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An improved maximal inequality for 2D fractional order
Schrödinger operators
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Abstract. The local maximal operator for the Schrödinger operators of order α > 1
is shown to be bounded from Hs(R2) to L2 for any s > 3/8. This improves the previous
result of Sjölin on the regularity of solutions to fractional order Schrödinger equations.
Our method is inspired by Bourgain’s argument in the case of α = 2. The extension
from α = 2 to general α > 1 faces three essential obstacles: the lack of Lee’s reduction
lemma, the absence of the algebraic structure of the symbol and the inapplicable Galilean
transformation in the deduction of the main theorem. We get around these difficulties
by establishing a new reduction lemma and analyzing all the possibilities in using the
separation of the segments to obtain the analogous bilinear L2-estimates. To compensate
for the absence of Galilean invariance, we resort to Taylor’s expansion for the phase
function. The Bourgain–Guth inequality (2011) is also generalized to dominate the solution
of fractional order Schrödinger equations.
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1. Introduction and the main result. For α > 1, we define the αth
order Schrödinger evolution operator by

U(t)f(x) := (2π)−d/2
�

Rd
ei[x·ξ+t|ξ|

α]f̂(ξ) dξ,

and consider the local maximal inequality

(1.1)
∥∥∥ sup
0<t<1

|U(t)f |
∥∥∥
L2(B(0,1))

≤ Cα,s,d‖f‖Hs(Rd), s ∈ R,

where Hs(Rd) is the usual inhomogeneous Sobolev space defined via the
Fourier transform, and B(0, 1) is the unit ball centered at the origin. As a
consequence of (1.1), we have the following pointwise convergence (from a
standard process of approximation and Fatou’s lemma):

lim
t→0

U(t)f(x) = f(x), a.e. x, ∀f ∈ Hs(Rd).

If s > d/2, we obtain (1.1) immediately from Sobolev’s embedding. Thus, it
is natural to ask what the minimal s is to ensure (1.1).

First of all, let us briefly review the known results about (1.1) in the
case when α = 2. This problem was raised by Carleson [Cr], who proved
s ≥ 1/4 in the 1D case. This result was shown to be optimal by Dahlberg
and Kenig [DK]. The higher dimensional cases of (1.1) were established
independently by Sjölin [S] and Vega [V] with s > 1/2. In particular, the
result was strengthened to s = 1/2 by Sjölin [S] when d = 2. Meanwhile,
Vega [V] demonstrated that (1.1) fails in any dimension if s < 1/4. It is
then conjectured that s ≥ 1/4 is sufficient for all dimensions.

A breakthrough was achieved by Bourgain [B1, B2], who showed that
(1.1) holds with α = 2 for some s < 1/2 when d = 2. His work was continued
and improved by many authors, including Moyua, Vargas and Vega [MVV],
Tao and Vargas [TV1, TV2], Lee [L] and Shao [Sh]; the best result hitherto
is s > 3/8 due to Lee [L].

Previous to [B3], the results for d ≥ 3 had s > 1/2, and s ≥ 1/4 was still
believed to be the correct condition for (1.1) in every dimension. The study
of this problem stagnated for several years until the recent work [B3], where
the 1/2-barrier was broken for all dimensions. More surprisingly, Bourgain
also discovered some counterexamples to the widely believed 1/4-threshold.
Specifically, he showed that s ≥ 1/2 − 1/d is necessary for (1.1) if d ≥ 4.
These examples originated essentially from an observation on arithmetical
progressions.
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Now, let us turn to the fractional order case. Sjölin [S] proved (1.1)
with s = 1/2, d = 2 for all α > 1. His proof involves a TT ∗ argument,
which reduces the problem to a dispersive estimate of a specific oscillatory
integral. After localizing the integral to high and low frequencies, the author
employed a classical result by Miyachi [M] to treat the high frequency part.
The other part is estimated by means of the inequality�

R2

|y|−1(1 + |x− y|4)−1 dy ≤ c|x|−1,

where the decay rate on the right hand side cannot be improved. A crucial
fact which Sjölin’s proof relied heavily on is that the factor |t(x)− t(y)|1/α
can be canceled at the end of the computation exactly for s = 1/2. This
is usually referred to as the Kolmogorov–Seliverstov–Plessner method (see
[Cr] and [S] for more details). For these reasons, it seems difficult to pursue
Sjölin’s original approach to improve this result. In this paper, we prove

Theorem 1.1. If d = 2 and α > 1, then (1.1) is valid for all s > 3/8.

Remark 1.2. As noted in [B3], one may modify the method to treat
a general multiplier operator Φ(D) having the property that for some con-
stants C, c > 0 and all multi-indices γ,

|∂γΦ(ξ)| ≤ C|ξ|2−|γ|, |∇Φ(ξ)| ≥ c |ξ|.
However, this does not concern the fractional order case.

As a consequence, we get some improvement on the higher dimensional
results by using the scheme of induction on dimensions formulated in [B3].

Corollary 1.3. For d ≥ 3 and α > 1, there exists a θd such that (1.1)
is valid for all s > θd with

θd =
1

2
− σ

(
1

2
− θd−1

)
for some σ ∈ (0, 1/2). In particular, θd < 1/2 for every d ≥ 2 since θ2 < 1/2.

Remark 1.4. This improves [S, Theorem 2] in higher dimensions. Not-
ing that the induction argument in [B3] is independent of the order α, we
may apply it verbatim to obtain Corollary 1.3.

As in [B3], the proof is based on the multilinear restriction theorem of
[BCT]. To achieve this, an important observation introduced by Bourgain
and Guth [BG] is that up to an Rε factor and a well behaved remainder, one
can successfully control the free solution of the Schrödinger equation with
a sum of triple products fulfilling the transversality condition for which the
multilinear restriction estimate can be used. Roughly speaking, one gains
structure by losing Rε, but this is acceptable if we do not intend to solve the
end-point problem. These triple products, which we will call type I terms in
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Section 5, are generated by iteration with respect to scales. As a result, they
are used to collect the contributions obtained at different scales. In this sense,
this is also reminiscent of Wolff’s induction on scale argument in [W] (1). In
this paper, we call this robust device Bourgain–Guth’s inequality.

Let us take this opportunity to try to moderately clarify several points
in Bourgain’s argument, keeping the notation of [BG] and [B3]. Of course,
a complete clarification of Bourgain’s treatment will be far beyond our reach.
Instead, we focus only on the points which are directly relevant to this paper.

First, a crucial input is the Bourgain–Guth inequality for oscillatory
integrals from [BG]. It collects the contributions of the transversal triple
products from all dyadic scales between R−1/2 and 1, so that we can use
the multilinear restriction theorem of [BCT] to evaluate the contributions
at each scale. Since we are dealing with dyadic scales in (R−1/2, 1), we can
safely consider items from all scales by taking an `2 sum, losing at most a
factor of logR. To obtain this inequality, Bourgain and Guth [BG] tactically
used a “local constant trick” according to the following principle. By writing
the oscillatory integral as trigonometric sums Tαf(x) with variable coeffi-
cients, one may regard Tαf(x) as constant on each ball of radius K thanks to
the uncertainty principle, where these “constants” certainly depend on the
position of the ball. This heuristic point is justified by convolving Tαf with
suitable bump functions. However, further manipulations, especially the it-
erative process, are awkward to write out explicitly. Instead, one prefers a
formal calculation for brevity and clarity. Based on this observation, one
may insert/extract the factor Tαf(x) into/from an integral over a ball of
radius K, or more generally over a tile of suitable shape and size. All this
can be justified by invoking the uncertainty principle.

This simple and important observation is very efficient in simplifying
various explicit calculations, so that the Bourgain–Guth inequality can be
established in [BG] by iteration.

Let us say more about the establishment of Bourgain–Guth’s inequal-
ity before turning to the argument for the Schrödinger maximal function.
The brilliant novelty in [BG], which we will follow in Section 5, is embodied
in the way of using Bonnet–Carbery–Tao’s multiplier restriction theorem.
The idea might be roughly described as follows: after writing Tf(x) as a
variable coefficient trigonometric sum, one may estimate it for each x ∈ BR
in three different manners, where only a small portion of the members in
{Tαf(x)}α would dominate the behavior of Tf(x). As can be seen in [BG]
and Section 5, these members correspond respectively to three different sce-
narios which cover all the possibilities for a particular x ∈ BR(0). According

(1) It is thus interesting to consider how to combine these two important ideas together
to improve the argument in this work.
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to [BG], they are called non-coplanar interaction, non-transverse interaction
and transverse coplanar interaction. We refer to Section 5 for more details
about this classification.

Now we turn to Bourgain’s treatment of the Schrödinger maximal func-
tion. The idea is that by using Bourgain–Guth’s inequality, one is reduced
to controlling each item in the `2 summation with the desired bound. To
achieve this, one tiles R3 with translates of polar sets of the cap τ , which
contains a triple of transversal subcaps τ1, τ2, τ3. This provides a decompo-
sition of BR ⊂ R3. Invoking the local constancy principle, one may raise and
lower the moment exponents on each tile so that the trilinear restriction of
[BCT] can be used. During this calculation, Galilean transform is employed
to shift the center of the square where the frequency is localized to the cen-
ter. Although we have compressed Bourgain’s argument into as few words
as possible, it is far more difficult and subtle in concrete manipulations as
in [B3, BG]. We confine ourselves to this brief description of Bourgain’s
approach and turn to our situation below.

To use the strategy of [B3], we need to retrieve the Bourgain–Guth in-
equality for general α > 1. Although this inequality is invented in [BG] for
α = 2, it is rather non-trivial to generalize it to α > 1, as will be seen
in Section 5. One of the obstructions is the absence of the algebraic struc-
ture of |ξ|α when α is not an integer. This fact leads to the differences of
our argument from [B3] and [BG] in almost every aspect, especially in the
proof of the bilinear L2-estimate in Subsection 5.2 where we introduce a new
argument.

Besides the reestablishment of Bourgain–Guth’s inequality, we need a
fractional order version of Lee’s reduction lemma of [L] for general α > 1. In
Section 4, we establish this result using a different method. This extends the
result of [L] to a more general setting. We will use the method of stationary
phase in the spirit of [Sh]. However, to justify the proof, we involve a local-
ization argument which eliminates Schwartz tails by losing Rε. To be more
precise, we separate the Poisson summation into relatively large and small
scales, where either the rapid decrease of Schwartz functions or the station-
ary phase argument can be used to handle the error terms. This principle
is also used in the proof of the main theorem. The essence of this argument
is exploiting the orthogonality in “phase space” via stationary phase and
the Poisson summation formula. In doing so, one only needs to afford an
Rε loss, but one may sum the pieces that are well-estimated efficiently. See
Sections 3 and 4 for more details.

To end this section, let us say a few words about the potential of
Bourgain–Guth’s approach to oscillatory integrals. In harmonic analysis, one
of the most important principles is that structures are favorable conditions
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to help us use deep results. For instance, Whitney’s decomposition was
employed in [TV1, TV2, TVV] to generate the transversality conditions for
the use of bilinear estimates. On the other hand, the proof of Bourgain
and Guth’s inequality enlightened a new approach to generating structures
by means of logical classification, i.e. exploiting the intrinsic structures
implicitly involved in the summation of large numbers of elements creatively
using logical division. The idea is fairly new and the argument is really
a tour de force, bringing in ideas and techniques from combinatorics, as
will be seen in Section 5. We believe this approach is very promising to
get improvements on the open questions in classical harmonic analysis. In
particular, the result in this paper might be improved further by refining
this method.

This paper is organized as follows. In Section 2, we introduce some pre-
liminaries and basic lemmas. In Section 3, we prove the main result. Sec-
tion 4 is devoted to the proof of Lemma 2.11, and Section 5 to the proof of
Lemma 2.4.

2. Preliminaries. This section includes the list of the frequently used
notation, the statement of a crucial lemma which plays the key role in de-
ducing the main result, as well as the primary reduction for the proof of
Theorem 1.1.

2.1. Notation. Throughout this paper the following notation will be
used:

� Ω = [−1/2, 1/2]× [−1/2, 1/2].
� [r] is the greatest integer not exceeding r.
� If Ω is a subset of Rd, we define Ωc = Rd \Ω.
� χΩ denotes the characteristic function of Ω ⊂ Rd.
� If ξ is a vector in Rd, we define ξ = ξ/|ξ|.
� I = {ξ ∈ Rd | 1/2 ≤ |ξ| ≤ 2} and, except in Lemma 2.11 below, we

always assume d = 2.
� For f a measurable function and a ∈ Rd, we define τaf(x) = f(x− a).
� S(Rd) is the Schwartz class on Rd, and S ′(Rd) the space of tempered

distributions.
� Fx→ξf and f̂(ξ) denote the Fourier transform of a tempered distribu-

tion f(x) and

f̂(ξ) = (2π)−d/2
�

Rd
f(x)e−ix·ξ dx.

