leq \|\alpha\| \|x\|_n \|\beta\|$ for all $\alpha, \beta \in \mathbb{M}_n(\mathbb{C})$ and $x \in \mathbb{M}_n(E)$.

If $(\mathbb{M}_n(E), \|\cdot\|_n)$ is a Banach space for each n, then E is called an *operator* space. The morphisms in the category of operator spaces are completely bounded maps. Ruan [23] proved that every abstract operator space is a concrete operator space.

We refer to [7] and [22] for more detailed information on operator spaces.

DEFINITION 2.4. Let E_1 and E_2 be operator spaces. A linear map $T : E_1 \to E_2$ is said to be *completely bounded* if the maps $T \otimes I_{\mathbb{M}_n} : \mathbb{M}_n(E_1) \to \mathbb{M}_n(E_2)$ satisfy

$$||T||_{\operatorname{cb}(E_1,E_2)} := \sup_{n \ge 1} ||T \otimes I_{\mathbb{M}_n}||_{\mathcal{B}(\mathbb{M}_n(E_1),\mathbb{M}_n(E_2))} < \infty.$$

We will denote by $CB(E_1, E_2)$ the Banach space of all completely bounded maps from E_1 to E_2 with the norm $\|\cdot\|_{cb(E_1,E_2)}$ defined above. The dual of the operator space E, denoted E^* , can be defined by taking $\mathbb{M}_n(E^*) = CB(E, \mathbb{M}_n(\mathbb{C})).$

For any compact group G, $L^{\infty}(G)$ has a canonical operator space structure being a C^* algebra. Let $L^1(G)$ inherit the operator space structure from the dual space $L^{\infty}(G)^*$. By [3], $L^1(G)^*$ is completely isomorphic to $L^{\infty}(G)$. The canonical operator space structure on $L^p(G)$ is the interpolated operator space structure $(L^1, L^{\infty})_{1/p}$ as developed by Pisier [20].

For $1 \leq p < \infty$, let S_p be the space of compact operators on l^2 with norm

$$||T||_{S_p} := (\operatorname{tr} |T|^p)^{1/p}$$

where $|T| = (T^*T)^{1/2}$. Denote by $L^p(G, S_p)$ (or $L^p(S_p)$ for short if G is clear) the Banach space of S_p -valued measurable functions f such that

$$\|f\|_{L^p(G,S_p)} := \left(\int_G \|f(x)\|_{S_p}^p \, dx\right)^{1/p} < \infty,$$

and by $L^p_E(G, S_p)$ the set of $f \in L^p(G, S_p)$ with $\widehat{f} = 0$ off E.

Pisier's result stated below provides a condition for a bounded map on L^p to be completely bounded.

PROPOSITION 2.5 ([21]). Let $1 \leq p < \infty$. A linear map $T : L^p(G) \rightarrow L^p(G)$ is completely bounded if and only if the mapping $T \otimes I_{S_p}$ is bounded on $L^p(G, S_p)$. Moreover,

$$||T||_{\operatorname{cb}(p)} := ||T||_{\operatorname{cb}(L^p, L^p)} = ||T \otimes I_{S_p}||_{L^p(S_p) \to L^p(S_p)}.$$

We write $M_p^{cb}(G)$ for the completely bounded Fourier multipliers on L^p ,

$$M_p^{cb}(G) := \{ T \in M_p(G) : ||T||_{cb(p)} < \infty \}.$$

When G is a compact group it is known that $M_p^{\rm cb}(G) = M_p(G)$ if p = 1, 2 ([21]). As $M_p^{\rm cb}(G) \subseteq M_2^{\rm cb}(G)$, an interpolation argument implies that $M_q^{\rm cb}(G) \subseteq M_p^{\rm cb}(G)$ when $q \ge p \ge 2$ ([20]). It was shown in [1], [6] and [21] that when G is abelian, then $M_p^{\rm cb}(G) \subsetneq M_p(G)$ for 1 .

2.3. Completely bounded Λ_p -sets. The concept of a completely bounded Λ_p set, denoted Λ_p^{cb} , was introduced in [11] for compact abelian groups.

DEFINITION 2.6. Let 2 and <math>G be a compact abelian group. A subset $E \subseteq \widehat{G}$ is called a $\Lambda_p^{\rm cb}$ set if there exists a constant C, depending only on p and E, such that

$$(2.1) \quad \|f\|_{L^p(G,S_p)} \le C\Big(\Big\|\Big(\sum_{\gamma \in E} \widehat{f}(\gamma)^* \widehat{f}(\gamma)\Big)^{1/2}\Big\|_{S_p} + \Big\|\Big(\sum_{\gamma \in E} \widehat{f}(\gamma) \widehat{f}(\gamma)^*\Big)^{1/2}\Big\|_{S_p}\Big)$$

for all S_p -valued E-polynomials f defined on G.

REMARK 2.7. (1) By considering $f = g \otimes x$, where g is an *E*-polynomial on G and $x \in S_p$ with $||x||_{S_p} = 1$, it is straightforward to see that $\Lambda_p^{cb} \subseteq \Lambda_p$.

