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MULTILINEAR FOURIER MULTIPLIERS
WITH MINIMAL SOBOLEV REGULARITY, I

BY

LOUKAS GRAFAKOS and HANH VAN NGUYEN (Columbia, MO)

Abstract. We find optimal conditions on m-linear Fourier multipliers that give rise
to bounded operators from products of Hardy spaces Hpk , 0 < pk ≤ 1, to Lebesgue
spaces Lp. These conditions are expressed in terms of L2-based Sobolev spaces with sharp
indices within the classes of multipliers we consider. Our results extend those obtained
in the linear case (m = 1) by Calderón and Torchinsky (1977) and in the bilinear case
(m = 2) by Miyachi and Tomita (2013). We also prove a coordinate-type Hörmander
integral condition which we use to obtain certain endpoint cases.

1. Introduction. Let σ be a bounded function on Rn. We denote by Tσ
the linear Fourier multiplier operator, whose action on Schwartz functions
is given by

(1.1) Tσ(f)(x) =
�

Rn
σ(ξ)f̂(ξ)e2πixξ dξ.

Mikhlin’s [14] classical result states that Tσ admits an Lp-bounded extension
for 1 < p <∞, whenever

(1.2) |∂αξ σ(ξ)| ≤ Cα|ξ|−|α|, ξ 6= 0,

for all multi-indices α with |α| ≤ [n/2] + 1. This result was refined by
Hörmander [12] who proved that (1.2) can be replaced by the Sobolev-norm
condition

(1.3) sup
j∈Z
‖σ(2j(·))ψ̂‖W s <∞

for some s > n/2, where ψ̂ is a smooth function supported in 1/2 ≤ |ξ| ≤ 2
that satisfies ∑

j∈Z
ψ̂(2−jξ) = 1
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for all ξ 6= 0. Here ‖g‖W s = ‖(I−∆)s/2g‖L2 , where I is the identity operator
and ∆ =

∑n
j=1 ∂

2
j is the Laplacian on Rn.

Calderón and Torchinsky [1] showed that the Fourier multiplier operator
in (1.1) admits a bounded extension from the Hardy space Hp to Hp with
0 < p ≤ 1 if

sup
t>0
‖σ(t·)ψ̂‖W s <∞

and s > n/p − n/2. Here the index s = n/p − n/2 is critical in the sense
that the boundedness of Tσ on Hp does not hold if s ≤ n/p−n/2. This was
pointed out later by Miyachi and Tomita [15].

The bilinear counterpart of the Fourier multiplier theory has been rather
similar in the formulation of results, but substantially more complicated in
their proofs. The theory of multilinear operators, and in particular that
of multilinear multiplier operators, originated in the work of Coifman and
Meyer [2], [3], [13] and resurfaced in the work of Grafakos and Torres [11].
Multilinear Fourier multipliers are bounded functions σ on Rmn = Rn × · · ·
×Rn associated with the m-linear Fourier multiplier operator in the follow-
ing way:

(1.4) Tσ(f1, . . . , fm)(x)

=
�

Rmn
e2πix·(ξ1+···+ξm)σ(ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm) d~ξ,

where fj are in the Schwartz space of Rn and d~ξ = dξ1 · · · dξm.

Tomita [17] obtained Lp1×· · ·×Lpm → Lp boundedness (1 < p1, . . . , pm,
p < ∞) for multilinear multiplier operators under a condition analogous
to (1.3). Grafakos and Si [10] extended Tomita’s results to the case p ≤ 1 by
using Lr-based Sobolev norms for σ with 1 < r ≤ 2. Fujita and Tomita [4]
provided weighted extensions of these results, but also noticed that the
Sobolev space W s in (1.3) can be replaced by a product-type Sobolev space
W (s1,...,sm) when p > 2. Grafakos, Miyachi and Tomita [8] extended the
range of p in [4] to p > 1 and obtained boundedness even in the endpoint
case where all but one indices pj are equal to infinity. Miyachi and Tomita
[15] provided extensions of the Calderón and Torchinsky results [1] for Hardy
spaces in the bilinear case; note that in [15] it was pointed out that the con-
ditions on the indices are sharp, even in the linear case, i.e., in the Calderón
and Torchinsky theorem.

Following this stream of work, we are interested in finding conditions
analogous to those in [15] in the multilinear setting, i.e., when m ≥ 3.
Our work is inspired by that of Calderón and Torchinsky [1], Grafakos and
Kalton [7], and certainly of Miyachi and Tomita [15]. As in [15], we find
necessary and sufficient conditions, which coincide with those in [15] when
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m = 2, that imply boundedness for multilinear multiplier operators on prod-
ucts of Hardy spaces. One important aspect of this work is an appropriate
regularization of the multilinear multiplier operator which allows the inter-
change of its action with infinite sums of Hpj -atoms (see Section 3). In this
article we restrict attention to the case where the domain is a product of
Hardy spaces. In a subsequent article we study the case where the domain
is a mix of Lebesgue and Hardy spaces.

