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IRREDUCIBLE POLYNOMIALS WITH
ALL BUT ONE ZERO CLOSE TO THE UNIT DISK

BY

DOYONG KWON (Gwangju)

Abstract. We consider a certain class of polynomials whose zeros are, all with one
exception, close to the closed unit disk. We demonstrate that the Mahler measure can be
employed to prove irreducibility of these polynomials over Q.

1. Introduction and preliminaries. A few classes of polynomials
have their irreducibility criteria over the field of rationals. The present
paper introduces another irreducibility criterion for polynomials with one
variable.

A polynomial f(x) = anx
n + an−1x

n−1 + · · · + a0 ∈ R[x] is said to be
reciprocal (resp. anti-reciprocal) if ak = an−k (resp. ak = −an−k) for every
k = 0, 1, . . . , n. Equivalently, a reciprocal (resp. anti-reciprocal) polynomial
satisfies xnf(x−1) = f(x) (resp. xnf(x−1) = −f(x)). Here, we do not assume
a0 6= 0, and hence deg f ≤ n with equality if and only if a0 6= 0. We consider
the following class of polynomials with integer coefficients:

Fb(x) := xn + b(an−1x
n−1 + · · ·+ a1x) + c =: xn + br(x) + c ∈ Z[x]

where r(x) is reciprocal or anti-reciprocal, i.e., xnr(x−1) = ±r(x).

Let g(x) = anx
n + an−1x

n−1 + · · · + a0 = an
∏n
i=1(x − αi) ∈ Z[x] with

an 6= 0. The Mahler measure of g is the real number ≥ 1 defined by

M(g) := |an|
n∏
i=1

max{1, |αi|}.

Clearly, the Mahler measures of cyclotomic polynomials are equal to 1. And
the converse is also almost true by Kronecker’s theorem [5]. Polynomials
with Mahler measure 1 are cyclotomic polynomials possibly multiplied by
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xm for some m ≥ 1. We also consider the following modified Mahler measure:

M ′(g) :=
n∏
i=1

max{1, |αi|},

that is, the leading coefficient is omitted.
In 1933, Lehmer [7] found a polynomial

(1) l(x) := x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1,

whose Mahler measure is τ0 ≈ 1.17628, its unique real zero greater than 1.
The other zeros of l(x) lie on the closed unit disk. We do not know yet
whether the Mahler measure can have a value in the interval (1, τ0). But
polynomials with small Mahler measures are necessarily reciprocal as l(x)
is in the above.

Proposition 1.1 ([9]). Let p(x) ∈ Z[x] be irreducible over Q with p(x) 6=
x − 1, and let θ0 ≈ 1.32472 be the unique real root of x3 − x − 1 = 0. If
M(p) < θ0, then p(x) is a reciprocal polynomial.

The value θ0 is known to be the smallest Pisot number [1].

2. Main results. We begin with a simple observation. The next propo-
sition is elementary, but we include its proof for the reader’s convenience.
This is a variant of the continuity theorem for polynomials (see, e.g., [8,
Section 1.3]).

Proposition 2.1. Let f(x), g(x) ∈ C[x] and b ∈ C. Suppose deg f = n
and deg g = m with m < n. Then some m (possibly multiple) zeros of
f(x) + bg(x) converge to each zero of g(x) as |b| → ∞.

Proof. Assume that g(x) = c
∏k
i=1(x−αi)ei has distinct zeros α1, . . . , αk.

For each i, let Ci be a circle centered at αi with radius εi sufficiently small
so that no zeros of g(x) other than αi lie inside Ci. If |bg(x)| > |f(x)| on
every Ci, as this holds for sufficiently large |b|, then Rouché’s theorem implies
that f(x) + bg(x) and g(x) have the same number of zeros inside Ci.

The goal of the present note is to give a class of irreducible polynomials
over Q with finite and rather simple computations. We are now in a position
to state our main theorem.