(2) An application of the operator version of Jensen's inequality shows that the right hand side of (2.1) is dominated by $||f||_{L^p(G,S_p)}$.

(3) Unlike the situation in the classical setting, the fact that $S_2 \subsetneq S_p$ for p > 2 implies we never have $L^p_E(G, S_p) \approx L^2_E(G, S_2)$. However, if E is Λ^{cb}_p , then $L^2_E(G, S_2) \subseteq L^p_E(G, S_p)$.

Completely bounded Λ_p sets in \mathbb{Z} were extensively studied by Harcharras [11]. Motivated by Rudin's work [24] on Λ_p sets in \mathbb{Z} , Harcharras gave a sufficient combinatorial criterion for the construction of Λ_{2s}^{cb} sets for integers s, and she used this to show that there are Λ_{2s}^{cb} sets that are not Λ_q for any q > 2s. She also showed that Sidon sets in \mathbb{Z} are Λ_p^{cb} for all $p < \infty$; there are Λ_p sets that are not Λ_p^{cb} ; and with Banks [2], that there are non-Sidon Λ_p^{cb} sets in \mathbb{Z} . Subsequently, it was shown in [12] that every infinite compact abelian group admits a non-Sidon, Λ_p^{cb} set. The goal of this paper is to study analogous notions on compact nonabelian groups. To motivate the definition, we first discuss the Fourier transform of S_p -valued functions on G.

Let $f \in L^1(G, S_p)$. The vector-valued Fourier transform of f at $\sigma \in \widehat{G}$ is defined as

$$\widehat{f}(\sigma) = \int_{G} f(x) \otimes \sigma(x^{-1}) \, dx,$$

where the integral is understood as an element of $M_{d_{\sigma}}(S_p)$, the $d_{\sigma} \times d_{\sigma}$ matrices with entries in S_p . It is convenient to view $\widehat{f}(\sigma)$ as a $d_{\sigma} \times d_{\sigma}$ matrix with entries from S_p . For general properties of this Fourier transform we refer the reader to [9].

Given an S_p -valued matrix $A = (A_{ij})_{i,j=1}^n$ with $A_{ij} \in S_p$, we define Tr $A = \sum_{i=1}^n A_{ii}$. With this notation, the S_p -valued polynomial f has Fourier series

$$f(x) = \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr}(\widehat{f}(\sigma)\sigma(x)).$$

As before, we call f an E-polynomial if $\widehat{f}(\sigma) = 0$ whenever $\sigma \notin E$.

We are now ready to extend the definition of A_p^{cb} to the setting of a non-abelian compact group. Note that the adjoint of $A = (A_{ij}) \in M_{d_{\sigma}}(S_p)$ can be identified with $B = (B_{ij})$ where $B_{ij} = (A_{ji})^*$ and $|A|^2 = A^*A$.

DEFINITION 2.8. Let $E \subseteq \widehat{G}$ and 2 . We say that <math>E is a completely bounded Λ_p set $(\Lambda_p^{cb} \text{ set})$ if there exists a constant C such that

(2.2)
$$\|f\|_{L^p(G,S_p)} \leq C\Big(\Big\|\Big(\sum_{\sigma\in E} d_\sigma \operatorname{Tr} |\widehat{f}(\sigma)|^2\Big)^{1/2}\Big\|_{S_p} + \Big\|\Big(\sum_{\sigma\in E} d_\sigma \operatorname{Tr} |(\widehat{f}(\sigma))^*|^2\Big)^{1/2}\Big\|_{S_p}\Big)$$

whenever $f = \sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}(\widehat{f}(\sigma)\sigma)$ is an S_p -valued trigonometric E-polynomial.

REMARK 2.9. (1) The definition reduces to that in Definition 2.6 when G is abelian.

(2) In Prop. 3.2 we show that the opposite inequality always holds.

3. A multiplier characterization of Λ_p^{cb} **sets.** The goal of this section is to obtain an L^p multiplier space characterization of Λ_p^{cb} in the spirit of Theorem 2.3(i). In order to prove Theorem 2.3(i), Figà-Talamanca and Rider [8] (see also [18, Remark 2.7]) obtained a non-abelian variation on Khintchine's inequality. To be precise, they showed that if A_{σ} is a $d_{\sigma} \times d_{\sigma}$ matrix and $\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{tr}(A_{\sigma}A_{\sigma}^*) < \infty$, then given any $p < \infty$ there exist unitary transformations $\{U_{\sigma}\}$ such that $\sum d_{\sigma} \operatorname{tr}(U_{\sigma}A_{\sigma}\sigma(x))$ is the Fourier series

of an $L^p(G)$ function. For this, they considered certain lacunary subsets of the set of irreducible unitary representations of the compact group

$$\mathcal{G} = \prod_{\sigma \in \widehat{G}} U(d_{\sigma}),$$

where U(d) denotes the group of $d \times d$ unitary matrices. Motivated by their strategy, we first obtain the following estimate, which was the genesis of the definition of Λ_p^{cb} .

Given $V \in \mathcal{G}$, we write $V = (V_{\sigma})_{\sigma \in \widehat{G}}$ where $V_{\sigma} \in U(d_{\sigma})$ and denote by dV the Haar probability measure on \mathcal{G} .