We introduce the Sobolev spaces that will be used throughout this paper.
First, for x ∈ Rn we set 〈x〉 =

√
1 + |x|2. For s1, . . . , sm > 0, we denote by

W (s1,...,sm) the Sobolev space (of product type) consisting all functions f on
Rmn such that

‖f‖W (s1,...,sm) :=
( �

Rmn
|f̂(y1, . . . , ym)〈y1〉s1 · · · 〈ym〉sm |2 dy1 · · · dym

)1/2
<∞.

Notice that W (s1,...,sm) is a subspace of L2.
Let ψ be a smooth function on Rmn whose Fourier transform ψ̂ is sup-

ported in 1/2 ≤ |ξ| ≤ 2 and satisfies∑
j∈Z

ψ̂(2−jξ) = 1, ξ 6= 0.

For 0 < p < ∞ we denote by Hp the Lebesgue space Lp if p > 1 and the
Hardy space Hp if p ≤ 1. The following is the main result of this paper.

Theorem 1.1. Let n/2 < s1, . . . , sm <∞, 0 < p1, . . . , pm ≤ 1, 0 < p ≤ 1
be such that

1

p1
+ · · ·+ 1

pm
=

1

p
,

and that

(1.5)
∑
k∈J

(
sk
n
− 1

pk

)
> −1

2

for every subset J ⊂ {1, . . . ,m}. If a function σ defined on Rmn satisfies

(1.6) A := sup
j∈Z
‖σ(2j ·)ψ̂‖W (s1,...,sm) <∞,

then Tσ is bounded from Hp1 × · · · × Hpm to Lp with constant at most a
multiple of A. Moreover, the set of 2m − 1 conditions (1.5) is optimal.

Remark 1.2. Conditions (1.5) imply that sk > n/2 whenever 0<pk ≤ 1
for all 1 ≤ k ≤ m. Moreover, the condition in (1.6) is sufficient to guarantee
that σ lies in L∞(Rmn). Indeed, suppose that σ is a function on Rmn that

satisfies (1.6). It is easy to see that ψ̂
(
1
2x
)

+ ψ̂(x) + ψ̂(2x) = 1 for all
1 ≤ x ≤ 2. Now we want to verify that |σ(2j0x)| is uniformly bounded in
j0 ∈ Z for a.e. 1 ≤ |x| ≤ 2. Applying the Cauchy–Schwarz inequality and
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using the conditions sk > n/2, we write

|σ(2j0x)| =
∣∣∣∑
|l|≤1

σ(2j0x)ψ̂(2lx)
∣∣∣ ≤∑

|l|≤1

∣∣∣ �

Rmn
(σ(2j0−l·)ψ̂)∨(ξ)e2

l+1πixξ dξ
∣∣∣

≤
∑
|l|≤1

�

Rmn

m∏
k=1

(1 + |ξk|2)−sk/2

×
∣∣∣ m∏
k=1

(1 + |ξk|2)sk/2(σ(2j0−l·)ψ̂)∨(ξ1, . . . , ξm)
∣∣∣ dξ1 · · · dξm

≤
∑
|l|≤1

C(s1, . . . , sm, n)‖σj0−lψ̂‖W (s1,...,sm)

≤ 3C(s1, . . . , sm, n) sup
j∈Z
‖σjψ̂‖W (s1,...,sm)

for almost all x satisfying 1 ≤ |x| ≤ 2. Here we set σj(~ξ ) = σ(2j~ξ ). Thus

‖σ‖L∞(Rmn) ≤ 3C(s1, . . . , sm, n) sup
j∈Z
‖σjψ̂‖W (s1,...,sm) <∞.

The structure of this paper is as follows: Section 2 contains preliminaries
and known results. In Section 3, we regularize the multiplier to be able to
work with a nicer operator and thus facilitate the passage of infinite sums
in and out of the operator in the proof of the main result given in Section 4.
In Section 5, we construct examples to justify the minimality of conditions
(1.5) claimed in the main theorem. Section 6 presents some results about
the boundedness of our operator in the endpoint cases where we need the
coordinate-type Hörmander integral conditions. The last section contains
the detailed proofs of some technical lemmas used through the paper.

We use the notation A . B to indicate that A ≤ CB, where the constant
C is independent of any essential parameters, and A ≈ B if simultaneously
A . B and B . A.

2. Preliminaries and known results. Now fix 0 < p < ∞ and a
Schwartz function Φ with Φ̂(0) 6= 0. Then the Hardy space Hp contains all
tempered distributions f on Rn such that

‖f‖Hp :=
∥∥∥ sup
0<t<∞

|Φt ∗ f |
∥∥∥
Lp
<∞.

It is well known that the definition of the Hardy space does not depend on
the choice of Φ. Note that Hp = Lp for all p > 1. When 0 < p ≤ 1, one of nice
features of Hardy spaces is the atomic decomposition. More precisely, any
function f ∈ Hp (0 < p ≤ 1) can be decomposed as f =

∑
j λjaj , where aj ’s

are L∞-atoms for Hp supported in cubes Qj such that ‖aj‖L∞ ≤ |Qj |−1/p
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and
	
xγaj(x) dx = 0 for all |γ| ≤ bn(1/p − 1)c + 1, and the coefficients λj

satisfy
∑

j |λj |
p ≤ 2p‖f‖pHp .