� B(a,K) or Ba,K is the ball in Rd centered at a of radius K.
� If B is a convex body in Rd and λ > 0, we use λB to denote the convex

set having the same center with B but enlarged in size by λ.
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� C stands for a constant which might be different from line to line and
c� C means c is far less than C. This is clear in the context.
� A . B means A ≤ CB for some constant C, and A ' B means both
A . B and B . A.
� A .η,ζ,... B means that there is a constant C = C(η, ζ, . . .) such that
A ≤ CB.
� ζ = Oα(η) means ζ .α η.

2.2. Caps, tiles and the Bourgain–Guth inequality. Now we in-
troduce some terminology. Let R � 25α > 1 and 1/

√
R < δ < 1. Partition

R2 into
⋃
τ Ωτ where Ωτ is a δ × δ-square centered at ξτ ∈ δZ2 with edges

parallel to the coordinate axes. Let ~nτ be the exterior unit normal to the
immersed surface (ξ, |ξ|α) at the point (ξτ , |ξτ |α). We define

Πδ
τ = (ξτ , |ξτ |α) + {z ∈ R3 | |〈z, ~nτ 〉| ≤ δα},
Cτ = Πδ

τ ∩ {z ∈ R3 | z = (z1, z2, z3), (z1, z2) ∈ Ωτ}.

Obviously, Cτ is a parallelepiped with dimensions ∼ δ, δ, δα.

Definition 2.1. The parallelepiped Cτ is called a δ-cap associated toΩτ .

Definition 2.2. The polar set of Cτ is defined as

C∗τ = {z ∈ R3 | |〈z, w〉| ≤ 1, ∀w ∈ Cτ − (ξτ , |ξτ |α)}.

It is easy to see that C∗τ is essentially a 1/δ×1/δ×1/δα-rectangle centered
at the origin, with the longest side in the direction of ~nτ . Moreover, we may
tile R3 with translations of C∗τ . This decomposes R3 naturally into the union
of essentially disjoint C∗τ -boxes. We call this decomposition a tiling of R3

with C∗τ -boxes.

Define an oscillatory integral by

Tf(x) =
�

I
ei[x1ξ1+x2ξ2+x3|ξ|

α]f̂(ξ) dξ,

where x = (x1, x2, x3) ∈ R3 and ξ = (ξ1, ξ2) ∈ R2. Setting x′ = (x1, x2) and
regarding x3 as the temporal variable t = x3, we have

(2.1) U(t)f(x′) = Tf(x).

Remark 2.3. The general d-dimensional counterpart of (2.1) is defined
in the same way, with xd+1 in place of x3, and (x1, x2) and (ξ1, ξ2) replaced
by (x1, . . . , xd) and (ξ1, . . . , ξd). This will only be used in Lemma 2.11 below,
which is proved for general dimensions.

Now we can state Bourgain–Guth’s inequality which will be used to con-
trol the oscillatory integral Tf(x) in terms of {Tfτ}τ , where f̂τ is supported
in a much smaller region Ωτ ⊂ I.
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Lemma 2.4. If supp f̂ ⊂ I and 1 � K � R, then for any ε > 0 we
have the following estimate on the cylinder B(0, R)× [0, R] ⊂ R2+1:

|Tf(x)| . Rε max
1/K≥δ>1/

√
R

max
Eδ

[ ∑
Ωτ∈Eδ

(
ψτ

3∏
j=1

|Tfτj |1/3
)2]1/2

(2.2)

+Rε max
E1/√R

[ ∑
Ωτ∈E1/√R

(ψτ |Tfτ |)2
]1/2

,(2.3)

where f̂τj is supported in Ωτj for j = 1, 2, 3, and

• Eδ consists of at most (1/δ)1+ε disjoint δ × δ-squares Ωτ ;
• {Ωτj}3j=1 is a triple of non-collinear δ/K × δ/K-squares inside Ωτ ;

• for each τ , ψτ is a non-negative function on R3 which is constant on
unit cubes centered at points of Z3 and satisfies

(2.4)
1

|B|

�

B

ψτ (x)4 dx . Rε

for all B in a tiling of R3 with C∗τ -boxes.

Remark 2.5. A triplet (Ωτ1 , Ωτ2 , Ωτ3) in Ωτ is said to be non-collinear
if

(2.5) |ξτ1 − ξτ2 | ≥ |ξτ1 − ξτ3 | ≥ dist(ξτ3 , `(ξτ1 , ξτ2)) > 103α2α/K,

where ξj is the center of Ωτj for j = 1, 2, 3 and `(ξτ1 , ξτ2) is the line through
ξτ1 and ξτ2 . Consequently, the caps Cτ1 , Cτ2 , Cτ3 are transversal, that is, the
exterior normal vectors to these three caps are linearly independent, uni-
formly with respect to the variables belonging to Ωτj for j = 1, 2, 3. We
refer to [BCT] for the precise description of the transversality condition (see
also Section 3). This condition is required for the multilinear restriction
estimate established in [BCT], and frequently used in [B3, BG].

Remark 2.6. This lemma is established in the spirit of Bourgain and
Guth, but it differs from [BG] in two respects. First, the non-collinearity
condition is reformulated in (2.5) to handle general α > 1. Second, the
scales of the caps and dual caps depend on α already. The absence of the
algebraic structure of the symbol |ξ|α for general α > 1 will lead to some
difficulties in the deduction of (2.2)–(2.3) as well as the application of this
inequality in the proof of Theorem 1.1. These obstacles make our argument
more complicated than in [B3].

Remark 2.7. If f̂τ is supported in a square Ωτ of size δ, |Tfτ (x)| can
be regarded essentially as a constant on each C∗τ -box. We call this the local
constancy property, indicated in [BG].
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This inequality allows us to gain the transversality condition in each
term of the summation (2.2) by losing only an Rε factor. This is favorable
especially in proving some non-endpoint estimates. We also point out that
the precise cardinality of Eδ will not be used in the proof of Theorem 1.1.
We will prove Lemma 2.4 in Section 5.

2.3. A primary reduction of the problem. By Littlewood–Paley’s
theory, Sobolev embedding and Hölder’s inequality, Theorem 1.1 amounts
to showing that for any ε > 0, there is a Cα,ε such that

(2.6)
∥∥∥ sup
0<x3<1

|Tf(·, x3)|
∥∥∥
L2(B(0,1))

≤ Cα,εR3/8+ε‖f‖2

for f̂(ξ) supported in {ξ ∈ R2 | R/2 ≤ |ξ| ≤ 2R} with R large enough.
After rescaling, (2.6) reduces to

(2.7)
∥∥∥ sup
0<x3<Rα

|Tf(·, x3)|
∥∥∥
L2(B(0,R))

≤ Cα,εR3/8+ε‖f‖2, supp f̂ ⊂ I.

When α = 2, it was observed by Lee [L] that to get (2.7), it suffices to
prove it with the supremum taken only for 0 < x3 < R. This simplifies the
problem significantly so that the result of s > 3/8 can be deduced for d = 2.
This reduction is also necessary for the argument in [B3]. We extend this
result to all α > 1 by proving the following lemma.

Lemma 2.8. Suppose that for any ε > 0, there exists Cε > 0 such that

(2.8)
∥∥∥ sup
0<x3<R

|Tf(·, x3)|
∥∥∥
L2(B(0,R))

≤ CεR3/8+ε‖f‖2

for R sufficiently large and supp f̂ ⊂ {ξ ∈ R2 | 3/8 ≤ |ξ| ≤ 17/8}. Then
(2.7) holds.

Remark 2.9. Intuitively, one might expect that the x3-interval over
which the supremum in (2.8) is taken should be (0, Rα/2). Although this
can be deduced easily by modifying our argument slightly, we will lose more
derivatives in Theorem 1.1 if we use (2.8) with 0 < x3 < Rα/2. The loss of
derivatives forces the s in (1.1) to rely heavily on α, and this will confine
α to a small range in order to improve Sjölin’s result. However, our result
can be strengthened so that s is independent of α thanks to Lemma 2.8.
We point out that the global maximal inequality is α-dependent. See [R] for
details.

Remark 2.10. Heuristically, the idea behind this lemma can be ex-
pressed in terms of propagation speed. If the frequency of the initial data
f is localized in I, then the propagation speed of U(t)f can be morally re-
garded as finite. Suppose R is large enough so that f is mainly concentrated
in B(0, R). If one waits at a position in B(0, R) for the maximal amplitude
of the solution to occur during the time period 0 < t < Rα, then by the finite
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speed of propagation, this maximal amplitude can be expected to happen
before time R. This heuristic intuition is justified by the following lemma.

Lemma 2.11. Let supp f̂(ξ) ⊂ I and j = 0, 1, . . . , [Rα−1], tj = jR.
Set Ij = [tj , tj+1) for j < [Rα−1] and I[Rα−1] = [t[Rα−1], R

α). Denote x =
(x′, xd+1) where x′ = (x1, . . . , xd) and take ϕ ∈ C∞0 (B(0, 2R)) such that
ϕ(x′) = 1 on B(0, R). Then for any ε > 0, there is a Cα, ε > 0 and a family
{fj}j of functions satisfying

supp f̂j ⊂ {ξ ∈ Rd | 1/2− 1/R ≤ |ξ| ≤ 2 + 1/R} =: I1/R,

such that for xd+1 ∈ Ij,

(2.9) ϕ(x′)Tf(x) = ϕ(x′)χIj (xd+1)Tfj(x
′, xd+1 − tj) +Oα,ε(R−99d‖f‖2),

or equivalently, viewing xd+1 = t ∈ Ij,

(2.10) ϕ(x′)U(t)f(x′) = ϕ(x′)χIj (t)U(t− tj)fj(x′) +Oα,ε(R−99d‖f‖2).

Moreover, there exists a positive constant cd > 0 such that

(2.11)
∥∥∥([Rα−1]∑

j=0

|fj |2
)1/2∥∥∥

2
≤ Cα,εRεcd‖f‖2.

To prove this lemma, we introduce a localization argument which allows
us to regard a Schwartz function with compact Fourier frequencies as a
smooth cut-off function by losing Rε. That is why we have to lose Rεcd in
(2.11), but this is suitable for our purposes.

Remark 2.12. In our proof, fj is constructed by localizing Tf(x, tj)
with Schwartz functions. This leads to a 1/R-enlargement of I in the fre-
quency space, but this does not affect the use of this lemma.

We end this section by showing that Lemma 2.8 follows from Lemma
2.11.

Proof of Lemma 2.8. In view of (2.10), for d = 2 we have

ϕ(x′)|Tf(x′, x3)| .α,ε ϕ(x′)

[Rα−1]∑
j=0

|χIj (x3)Tfj(x′, x3 − tj)|+R−198‖f‖2.

Choosing R large enough and neglecting R−198‖f‖2, we obtain

sup
0<x3<Rα

|ϕ(x′)Tf(x)|2 .α,ε

[Rα−1]∑
j=0

sup
0<x3−tj<R

|ϕ(x′)Tfj(x
′, x3 − tj)|2.

Integrating both sides of the above inequality on B(0, R), we may estimate
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the left side of (2.7) by([Rα−1]∑
j=0

∥∥∥ sup
0<x3−tj<R

|ϕ(x′)Tfj(x
′, x3 − tj)|

∥∥∥2
2

)1/2
.

Using (2.8) and (2.11), we obtain

(2.7) .α,ε R
3/8+ε‖f‖2.

Remark 2.13. In proving (2.8), we always fix an ε > 0 first and then
take R large, which may depend on ε, α and ‖f‖2. This allows us to elim-
inate as many error terms as possible by repeatedly using the localization
argument.

Remark 2.14. In fact, the original proof of [L, Lemma 2.1] for the clas-
sical Schrödinger equation works for the generalized case as well. Moreover,
the proof of [LR, Lemma 2.1] can be used to get rid of the ε loss.

3. Proof of the main result. Now we are in a position to prove The-
orem 1.1. For any fixed ε > 0, we normalize ‖f‖2 = 1. In light of Lemmas
2.4 and 2.8, (2.8) amounts to obtaining the following two estimates for R
large enough:∑

1/
√
R<δ<1/K
δ dyadic

[ ∑
Ωτ : δ×δ

∥∥∥ψτ 3∏
j=1

|Tfτj |1/3
∥∥∥2
L2(|x′|<R)L∞(|x3|<R)

]1/2
. R3/8+ε,(3.1)

[ ∑
Ωτ : 1/

√
R×1/

√
R

∥∥ψτ |Tfτ |∥∥2L2(|x′|<R)L∞(|x3|<R)

]1/2
. R3/8+ε,(3.2)

where x′ = (x1, x2) and Ωτ : δ × δ refers to the partition of I1/8 into the
union of δ × δ-squares.