Theorem 2.2. Let

Fb(x) := xn + b(an−1x
n−1 + · · ·+ a1x) + c =: xn + br(x) + c ∈ Z[x],

where an−1 6= 0 and r(x) is reciprocal or anti-reciprocal, i.e., xnr(x−1) =
±r(x). Assume that gcd(r(x), xn + c) = 1, and that c 6= 1 (resp. c 6= −1)
if xnr(x−1) = r(x) (resp. xnr(x−1) = −r(x)). Suppose that the modified
Mahler measure M ′(r) of r(x) is less than θ0. Then for all b with sufficiently
large |b|, the polynomial Fb(x) is irreducible over Q.
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The Euclidean algorithm gives us gcd(r(x), xn+c). If it is a nonconstant
polynomial, then Fb(x) is reducible. The hypothesis gcd(r(x), xn+ c) = 1 in
the above theorem excludes this trivial case. If c = 1 and xnr(x−1) = r(x)
(resp. c = −1 and xnr(x−1) = −r(x)), then Fb(x) itself is reciprocal (resp.
anti-reciprocal). If xnr(x−1) = −r(x), then x−1 is a factor of xn+br(x)−1.
On the other hand, if xnr(x−1) = r(x) and n ∈ N is odd, then x + 1 is a
factor of xn + br(x) + 1. The remaining case where xnr(x−1) = r(x) and
n = 2m ∈ N has been studied in the literature. We refer to, e.g., [2] and [4].

Proof of Theorem 2.2. Suppose that Fb(x) is reducible, say, Fb(x) =
fb(x)gb(x) for some nonconstant monic polynomials fb(x), gb(x) ∈ Z[x],
where gb(x) is irreducible. Applying Proposition 2.1, we assume that |b|
is large enough that n − 1 zeros of Fb(x) are sufficiently close to those of
r(x). With no loss of generality, we may assume that all the zeros of gb(x) are
close to some zeros of r(x). Since gb(x) is monic and M ′(r) < θ0, the Mahler
measure M(gb) is less than θ0 if |b| is large enough. Accordingly, gb(x) is re-
ciprocal by Proposition 1.1. For any zero γ of gb(x), we also have gb(γ

−1) = 0.
In what follows, double signs should be read in the same order, coherently.
Since Fb(γ) = 0 = Fb(γ

−1) and γnr(γ−1) = ±r(γ), one deduces that

γn + c = −br(γ) = ∓bγnr(γ−1) = ±γn(γ−n + c) = ±(1 + cγn),

which implies (±c − 1)(γn ∓ 1) = 0. Because ±c − 1 6= 0, we find that
γn = 1 if xnr(x−1) = r(x), and that γn = −1 if xnr(x−1) = −r(x). One
observes that r(γ) never vanishes for the zero γ of gb(x). In fact, if r(γ) = 0,
then gcd(r(x), xn + c) is a nonconstant polynomial, which contradicts our
hypothesis.

We set

ρ+(b) := min{|r(γ)| : gb(γ) = 0 & γn = 1} > 0 if xnr(x−1) = r(x),

ρ−(b) := min{|r(γ)| : gb(γ) = 0 & γn = −1} > 0 if xnr(x−1) = −r(x).

Then, for all b ∈ Z, both ρ+(b) and ρ−(b) can assume a finite number of
values, because of the constraints γn = 1 and γn = −1 respectively. Now we
define

ρ± := min{ρ±(b) : b ∈ Z & Fb(x) is reducible} > 0.

In either case of xnr(x−1) = ±r(x), the zero γ of gb(x) satisfies

(2) |c± 1| = |γn + c| = |b| |r(γ)| ≥ |b|ρ±.
Since |c± 1| and ρ± are independent of b, we obtain a desired contradiction
for all b with |b| sufficiently large.

In Theorem 2.2, if all the zeros of r(x) are, in particular, on the closed
unit disk, then the bound for |b| is effectively computable, as the next the-
orem says.
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Theorem 2.3. With the same notation and hypotheses as in Theo-
rem 2.2, assume further that all the zeros of r(x) lie on the closed unit
disk. Let

R := min
|z|=θ1/(n−1)

0

|r(z)| > 0, C := max
|z|=θ1/(n−1)

0

|zn + c| > 0,

where θ0 is the smallest Pisot number. Also, set

ρ± := min{|r(γ)| : γn = ±1 & r(γ) 6= 0} > 0,

according as xnr(x−1) = ±r(x). If |b| > max{C/R, |c± 1|/ρ±}, then Fb(x)
= xn + br(x) + c is irreducible over Q.

Proof. We suppose Fb(x) = fb(x)gb(x) for some nonconstant monic poly-
nomials fb(x), gb(x) ∈ Z[x], and follow the proof of Theorem 2.2. First, note
that R > 0. Assume that r(γ) = 0 with γn = ±1. There are at most n − 2
such γ’s, and γ cannot be a zero of Fb(x) because gcd(r(x), xn + c) = 1.
Hence, ρ± > 0. If |b| > C/R, then Rouché’s theorem implies that r(x) and

Fb(x) have the same number of zeros inside the circle |z| = θ
1/(n−1)
0 , i.e., n−1

zeros. Therefore, M(gb) < θ0, and gb(x) is reciprocal. Now the hypothesis
|b| > |c± 1|/ρ± contradicts (2).