THEOREM 3.1. Let G be any compact group and $\mathcal{G} = \prod_{\sigma \in \widehat{G}} U(d_{\sigma})$. For each p > 2 there is a constant C = C(p) such that given any finite collection $\{A^{\sigma}\}_{\sigma \in \widehat{G}}$, with $A^{\sigma} \in M_{d_{\sigma}}(S_p)$, we have

(3.1)
$$\int_{\mathcal{G}} \left\| \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} V_{\sigma} \right\|_{S_{p}}^{p} dV$$
$$\leq C \operatorname{tr} \Big[\Big(\sum_{\sigma} d_{\sigma} \sum_{j,l} |A_{jl}^{\sigma}|^{2} \Big)^{p/2} + \Big(\sum_{\sigma} d_{\sigma} \sum_{j,l} |(A_{jl}^{\sigma})^{*}|^{2} \Big)^{p/2} \Big].$$

Proof. Let $\{x_{jk}^{\sigma} : 1 \leq j, k \leq d_{\sigma}, \sigma \in \widehat{G}\}$ be a collection of independent, complex-valued, Gaussian random variables with mean zero and variance 1, defined on a probability space (Ω_1, P_1) . For each $\omega \in \Omega_1$, let $X_{\sigma}(\omega)$ be the random operator on the Hilbert space $\mathcal{H}_{d_{\sigma}}$ represented by the matrix

$$\left\{\frac{1}{\sqrt{d_{\sigma}}}x_{jk}^{\sigma}(\omega): 1 \le j, k \le d_{\sigma}\right\}$$

with respect to the standard basis. These are independent random operators.

Let $\pi_{\sigma} : \mathcal{G} \to U(d_{\sigma})$ be the projection maps, so that $\pi_{\sigma}(V) = V_{\sigma}$. These are independent random variables that are uniformly distributed on $U(d_{\sigma})$.

Now view the $\{X_{\sigma}\}$ and $\{\pi_{\sigma}\}$ as independent random variables defined in the obvious way on the probability space (Ω, P) , where $\Omega = \Omega_1 \times \mathcal{G}$ and P is the product measure.

We have

$$\int_{\Omega} \left\| \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} \pi_{\sigma}(\omega) \right\|_{S_{p}}^{p} dP(\omega) = \int_{\mathcal{G}} \left\| \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} V_{\sigma} \right\|_{S_{p}}^{p} dV,$$

hence upon applying [18, Cor. 2.4, p. 84], we see that for each $2 \le p < \infty$

there is a constant c = c(p) such that

$$\begin{split} \int_{\mathcal{G}} \left\| \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} V_{\sigma} \right\|_{S_{p}}^{p} dV &= \int_{\Omega} \left\| \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} \pi_{\sigma} \right\|_{S_{p}}^{p} dP \\ &\leq c \int_{\Omega} \left\| \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} X_{\sigma} \right\|_{S_{p}}^{p} dP. \end{split}$$

Expanding out gives

$$\operatorname{Tr} A^{\sigma} X_{\sigma} = \sum_{j,k} \frac{1}{\sqrt{d_{\sigma}}} A^{\sigma}_{jk} x^{\sigma}_{jk}.$$

Applying Lust-Piquard's non-commutative Khintchine inequality [17] (see also [21, p. 105]), for another constant C = C(p) we deduce that

$$\begin{split} &\int_{\mathcal{G}} \left\| \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} A^{\sigma} V_{\sigma} \right\|_{S_{p}}^{p} dV \leq c \int_{\Omega} \left\| \sum_{\sigma \in \widehat{G}} \sqrt{d_{\sigma}} \sum_{j,k} A_{jk}^{\sigma} x_{jk}^{\sigma} \right\|_{S_{p}}^{p} dP \\ &\leq C \operatorname{tr} \left[\left(\sum_{\sigma} d_{\sigma} \sum_{j,l} |A_{jl}^{\sigma}|^{2} \right)^{p/2} + \left(\sum_{\sigma} d_{\sigma} \sum_{j,l} |(A_{jl}^{\sigma})^{*}|^{2} \right)^{p/2} \right]. \end{split}$$

We also need the following proposition, a vector-valued Jensen inequality. This is known in more generality, but for the sake of completeness we include the proof for the version we use.

PROPOSITION 3.2. Let G be a compact group and $A^{\sigma} \in M_{d_{\sigma}}(S_p)$ for each $\sigma \in \widehat{G}$. If p > 2, then

$$\begin{split} \left\| \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr}(A^{\sigma} \sigma) \right\|_{L^{p}(G, S_{p})}^{p} \\ &\geq \frac{1}{2} \operatorname{tr} \Big[\Big(\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} |A^{\sigma}|^{2} \Big)^{p/2} + \Big(\sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr} |(A^{\sigma})^{*}|^{2} \Big)^{p/2} \Big]. \end{split}$$