The following two lemmas are essentially contained in [15] modulo some
minor modifications.

Lemma 2.1 ([15]). Let k, l be positive integers, 0 < s1, . . . , sk+l <∞, and
let 1 < ρ <∞. Assume that σ is a bounded function defined on Rkn × Rln,
supported in {(x, y) ∈ Rkn × Rln : |x|2 + |y|2 ≤ 4}, where x = (x1, . . . , xk),
y = (y1, . . . , yl) with x1, . . . , xk, y1, . . . , yl ∈ Rn, and set K = σ∨, the inverse
Fourier transform of σ. Then there exists a constant C > 0 such that

‖〈y1〉s1 · · · 〈yl〉slK(x, y)‖L∞(Rln,dy) ≤ C‖〈y1〉s1 · · · 〈yl〉slK(x, y)‖Lρ(Rln,dy)
for all x ∈ Rkn.

Proof. Take ϕ a Schwartz function on Rln such that ϕ̂(y) = 1 for all
y ∈ Rln, |y| ≤ 2. Then σ(x, y) = σ(x, y)ϕ̂(y). Using the inverse Fourier
transform we have

K(x, y) = (K ∗ (δ0 ⊗ ϕ))(x, y) =
�

Rkn×Rln
K(x− u, y − v)δ0(u)ϕ(v) du dv

=
�

Rln
K(x, y − v)ϕ(v) dv,

where δ0 is the Dirac distribution. Therefore,

〈y1〉s1 · · · 〈yl〉sl |K(x, y)|

= 〈y1〉s1 · · · 〈yl〉sl
∣∣∣ �
Rln

K(x1, . . . , xk, y1 − v1, . . . , yl − vl)ϕ(v) dv
∣∣∣

.
�

Rln

( l∏
j=1

〈yj − vj〉sj
)

× |K(x1, . . . , xk, y1 − v1, . . . , yl − vl)|〈v1〉s1 · · · 〈vl〉sl |ϕ(v)| dv
≤ C1‖〈y1〉s1 · · · 〈yl〉slK(x, y)‖Lρ(Rln,dy)‖〈v1〉s1 · · · 〈vl〉sl |ϕ(v)|‖Lρ′ (Rln,dv)
≤ C2‖〈y1〉s1 · · · 〈yl〉slK(x, y)‖Lρ(Rln,dy),

where we used Hölder’s inequality in the second to last line.

Lemma 2.2 ([15]). Let sk > n/2 for 1 ≤ k ≤ m, and let ζ̂ be a smooth
function which is supported in an annulus centered at zero. Suppose that Φ
is a smooth function away from zero that satisfies the estimates

|∂αξ Φ(ξ)| ≤ Cα|ξ|−|α|

for all ξ ∈ Rmn, x 6= 0 and all multi-indices α. Then there exists a constant C
such that

sup
j∈Z
‖σ(2j(·))Φ(2j(·))ζ̂ ‖W (s1,...,sm) ≤ C sup

j∈Z
‖σ(2j(·))ψ̂ ‖W (s1,...,sm) .
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Adapting the Calderón and Torchinsky interpolation techniques in the
multilinear setting (for details on this we refer to [8, p. 318]) allows us to
interpolate between two endpoint estimates for multilinear multiplier oper-
ators from a product of some Hardy spaces to Lebesgue spaces.

Theorem 2.3 ([8]). Let 0 < p1, p2, p1k, p2k ≤ ∞ and n/2 < s1k, s2k <∞
and 1 ≤ k ≤ m. For 0 < θ < 1, set 1/p = (1− θ)/p1 + θ/p2, 1/pk =
(1− θ)/p1k + θ/p2k, and sk = (1− θ)s1k + θs2k. Assume that the multilinear
operator Tσ defined in (1.4) satisfies the estimates

‖Tσ‖Hpl1×···×Hplm→Lpl ≤ Cl sup
j∈Z
‖σ(2j ·)ψ̂‖W (sl1,...,slm) (l = 1, 2).

Then

‖Tσ‖Hp1×···×Hpm→Lp ≤ C sup
j∈Z
‖σ(2j ·)ψ̂‖W (s1,...,sm) .

The following result is due to Fujita and Tomita [4] for 2 < p <∞, while
the extension to p > 1 and the endpoint case where all but one indices are
equal to infinity is due to Grafakos, Miyachi and Tomita [8].

Theorem 2.4 ([4], [8]). Let 1 < p1, . . . , pm ≤ ∞, 1 < p <∞ and 1/p1 +
· · ·+1/pm = 1/p. If σ satisfies (1.6), then the multilinear multiplier operator
Tσ is bounded from Lp1 × · · · × Lpm to Lp with constant at most a multiple
of A.

Finally, we will need the following lemma from [7].

Lemma 2.5 ([7, Lemma 2.1]). Let 0 < p ≤ 1 and let (fQ)Q∈J be a family
of nonnegative integrable functions with supp(fQ) ⊂ Q for all Q ∈ J , where
J is a family of finite or countable cubes in Rn. Then∥∥∥∑

Q∈J
fQ

∥∥∥
Lp

.