By orthogonality, it suffices to prove

�

|x′|<R

sup
|x3|<R

∣∣∣ψτ 3∏
j=1

|Tfτj |1/3
∣∣∣2(x′, x3) dx′ .ε R

3/4+2ε‖fτ‖22,(3.3)

�

|x′|<R

sup
|x3|<R

(ψτ |Tfτ |)2(x′, x3) dx′ .ε R
3/4+2ε‖fτ‖22,(3.4)

where fτ is defined as f̂τ = f̂χΩτ .

3.1. The proof of (3.3). For brevity, we set Gτ1,τ2,τ3 =
∏3
j=1 |Tfτj |1/3

in (3.3), where (τ1, τ2, τ3) corresponds to the squares (Ωτ1 , Ωτ2 , Ωτ3) with the
properties of Lemma 2.4. Let ξτ be the center of Ωτ . Then we may assume
ξτ = (0, |ξτ |) due to the invariance of (3.3) under orthogonal transforma-
tions. Let Cτ be the δ-cap associated to Ωτ , and C∗τ be the polar set of Cτ .
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After tiling B(0, R)× [0, R] ⊂ R3 with C∗τ -boxes, we have

B(0, R)× [0, R] ⊂
⋃
j,k

Bj,k

whereBj,k is a C∗τ -box labeled by j and k, with j corresponding to the horizon-
tal translation and k to the vertical one (see Figure 1). Adopting the notation
of [B3], we denote the projection of each Bj,k to the (x1, x2)-variables by
Ij = πx′(Bj,k). Let Px′ be the plane through the point (x′, 0) and perpendicu-

lar to the x2-direction. We define Jx
′

k = πx3(Bj,k ∩Px′). Then |Jx′k | ∼ 1/δ for
all x′ and k . For Ij , it is easy to see that the length of the side in the direction
of x1 is approximately 1/δ, and the side in the x2-direction has length 1/δα.

x1

O

Px′

x3

Bj,kJx
′

k

Ij = πx′(Bj,k) x2

Fig. 1. The C∗τ -box Bj,k

By Hölder’s inequality and `3 ↪→ `∞, we have∑
j

‖ψτGτ1,τ2,τ3‖2L2
x′ (Ij)L

∞(|x3|<R)(3.5)

≤ δ−(1+α)/3
∑
j

‖ψτGτ1,τ2,τ3‖2L3
x′ (Ij)L

∞(|x3|<R)

≤ δ−(1+α)/3
∑
j

max
k
‖ψτGτ1,τ2,τ3‖2L3

x′ (Ij)L
∞
x3

(Jx
′

k )

≤ δ−(1+α)/3
∑
j

[∑
k

‖ψτGτ1,τ2,τ3‖3L3
x′L
∞
x3

(Bj,k)

]2/3
.

Using (2.4) and Remark 2.7, we obtain

‖ψτGτ1,τ2,τ3‖L3
x′L
∞
x3

(Bj,k)

. ‖ψτ‖L3
x′L
∞
x3

(Bj,k)

(
1

|Ij |

�

Ij

(
1

|Jx′k |

�

Jx
′

k

|Gτ1,τ2,τ3(x′, x3)|3 dx3
)2/3

dx′
)1/2

. |Ij |−1/2|Jk|−1/3‖ψτ‖L3
x′L

4
x3

(Bj,k)
‖Gτ1,τ2,τ3‖L2

x′L
3
x3

(Bj,k)
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. |Ij |1/3−1/4−1/2|Jk|−1/3‖ψτ‖L4(Bj,k)‖Gτ1,τ2,τ3‖L2
x′L

3
x3

(Bj,k)

. δ−(1+α)(1/3−3/4)+1/3Rε|Bj,k|1/4‖Gτ1,τ2,τ3‖L2
x′L

3
x3

(Bj,k)

. Rεδ1/4+α/6‖Gτ1,τ2,τ3‖L2
x′L

3
x3

(Bj,k)
,

where, in the second inequality, we have used the fact that ψτ is constant
on unit cubes. This allows us to control the L∞ norm of ψτ with respect to
the x3-variable on Jx

′
k by the L4 norm.

Plugging this into (3.5), by Minkowski’s inequality we get

|(3.5)| . δ−(1+α)/3
∑
j

[∑
k

R3εδ3/4+α/2‖Gτ1,τ2,τ3‖3L2
x′L

3
x3

(Bj,k)

]2/3
. R2εδ1/6

∑
j

�

Ij

(∑
k

�

Jx
′

k

|Gτ1,τ2,τ3 |3(x′, x3) dx3
)2/3

dx′

. R2εδ1/6‖Gτ1,τ2,τ3‖2L2(|x′|<R)L3(|x3|<R).(3.6)

Remark 3.1. In (3.6), α is absent from the exponent of δ and R. How-
ever, the role of α is encoded in the estimation of

(3.7) ‖Gτ1,τ2,τ3‖2L2(|x′|<R)L3(|x3|<R).

To handle this expression, Bourgain used a Galilean transformation to shift
the center of the domain for the integral Tfν to the origin when α = 2.
We cannot directly use this due to the absence of the algebraic structure of
|ξ|α for general α > 1. To adapt his strategy, we get around this obstacle
by using Taylor’s expansion. We also use a localization argument as in the
proof of Lemma 2.11.

It remains to evaluate (3.7). Let us introduce some notation. Define

Tδ,τh(x1, x2, x3) =
�

R2

ei[x1η1+x2η2+x3Φ(ξ
τ ,λ0,α,δ,η)]χ(η)ĥ(η) dη,

where χ is a smooth function adapted to the unit square Ω and

Φ(ξτ , λ0, α, δ, η) =
α

2
|ξτ |α−2(η21 + (α− 1)η22) +Θ(η)δ|η|3,

Θ(η) =
α(α− 2)

6
|ξτ + δηλ0|α−3

[
3〈ξτ + δηλ0, η〉+ (α− 4)〈ξτ + δηλ0, η〉3

]
,

with λ0 ∈ (0, 1).

Let ĝδτν (η) = δf̂τν (ξτ + δη) and consider Taylor’s expansion of |ξτ + δη|α
at ξτ up to the third order. For some λ0 ∈ (0, 1) we have

|Tfτν (x1, x2, x3)| = δ
∣∣Tδ,τ (gδτν )

(
δx1, δ(x2 + x3α|ξτ |α−1), δ2x3

)∣∣.
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Using Hölder’s inequality in x2 and making the change of variables

(x1, x2, x3)→ (δ−1y1, δ
−1y2, δ

−2y3),

we get

‖Gτ1,τ2,τ3‖2L2(|x′|<R)L3(|x3|<R)

.
�

|x′|<R

( �

|x3|<R

3∏
ν=1

δ
∣∣Tδ,τ (gδτν )

(
δx1, δ(x2 + αx3|ξτ |α−1), δ2x3

)∣∣ dx3)2/3 dx′
. δ2R1/3

�

|x1|<2R

( � �

|x3|<R
|x2|<α2αR

3∏
ν=1

|Tδ,τ (gδτν )(δx1, δx2, δ
2x3)| dx2 dx3

)2/3
dx1

. δ2R1/3
�

|y1|<2δR

( � �

|y3|<δ2R
|y2|<α2αδR

3∏
ν=1

|Tδ,τ (gδτν )(y1, y2, y3)|
dy2
δ

dy3
δ2

)2/3 dy1
δ
.

Partitioning the range of y1 into consecutive intervals Iµ as

(−2δR, 2δR) =
⋃
µ

Iµ, |Iµ| = δ2R,

we get

‖Gτ1,τ2,τ3‖2L2(|x′|<R)L3(|x3|<R)

. R1/3δ−1
∑
µ

�

Iµ

∥∥∥ 3∏
ν=1

Tδ,τ (gδτν )(y1, ·, ·)
∥∥∥2/3
L1(|y2|<α2αδR; |y3|<δ2R)

dy1.

Applying Hölder’s inequality with respect to y1 on each Iµ and then decom-
posing the interval for y2 similarly as

(−2δR, 2δR) =
⋃
µ′

Iµ′ , |Iµ′ | = δ2R,

we obtain

(3.8) ‖Gτ1,τ2,τ3‖2L2(|x′|<R)L3(|x3|<R)

. R2/3δ−1/3
∑
µ

(∑
µ′

�

y2∈Iµ′

dy2
� �

y1∈Iµ
|y3|<δ2R

3∏
ν=1

|Tδ,τ (gδτν )(y1, y2, y3)| dy1 dy3
)2/3

. R2/3δ−1/3
∑
µ,µ′

∥∥∥ 3∏
ν=1

Tδ,τ (gδτν )
∥∥∥2/3
L1(Qµ,µ′×[−δ2R,δ2R])

,

where Qµ,µ′ = Iµ × Iµ′ is a δ2R× δ2R-square.
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To evaluate ∥∥∥ 3∏
ν=1

Tδ,τ (gδτν )
∥∥∥
L1(Qµ,µ′×[δ2R,δ2R])

,

we need to introduce a localization argument based on Poisson summation
with respect to the (y1, y2)-variables.

Denote the center of Qµ,µ′ by y′µ,µ′ , which belongs to δ2RZ2 =: Z. Choose

a Schwartz function β ≥ 0 such that supp β̂ ⊂ B(0, 1/2) ⊂ R2 and β̂(0) = 1.
For all z ∈ R2 we have

(3.9) δ2ε
∑

y′
µ,µ′∈Z

β

(
y′µ,µ′ − z
δ2−εR

)
= 1.

Fix y′µ0, µ′0
∈ Z and define

K(y′, y3, z) =
�

R2
η

ei[〈y
′−z,η〉+y3Φ(ξτ ,λ0,α,δ,η)]χQµ0,µ′0

(y′)χ(η) dη.

Then

|χQµ0,µ′0 (y′)Tδ,τ (gδτν )(y′, y3)| . F1 + F2,(3.10)

where

F1 = δ2ε
∣∣∣∣ �K(y′, y3, z)

∑
y′
µ,µ′∈Z

|y′
µ,µ′−y

′
µ0,µ

′
0
|≤δ2R1+ε

β

(
y′µ,µ′ − z
δ2−εR

)
gδτν (z) dz

∣∣∣∣,

F2 = δ2ε
∣∣∣∣ �K(y′, y3, z)

∑
y′
µ,µ′∈Z

|y′
µ,µ′−y

′
µ0,µ

′
0
|>δ2R1+ε

β

(
y′µ,µ′ − z
δ2−εR

)
gδτν (z) dz

∣∣∣∣.
First,

F2 ≤ F2,1 + F2,2,

where

F2,1 = δ2ε
�

|z−y′
µ0,µ

′
0
|

≤α24αδ2R1+ε1

|K(y, z)|
∑

zµ,µ′∈Z2

|zµ,µ′−y′µ0,µ′0
/δ2R|>Rε

β

(
δε
(
zµ,µ′ −

z

δ2R

))
|gδτν (z)| dz,

F2,2 = δ2ε
�

|z−y′
µ0,µ

′
0
|

>α24αδ2R1+ε1

|K(y, z)|
∑

zµ,µ′∈Z2

|zµ,µ′−y′µ0,µ′0
/δ2R|>Rε

β

(
δε
(
zµ,µ′ −

z

δ2R

))
|gδτν (z)| dz,

with zµ,µ′ = y′µ,µ′δ
−2R−1 and ε1 = 0.01ε.
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Since R can be chosen so large that Rε � α24α > 1, in F2,1 we have∣∣∣∣zµ,µ′ − z

δ2R

∣∣∣∣ ≥ ∣∣∣∣zµ,µ′ − y′µ0,µ′0
δ2R

∣∣∣∣− ∣∣∣∣ z

δ2R
−
y′µ0,µ′0
δ2R

∣∣∣∣ ≥ R0.9ε

2
.

Hence

(3.11)
∑

|zµ,µ′−y′µ0,µ′0
/δ2R|>Rε

δ2εβ

(
δε
(
zµ,µ′ −

z

δ2R

))

is bounded by

δ2ε
�

|z|>R0.9ε/2

β(δεz) dz .N

�

|z|>0.5(δR0.9)ε

(1 + |z|)−N dz.

Noting that δ > R−1/2, for suitably large N depending on ε we have

(3.11) .ε R
−2000.

By Cauchy–Schwarz’s inequality in z and the boundedness of ‖K(y, ·)‖2,

F2,1 .ε R
−2000

� ∣∣K(y′, y3, z)g
δ
τν (z)

∣∣ dz .ε R
−2000‖gδτν‖2.

To estimate F2,2, in view of (3.9) we write

(3.12) F2,2 ≤
�

|z−y′
µ0,µ

′
0
|>α24αδ2R1+ε1

|K(y′, y3, z)| · |gδτν (z)| dz.

Since y′ is restricted to the 2δ2R-neighborhood of y′µ0,µ′0
, we have

|y′ − z| − |y3∇ηΦ(ξτ , λ0, α, δη)|
≥ |z − y′µ0,µ′0 | − |y

′ − y′µ0,µ′0 | − |y3∇ηΦ(ξτ , λ0, α, δη)|

& α24αδ2R1+ε1 − 2δ2R− α23αδ2R & α2α−1δ2R1+ε1 .