Proof. Since G is compact, the vector-valued Jensen's inequality (c.. [19]) implies

$$\begin{split} I &:= \Big\| \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr}(A^{\sigma} \sigma) \Big\|_{L^{p}(G, S_{p})}^{p} \\ &= \int \operatorname{tr} \Big[\Big(\sum_{\sigma \in \widehat{G}} d_{\sigma} (\operatorname{Tr}(A^{\sigma} \sigma))^{*} \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr}(A^{\sigma} \sigma) \Big)^{p/2} \Big] dg \\ &\geq \operatorname{tr} \Big[\Big(\sum_{\sigma, \psi} d_{\sigma} d_{\psi} \int (\operatorname{Tr} A^{\sigma} \sigma(g))^{*} (\operatorname{Tr} A^{\psi} \psi(g)) dg \Big)^{p/2} \Big]. \end{split}$$

Upon expanding the Tr function and using orthogonality of the coordinate

functions, it follows that

$$I \ge \operatorname{tr}\left(\sum_{\sigma} d_{\sigma}^{2} \int_{G} \sum_{k,l} |A_{kl}^{\sigma}|^{2} |\sigma_{lk}(g)|^{2} dg\right)^{p/2} = \operatorname{tr}\left(\sum_{\sigma} d_{\sigma} \operatorname{Tr} |A^{\sigma}|^{2}\right)^{p/2}$$

We can similarly deduce that $I \ge \operatorname{tr}(\sum_{\sigma} d_{\sigma} \operatorname{Tr} |(A^{\sigma})^*|^2)^{p/2}$ using commutativity, and this completes the proof.

Here is our multiplier characterization of $\Lambda_p^{\rm cb}$ sets, the non-commutative analogue of Theorem 2.3(i).

THEOREM 3.3. Let p > 2. The subset $E \subseteq \widehat{G}$ is Λ_p^{cb} if and only if whenever $\phi \in l^{\infty}(E)$, then there exists $\beta \in l^{\infty}(\widehat{G})$ such that $\beta|_E = \phi$ and $T_{\beta} \in M_p^{cb}(G)$.

Proof. Suppose E is Λ_p^{cb} . Assume first that $\phi(\sigma) = U_{\sigma}$ is a unitary matrix for each $\sigma \in E$. Set $\beta(\sigma) = \phi(\sigma)$ for all $\sigma \in E$ and $\beta(\sigma) = 0$ otherwise. Let

$$F(g) = \sum_{\sigma \in \widehat{G}} d_{\sigma} \operatorname{Tr}(A_{\sigma}\sigma(g)) \in L^{p}(G, S_{p}).$$

As E is Λ_p^{cb} and $T_\beta \otimes I_{S_p}(F) = \sum_{\sigma \in E} d_\sigma \operatorname{Tr}(U_\sigma A_\sigma \sigma)$ is an E-function, there is a constant C (independent of F) such that

$$\|T_{\beta} \otimes I_{S_{p}}(F)\|_{L^{p}(S_{p})}^{p} \leq C \operatorname{tr} \left[\left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr} |U_{\sigma}A_{\sigma}|^{2} \right)^{p/2} + \left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr} |(U_{\sigma}A_{\sigma})^{*}|^{2} \right)^{p/2} \right].$$

Because U_{σ} is unitary, $\operatorname{Tr} |U_{\sigma}A_{\sigma}|^2 = \operatorname{Tr} |A_{\sigma}|^2$ and $\operatorname{Tr} |(U_{\sigma}A_{\sigma})^*|^2 = \operatorname{Tr} |A_{\sigma}^*|^2$. From Prop. 3.2 we deduce that

$$||T_{\beta} \otimes I_{S_p}(F)||_{L^p(S_p)}^p \le 2^s C ||F||_{L^p(S_p)}^p$$

proving that $T_{\beta} \otimes I_{S_p}$ is a bounded operator from $L^p(S_p)$ to $L^p(S_p)$. Thus $T_{\beta} \in M_p^{cb}(G)$.

Since any ϕ in the unit ball of $l^{\infty}(E)$ can be written as the average of four functions, $\phi_j \in l^{\infty}(E)$, where $\phi_j(\sigma)$ is unitary for every $\sigma \in E$, the same conclusion follows by the triangle inequality for all ϕ .

Conversely, assume that given any $\phi \in l^{\infty}(E)$ there exists $\beta \in l^{\infty}(\widehat{G})$ such that $\beta|_E = \phi$ and $T_{\beta} \in M_p^{cb}(G)$. Let $V = \{T_{\phi} \in M_p^{cb}(G) : \phi|_E = 0\} \subseteq M_p^{cb}(G)$. It is easy to see that V is a closed subspace of $M_p^{cb}(G)$.