∥∥∥∥∑
Q∈J

(
1

|Q|

�

Q

fQ(x) dx

)
χQ∗

∥∥∥∥
Lp
,

with the implicit constant depending only on p. Here Q∗ is a dimensional
dilate of the cube Q.

3. Regularizing the multiplier. In this section, we show that the
operator defined in (1.1) with enough smoothness of the multiplier can be
approximated by a family of very nice operators.

Theorem 3.1. Let σ be a function on Rmn satisfying (1.6) and let sk >
n/2 for 1 ≤ k ≤ m. Then there exists a family (σε)0<ε<1/2 of functions such
that Kε := (σε)∨ is smooth and compactly supported for every 0 < ε < 1/2;
also

(3.1) sup
0<ε<1/2

sup
j∈Z
‖σε(2j ·)ψ̂‖W (s1,...,sm) . sup

j∈Z
‖σ(2j ·)ψ̂‖W (s1,...,sm)
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and

(3.2) lim
ε→0
‖Tε(f1, . . . , fm)− Tσ(f1, . . . , fm)‖L2 = 0

for all functions fk ∈ L2m, 1 ≤ k ≤ m, where Tε are multilinear singular
integral operators of convolution type associated to Kε.

The following lemma, whose proof will be given in the last section, is the
first step in constructing a family of functions σε as stated in Theorem 3.1.

Lemma 3.2. Let ϕ be a Schwartz function. Suppose σ is a function on
Rmn satisfying (1.6) for sk > n/2. Then

sup
ε>0

sup
j∈Z

∥∥[(ϕε ∗ σ)(2j ·)]ψ̂
∥∥
W (s1,...,sm) . sup

j∈Z
‖σ(2j ·)ψ̂‖W (s1,...,sm) ,

with ϕε(x1, . . . , xm) = ε−mnϕ(ε−1x1, . . . , ε
−1xm) for all xk ∈ Rn, 1 ≤ k ≤ m.

Proof of Theorem 3.1. Fix 0 < ε < 1/2. Choose a smooth function ϕ
such that ϕ̂ is supported in the unit ball and ϕ̂(0) = 1. Set σε = ϕε ∗ (σφε),
where φε = θ(ε−1·) − θ(ε·), and θ is a smooth function satisfying θ(x) = 0
for all |x| ≤ 1 and θ(x) = 1 for all |x| ≥ 2. We note that these functions are
suitable regularized versions of the multiplier in Theorem 3.1. Indeed, let
Kε = (σε)∨ = (σφε)∨ϕ̂(ε(·)); then Kε are smooth functions with compact
support for all 0 < ε < 1/2.

Using the fact that

|∂αφε(ξ)| ≤ Cα,θ|ξ|−α, ξ 6= 0, 0 < ε < 1/2,

Lemma 3.2 applied to the function σφε combined with Lemma 2.2 gives

sup
0<ε<1/2

sup
j∈Z
‖σε(2j ·)ψ̂‖W (s1,...,sm) . sup

0<ε<1/2
sup
j∈Z
‖σ(2j ·)φε(2j ·)ψ̂‖W (s1,...,sm)

. sup
j∈Z
‖σ(2j ·)ψ̂‖W (s1,...,sm) ,

which yields (3.1). Thus, we are left with establishing (3.2). For ε > 0, now
recall that

Tε(f1, . . . , fm)(x) =
�
Kε(x− y1, . . . , x− ym)f1(y1) · · · fm(ym) dy

=
�
σε(ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm)e2πix(ξ1+···+ξm) dξ.

Invoking estimate (3.1) with Theorem 2.4, we can see that Tσ and Tε are
uniformly bounded from L2m × · · · × L2m to L2 for all 0 < ε < 1/2. By
density, it suffices to verify (3.2) for all functions in the Schwartz class.
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Now fix Schwartz functions fk for 1 ≤ k ≤ m. The Fourier transform
of Tσ(f1, . . . , fm) can be written as

�

Rn(m−1)

σ
(
ξ1, . . . , ξm−1, ξ −

m−1∑
l=1

ξl

)

× f̂1(ξ1) · · · f̂m−1(ξm−1)f̂m
(
ξ −

m−1∑
l=1

ξl

)
dξ1 · · · dξm−1.

Similarly, the Fourier transform of Tε(f1, . . . , fm) is

�

Rn(m−1)

σε
(
ξ1, . . . , ξm−1, ξ −

m−1∑
l=1

ξl

)

× f̂1(ξ1) · · · f̂m−1(ξm−1)f̂m
(
ξ −

m−1∑
l=1

ξl

)
dξ1 · · · dξm−1.

We now claim that σε converges pointwise to σ. Taking this claim for
granted, we have

(Tε(f1, . . . , fm)) (̂ξ)→ (Tσ(f1, . . . , fm)) (̂ξ) as ε→ 0

for a.e. ξ ∈ Rn. Notice that

‖Tε(f1, . . . , fm)− Tσ(f1, . . . , fm)‖L2

= ‖(Tε(f1, . . . , fm))̂− (Tσ(f1, . . . , fm))̂‖L2 .

Since ‖σε‖L∞ . ‖σ‖L∞ < ∞ for all ε > 0, Lebesgue’s dominated conver-
gence theorem implies that

(Tε(f1, . . . , fm))̂→ (Tσ(f1, . . . , fm))̂ as ε→ 0

in L2, and this establishes (3.2).