By introducing the differential operator

D =
y′ − z + y3∇ηΦ
|y′ − z + y3∇ηΦ|2

· ∇η,

we may estimate K(y′, y3, z) in F2,2 using integration by parts to get

K(y′, y3, z) .N |y′ − z|−N .

Inserting this into (3.12) and using Cauchy–Schwarz, for suitable N = N(ε1)
we have

F2,2 .α,ε R
−2000‖gδτν‖2.

Consequently, the contribution of F2 to (3.10) is negligible.
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Now, let us evaluate the contribution of F1. For brevity, we denote

Bµ0,µ′0(z) =
∑

y′
µ,µ′∈Z

|y′
µ,µ′−y

′
µ0,µ

′
0
|≤δ2R1+ε

β

(
y′µ,µ′ − z
δ2−εR

)
.

From the definition of ĝδτν , we have

supp ̂Bµ0,µ′0g
δ
τν ⊂

1

δ
(Ωτν − ξτ ) +O(1/Rε/2).

Note that we may choose K � Rε/2, and non-collinearity still holds for the

supports of { ̂Bµ0,µ′0g
δ
τν}

3
ν=1. The main contribution to∥∥∥ 3∏
ν=1

Tδ,τ (gδτν )
∥∥∥
L1(Qµ,µ′×[−δ2R,δ2R])

comes from

δ2ε
∥∥∥ 3∏
ν=1

Tδ,τ (Bµ,µ′g
δ
τν )
∥∥∥
L1(Qµ,µ′×[−δ2R,δ2R])

.(3.13)

For the ε > 0 at the beginning of this section, we claim that

(3.14)
∥∥∥ 3∏
ν=1

Tδ,τ (Bµ,µ′g
δ
τν )
∥∥∥
L1(Qµ,µ′×[−δ2R,δ2R])

.ε R
ε

3∏
ν=1

‖Bµ,µ′gδτν‖L2 .

We postpone the proof of (3.14) to Subsection 3.3. At present, we show how
(3.14) implies (3.3). Using (3.8), (3.14) and Hölder’s inequality, we obtain

(3.6) . R2/3+3εδ1/6−1/3
3∏

ν=1

(∑
µ,µ′

‖Bµ,µ′gδτν‖
2
L2

)1/3
.

From the definition of Bµ,µ′ , by Cauchy–Schwarz we have

(3.15)
∑
µ,µ′

�
|Bµ,µ′(z)gδτν (z)|2 dz

≤ R2ε
∑
µ,µ′

∑
y′0∈Z

|y′0−y′µ,µ′ |≤δ
2R1+ε

�

R2

∣∣∣∣β(y′0 − zδ2−εR

)
gδτν (z)

∣∣∣∣2 dz

≤ R2ε
∑
y′0∈Z

ry′0

�

R2

∣∣∣∣β(y′0 − zδ2−εR

)
gδτν (z)

∣∣∣∣2 dz,
where

ry′0 = #
{
y′µ,µ′ ∈ Z | |y′0 − y′µ,µ′ | ≤ δ2R1+ε

}
. R2ε.
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Invoking 1/δ <
√
R, we get

(3.15) . R4εδ−4ε
� [
δ2ε

∑
y′0∈Z

β

(
y′0 − z
δ2−εR

)
|gδτν (z)|

]2
dz

.

(
R

δ

)4ε

‖gδτν‖
2
2 . R6ε‖fτ‖22.

As a consequence, we have

(3.6) .ε R
3/4+9ε‖fτ‖22.

This implies (3.3) since ε > 0 can be taken arbitrarily small.

3.2. The proof of (3.4). Letting δ = 1/
√
R, we adopt the same argu-

ment as in Subsection 3.1 to obtain (3.6) with Tfτ in place of Gτ1,τ2,τ3 so
that �

|x′|<R

sup
|x3|<R

(ψτ |Tfτ |)2(x′, x3) dx′ .ε R
εδ1/6‖Tfτ‖2L2(|x′|<R)L3(|x3|<R),

where Ωτ is a 1/
√
R× 1/

√
R-square.

Denote ĝδτ (η) = δf̂τ (ξτ + δη). The previous argument yields�

|x′|<R

sup
|x3|<R

(ψτ |Tfτ |)2(x′, x3) dx′ .ε R
1/12+ε

∑
µ,µ′

‖Tδ,τ (gδτ )‖2L3(Qµ,µ′×[−1,1])
,

where Qµ,µ′ is a square with unit length. Invoking the definition of Tδ,τ (gδτ ),
we have

‖Tδ,τ (gδτ )‖L∞(Qµ,µ′×[−1,1]) ≤ ‖g
δ
τ‖2 ≤ ‖fτ‖2.

By Hölder’s inequality and Plancherel’s theorem, we obtain∑
µ,µ′

‖Tδ,τ (gδτ )‖2L3(Qµ,µ′×[−1,1])
. ‖fτ‖2/32

∑
µ,µ′

‖Tδ,τ (gδτ )‖4/3
L2(Qµ,µ′×[−1,1])

. ‖fτ‖2/32

(∑
µ,µ′

1
)1/3(∑

µ,µ′

‖Tδ,τ (gδτ )‖2L2(Qµ,µ′×[−1,1])

)2/3
. R2/3‖fτ‖2/32 ‖Tδ,τ (gδτ )‖4/3

L∞(|x3|<1)L2(|x′|≤R)
. R2/3‖fτ‖22.

Therefore (3.4) follows. Collecting (3.3) and (3.4), we conclude that (3.14)
implies (2.8). We shall prove (3.14) in the next subsection.

3.3. The proof of (3.14). To prove (3.14), we need the multilinear
restriction theorem of [BCT]. Since a special form of this theorem is sufficient
for our purposes, we formulate it only in this form.

Now we introduce some basic assumptions. Let U ⊂ Rd−1η be a compact

neighborhood of the origin and Σ : U → Rd be a smooth parametrization of
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a (d − 1)-hypersurface of Rd. For Uν ⊂ U and gν supported in Uν ⊂ Rd−1
with 1 ≤ ν ≤ d, assume that there is a constant µ > 0 such that

(3.16) det
(
X(η(1)), . . . , X(η(d))

)
> µ

for all η(1) ∈ U1, . . . , η
(d) ∈ Ud, where

X(η) =
d−1∧
k=1

∂

∂ηk
Σ(η), η = (η1, . . . , ηd−1).

Assume also that there is a constant A ≥ 0 such that

(3.17) ‖Σ‖C2(Uν) ≤ A for all 1 ≤ ν ≤ d.
For each 1 ≤ ν ≤ d and gν ∈ Lp(Uν), p ≥ 1, define

Sgν(x) =
�

Uν

eix·Σ(η)gν(η) dη.

Theorem 3.2. Under the assumption of (3.16) and (3.17), for each
ε > 0, q ≥ 2d/(d− 1) and p′ ≤ (d− 1)q/d, there is a constant C > 0,
depending only on A, ε, p, q, d, µ, such that

(3.18)
∥∥∥ d∏
ν=1

Sgν
∥∥∥
Lq/d(B(0,R))

≤ CεRε
d∏

ν=1

‖gν‖Lp(Uν)

for all g1, . . . , gd ∈ Lp(Rd−1) and all R ≥ 1.

Remark 3.3. We shall use (3.18) below with d = q = 3 and p = 2.

The proof of (3.14) amounts to showing

(3.19)
∥∥∥ 3∏
ν=1

|Tδ,τ (gδτν )|
∥∥∥
L1(B(0,λ))

≤ Cελε
3∏

ν=1

‖gδτν‖L2 , ∀λ > 0.

To prove (3.19), we use (3.18) with

S = Tδ,τ ,
Uν = δ−1(Ωτν − ξτ ) +O(1/Rε/2), ν = 1, 2, 3,

gν = ĝδτν

and
Σ : (η1, η2)→

(
η1, η2, Φ(ξτ , λ0, α, δ, η)

)
.

If Σ satisfies (3.16) and (3.17), then (3.19) follows immediately. Since the
smoothness condition (3.17) is clear from the definition of Φ, we only need
to show the transversality condition (3.16).

A simple calculation yields{
∂η1Σ =

(
1, 0, ∂η1Φ(ξτ , λ0, α, δ, η)

)
,

∂η2Σ =
(
0, 1, ∂η2Φ(ξτ , λ0, α, δ, η)

)
,
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where {
∂η1Φ = α|ξτ |α−2η1 + δ∂η1(Θ(η)|η|3),
∂η2Φ = α(α− 1)|ξτ |α−2η2 + δ∂η2(Θ(η)|η|3).

Since

Θ(η) =
α(α− 2)

6
|ξτ + δηλ0|α−3

[
3〈ξτ + δηλ0, η〉+ (α− 4)〈ξτ + δηλ0, η〉3

]
,

we have

∇η(Θ(η)|η|3) = Oα(1).

This along with δ ≤ 1/K � 1 allows us to write

X(η) =
(
α(α− 1)|ξτ |α−2η1, α|ξτ |α−2η2,−1

)
+Oα(1)(1/K, 1/K, 0),

hence

(3.20) det
(
X(ητ1), X(ητ2), X(ητ3)

)
= α2(α− 1)|ξτ |2(α−2)det

−1 −1 −1

ητ11 ητ21 ητ31
ητ12 ητ22 ητ32

+Oα(1/K).

In view of the non-collinearity of Ωτ1 , Ωτ2 , Ωτ3 , the area of the triangle
formed by ητ1 , ητ2 and ητ3 is uniformly bounded away from zero, or equiv-
alently, there is a C > 0 such that∣∣∣∣∣∣∣det

−1 −1 −1

ητ11 ητ21 ητ31
ητ12 ητ22 ητ32


∣∣∣∣∣∣∣ ≥ C

for all ητν ∈ Uν , ν = 1, 2, 3. Therefore, we can reorder the columns in (3.20)
to ensure

det

−1 −1 −1

ητ11 ητ21 ητ31
ητ12 ητ22 ητ32

 ≥ C > 0.

Next, we take K large enough so that

(3.20) ≥ α2(α− 1)|ξτ |α−2C/2 > 0.

Consequently, we have (3.19), and this completes the proof of Theorem 1.1.

4. Proof of Lemma 2.11. Take η ∈ S(Rd) such that η ≥ 0 and η̂ is
supported in B(0, 1/2) with η̂(0) = 1. Denoting X = RZd, we have Poisson’s
summation formula ∑

xσ∈X
η

(
x− xσ

R

)
= 1, ∀x ∈ Rd.
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We adopt the notation of Lemma 2.11. First, noting that

U(t)f(x′) = U(t− tj)U(tj)f(x′),

we may write, for xd+1 ∈ (0, Rα),

(4.1) ψ(x′)Tf(x) =

[Rα−1]∑
j=0

�

Rd
χIj (xd+1)K(x, y; tj)Tf(y, tj) dy,

with

K(x, y; tj) =
�

Rd
ei[(x

′−y)·ξ+(xd+1−tj)|ξ|α]ψ(x′)χ(ξ) dξ,

where χ ∈ C∞c (Rd) with χ(ξ) ≡ 1 for ξ ∈ I1/R. Without loss of generality, we

may assume xd+1 belongs to Ij for some j ∈ {0, . . . , [Rα−1]}. Using Poisson’s
summation formula, we have

(4.1) = J1 + J2,

where

J1 =
∑
yσ∈X

|yσ |≥10R1+ε

�

Rd
K(x, y; tj)η

(
y − yσ

R

)
Tf(y, tj) dy,

J2 =
∑
yσ∈X

|yσ |<10R1+ε

�

Rd
K(x, y; tj)η

(
y − yσ

R

)
Tf(y, tj) dy.

4.1. The estimation of J1. We have

J1 ≤ J1,1 + J1,2,

where

J1,1 :=
�

|y|≤α2α+2R

|K(x, y; tj)|
∑

yσ∈X, |yσ |≥10R1+ε

η

(
y − yσ

R

)
|Tf(y, tj)| dy,

J1,2 :=
�

|y|>α2α+2R

|K(x, y; tj)| |Tf(y, tj)| dy.

We show J1 is negligible by estimating the contributions of J1,1 and J1,2
separately.

• Estimation of J1,1. It is easy to see that

|J1,1| ≤
�

|y|≤α2α+2R

∑
z∈Zd, |z|≥10Rε

η

(
y

R
− z
)
|K(x, y; tj)| |Tf(y, tj)| dy.
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Since Rε � α2α+1 > 1, |y| ≤ α2α+2R and η ∈ S(Rd), we have∑
z∈Zd, |z|≥10Rε

η

(
y

R
− z
)

.N

�

|x|>5Rε

(
1 +

∣∣∣∣ yR − x
∣∣∣∣)−N dx .N R−ε(N−d).