Now consider the map $Q : l^{\infty}(E) \to M_p^{cb}(G)/V$ that sends ϕ to the equivalence class of $T_{\beta} \in M_p^{cb}(G)$ with $\beta|_E = \phi$. An application of the closed graph theorem shows that this map is bounded. Hence there is a constant C_0 such that given $\phi \in l^{\infty}(E)$, there is a choice of $\beta \in l^{\infty}(E)$ such that $\beta|_E = \phi$ and

$$||T_{\beta}||_{\operatorname{cb}(p)} \le C_0 ||\phi||_{\infty}.$$

Let $f = \sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}(A_{\sigma}\sigma) \in L^p_E(G, S_p)$ be an *E*-polynomial. Set $B_{\sigma}(g) = A_{\sigma}\sigma(g)$ and define *F* on $G \times \prod_{\sigma \in \widehat{G}} U(d_{\sigma})$ by

$$F(g,U) := \sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}(U_{\sigma}A_{\sigma}\sigma(g)) = \left(\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}(B_{\sigma}^{*}U_{\sigma}^{*})\right)^{*}$$

Let $\mathcal{G} = \prod_{\sigma \in \widehat{G}} U(d_{\sigma})$ and define F_g on \mathcal{G} by $F_g(U) = F(g, U)$. By Theorem 3.1 there is a constant C such that for any (fixed) $g \in G$,

$$\begin{aligned} \|F_g(U)\|_{L^p(\mathcal{G},S_p)}^p &\leq C \operatorname{tr} \left[\left(\sum_{\sigma \in E} d_\sigma \operatorname{Tr} |B_\sigma|^2 \right)^{p/2} + \left(\sum_{\sigma \in E} d_\sigma \operatorname{Tr} |B_\sigma^*|^2 \right)^{p/2} \right] \\ &= C \operatorname{tr} \left[\left(\sum_{\sigma \in E} d_\sigma \operatorname{Tr} |A_\sigma|^2 \right)^{p/2} + \left(\sum_{\sigma \in E} d_\sigma \operatorname{Tr} |A_\sigma^*|^2 \right)^{p/2} \right] =: \mathrm{RHS}, \end{aligned}$$

and the latter is finite by Prop. 3.2. Integrating both the sides over G gives

$$\iint_{G\mathcal{G}} \|F_g(U)\|_{S_p}^p \, dU \, dg = \iint_{G} \|F(g,U)\|_{L^p(\mathcal{G},S_p)}^p \, dg \le \text{RHS}.$$

Hence there exists some $U \in \mathcal{G}$ such that

$$\int_{G} \|F(g,U)\|_{S_p}^p \, dg \le \text{RHS}.$$

But $F(g,U) = T_U \otimes I_{S_p}(f)(g)$ (understanding $U = (U_{\sigma}) \in l^{\infty}(\widehat{G})$ in the natural sense), thus

$$\left\|T_U \otimes I_{S_p}(f)\right\|_{L^p(G,S_p)}^p = \int_G \left\|F(g,U)\right\|_{S_p}^p dg \le \operatorname{RHS} < \infty.$$

Let $\phi \in l^{\infty}(E)$ be defined by $\phi(\sigma) = U_{\sigma}^*$ for all $\sigma \in E$. As $\|\phi\| \leq 1$, there exists $\beta \in l^{\infty}(\widehat{G})$ such that $\beta|_E = \phi$, $T_{\beta} \in M_p^{cb}(G)$ and

$$||T_{\beta}||_{\operatorname{cb}(p)} = ||T_{\beta} \otimes I_{S_p}||_{L^p(S_p) \to L^p(S_p)} \le C_0$$

where C_0 is the constant found above. Since $\beta(\sigma)U_{\sigma} = I_{d_{\sigma}}$ for all $\sigma \in E$, one can easily see that $f = T_{\beta} \otimes I_{S_p} \circ T_U \otimes I_{S_p}(f)$. Thus

$$\begin{aligned} \|f\|_{L^p(G,S_p)}^p &= \|T_\beta \otimes I_{S_p} \circ T_U \otimes I_{S_p}(f)\|_{L^p(S_p)}^p \le C_0 \|T_U \otimes I_{S_p}(f)\|_{L^p(S_p)}^p \\ &\le CC_0 \operatorname{tr} \Big[\Big(\sum_{\sigma \in E} d_\sigma \operatorname{Tr} |A_\sigma|^2\Big)^s + \Big(\sum_{\sigma \in E} d_\sigma \operatorname{Tr} |A_\sigma^*|^2\Big)^s \Big]. \end{aligned}$$

Since f was an arbitrary E-polynomial, this proves E is $\Lambda_p^{\rm cb}$.

We can quickly deduce from this that the $\Lambda_p^{\rm cb}$ sets are nested, as expected.

COROLLARY 3.4. If $2 and E is <math>\Lambda_q^{\rm cb}$, then E is $\Lambda_p^{\rm cb}$.

Proof. Assume E is $\Lambda_q^{\rm cb}$ and let $\phi \in l^{\infty}(E)$. Obtain $\beta \in l^{\infty}$ such that $\beta|_E = \phi$ and $T_{\beta} \in M_q^{\rm cb}(G)$. But $M_q^{\rm cb}(G) \subseteq M_p^{\rm cb}(G)$, thus the other direction of the theorem implies E is $\Lambda_p^{\rm cb}$.

Theorem 3.1 implies that if $G = \prod_j U(n_j)$ and $E = \{\pi_j\}$ where π_j is the unitary representation on G defined by $\pi_j(U) = U_j$, then E is a Λ_p^{cb} set. In fact, E is known to be a Sidon set [8]. More generally, one can deduce from the previous theorem that all Sidon sets are Λ_p^{cb} .

COROLLARY 3.5. Let G be a compact group. Then any Sidon set is Λ_p^{cb} for all p > 2.