It remains to prove the above claim about pointwise convergence of σε

as ε → 0. So fix j0 ∈ Z; we want to show that σε(x) → σ(x) for a.e.
2j0 ≤ |x| ≤ 2j0+1. Indeed, let 0 < ε < min{22j0−2, 2−|j0|−2} be a small
positive number. Then

|σε(x)− σ(x)| ≤
�

|y|≤
√
ε

|ϕε(y)| |σ(x− y)| sup
2j0≤|x|≤2j0+1

|φε(x− y)− 1| dy

+
�

|y|≤
√
ε

|ϕε(y)| |σ(x− y)− σ(x)| dy

+
�

|y|>
√
ε

|ϕε(y)| |σ(x− y)φε(x− y)− σ(x)| dy.
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The first integral vanishes since φε(x) = 1 for all 2ε ≤ |x| ≤ 1/ε. To estimate
the second integral, we denote

Ψ̂(x) =
∑
|l|≤2

ψ̂(2−lx).

Then Ψ̂(x) = 1 for all 1/4 ≤ |x| ≤ 4. Therefore

Ψ̂(2−j0(x− y)) = Ψ̂(2−j0x) = 1

for all 2j0 ≤ |x| ≤ 2j0+1 and |y| ≤ 2j0−1. Now recall σj(x) = σ(2jx);
we estimate�

|y|≤
√
ε

|ϕε(y)| |σ(x− y)− σ(x)| dy

=
�

|y|≤
√
ε

|ϕε(y)| |σ(x− y)Ψ̂(2−j0(x− y))− σ(x)Ψ̂(2−j0x)| dy

≤ ‖ϕ‖L1 sup
|y|≤
√
ε

‖σ(· − y)Ψ̂(2−j0(· − y))− σΨ̂(2−j0 ·)‖L∞

≤ ‖ϕ‖L1

j0+2∑
j=j0−2

sup
|y|≤
√
ε

‖(σjψ̂)(· − 2−jy)− (σjψ̂)‖L∞

= ‖ϕ‖L1

j0+2∑
j=j0−2

sup
|y|≤2−j

√
ε

‖(σjψ̂)(· − y)− (σjψ̂)‖L∞ .

We would like to show
lim
ε→0

sup
|y|≤2−j

√
ε

‖(σjψ̂)(· − y)− (σjψ̂)‖L∞ = 0.

The preceding limit is equal to 0 because σjψ̂ ∈ W (s1,...,sm) for sk > n/2,
1 ≤ k ≤ m. The last term of the sum at the bottom of page 8 is majorized by

C‖σ‖L∞
�

|y|≥1/
√
ε

|ϕ(y)| dy,

which tends to 0 as ε→ 0.
Thus σε(x) → σ(x) as ε → 0 for a.e. 2j0 ≤ |x| ≤ 2j0+1. Hence,

σε converges to σ pointwise on Rmn. Also ‖σε‖L∞(Rmn) . ‖σ‖L∞(Rmn) uni-
formly for all ε > 0. The proof of Theorem 3.1 is complete.

For a Schwartz function K, denote the multilinear singular integral op-
erator of convolution type associated with the kernel K by

TK(f1, . . . , fm)(x) =
�

Rmn
K(x−y1, . . . , x−ym)f1(y1) · · · fm(ym) dy1 · · · dym.

Proposition 3.3. Let K be a smooth function on Rmn with compact
support. Then

‖TK‖Hp1×···×Hpm→Lp ≤ CK <∞
for all 0 < p1, . . . , pm, p <∞ and 1/p = 1/p1 + · · ·+ 1/pm.
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Proof. The boundedness of TK can be deduced from [6, Lemma 4.2],
which provides the estimate (for some sufficiently large integer N)

(3.3) |TK(f1, . . . , fm)(x)| .
m∏
k=1

MN (fk)(x)

for all fk ∈ L2 ∩Hpk , where

MN (f)(x) = sup
ϕ∈FN

sup
t>0

sup
y∈B(x,t)

|(ϕt ∗ f)(y)|

is the grand maximal function with respect to N, and

FN :=
{
ϕ ∈ S(Rn) :

�

Rn
(1 + |x|)N

∑
|α|≤N+1

|∂αϕ(x)| dx ≤ 1
}
.

Taking the Lp quasinorm, applying Holder’s inequality to (3.3), and using
the quasinorm equivalence of some maximal functions [5, Theorem 6.4.4]
yields

‖TK(f1, . . . , fm)‖Lp .
m∏
k=1

‖MN (fk)‖Lpk ≤ CK
m∏
k=1

‖fk‖Hpk .

Working with smooth kernels K with compact support comes handy
when dealing with infinite sums of atoms, since we are able to freely inter-
change the action of TK with infinite sums of atoms. Precisely, a consequence
of the boundedness of TK , given in Proposition 3.3, is the following result.