Choosing N ≈ 100d/ε+ d, we obtain∣∣∣∣ ∑
|z|≥10Rε

η

(
y

R
− z
)∣∣∣∣ .ε R

−100d.

By Cauchy–Schwarz and (2.1),

|J1,1| .ε R
−100d‖Fy→ξK(x, ·, tj)‖L2

ξ
‖Tf(·, tj)‖L2

y
.ε R

−100d‖f‖2.

Thus J1,1 is negligible.

• Estimation of J1,2. First, the phase function of K(x, y; tj) reads

Φ(x, y, ξ, tj) := (x′ − y) · ξ + (xd+1 − tj)|ξ|α.
Thus the critical points of Φ(x, y, ξ, tj) occur only when

y = x′ + (xd+1 − tj)α|ξ|α−2ξ.
Since Rε � α2α+1 > 1 and

|x′| ≤ 2R, 0 < xd+1 − tj < R, |y| ≥ α2α+2R,

by the triangle inequality we have

|∇ξΦ| ≥ |y| − |x′| − α2α−1|xd+1 − tj | ≥ |y| − α2α+1R ≥ R.
Using integration by parts, we may estimate K(x, y; tj) in J1,2 by

|K(x, y; tj)| .α ψ(x′)(|y| − α2α+1R)−100d.

As a consequence,

|J1,2| .α ψ(x′)R−99d‖f‖2.
Hence this term is also negligible.

4.2. The estimation of J2. Rewrite J2 as

J2 = ψ(x′)
�
ei[x

′·ξ+(xd+1−tj)|ξ|α]χ(ξ)f̂j(ξ) dξ = ψ(x′)Tfj(x
′, xd+1 − tj),

where

(4.2) fj(y) =
∑

yσ∈X, |yσ |<10R1+ε

η

(
y − yσ

R

)
Tf(y, tj).

This gives the first term on the right side of (2.10). It suffices to show that
the fj ’s defined by (4.2) satisfy (2.11).

To do this, we first perform some reductions. Let {ξ(k)}k be a family
of maximal R1−α-separated points of I1/R and cover I1/R with essentially
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disjoint balls B(ξ(k), R1−α). This covering admits a partition of unity∑
k

ϕk(ξ) = 1,

where ϕk is a smooth function supported in B(ξ(k), R1−α). Hence f =∑
k f(k) and fj =

∑
k fj,(k) for j ∈ {0, . . . , [Rα−1]}, where

f̂(k)(ξ) = f̂(ξ)ϕk(ξ) and f̂j,(k)(ξ) = f̂j(ξ)ϕk(ξ)

are all supported in B(ξ(k), R1−α). By Plancherel’s theorem and almost or-
thogonality, it suffices to find some cd > 0 such that

(4.3)

[Rα−1]∑
j=0

‖fj,(k)‖22 ≤ CεRεcd‖f(k)‖22,

with Cε > 0 independent of k.

Without loss of generality, we only deal with the case k = 0 and suppress
the subscript k in f(k) and fj,(k) for brevity. As a result, we may assume

supp f̂ ⊂ B(ξ(0), R1−α) in the following argument and normalize ‖f‖2 = 1.
By Cauchy–Schwarz, we have

|fj(y)|2 . R2dε
∑

yσ∈X, |yσ |<10R1+ε

η

(
y − yσ

R

)2

|Tf(y, tj)|2.

Integrating with respect to y and summing over j, we obtain∑
j

‖fj‖22 . R2dε
∑
j

∑
yσ∈X, |yσ |<10R1+ε

�
η

(
y − yσ

R

)2

|Tf(y, tj)|2 dy.(4.4)

Invoking the definition of Tf(y, tj), we can write

Tf(y, tj) = I1 + I2,

where

I1 :=
�

Ωcy,j

K(y, z; tj)f(z) dz, I2 :=
�

Ωy,j

K(y, z; tj)f(z) dz,

K(y, z; tj) :=
�
ei[(y−z)·ξ+tj |ξ|

α]χ(ξ) dξ,

Ωy,j :=
{
z ∈ Rd

∣∣ ∣∣z − y − αtj |ξ(0)|α−2ξ(0)∣∣ < α2α+2R
}
.

Thus, it suffices to evaluate the contributions of I1 and I2 to (4.4).

• The contribution of I1. Since |ξ − ξ(0)| ≤ R1−α and |tj | ≤ Rα, we
have∣∣∇ξ[(y − z) · ξ + tj |ξ|α]

∣∣ ≥ |z − (y + αtj |ξ(0)|α−2ξ(0))| − α2αR ≥ α2α+1R.
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This allows us to use integration by parts to evaluate

|K(y, z; tj)| .N

∣∣z − (y + αtj |ξ(0)|α−2ξ(0))
∣∣−N .

Choosing N large enough, we see that the contribution of I1 to (4.4) is
bounded by

R2εd
∑
j

∑
yσ∈X, |yσ |≤10R1+ε

�

Rd
η

(
y − yσ

R

)2

|I1|2 dy

.N R3εd
∑
j

sup
yσ

�

Rd
η

(
y − yσ

R

)2 �

Ωcy,j

∣∣z − (y + αtj |ξ(0)|α−2ξ(0))
∣∣−2N dz dy

.N R3εd−2N+2d+α−1 .ε R
−200d.

• The contribution of I2. We use Poisson’s summation formula with
respect to z-variable in I2 to get∑

j

∑
yσ∈X, |yσ |≤10R1+ε

�

Rd
η

(
y − yσ

R

)2∣∣∣ �

Ωy,j

K(y, z; tj)f(z) dz
∣∣∣2 dy ≤ L1 + L2,

where

L1 =
∑
j

∑
yσ∈X

|yσ |≤10R1+ε

�

Rd
η

(
y−yσ

R

)2∣∣∣∣ ∑
z0∈X
z0 /∈A(y)

�

Ωy,j

η

(
z−z0
R

)
K(y, z; tj)f(z) dz

∣∣∣∣2dy,
L2 =

∑
j

∑
yσ∈X

|yσ |≤10R1+ε

�

Rd
η

(
y−yσ

R

)2∣∣∣∣ ∑
z0∈X
z0∈A(y)

�

Ωy,j

η

(
z−z0
R

)
K(y, z; tj)f(z) dz

∣∣∣∣2dy,
A(y) =

{
z0 ∈ X

∣∣ ∣∣z0 − (y + αtj |ξ(0)|α−2ξ(0))
∣∣ ≤ 10R1+ε

}
.

Now, we show L1 is also negligible. In fact, since∣∣z0 − (y + αtj |ξ(0)|α−2ξ(0))
∣∣ > 10R1+ε

and ∣∣z − (y + αtj |ξ(0)|α−2ξ(0))
∣∣ < α2α+2R,

by taking R so large that Rε � α2α+2 we have

|z − z0| ≥
1

2

∣∣z0 − (y + αtj |ξ(0)|α−2ξ(0))
∣∣.

Under the above conditions, we obtain∑
z0∈X\A(y)

η

(
z − z0
R

)
.N RN

∑
z0∈X\A(y)

∣∣z0 − (y + αtj |ξ(0)|α−2ξ(0))
∣∣−N

.N R−(N−d)(1+ε).
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Choosing

N ≈ 1

2ε
(200d+ α+ 1),

and using Cauchy–Schwarz as before, we get

L1 .N R−2εN+2d(1+ε)

×
∑
j

∑
|yσ |≤10R1+ε

�

Rd
η

(
y − yσ

R

)2( �

Ωy,j

|K(y, z; tj)f(z)| dz
)2
dy

.N R−2εN+5d+α−1 .ε R
−100d.

Thus the contribution of L1 is negligible.

Next, we turn to the evaluation of L2. This term contains the non-trivial
contribution to (4.4). First, applying Cauchy–Schwarz’s inequality to the
summation with respect to z0, we have

L2 . Rεd(H1 +H2),

where for γ = 1, 2,

Hγ =
∑
j

∑
|yσ |≤10R1+ε

∑
z0∈A(y)

�

Rd
η

(
y − yσ

R

)2

×
∣∣∣∣ �

Ωγy,j,z0

η

(
z − z0
R

)
K(y, z; tj)f(z) dz

∣∣∣∣2 dy
with

Ω1
y,j,z0 = Ωy,j ∩B(z0, R

1+ε), Ω2
y,j,z0 = Ωy,j \B(z0, R

1+ε).

• The evaluation of H1. Since

|tj − tj+1| = R, j = 0, . . . , [Rα−1]− 1,

at most Rε of the Ωy,j ’s intersect B(z0, R
1+ε). Denote by χ1 the character-

istic function of B(z0, R
1+ε). Applying Plancherel’s theorem to H1 yields

H1 . Rε max
j

∑
z0∈X

�

Rd

∣∣∣∣ � � ei[(y−z)·ξ+tj |ξ|α]χΩy,jη(z − z0R

)
χ1(z)f(z) dz dξ

∣∣∣∣2 dy
. Rε max

j

∑
z0∈X

�

Rd

∣∣∣∣ � ei(y·ξ+tj |ξ|α)Fz→ξ(χΩy,jη( · − z0R

)
χ1f(·)

)
(ξ) dξ

∣∣∣∣2 dy
. Rε

∑
z0∈X

�

Rd

[
η

(
z − z0
R

)
χ1(z)|f(z)|

]2
dz . Rε.
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• The evaluation of H2. Since η ∈ S(Rd), we have

H2 .N R2εd sup
yσ

∑
j

�

Rd
η

(
y − yσ

R

)
sup
z0

∣∣∣∣ �

|z−z0|≥R1+ε

∣∣∣∣z − z0R

∣∣∣∣−N |f(z)| dz
∣∣∣∣2 dy

.N R−ε(N−d)+d+α−1 .ε R
εd.

Collecting all the estimations of I1, L1 and H1, we eventually get (2.11),
and this completes the proof of Lemma 2.11.

Remark 4.1. After finishing this work, we were informed by Profes-
sor Sanghyuk Lee that Lemma 2.11 can be deduced without losing Rε by
adapting the argument for the temporal localization Lemma 2.1 in [CLV].
We have however decided to include our method since it exhibits different
techniques which are interesting in their own right.

5. Proof of Lemma 2.4. The proof is divided into three parts. First, we
establish an auxiliary result (Lemma 5.1). Second, we deduce an inductive
formula with respect to different scales by exploiting the self-similarity of
Lemma 5.1. Finally, we iterate this inductive formula to get Lemma 2.4.

5.1. An auxiliary lemma. Let us begin with an outline of the main
steps. First, we partition the support of f̂ into the union of 1/K × 1/K-
squares with K � R. Then we rewrite Tf(x) as a superposition of solutions
of the linear Schrödinger equation, where each initial datum is frequency-
localized in one of these squares. The oscillatory integral Tf(x) can be trans-
formed into an exponential sum, where the fluctuations of the coefficients
on every box Qa,K of size K1−ε ×K1−ε ×K1−ε are so slight that they can
be viewed essentially as constant on each such box.

Next, we partition B(0, R)× [0, R] ⊂ R3 into the union of disjoint Qa,K ’s
and estimate the exponential sum on each Qa,K . In doing so, we encounter
three possibilities. For the first one, we will have the transversality condition
so that the multilinear restriction theorem of [BCT] can be applied. When
the transversality fails, we consider the other two possibilities. For this part,
we use more information from geometric structures along with Córdoba’s
square function estimates [Co]. Now, let us turn to details.

We partition I into the union of disjoint 1/K×1/K-squares Ων , centered
at ξν ,

I ⊂
⋃
ν

Ων .

Then, we rewrite Tf(x) as an exponential sum

Tf(x) =
∑
ν

Tνf(x)eiφ(x,ξν),
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where φ(x, ξ) = x1ξ1 + x2ξ2 + x3|ξ|α and

Tνf(x) =
�

Ων

ei[φ(x,ξ)−φ(x,ξν)]f̂(ξ) dξ.

• The local constancy of Tνf(x). From a direct computation, T̂νf(y)
is supported in

{y ∈ R3 | y = (y1, y2, y3), |yj | ≤ 1/K, j = 1, 2, 3}.

If we take a smooth radial function η̂(ω) such that η̂(ω) = 1 for |ω| < 2 and
η̂(ω) = 0 for |ω| > 4, ω ∈ R3, then

T̂νf(ω) = T̂νf(ω)η̂K(ω)

for ηK(x) = K−3η(K−1x). Consequently, Tνf = Tνf ∗ ηK .