Proof. If E is Sidon, then the multiplier characterization of Sidon (Thm. 2.3) implies that for every $\phi \in l^{\infty}(E)$ there is a finite, regular, Borel measure μ such that $\hat{\mu}|_E = \phi$. It is known that all such measures act as completely bounded operators on L^1 and L^{∞} , and hence on all L^p by Pisier's complex interpolation theorem [20]. By Theorem 3.3, E is $\Lambda_p^{\rm cb}$ for all p > 2.

4. Multipliers that are not completely bounded; Λ_p sets that are not Λ_4^{cb} . It is well known that there are infinite, compact, non-abelian groups that do not admit infinite Sidon or even Λ_p sets. The product group $G = \prod_j SU(n_j)$ is the prototypical example of a group that does. Indeed, let $\pi_j : G \to SU(n_j)$ be the projection onto the *j*th factor. The set $\{\pi_j, \overline{\pi_j} :$ $j = 1, 2, \ldots\}$ is known as the *FTR set* (for Figà-Talamanca and Rider). As explained in [5], it is the prototypical example of a Sidon set in the non-abelian setting. When $n_j \to \infty$, the set $E = \{\pi_{2j} \times \pi_{2j+1} : j = 1, 2, \ldots\}$ is known to be Λ_p for all $p < \infty$, but not Sidon [13]. In this section we will show that *E* is not Λ_p^{cb} for any $p \ge 4$. Our method is inspired by Pisier's construction of a Λ_p , non- Λ_p^{cb} set in the abelian setting [21].

For notational simplicity we will write $\pi_{2J} = \chi^J$ and $\pi_{2J+1} = \psi^J$. There is no loss in assuming $4 < n_{2J} \leq n_{2J+1}$. If we represent $\chi^J \times \psi^J$ as a matrix with respect to the standard basis, then the diagonal entries are $(\chi^J)_{jj}(\psi^J)_{kk}$ where $j = 1, \ldots, n_{2J}, k = 1, \ldots, n_{2J+1}$ and $(\chi^J)_{jj}, (\psi^J)_{kk}$ are the diagonal entries of the standard matrix representations of χ^J and ψ^J , respectively. We will refer to $(\chi^J)_{jj}(\psi^J)_{kk}$ as the (j,k) diagonal entry.

For $j, k = 1, \ldots, n_{2J}$, let $u_{jk}^J = n_{2J}^{-1/2} \exp(2\pi i j k/n_{2J})$, $b_{jk}^J = n_{2J}^{-1/4} u_{jk}^J$ and $a_{jk}^J = n_{2J}^{1/2} \overline{u_{jk}^J}$. For $j = 1, \ldots, n_{2J}$, $k = n_{2J} + 1, \ldots, n_{2J+1}$, let $a_{jk}^J = 1$. Note that $(u_{jk}^J)_{j,k=1}^{n_{2J}}$ is an $n_{2J} \times n_{2J}$ unitary matrix. We define a multiplier T_{ϕ} by setting $\phi(\chi^J \times \psi^J)$ to be the diagonal matrix whose (j,k) diagonal entry is a_{jk}^J . Define $\phi(\sigma) = 0$ for $\sigma \notin E$. Since $|a_{jk}| = 1$, each $\phi(\chi^J \times \psi^J)$ is a unitary matrix. Because E is Λ_p for all $p < \infty$, we have $T_{\phi} \in M_p(G)$. Consider the functions $F_J: G \to S_4$ given by

$$F_{J}(g) = \sum_{j,k=1}^{n_{2J}} b_{jk} E_{jk} \chi_{jj}^{J} \psi_{kk}^{J}(g),$$

where $\{E_{jk}\}$ is the canonical basis for S_4 . The functions F_J are *E*-functions and the multiplier T_{ϕ} acts on F_J by

$$T_{\phi}(F_J)(g) = \sum_{j,k=1}^{n_{2J}} a_{jk} b_{jk} E_{jk} \chi_{jj}^J(g) \psi_{kk}^J(g).$$

We will show that

(4.1)
$$\frac{\|T_{\phi}(F_J)\|_{L^4(S_4)}}{\|F_J\|_{L^4(S_4)}} \to \infty \quad \text{as } J \to \infty.$$

If $\beta|_E = \phi$, then $T_{\beta}(F_J) = T_{\phi}(F_J)$, hence $T_{\beta} \notin M_4^{cb}(G)$. It follows from Theorem 3.3 that E is not Λ_4^{cb} .

We will use the following calculations.

Lemma 4.1.

- (i) $\int_{SU(N)} |V_{kk}|^4 dV = 2/(N(N+1))$ for all k = 1, ..., N.
- (ii) $\int_{SU(N)} |V_{kk}|^2 |V_{mm}|^2 dV = 1/(N^2 1)$ for $k \neq m$.

Proof. Part (i) is [14, Lemma 29.10]. (It is proven there for U(N), but the same arguments hold for SU(N)).