Proposition 3.4. Let 0 < p1, . . . , pm ≤ 1 and let K be a smooth func-
tion with compact support. Then for every fk ∈ Hpk with atomic rep-
resentation fk =

∑
jk
λk,jkak,jk , where ak,jk are L∞-atoms for Hpk and∑

jk
|λk,jk |

pk ≤ 2pk‖fk‖pkHpk for 1 ≤ k ≤ m, we have

TK(f1, . . . , fm)(x) =
∞∑
j1=1

· · ·
∞∑

jm=1

λ1,j1 · · ·λm,jmTK(a1,j1 , . . . , am,jm)(x)

for a.e. x ∈ Rn.

Proof. Let 0 < p < ∞ be such that 1/p = 1/p1 + · · · + 1/pm. For any
positive integers N1, . . . , Nm, Proposition 3.3 gives the estimate∥∥∥TK(f1, . . . , fm)−

N1∑
j1=1

· · ·
Nm∑
jm=1

λ1,j1 · · ·λm,jmTK(a1,j1 , . . . , am,jm)
∥∥∥
Lp

≤ CK
m∑
k=1

∥∥∥fk − Nk∑
jk=1

λk,jkak,jk

∥∥∥
Hpk

∏
l 6=k
‖fl‖Hpl .

Now passing to the limit, we obtain the asserted equality.
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4. The proof of the main result. We first consider the case where
σ is smooth and its Fourier transform is compactly supported; then, by
regularization, we prove the result for any σ.

Proof of Theorem 1.1. By regularization, we may assume that the in-
verse Fourier transform of σ is smooth and compactly supported. If this case
is established, then Theorem 3.1 yields the existence of a family (Tε)0<ε<1/2

of multilinear multiplier operators associated with a family of multipliers
(σε)0<ε<1/2 such that Kε = (σε)∨ are smooth functions with compact sup-

ports for all 0 < ε < 1/2, and (3.1), (3.2) hold. Fix fk ∈ Hpk ∩ L2m

(1 ≤ k ≤ m). The L2 convergence in (3.2) implies that we can find a
sequence (εj)j of positive numbers convergent to 0 such that

lim
j→∞

Tεj (f1, . . . , fm)(x) = Tσ(f1, . . . , fm)(x)

for a.e. x ∈ Rn. Fatou’s lemma together with (3.1) gives

‖Tσ(f1, . . . , fm)‖Lp≤ lim inf
j→∞

‖Tεj (f1, . . . , fm)‖Lp. sup
0<ε<1/2

‖Tε(f1, . . . , fm)‖Lp

. sup
0<ε<1/2

sup
j∈Z
‖σε(2j ·)ψ̂‖W (s1,...,sm)‖f1‖Hp1 · · · ‖fm‖Hpm

. sup
j∈Z
‖σ(2j ·)ψ̂ ‖W (s1,...,sm)‖f1‖Hp1 · · · ‖fm‖Hpm ,

thus establishing the claimed estimate for a general multiplier σ.
In view of this deduction, we suppose σ∨ is smooth and compactly sup-

ported. The aim is to show that

(4.1) ‖Tσ(f1, . . . , fm)‖Lp . sup
j∈Z
‖σ(2j ·)ψ̂ ‖W (s1,...,sm)‖f1‖Hp1 · · · ‖fm‖Hpm .

Fix fk ∈ Hpk . Using atomic representations for Hpk functions, write

fk =
∑
jk∈Z

λk,jkak,jk (1 ≤ k ≤ m),

where ak,jk are L∞ atoms for Hpk satisfying

supp(ak,jk) ⊂ Qk,jk , ‖ak,jk‖L∞ ≤ |Qk,jk |
−1/pk ,

�

Qk,jk

xαak,jk(x) dx = 0

for all |α| large enough, and
∑

jk
|λk,jk |

pk ≤ 2pk‖fk‖pkHpk .

For a cube Q, denote by Q∗ the dilation with factor 2
√
n. Since K = σ∨

is smooth and compactly supported, Proposition 3.4 yields

Tσ(f1, . . . , fm)(x) =
∑
j1

. . .
∑
jm

λ1,j1 · · ·λm,jmTσ(a1,j1 , . . . , am,jm)(x)

for a.e. x ∈ Rn. Now we can split Tσ(f1, . . . , fm) into two parts and estimate

|Tσ(f1, . . . , fm)(x)| ≤ G1(x) +G2(x),
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where

G1(x) =
∑
j1

. . .
∑
jm

|λ1,j1 |· · ·|λm,jm | |Tσ(a1,j1 , . . . , am,jm)|χQ∗1,j1∩···∩Q∗m,jm (x),

G2(x) =
∑
j1

. . .
∑
jm

|λ1,j1 |· · ·|λm,jm | |Tσ(a1,j1 , . . . , am,jm)|χ(Q∗1,j1
∩···∩Q∗m,jm )c(x).