Let Qa = Qa,K be a K1−ε ×K1−ε ×K1−ε-box centered at a ∈ K1−εZ3.
Then

B(0, R)× [0, R] ⊂
⋃
a

Qa,

where the union is taken over all a such that Qa ∩ (B(0, R) × [0, R]) 6= ∅.
Denote by χa the characteristic function of Qa. For x ∈ Qa, making the
change of variables x = x̃+ a with x̃ ∈ Q0,K , we have

|Tνf(x)| =
∣∣∣ � τ−a(Tνf)(z)ηK(x̃− z) dz

∣∣∣
≤

�
|τ−a(Tνf)(z)| sup

x̃∈Q0,K

|ηK(x̃− z)| dz =: ca,ν .

Thus, we associate to any Qa the sequence {ca,ν}ν .

Noting that

|∇xφ(x, ξ)−∇xφ(x, ξν)| ≤ 1/K, ∀ξ ∈ Ων ,

one easily derives the uniform estimate

|Tνf(x′)− Tνf(x′′)| ≤ ‖fν‖2/K, ∀|x′ − x′′| < K.

In particular, |Tνf(x)| deviates from ca,ν by only ‖fν‖2/K whenever x ∈ Qa.
The local constancy trick can also be regarded as an extension of the

Shannon–Nyquist sampling theorem of [T]. From

Tνf(x) =
�
Tνf(x−Ky)η(y) dy,

and since
	
η = 1, we see that Tνf(x) is essentially an average on the ball

B(x,K) up to Schwartz tails. From the uncertainty principle, |Tνf(x)| is
essentially constant on the boxes Qa,K . We refer to [T] for the standard
exposition of this issue. Thus, whenever x ∈ Qa, we may regard Tνf(x)
as cν,a.
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In the preparations, we set K1−ε to be the side length of Qa,K where ε
is necessary for a technical reason so that the local constancy holds. How-
ever, to simplify the notation, we will suppress this small ε in the following.
Keeping this in mind, we next classify the Qa’s into three categories.

• The classification of {Qa}a. Let A consist of all a associated to the
boxes Qa as above. We will write A as the union of Aj for j = 1, 2, 3 with
Aj ⊂ A defined as follows.

Let c∗a = maxν ca,ν and ξν∗a be the center of the square Ων∗ associated
to c∗a. We define A1 ⊂ A so that a ∈ A1 if and only if there exist ν1, ν2, ν3 ∈
{1, . . . ,∼ K2} with

min{ca,ν1 , ca,ν2 , ca,ν3} > K−4c∗a,

and ξν1 , ξν2 , ξν3 are non-collinear in the sense that

|ξν1 − ξν2 | ≥ |ξν1 − ξν3 | ≥ dist(ξν3 , `(ν1, ν2)) > 103α2α/K,(5.1)

where `(ν1, ν2) is the straight line through ξν1 , ξν2 .

Next, we take 1 � K1 � K � R and define A2 ⊂ A so that a ∈ A2 if
and only if

(5.2) |ξν − ξν∗a | > 4/K1 ⇒ ca,ν ≤ K−4c∗a.

Let A3 = (A \ A1) ∩ (A \ A2). Then A ⊂ A1 ∪ A2 ∪ A3.

We claim that if a ∈ A3, then there exists a ν∗∗a such that ca,ν∗∗a > K−4c∗a
and

(5.3) |ξν∗∗a − ξν∗a | > 4/K1,

and moreover

(5.4) dist(ξν , `(ν
∗, ν∗∗)) > 103α2αK1/K ⇒ ca,ν ≤ K−4c∗a.

Thus, {Qa}a is classified according to a being in A1, A2 or A3.

Since the first part of the claim is clear from the definition of A3, it
suffices to show (5.4). Suppose there is an a ∈ A3 for which (5.4) fails; then
there is a ν such that ca,ν > K−4c∗a but

(5.5) dist(ξν , `(ν
∗
a , ν
∗∗
a )) > 103α2αK1/K.

We claim (5.5) implies that ξν , ξν∗a and ξν∗∗a satisfy (5.1). Hence a ∈ A1,
which contradicts A1 ∩ A3 = ∅.

To prove the claim, we consider the following two alternatives due to
symmetry:

Case 1: min{|ξν − ξν∗∗a |, |ξν − ξν∗a |} ≤ |ξν∗a − ξν∗∗a |,

Case 2: min{|ξν − ξν∗∗a |, |ξν − ξν∗a |} > |ξν∗a − ξν∗∗a |.
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For Case 1, assuming |ξν − ξν∗a | ≤ |ξν − ξν∗∗a | without loss of generality, we
deduce (5.1) immediately from

|ξν∗a − ξν∗∗a | ≥ |ξν − ξν∗a | ≥ dist
(
ξν , `(ν

∗
a , ν
∗∗
a )
)

> 103α2αK1/K > 103α2α/K.

ξν∗∗a

h

ξν∗a

H

ξν

Fig. 2. The triangle 4ξνξν∗a ξν∗∗a

For Case 2, we may assume |ξν∗a − ξν∗∗a | < |ξν − ξν∗a | ≤ |ξν − ξν∗∗a | by
symmetry and consider the triangle 4ξνξν∗aξν∗∗a (Figure 2), with

H = dist(ξν , `(ν
∗
a , ν
∗∗
a )), h = dist(ξν∗a , `(ν, ν

∗∗
a )).

Considering the measure of 4ξνξν∗aξν∗∗a , from (5.3) we get

h =
|ξν∗a − ξν∗∗a |
|ξν∗∗a − ξν |

H ≥ 4

K1
· 103K1

K
α2α · 1

4
> 103

α2α

K
,

where we have used |ξν∗∗a − ξν | ≤ 4, and hence (5.1) follows.

• An auxiliary lemma. The following lemma exhibits once more the
spirit of Bourgain–Guth’s method, namely the failure of non-coplanar inter-
actions implies small Fourier supports with possible additional separation
structures.

Lemma 5.1. Let B(0, R)× [0, R] ⊂
⋃
aQa be as before. On each Qa we

have

|Tf(x)| . K8 max
ν1,ν2,ν2

non-collinear

( 3∏
j=1

|Tνjf(x)|
)1/3

(5.6)

+ max
µ

∣∣∣ �
Ω̃µ

eiφ(x,ξ)f̂(ξ) dξ
∣∣∣(5.7)

+K2
1 max

L1,L2⊂La
dist(L1,L2)>1/K1

2∏
j=1

∣∣∣ ∑
Ων⊂Lj

eiφ(x,ξν)Tνf(x)
∣∣∣1/2(5.8)

+K3
1K
−1/2

( ∑
Ων⊂La

|Tνf(x)|2
)1/2

,(5.9)
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where Ω̃µ is a 1/K1 × 1/K1-square centered at ξµ ∈ I, and La is the
(α2α103K1/K)-neighborhood of the line `(ν∗a , ν

∗∗
a ) =: `∗a. The two separated

portions L1,L2 of La are obtained by intersecting La with some Ω̃µ1 and

Ω̃µ2 respectively.

Proof. For x ∈ Qa, we estimate |Tf(x)| in different ways depending on
whether a is in A1, A2 or A3. If a ∈ A1, from the definition of A1 we have

|Tf(x)|3 ≤ (K2c∗a)
3 ≤ K6K12ca,ν1ca,ν2ca,ν3

≤ K18
∑

ν1,ν2,ν3
non-collinear

3∏
j=1

|Tνjf(x)|

≤ K24 max
ν1,ν2,ν3

non-collinear

3∏
j=1

|Tνjf(x)|.

If a ∈ A2, we use (5.2) for A2 to estimate Tf(x). For brevity, we define
‖ξ‖ = max{|ξ1|, |ξ2|} for ξ ∈ R2 and let

Ω∗ =
⋃
{Ων | ‖ξν − ξν∗a‖ ≤ 10/K1}.

Then Ω∗ is a 10/K1 × 10/K1-square with center ξν∗a . We may write

|Tf(x)| ≤
∣∣∣ ∑
‖ξν−ξν∗a‖≤10/K1

eiφ(x,ξν)Tνf(x)
∣∣∣+
∣∣∣ ∑
‖ξν−ξν∗a‖>10/K1

eiφ(x,ξν)Tνf(x)
∣∣∣

≤
∣∣∣ ∑
‖ξν−ξν∗a‖≤10/K1

�

Ων

eiφ(x,ξ)f̂(ξ) dξ
∣∣∣+

∑
|ξν−ξν∗a |>4/K1

|Tνf(x)|

≤ 100 max
Ω̃µ⊂Ων∗a

∣∣∣ �
Ω̃µ

eiφ(x,ξ)f̂(ξ) dξ
∣∣∣+K2K−4c∗a

. (5.7) + (5.9).

If a ∈ A3, we write

Tf(x) = D1 + D2,

where

Dj = χa(x)
�

Dj

eiφ(x,ξ)f̂(ξ) dξ, j = 1, 2,

with

D1 = {ξ | dist(ξ, `∗a) > α2α104K1/K},
D2 = {ξ | dist(ξ, `∗a) ≤ α2α104K1/K}.
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From (5.4), we have

|D1| .
∑

ξν : dist(ξν ,`∗a)>α2
α103K1/K

|eiφ(x,ξν)Tνf(x)| ≤ K2K−4c∗a ≤ (5.9).

To evaluate D2, we assume without loss of generality

supp f̂ ⊂ {ξ ∈ R2 | dist(ξ, `∗a) ≤ α2α104K1/K}.
Let {Ω̃µ}µ be a family of disjoint 1/K1×1/K1-squares such that I ⊂

⋃
µ Ω̃µ.

For any x ∈ Qa, we define

cµ(x) =
�

Ω̃µ

eiφ(x,ξ)f̂(ξ) dξ.

Let
Ha =

{
x ∈ Qa

∣∣∣ ‖Tf(x)| ≤ 108 max
µ
|cµ(x)|

}
.

Then
|D2| ≤ |Tf(x)|χHa(x) + |Tf(x)|χQa\Ha(x),

where the first term is bounded by (5.7). To handle the second term, we
observe that x ∈ Qa \ Ha implies

(5.10) |cµ(x)| ≤ 10−8|Tf(x)|, ∀µ.
Set

J (x) =

{
µ

∣∣∣∣ 10−1

K2
1

|Tf(x)| ≤ |cµ(x)| ≤ 10−8|Tf(x)|, x ∈ Qa \ Ha
}
.

We have #J (x) ≥ 107 for all x ∈ Qa \ Ha. Indeed, suppose #J (x0) < 107

for some x0; then

(5.11) |Tf(x0)| ≤
∑

µ∈J (x0)

|cµ(x0)|+
∑

µ6∈J (x0)

|cµ(x0)|.

Because of (5.10), we can bound the right side of (5.11) by

107 × 10−8|Tf(x0)|+K2
1 ·

10−1

K2
1

|Tf(x0)| <
1

5
|Tf(x0)|,

which is impossible. Noting that the centers of {Ω̃µ}µ are 1/K1-separated,
we can choose µ1, µ2 ∈ J (x) (x-dependent) such that

dist(Ω̃µ1 , Ω̃µ2) ≥ 104/K1

and
|Tf(x)| ≤ 10K2

1 min{|cµ1(x)|, |cµ2(x)|}, x ∈ Qa \ Ha.
It follows that

(5.12) |Tf(x)|χQa\Ha(x) ≤ 10K2
1

2∏
j=1

∣∣∣ �

Ω̃µj

eiφ(x,ξ)f̂(ξ) dξ
∣∣∣1/2,
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where µ1 and µ2 might depend on x. Now in view of (5.2),

(5.13) |cµj (x)| ≤
∣∣∣ ∑

Ων⊂Ω̃µj
dist(ξν ,`∗a)≤α2α103K1/K

�

Ων

eiφ(x,ξ)f̂(ξ) dξ
∣∣∣+K2K−4c∗a.

Thus

(5.14) |Tf(x)|χQa\Ha(x)

≤ 10K2
1

[ 2∏
j=1

∣∣∣ ∑
Ων⊂Lj

eiφ(x,ξν)Tνf(x)
∣∣∣1/2+(2K−2c∗a

∑
Ων⊂La

|Tνf(x)|
)1/2

+K−2c∗a

]
,

where Lj = Ω̃µj ∩La with La the α2α103K1/K-neighborhood of `∗a. Noting
that

c∗a ≤
( ∑
Ων⊂La

|Tνf(x)|2
)1/2

and ∑
Ων⊂L

|Tνf(x)| .α K1K
1/2
( ∑
Ων⊂La

|Tνf(x)|2
)1/2

,

the last two terms in (5.14) are bounded by

K3
1K
−1/2

( ∑
Ων⊂La

|Tνf(x)|2
)1/2

.

Therefore,

|D2| . (5.7) + (5.8) + (5.9).

This completes the proof of Lemma 5.1.