3. Examples. Let a = (a0, a1, . . . , ad) ∈ Rd+1 be a vector, and suppose
that σ is a permutation on {0, 1, . . . , d} satisfying aσ(0) ≤ aσ(1) ≤ · · · ≤ aσ(d).
We define

m(a) := aσ(bd/2c) and m(a) := aσ(dd/2e).

Note that m(a) = m(a) whenever d is an even number. Then a real func-

tion H(y) :=
∑d

j=0 |y − aj | attains its minimum when y belongs to the
closed interval or the singleton [aσ(bd/2c), aσ(dd/2e)]. We denote this minimum
by L(a).

Proposition 3.1 ([6]). Let f(x) = adx
d + ad−1x

d−1 + · · · + a0 ∈ R[x]
be a reciprocal polynomial with ad > 0, and let a = (a0, a1, . . . , ad) and
a′ = (a1, . . . , ad−1). If one of the following conditions holds, then all the
zeros of f lie on the unit circle:

(a) m(a) ≥ L(a),
(b) f(1) ≥ 0 and 2ad ≥ L(a′) +m(a′).

Our first example makes use of the above proposition.

Example 1. Proposition 3.1 shows that every zero of 2x3 + x2 + x+ 2
lies on the unit circle. We set r(x) := 2x4 + x3 + x2 + 2x and

Fb(x) := x5 + b(2x4 + x3 + x2 + 2x) + 12.
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Then x5 + 12 and r(x) are relatively prime. We compute

R := min
|z|=θ1/40

|r(z)| = 0.514079 . . . , C := max
|z|=θ1/40

|z5 + 12| = 13.421196 . . .

and

ρ+ := min{|r(γ)| : γ5 = 1 & r(γ) 6= 0} = 0.381966 . . . .

Consequently, Fb(x) is irreducible if |b| ≥ 35. Additional checks for −34 ≤
b ≤ 34 enable us to state the following:

x5 + b(2x4 + x3 + x2 + 2x) + 12 with b ∈ Z is irreducible over Q
if and only if b 6= 2. In the case of b = 2,

x5 + 2(2x4 + x3 + x2 + 2x) + 12

= (x2 + 2x+ 2)(x3 + 2x2 − 4x+ 6).

Filaseta and Gross [3] presented the following irreducibility criterion.

Proposition 3.2. If
∑n

k=0 ak · 10k with

0 ≤ ak ≤ 49598666989151226098104244512918

is a prime number, then the polynomial
∑n

k=0 akx
k is irreducible over Q.

Example 2. By Proposition 3.1, every zero of 2x4 + 2x3 + x2 + 2x+ 2
lies on the unit circle. Let r(x) := 2x5 + 2x4 + x3 + 2x2 + 2x and

Fb(x) := x6 + b(2x5 + 2x4 + x3 + 2x2 + 2x) + 3,

where gcd(x6 + 3, r(x)) = 1. For, e.g., 0 ≤ b ≤ 100, one verifies that Fb(10)
is a prime if and only if

b = 0, 1, 6, 7, 9, 19, 20, 21, 23, 28, 31, 36, 42, 45, 50, 58, 61, 62, 72, 77, 85, 94, 98.

So Proposition 3.2 guarantees that Fb(x) is irreducible over Q for these b’s.
On the other hand, we compute

R := min
|z|=θ1/50

|r(z)| = 0.643147 . . . , C := max
|z|=θ1/50

|z6 + 3| = 4.401354 . . .

and ρ+ := min{|r(γ)| : γ6 = 1 & r(γ) 6= 0} = 1. Hence, Fb(x) is irreducible
if |b| ≥ 7. After irreducibility checks for −6 ≤ b ≤ 6, we conclude that

x6 + b(2x5 + 2x4 + x3 + 2x2 + 2x) + 3 with b ∈ Z is irreducible
over Q if and only if b 6= 4. In the case of b = 4,

x6 + 4(2x5 + 2x4 + x3 + 2x2 + 2x) + 3

= (x+ 1)(x2 − x+ 1)(x3 + 8x2 + 8x+ 3).
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