First we estimate the Lp norm of G1, in which we repeat the argu-
ments in [7] for the sake of completeness. Without loss of generality, suppose
that Q∗1,j1 ∩ · · · ∩ Q

∗
m,jm

6= ∅ and let Q1,j1 have the smallest length among
Q1,j1 , . . . , Qm,jm . Since Q∗k,jk , 1 ≤ k ≤ m, have nonempty intersection, we
can pick a cube Rj1,...,jm such that

Q∗1,j1 ∩ · · · ∩Q
∗
m,jm ⊂ Rj1,...,jm ⊂ R

∗
j1,...,jm ⊂ Q

]
1,j1
∩ · · · ∩Q]m,jm

and |Q1,j1 | . |Rj1,...,jm |, where the implicit constant depends only on n, and

Q]k,jk denotes for a suitable dilation of Qk,jk . For sk > n/2, it was showed

in [8] that

‖Tσ‖L2×L∞×···×L∞→L2 . A.

Therefore, by the Cauchy–Schwarz inequality,

�

Rj1,...,jm

|Tσ(a1,j1 , . . . , am,jm)(x)| dx

≤ ‖Tσ(a1,j1 , . . . , am,jm)‖L2 |Rj1,...,jm |
1/2

. A|Rj1,...,jm |
1/2‖a1,j1‖L2

m∏
k=2

‖ak,jk‖L∞

. A|Rj1,...,jm |
1/2|Q1,j1 |

1/2
m∏
k=1

|Qk,jk |
−1/pk . A|Rj1,...,jm |

m∏
k=1

|Qk,jk |
−1/pk .

The last inequality implies that

1

|Rj1,...,jm |

�

Rj1,...,jm

|Tσ(a1,j1 , . . . , am,jm)(x)| dx . A

m∏
k=1

|Qk,jk |
−1/pk .

Now the trivial estimate

G1(x) ≤
∑
j1

. . .
∑
jm

|λ1,j1 | · · · |λm,jm | |Tσ(a1,j1 , . . . , am,jm)|χRj1,...,jm (x)
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combined with Lemma 2.5 yields

‖G1‖Lp ≤
∥∥∥∑
j1

. . .
∑
jm

|λ1,j1 | · · · |λm,jm | |Tσ(a1,j1 , . . . , am,jm)|χRj1,...,jm
∥∥∥
Lp

. A
∥∥∥∑
j1

. . .
∑
jm

|λ1,j1 | · · · |λm,jm |
( m∏
k=1

|Qk,jk |
−1/pk

)
χR∗j1,...,jm

∥∥∥
Lp

≤ A
∥∥∥∑
j1

. . .
∑
jm

|λ1,j1 | · · · |λm,jm |
m∏
k=1

(|Qk,jk |
−1/pkχ

Q]k,jk
)
∥∥∥
Lp

= A
∥∥∥ m∏
k=1

(∑
jk

|λk,jk | |Qk,jk |
−1/pkχ

Q]k,jk

)∥∥∥
Lp

≤ A
m∏
k=1

∥∥∥∑
jk

|λk,jk | |Qk,jk |
−1/pkχ

Q]k,jk

∥∥∥
Lpk

. A

m∏
k=1

‖fk‖Hpk .

Thus

(4.2) ‖G1‖Lp . A‖f1‖Hp1 · · · ‖fm‖Hpm .

For the harder part, G2(x), we first restrict x∈(
⋂
k/∈J Q

∗
k,jk

)\
⋃
k∈J Q

∗
k,jk

for some nonempty subset J ⊂ {1, . . . ,m}. To continue, we need the follow-
ing lemma whose proof will be given in the last section.

Lemma 4.1 (The key lemma). Let n/2 < s1, . . . , sm<∞, 0<p1, . . . , pm,
p≤ 1 and let σ be a function satisfying (1.5) and (1.6). Suppose ak are atoms
supported in a cube Qk (k = 1, . . . ,m) such that

‖ak‖L∞ ≤ |Qk|−1/pk ,
�

Qk

xαak(x) dx = 0

for all |α| ≤ Nk with Nk = [n(1/pk − 1)] + 1. Fix a nonempty subset J0 ⊂
{1, . . . ,m}. Then there exist positive functions b1, . . . , bm such that

(4.3) |Tσ(a1, . . . , am)(x)| . Ab1(x) · · · bm(x)

for all x ∈ (
⋂
k/∈J0 Q

∗
k) \

⋃
k∈J0 Q

∗
k, and ‖bk‖Lpk . 1 for all 1 ≤ k ≤ m.

Lemma 4.1 guarantees the existence of positive functions bJ1,j1 , . . . , b
J
m,jm

depending on Q1,j1 , . . . , Qm,jm respectively, such that

(4.4) |Tσ(a1,j1 , . . . , am,jm)| . AbJ1,j1 · · · b
J
m,jm

for all x ∈ (
⋂
k/∈J Q

∗
k,jk

) \
⋃
k∈J Q

∗
k,jk

and ‖bJk,jk‖Lpk . 1. Now set

bk,jk =
∑

∅6=J⊂{1,...,m}

bJk,jk .

Then

(4.5) |Tσ(a1,j1 , . . . , am,jm)|χ(Q∗1,j1
∩···∩Q∗m,jm )c . Ab1,j1 · · · bm,jm
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and ‖bk,jk‖Lpk . 1. Estimate (4.5) yields

G2(x) . A
m∏
k=1

(∑
jk

|λk,jk |bk,jk(x)
)
.

Then we apply Hölder’s inequality to deduce that

(4.6) ‖G2‖Lp . A‖f1‖Hp1 · · · ‖fm‖Hpm .