For (ii), fix $p \neq 1, 2$ and write $n_p = 1$ and $n_j = j$ for $j \neq p$. Set $a_2 = 1$ and $a_j = 0$ for $j \neq 2$. Then $\prod_{j=1}^N |V_{n_j j}|^{2a_j} = |V_{22}|^2$, so the same reasoning as for [14, Lemma 29.8] implies that

$$\int |V_{11}|^2 |V_{22}|^2 = (1+a_p) \int |V_{11}|^2 \prod |V_{n_j j}|^{2a_j}$$
$$= (1+a_1) \int |V_{n_p p}|^2 \prod |V_{n_j j}|^{2a_j} = \int |V_{1p}|^2 |V_{22}|^2.$$

Summing over $p \neq 2$ and using the fact that $\sum_{p=1}^{N} |V_{1p}|^2 = 1$ gives

$$\begin{split} \int |V_{11}|^2 |V_{22}|^2 &= \frac{1}{N-1} \sum_{p \neq 2} \int |V_{1p}|^2 |V_{22}|^2 \\ &= \frac{1}{N-1} \left(\sum_p \int |V_{1p}|^2 |V_{22}|^2 - |V_{12}|^2 |V_{22}|^2 \right) \\ &= \frac{1}{N-1} \left(\int |V_{22}|^2 - \int |V_{12}|^2 |V_{22}|^2 \right) \\ &= \frac{1}{N-1} \left(\frac{1}{N} - \frac{(N-1)!}{(N+2-1)!} \right) = \frac{1}{N^2 - 1}, \end{split}$$

where the last but one equality comes from [14, 29.9 and 29.10].

276

We will temporarily fix J. For notational convenience we will omit the subscripts or superscripts J and write $N = n_{2J}$, $M = n_{2J+1}$. To prove (4.1), we begin by noting that since $E_{kj}E_{mn} = 0$ if $j \neq m$, $E_{kj}E_{mn} = E_{kn}$ if j = m, and $E_{jk}^* = E_{kj}$, we have

$$||F||_{S_4}^4 = \operatorname{tr}\left[\left(\sum_{j,k=1}^{N} (b_{jk} E_{jk} \chi_{jj} \psi_{kk})^* \sum_{m,n} b_{mn} E_{mn} \chi_{mm} \psi_{nn}\right)^2\right]$$

= $\operatorname{tr}\left[\left(\sum_{j,k,n} \overline{b_{jk}} b_{jn} E_{kn} |\chi_{jj}|^2 \overline{\psi_{kk}} \psi_{nn}\right)^2\right]$
= $\sum_{j,k,n,r=1}^{N} \overline{b_{jk}} b_{jn} \overline{b_{rn}} b_{rk} |\chi_{jj}|^2 |\chi_{rr}|^2 |\psi_{kk}|^2 |\psi_{nn}|^2.$

After substituting for the coefficients b_{jk} etc. we see that

$$||F||_{L^4(G,S_4)}^4 = \sum_{j,k,n,r} N^{-1} \overline{u_{jk}} u_{jn} \overline{u_{rn}} u_{rk} \int_G |\chi_{jj}|^2 |\chi_{rr}|^2 |\psi_{kk}|^2 |\psi_{nn}|^2 dg.$$

Now

$$\int_{G} |\chi_{jj}|^2 |\chi_{rr}|^2 |\psi_{kk}|^2 |\psi_{nn}|^2 dg = \int_{SU(N)} |\chi_{jj}|^2 |\chi_{rr}|^2 dg_1 \int_{SU(M)} |\psi_{kk}|^2 |\psi_{nn}|^2 dg_2,$$

and these integrals depend on whether or not j = r and/or k = n. Thus we write

$$||F||_{L^4(G,S_4)}^4 = N^{-1} \sum_{k,n=1}^N \int_{SU(M)} |\psi_{kk}|^2 |\psi_{nn}|^2 (I+I') \, dg_2$$

where

$$I = \sum_{j=1}^{N} |u_{jk}|^2 |u_{jn}|^2 \int_{SU(N)} |\chi_{jj}|^4 dg_1 = \frac{2}{N^2(N+1)},$$

$$I' = \sum_{j \neq r} \overline{u_{jk}} u_{jn} \overline{u_{rn}} u_{rk} \int_{SU(N)} |\chi_{jj}|^2 |\chi_{rr}|^2 dg_1.$$

(The calculation of I follows from Lemma 4.1(i) and the fact that $|u_{jk}| = N^{-1/2}$.) To calculate I', we use the fact that (u_{jk}) is unitary so

$$\sum_{j \neq r} \overline{u_{jk}} u_{jn} \overline{u_{rn}} u_{rk} = \sum_{j=1}^{N} \overline{u_{jk}} u_{jn} (\delta_{kn} - \overline{u_{jn}} u_{jk}) = \delta_{kn} - N^{-1}$$

where $\delta_{kn} = 1$ if k = n and 0 else. Consequently, Lemma 4.1(ii) implies

$$I' = \frac{1}{N^2 - 1} (\delta_{kn} - N^{-1}).$$

Applying Lemma 4.1 again to evaluate $\int_{SU(M)} |\psi_{kk}|^2 |\psi_{nn}|^2 dg_2$, we deduce that there is a constant c_1 , independent of N, M, such that