5.2. A self-similar iterative formula. The formula we deduce in this
part is the engine for the iterative process to prove the fractional order
Bourgain–Guth inequality. Let Ωτ be a δ-square centered at ξτ , and let

Ωτ
ν = {ξ ∈ R2 | ‖ξ − (ξτ + dξν)‖ < δ/K},

Ω̃τ
µ = {ξ ∈ R2 | ‖ξ − (ξτ + dξµ)‖ < δ/K1}.
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Denote f̂τ,ν = f̂ ·χΩτν . We prove the following iterative formula from scale δ
to δ/K for all a ∈ A:

|Tτf |(x) . K8 max
ν1,ν2,ν3

non-collinear

3∏
j=1

‖Tfτ,νj (x)|1/3(5.15)

+ ψτ (x)
( ∑
Ωτν⊂Lτ

|Tfτ,ν(x)|2
)1/2

(5.16)

+ max
µ

∣∣∣ �

Ω̃τµ∩Ωτ

ei[ξ·x
′+x3|ξ|α]f̂(ξ) dξ

∣∣∣(5.17)

for all x ∈ T ∗a , where

T ∗a := {x ∈ R3 | |x1 − a1| < K/δ, |x2 − a2| < K/δ, |x3 − a3| < K/δα},

Lτ is the δ/K-neighborhood of a line segment, and ψτ is a function satisfying

(5.18)

(
1

|B|

�

B

ψτ (x)4 dx

)1/4

. K2α
1 ,

where B is a KC∗τ -box centered at a.

To deduce (5.15)–(5.18), we need the following estimate, which is a stan-
dard square function estimate going back to Córdoba [Co]. The crucial
L4-estimate is used in [BG] to tackle the worst scenario by exploiting the
separation of the line segments in which the frequencies are localized. This
part of frequencies corresponds to the terms of main contributions.

Lemma 5.2. For any a ∈ A and all x ∈ Qa,

(5.19)

(
1

|Qa|

�

Qa

|(5.8) + (5.9)|4 dx
)1/4

. K2α
1

( ∑
Ων⊂L

|Tνf(x)|2
)1/2

,

where the implicit constant is independent of a.

Remark 5.3. This observation is crucial for the iteration in the next
subsection. To prove (5.19), we rely heavily on the 104/K1-separation of
the segments L1,L2. Since we are dealing with a fractional order symbol,
the proof is more intricate than that in [BG], where the algebraic structure
simplifies the proof significantly.

Proof of Lemma 5.2. We need to estimate the L4-average of (5.8) and
(5.9) over Qa. Since on every Qa, |Tνf(x)| can be viewed as a constant, we
immediately get(

1

|Qa|

�

Qa

(5.9)4 dx

)1/4

. K3
1

( ∑
Ων⊂L

|Tνf(x)|2
)1/2

.
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Next, we estimate (5.8). First, we have

(5.20)
�

Qa

max
L1,L2⊂La

dist(L1,L2)≥104/K1

2∏
j=1

∣∣∣ ∑
Ων⊂Lj

eiφ(x,ξν)Tνf(x)
∣∣∣2 dx

≤
∑

L1,L2⊂La
dist(L1,L2)≥104/K1

�

Qa∩SL1,L2

2∏
j=1

∣∣∣ ∑
Ων⊂Lj

eiφ(x,ξν)Tνf
∣∣∣2 dx

where

SL1,L2 =
{
x
∣∣∣ (5.8) ≤ 2

∣∣∣ ∑
Ων⊂L1

eiφ(x,ξν)Tνf(x)
∣∣∣1/2∣∣∣ ∑

Ων⊂L2

eiφ(x,ξν)Tνf(x)
∣∣∣1/2},

and the summation in (5.20) is taken over all pairs of 104/K1-separated
subsegments of La. Since there are at most K2

1 such pairs, it suffices to
estimate each term in the summation. Take a Schwartz function ρ ≥ 0 such
that ρ̂ is compactly supported and ρa(x) := ρ((x− a)/K) = 1 for all x ∈ Qa,

(5.21)
�

Qa∩SL1,L2

2∏
j=1

∣∣∣ ∑
Ων⊂Lj

eiφ(x,ξν)Tνf(x)
∣∣∣2 dx

≤
�

R3

2∏
j=1

∣∣∣ρa(x)
∑

Ων⊂Lj

eiφ(x,ξν)Tνf(x)
∣∣∣2 dx

≤
∑

Ων1 ,Ων2⊂L1
Ων′1

,Ων′2
⊂L2

∣∣∣ �
R3

[ρaTν1f · ρaTν2f · ρaTν′1f · ρaTν′2f ](x)e
iΨ(x,ξν1 ,ξν2 ,ξν′1

,ξν′2
)
dx
∣∣∣,

where

Ψ(x, ξν1 , ξν2 , ξν′1 , ξν′2) = φ(x, ξν1)− φ(x, ξν2)− φ(x, ξν′1) + φ(x, ξν′2).

Considering the support of the function

ρ̂a ∗ T̂ν1f ∗ ρ̂a ∗ T̂ν2f ∗ ρ̂a ∗ T̂ν′1f ∗ ρ̂a ∗ T̂ν′2f,

we may restrict the summation to those quadruples ν1, ν2, ν
′
1, ν
′
2 such that

(5.22)

{
|ξν1 − ξν2 − ξν′1 + ξν′2 | . 1/K,∣∣|ξν1 |α − |ξν2 |α − |ξν′1 |α + |ξν′2 |

α
∣∣ . 1/K.

Denote `∗a = Rv + b, where v, b ∈ R2 with |v| = 1, |b| ≤ 4 and v ⊥ b. Since
ξν1 , ξν2 , ξν′1 and ξν′2 lie in the α2α103K1/K-neighborhood of `∗a, there are t1,

t2, t
′
1 and t′2 such that for j = 1, 2, we have

|ξνj − tjv − b| ≤ α2α103K1/K, |ξν′j − t
′
jv − b| ≤ α2α103K1/K.
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In view of (5.22) and the 104/K1-separation of L1 and L2, we have

|t1 − t2| < 2/K1, |t′1 − t′2| < 2/K1, |t1 − t′1| > 104/K1,(5.23)

|t1 − t2 − t′1 + t′2| . K1/K,(5.24)

|ϕ(t1)− ϕ(t2)− ϕ(t′1) + ϕ(t′2)| . K1/K,(5.25)

where ϕ(t) := (t2 + |b|2)α/2.
We claim that (5.23)–(5.25) imply

(5.26) |t1 − t2| . Kα
1 /K, |t′1 − t′2| . Kα

1 /K.

As a consequence, we may deduce that

|ξν1 − ξν2 | . Kα
1 /K, |ξν′1 − ξν′2 | . Kα

1 /K,

which implies

(5.21) . K4α
1

∑
Ων⊂L1, Ων′⊂L2

�

Qa

|Tfν |2|Tfν′ |2(x) dx.

Summing up (5.21) with respect to pairs of (L1,L2) we obtain, from the
local constancy of the |Tνf |(x)’s,

�

Qa

(5.8)4 dx . K4α+2
1

�

Qa

( ∑
Ων⊂L

|Tfν(x)|2
)2
dx

. K4α+2
1 |Qa|

( ∑
Ων⊂L

|Tfν(x)|2
)2
, ∀x ∈ Qa.

This proves (5.19).
To prove the claim (5.26), we need to consider the following two possi-

bilities:

t1 < t2 < t′1 < t′2 and t1 < t2 < t′2 < t′1.

In view of (5.24), the second possibility implies

|t1 − t2|+ |t′1 − t′2| . K1/K.

Then (5.26) follows immediately. It is thus sufficient to handle the first
possibility. To do this, we consider the following three cases.

• t1 < t2 < 0 < t′1 < t′2. For this case, from (5.25) we have

(5.27) |ϕ(t1)− ϕ(t2)|+ |ϕ(t′1)− ϕ(t′2)| . K1/K.

By the triangle inequality and (5.23), we have either t′1 > 103/K1 or t2 <
−103/K1. We only handle the case when t′1 > 103/K1 since the other case
is exactly the same. We apply the mean value theorem to ϕ(t) to get a t∗
with t′1 < t∗ < t′2 such that

K1

K
& |ϕ(t′1)− ϕ(t′2)| & α|t∗|α−1|t′1 − t′2| &

α

Kα−1
1

|t′1 − t′2|.
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Hence
|t′1 − t′2| .α K

α
1 /K.

By the triangle inequality again and (5.24), we obtain

|t1 − t2| .α K
α
1 /K.

• t1 < 0 < t2 < t′1 < t′2. First, we always have t′ > 103/K1 in this case.
If t1 < −t2, we also get (5.27), so (5.26) follows immediately as above. For
−t2 ≤ t1, from (5.25) we have

(5.28)
∣∣|ϕ(t1)− ϕ(t2)| − |ϕ(t′1)− ϕ(t′2)|

∣∣ . K1/K.

Suppose |t1− t2| � Kα
1 /K; then |t′1− t′2| � Kα

1 /K by (5.23). Moreover, we
have

(5.29)
1

2
|t′1 − t′2| ≤ |t1 − t2| ≤ 2|t′1 − t′2|.

By the mean value theorem, there are t∗ ∈ (t1, t2) and t′∗ ∈ (t′1, t
′
2) with

t′∗ > max{103/K1, t∗ + 103/K1} such that

K1

K
& |(ϕ(t′2)− ϕ(t′1))− (ϕ(t2)− ϕ(t1))|

� α
Kα

1

K
(|t′∗|α−1 − |t∗|α−1)� α

K1

K
,

which is impossible since α > 1 and K1 � 1.

• 0 < t1 < t2 < t′1 < t′2. This can be reduced to the above two cases,
and thus the proof of (5.19) is complete.

Here, another observation made by Bourgain and Guth [BG] is that as
a consequence of (5.19), for x ∈ Qa one can define ψ(x) by writing

(5.8) + (5.9) = ψ(x)
( ∑
Ων⊂L

|Tfν(x)|2
)1/2

.

Clearly ψ is non-negative and

(5.30)

(
1

|Qa|

�

Qa

ψ(x)4 dx

)1/4

. K2α
1 .

To see this is possible, one only needs to apply the local constancy of Tνf(x)’s
so that ψ(x) can be defined on each ball of radius K due to (5.19). Then we
glue all the pieces of ψ(x) on the balls together. By an averaging argument
and the local constancy of (5.8) + (5.9) and of the functions Tνf(x) on each
Qa,K box, we may assume ψ(x) is constant on unit cubes centered at lattice
points.

Remark 5.4. By writing (5.8) + (5.9) as a product of an appropriate ψ
and a square function, we may iterate this part step by step in the subsequent
context to generate the items having transversality structures corresponding
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to all the dyadic scales. This is one of the brilliant ideas due to Bourgain
and Guth, which is applied in [B3] and [BG] as a substitution of Wolff’s
induction on scale technique.

Substituting (5.8) + (5.9) in Lemma 5.1 for

ψ(x)
( ∑
Ων⊂L

|Tfν(x)|2
)1/2

,

we obtain

|Tf(x)| . K8 max
ν1,ν2,ν2

non-collinear

( 3∏
j=1

|Tνjf(x)|
)1/3

(5.31)

+ ψ(x)
( ∑
Ων⊂L

|Tfν(x)|2
)1/2

(5.32)

+ max
µ

∣∣∣ �
Ω̃µ

eiφ(x,ξ)f̂(ξ) dξ
∣∣∣.(5.33)

Now, we are ready to prove (5.15)–(5.18). Observe that Tf(x) is controlled

in terms of Tfν ’s with f̂ν supported in a square of size 1/K, whereas f̂ is

supported in a region of size 1. Thus it is natural to scale each f̂ν to be a
function ĝν such that supp ĝν is of size 1. After applying (5.31)–(5.33) to
each Tgν , we rescale the estimates on Tgν back to the original size 1/K.
More generally, this process can be carried out with Tfτ in place of Tf on
the left side of (5.31), where f̂τ is supported in a square of size δ.

Proof of (5.15)–(5.18). Let f̂τ = f̂ |Ωτ and x ∈ T ∗a = a+Qδ0,K , with

Qδ0,K = {x | (δx1, δx2, δαx3) ∈ Q0,K}.

Making the change of variables

(5.34) x′ = a′ + x̃′/δ, x3 = a3 + x̃3/δ
α, ξ = ξτ + δη,

where ξτ is the center of Ωτ , and x̃ ∈ Q0,K , we have

χT ∗a (x)Tfτ (x) = χQ0,K
(x̃)

�

Ω

ei[x̃
′·η+x̃3|η|α]ĝτ,δa (η) dη(5.35)

= χQ0,K
(x̃)T (gτ,δa )(x̃),

with

ĝτ,δa (η)

= ei[δa
′·η+a3δα|η|α+(a′+x̃′/δ)·ξτ+(a3+x̃3/δα)(|ξτ+δη|α−|δη|α)]δ2f̂τ (ξτ + δη)χΩ(η).