(4.2)
$$||F||_{L^4(S_4)}^4 \le c_1 N^{-2} M^{-2}$$

Similar arguments establish that

$$||T_{\phi}(F)||_{S_4}^4 = \sum_{j,k,n,r} \overline{c_{jk}} c_{jn} \overline{c_{rn}} c_{rk} \int_G |\chi_{jj}|^2 |\chi_{rr}|^2 |\psi_{kk}|^2 |\psi_{nn}|^2$$

where $c_{jk} = a_{jk}b_{jk} = N^{-3/4}$. After applying Lemma 4.1 one final time we see that there is a constant $c_2 > 0$ (independent of N, M) such that $||T_{\phi}(F)||_{L^4(S_4)}^4 \ge c_2 N^{-1} M^{-2}$. This bound, coupled with (4.2), certainly implies (4.1). To summarize, we have just proven that $T_{\phi} \notin M_4^{\text{cb}}(G)$ and hence E is not Λ_4^{cb} . Moreover, the nestedness of the spaces $M_p^{\text{cb}}(G)$ implies the following:

THEOREM 4.2. Let $G = \prod_j SU(n_j)$. If $n_j \to \infty$, the group G admits a set of representations of unbounded degree that is Λ_p for all $1 , but not <math>\Lambda_p^{\rm cb}$ for any $p \ge 4$. Further, $M_p^{\rm cb}(G) \subsetneq M_p(G)$ for all $p \ge 4$.

Acknowledgements. The authors are grateful to J. Parcet for pointing out a flaw in an earlier version of this manuscript and for helpful suggestions.

This research was supported in part by NSERC grant 44597-2011. The second author thanks the University of Waterloo for their hospitality.

References

- C. Arhancet, Fourier multipliers and Schur multipliers, Colloq. Math. 127 (2012), 17–37.
- W. D. Banks and A. Harcharras, New examples of noncommutative Λ(p) sets, Illinois J. Math. 47 (2003), 1063–1078.
- D. P. Blecher, The standard dual of an operator space, Pacific J. Math. 153 (1992), 15–30.
- [4] J. Bourgain, Bounded orthogonal systems and the Λ(p)-set problem, Acta Math. 162 (1989), 227–245.
- [5] D. I. Cartwright and J. R. McMullen, A structural criterion for the existence of infinite Sidon sets, Pacific J. Math. 96 (1981), 301–317.
- [6] S. Dutta, P. Mohanty and U. B. Tewari, Multipliers which are not completely bounded, Illinois J. Math. 56 (2012), 571–578.
- [7] E. G. Effros and Z. J. Ruan, *Operator Spaces*, London Math. Soc. Monogr. 23, Oxford Univ. Press, New York, 2000.
- [8] A. Figà-Talamanca and D. Rider, A theorem of Littlewood and lacunary series for compact groups, Pacific J. Math. 16 (1966), 505–514.
- J. García-Cuerva and J. Parcet, Vector-valued Hausdorff-Young inequality on compact groups, Proc. London Math. Soc. (3) 88 (2004), 796-816.
- [10] C. C. Graham and K. E. Hare, Interpolation and Sidon Sets for Compact Groups, Springer, New York, 2013.

- [11] A. Harcharras, Fourier analysis, Schur multipliers on S^p and non-commutative Λ_p -sets, Studia Math. 137 (1999), 203–258.
- [12] K. E. Hare and P. Mohanty, Completely bounded Λ_p sets that are not Sidon, Proc. Amer. Math. Soc., to appear.
- [13] K. E. Hare and D. C. Wilson, A structural criterion for the existence of infinite central A(p) sets, Trans. Amer. Math. Soc. 337 (1993), 907–925.
- [14] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Springer, New York, 1970.
- [15] M. F. Hutchinson, Non-tall compact groups admit infinite Sidon sets, J. Austral. Math. Soc. Ser. A 23 (1977), 467–475.
- [16] J. M. Lopez and K. A. Ross, *Sidon Sets*, Lecture Notes in Pure Appl. Math. 13, Dekker, New York, 1975.
- [17] F. Lust-Piquard, Inégalités de Khintchine dans C_p (1 , C. R. Acad. Sci.Paris 303 (1986), 42–53.
- [18] M. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Ann. of Math. Stud. 101, Princeton Univ. Press, 1981.
- [19] M. Perlman, Jensen's inequality for a convex vector-valued function on an infinite dimensional space, J. Multivariate Anal. 4 (1974), 52–65.
- [20] G. Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (1996), no. 585.
- [21] G. Pisier, Non-commutative vector valued L_p-spaces and completely p-summing maps, Astérisque 247 (1998).
- [22] G. Pisier, Introduction to Operator Space Theory, London Math. Soc. Lecture Note Ser. 294, Cambridge Univ. Press, Cambridge, 2003.
- [23] Z. J. Ruan, Subspaces of C^{*}-algebras, J. Funct. Anal. 76 (1988), 217–230.
- [24] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203–227.

Kathryn Hare Department of Pure Mathematics University of Waterloo 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1 E-mail: kehare@uwaterloo.ca Parasar Mohanty Department of Mathematics and Statistics Indian Institute of Technology Kanpur, U.P., 208016, India E-mail: parasar@iitk.ac.in