Now that ĝτ,δa is supported in a square of size 1, we can apply (5.31)–(5.33)
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to (5.35) with x̃ ∈ Q0,K to obtain

|T (gτ,δa )(x̃)| . K8 max
ν1,ν2,ν3

non-collinear

3∏
j=1

|Tνj (gτ,δa )(x̃)|1/3(5.36)

+ ψ(x̃)
( ∑
Ων⊂L

|Tν(gτ,δa )(x̃)|2
)1/2

(5.37)

+ max
µ

∣∣∣ �
Ω̃µ

eiφ(x̃,ξ)ĝτ,δa (η) dη
∣∣∣.(5.38)

Rescaling the ĝτ,δa in (5.36)–(5.38) back to f̂τ by using (5.34) and setting
η = (ζ − ξτ )/δ we obtain

(5.39) |χQ0,K
(x̃)Tν(gτ,δa )(x̃)| =

∣∣∣ �

‖η−ξν‖<1/K

ei[x̃
′·η+x̃3|η|α]ĝτ,δa (η) dη

∣∣∣
=
∣∣∣ �

‖ζ−(ξτ+dξν)‖<δ/K

ei[ζ·(a
′+x̃/δ)+(a3+x̃3/δα)|ζ|α]f̂τ (ζ) dζ

∣∣∣
=
∣∣∣ �

‖ζ−(ξτ+dξν)‖<δ/K

ei[ζ·x
′+x3|ζ|α]f̂τ (ζ) dζ

∣∣∣, x ∈ T ∗a .

From (5.35), (5.36) and (5.39), we get (5.15)–(5.17) on T ∗a .

Since

ψτ (x) = ψ
(
δ(x1 − a1), δ(x2 − a2), δα(x3 − a3)

)
, ∀x ∈ T ∗a ,

we obtain (5.18) from (5.30).

5.3. Iteration and the end of proof. This part follows closely the
ideas of Bourgain and Guth [BG]; however, we provide more explicit cal-
culations during the iteration process so that this marvelous idea can be
grasped even by novice readers. It is hoped that this robust machine will be
upgraded, so that further improvements seem possible in this area.

Let 1� K1 � K � R. From Lemma 5.1, we have

|Tf(x)| . K8 max
Ωτ1 ,Ωτ2 ,Ωτ3 : 1/K-cubes

non-collinear

3∏
j=1

|Tτjf(x)|1/3(5.40)

+ ψ(x)
[ ∑

Ωτ⊂L
Ωτ : 1/K-cubes

|Tτf(x)|2
]1/2

(5.41)

+ max
Ω̃τ̃ : 1/K1-cubes

|Tτ̃f(x)|,(5.42)
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where ψ is approximately constant on unit boxes and obeys(
1

|Qa|

�

Qa

ψ(x)4 dx

)1/4

. K2α
1

for any Qa.

Noting that (5.40) involves a triple product of |Tτjf |1/3 with j = 1, 2, 3,
we say this term is of type I. The term (5.41) is a product of a suitable
function ψ and an `2 sum of {Tτf}τ , and we call it a term of type II. The
term (5.42) is an `∞ norm of {Tτ̃f}τ̃ , and we call it of type III. In each
step of the iteration below, we will encounter plenty of terms belonging to
type I, II and III from the previous step. These are called newborn terms.
We add the newborn terms of type I to the type I terms of the previous
generations and keep on iterating all the newborn terms of type II and III
to get the next generation of type I, II and III terms. This is the iterating
mechanism.

To be more precise, we apply (5.15)–(5.17) to Tτf in (5.41) with δ = 1/K,
and to Tτ̃f in (5.42) with δ = 1/K1. This is exactly the first step of the
iteration. After this, we obtain terms of type I, II and III generated by

(5.41) and (5.42). In each type of the terms, the supports of f̂τ ’s could be
of the scales like

1

K2
,

1

KK1
or

1

K2
1

.

Adding the newborn terms of type I to the previous type I terms, we repeat
the same argument as in the first step to all the terms of type II and type III
to get the second generation. This process is continued with newborn terms
of type I added to the previous type I terms until the scale of the support

of f̂τ in the terms of type II and type III becomes 1/
√
R. Finally, we obtain

a collection of type I terms at different scales and a remainder consisting
of type II and III terms at scale 1/

√
R, which is controlled by (2.3). This

yields (2.2) and (2.3).

Now, we present the explicit computation for the first step. Applying
(5.15)–(5.17) to (5.41) with δ = 1/K, by Minkowski’s inequality we have

ψ(x)
( ∑
Ωτ⊂L

|Tτf(x)|2
)1/2

(5.43) . K8
[ ∑
Ωτ⊂L

(
max

Ωτ⊃Ω
τ
(1)
1

,Ω
τ
(1)
2

,Ω
τ
(1)
3

(x)

non-collinear 1/K2-squares

ψ
3∏
j=1

|T
τ
(1)
j

f |1/3
)2]1/2

(x)
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+
[ ∑
Ωτ⊂L

∑
L(1)⊃Ω

τ(1)

1/K2-squares

(ψψτ |Tτ (1)f |)
2
]1/2

(x)(5.44)

+
( ∑
Ωτ⊂L

ψ2 max
Ω̃
τ̃(1)
⊂Ωτ

1/(K1K)-squares

|Tτ̃ (1)f |
2
)1/2

(x),(5.45)

where the superscript in τ (k) denotes the kth step of the iteration.

Denoting ψ:τ (1): = ψψτ , we need to verify that for any ε > 0,

1

|C∗τ |

�

C∗τ

ψ(x)4 dx . Rε,(5.46)

1

|C∗
τ (1)
|

�

C∗
τ(1)

ψ:τ (1):(x)4 dx . Rε.(5.47)

To get (5.46), we use the boxes Qa to subdivide C∗τ so that

C∗τ ⊂
⋃
a

Qa ⊂ 2C∗τ .

Then (5.30) gives

1

|C∗τ |

�

C∗τ

ψ(x)4 dx .
1

|
⋃
aQa|

�
⋃
Qa

ψ(x)4 dx

. max
C∗τ⊂Qa⊂2C∗τ

1

|Qa|

�

Qa

ψ(x)4 dx . K8α
1 � Rε.

To verify (5.47), we note that C∗
τ (1)

is a K2×K2×K2α-box in the direction of
the normal vector of the surface at ξτ (1) . It follows that C∗

τ (1)
can be covered

as follows:

C∗
τ (1)
⊂
⋃
τ

B∗τ ⊂ 2C∗
τ (1)

where B∗τ is a KC∗τ -box. Then

(5.48)
1

|C∗
τ (1)
|

�

C∗
τ(1)

ψ4ψ4
τ (x) dx . max

B∗τ⊂2C∗
τ(1)

1

|B∗τ |

�

B∗τ

ψ4ψ4
τ (x) dx.

To estimate the right side, we let {Bρ}ρ be a collection of essentially disjoint
C∗τ -boxes such that

B∗τ ⊂
⋃
ρ

Bρ ⊂ 2B∗τ .
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Since ψτ is approximately constant on each Bρ, we have
�

B∗τ

ψ(x)4ψτ (x)4 dx .
∑
ρ

[ �

Bρ

ψ(x)4 dx
]
(ψτ |Bρ)4,(5.49)

. K8α
1

∑
ρ

(ψτ |Bρ)4|Bρ| . K8α
1

�

B∗τ

ψτ (x)4 dx

. K16α
1 |C∗τ | � Rε|C∗τ |,

where we have used (5.18), (5.46) and the fact that Bρ is a C∗τ -box. This
along with (5.48) proves (5.47).

Next, we apply (5.15)–(5.17) to (5.42) with δ = 1/K1, and obtain

|(5.42)| . max
Ω̃τ : 1/K1-squares

K8 max
Ω̃τ̃⊃Ω

τ̃
(1)
1

,Ω
τ̃
(1)
2

,Ω
τ̃
(1)
3

non-collinear 1/(K1K)-squares

3∏
j=1

|T
τ̃
(1)
j

f |1/3(5.50)

+ max
Ω̃τ : 1/K1-squares

( ∑
Ω
τ̃(1)
⊂L(1)∩Ω̃τ̃

1/(K1K)-squares

ψ2
τ̃ |Tτ̃ (1)f |

2

)1/2

(5.51)

+ max
Ω̃τ : 1/K1-squares

max
Ω̃τ⊃Ω̃τ(1)

Ω̃
τ(1)

: 1/K2
1 -squares

|Tτ̃ (1)f |.(5.52)

We also have estimates on the L4-average akin to (5.46) and (5.47).

Remark 5.5. After the first step, if we already have

K2 ∼ KK1 ∼
√
R

then Lemma 2.4 is proved. However, this is not the case since 1 � K1 �
K � R. Therefore we have to use the above argument recursively to deduce
Lemma 2.4.

Noting that the scale for type I terms at the kth generation isK−m1K−m2
1

with m1,m2 ∈ Z, m1 +m2 = k+ 1, m1,m2 ≥ 0, we find the type I terms of
the kth stage from the previous (k−1)th stage are dominated by a k-fold sum( ∑
Ωτ⊂L

∑
Ω
τ(1)
⊂L(1)
· · ·

∑
Ω
τ(k)
⊂L(k)

max
Ω
τ
(k+1)
j

⊂Ω
τ(k)

, j=1,2,3

Ω
τ
(k+1)
j

: 1/Kk+1-squares

non-collinear

ψ2
:τ (k):

( 3∏
j=1

|T
τ
(k+1)
j

f |
)2/3)1/2

+
∑

mixed scales

,

where the summation over mixed scales represents the cases when m2 ≥ 1.
For brevity, we only write out the case when m2 = 0 explicitly; the other
cases are similar. Noticing that in each fold of the sum, there are at most
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KK1 terms involved, the above expression can be controlled by

C(K) max
E
(1/K)k

[ ∑
Ω

(k)
τ ∈E(1/K)k(1+ε)

(
ψ:τ (k):

3∏
j=1

|T
τ
(k+1)
j

f |1/3
)2]1/2

+
∑

mixed scales

,

where we have adopted the notation of Lemma 2.4.

Cτ (`) C∗
τ (`)

Cτ (`−1)

KC∗
τ (`−1)

KBρ

Fig. 3. The boxes C∗
τ(`)

and KC∗
τ(`−1)

It remains to show
1

|C∗
τ (k)
|

�

C∗
τ(k)

ψ:τ (k):(x)4 dx . Rε for any ε > 0.

To prove this, we use induction on k. We observe that the L4-average of
ψ:τ (1): over C∗

τ (1)
is bounded by K4α

1 in the first step. Assuming the (`− 1)th
stage, we already have

(5.53)

(
1

|C∗
τ (`−1) |

�

C∗
τ(`−1)

ψ4
:τ (`−1):

)1/4

. K2 ` α
1 .

Since ψ:τ (`): = ψ:τ (`−1):ψτ (`) , we need to evaluate

(5.54)
1

|C∗
τ (`)
|

�

C∗
τ(`)

ψ4
:τ (`−1):

ψ4
τ (`)

(x) dx.
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Because the angle between the two normal vectors of Cτ (`−1) at ξτ (`−1) and
Cτ (`) at ξτ (`) is also controlled by 1/K (see Figure 3), we may construct a
cover of C∗

τ (`)
by KC∗

τ (`−1)-boxes as follows. Denote by {Bρ}ρ a collection of
C∗
τ (`−1)-boxes such that (see Figure 3)

C∗
τ (`)
⊂
⋃
ρ

KBρ ⊂ 2 C∗
τ (`)

.

On account of this, we can estimate

(5.54) . max
Bρ

1

|KBρ|

�

KBρ

ψ4
:τ (`−1):

ψ4
τ (`)

(x) dx.

By the induction hypothesis, we have
�

KBρ

ψ:τ (`−1):(x)4ψτ (`)(x)4 dx .
∑
ρ

(ψτ (`) |Bρ)
4
�

Bρ

ψ:τ (`−1):(x)4 dx

. K8α`
1

∑
ρ

(ψτ (`) |Bρ)
4|Bρ|

. K8α`
1

�

KBρ

ψτ (`)(x)4 dx . K
8α(`+1)
1 |KBρ|,

where in the last estimate we have used

1

|KC∗
τ (`−1) |

�

KC∗
τ(`−1)

ψτ (`)(x)4 dx . K8α
1 .

We denote

δ = K−(`+1),

and assume at the `th stage

1/
√
R < δ.

Noting that K1 � K and

`+ 1 = log(1/δ)/logK,

we have

K
8α(`+1)
1 < R

logK4α
1

logK � Rε, ∀ε > 0.

If δ ranges over all dyadic numbers between R−1/2 and K−1, we see the
contribution from all the type I terms is bounded by (2.2). The contributions
from (5.45), (5.51) and (5.52) to (2.2) can be evaluated in a similar manner.

When the scale reaches 1/
√
R, the remainder term is bounded by (2.3).

Finally, we lose an Rε-factor by taking the maximum in (2.2) and (2.3) with
respect to dyadic δ ∈ (R−1/2, 1/K). This completes the proof of Lemma 2.4.
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