Combining (4.2) and (4.6) yields (4.1). The proof of Theorem 1.1 is now
complete.

5. Minimality of conditions. In this section we will show that con-
ditions (1.5) and sk > n/2 are minimal in general that guarantee bounded-
ness for multilinear multiplier operators. We fix a smooth function ψ whose
Fourier transform is supported in {2−3/4 ≤ |ξ| ≤ 23/4}, satisfies ψ̂(ξ) = 1
for all 2−1/4 ≤ |ξ| ≤ 21/4, and for some nonzero constant c,∑

j∈Z
ψ̂(2−jξ) = c, ξ 6= 0.

Theorem 5.1. Let 0 < pk ≤ ∞, 0 < p <∞, and sk > 0 for 1 ≤ k ≤ m.
Suppose that

‖Tσ(f1, . . . , fm)‖Lp . sup
j∈Z
‖σ(2j ·)ψ̂‖W (s1,...,sm)

m∏
k=1

‖fk‖Hpk

for all fk ∈ Hpk and σ ∈ L∞ such that supj∈Z
∥∥σ(2j)ψ̂

∥∥
W (s1,...,sm) < ∞.

Then

(5.1) sk ≥
n

2
, ∀1 ≤ k ≤ m,

and

(5.2)
∑
k∈J

(
sk
n
− 1

pk

)
≥ −1

2

for every nonempty J ⊂ {1, . . . ,m}.

The following lemma is obvious by changing variables, so its proof is
omitted.

Lemma 5.2. Let ϕ be a nontrivial Schwartz function and s > 0. Then( �
|ϕ(εy)|2(1 + |y|2)s dy

)1/2
≈ ε−n/2−s

for all 0 < ε ≤ 1.

Proof of Theorem 5.1. We first show (5.1) for 1 ≤ k ≤ m. Without loss of
generality, we will show s1 ≥ n/2. To do this, we need to construct functions
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σε (0 < ε� 1) and fk ∈ Hpk such that ‖fk‖Hpk = 1 for all 1 ≤ k ≤ m, and
‖Tσε(f1, . . . , fm)‖Lp ≈ 1, and further that

sup
j∈Z
‖σε(2j ·)ψ̂‖W (s1,...,sm) . εn/2−s1 .

Once these functions are constructed, one observes that

1 ≈ ‖Tσε(f1, . . . , fm)‖Lp . sup
j∈Z
‖σε(2j ·)ψ̂‖W (s1,...,sm)

m∏
k=1

‖fk‖Hpk . εn/2−s1

for all 0 < ε� 1. Therefore we must have s1 ≥ n/2.
Let ϕ be a nontrivial Schwartz function such that ϕ̂ is supported in the

unit ball, and let φ2 = · · · = φm−1 be a Schwartz function whose Fourier

transform, φ̂2, is supported in an annulus 1
17m ≤ |ξ| ≤

1
13m , and identical

to 1 on 1
16m ≤ |ξ| ≤

1
14m . Similarly, fix a Schwartz function φm with φ̂m ⊂{

ξ ∈ Rn : 12
13 ≤ |ξ| ≤

14
13

}
and φ̂m ≡ 1 on the annulus 25

26 ≤ |ξ| ≤
27
26 . Take

a, b ∈ Rn with |a| = 1
15m and |b| = 1.

For 0 < ε < 1
240m , set

σε(ξ1, . . . , ξm) = ϕ̂

(
ξ1 − a
ε

)
φ̂2(ξ2) · · · φ̂m(ξm).

It is easy to check that suppσε ⊂ {2−1/4 ≤ |ξ| ≤ 21/4}; hence, σε(2j ·)ψ̂ = σε

for j = 0 and σε(2j ·)ψ̂ = 0 for j 6= 0. This directly implies that

sup
j∈Z
‖σε(2j ·)ψ̂‖W (s1,...,sm) = ‖σε‖W (s1,...,sm) .

Taking the inverse Fourier transform of σε gives

(σε)∨(x1, . . . , xm) = εne2πia·x1ϕ(εx1)φ2(x2) · · ·φm(xm).

Now apply Lemma 5.2 to obtain

‖σε‖W (s1,...,sm) . εn/2−s1 .

Thus

sup
j∈Z
‖σε(2j ·)ψ̂‖W (s1,...,sm) . εn/2−s1 .

Now choose

f̂k(ξ) = εn/pk−nϕ̂

(
ξ−a
ε

)
for 1≤ k≤m−1, f̂m(ξ) = εn/pm−nϕ̂

(
ξ− b
ε

)
.

We will show that these functions are as desired.

In the following estimates, we will use the fact, whose proof can be done
by using the Littlewood–Paley characterization for Hardy spaces, that if f is
a function whose Fourier transform is supported in a fixed annulus centered
at the origin, then ‖f‖Hp ≈ ‖f‖Lp for 0 < p <∞ (cf. [4, Remark 7.1]).
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Indeed, using the above fact and checking that each f̂k is supported in
an annulus centered at zero and not depending on ε allow us to estimate
Hp-norms via Lp-norms, namely

‖fk‖Hpk ≈ ‖fk‖Lpk = 1 (1 ≤ k ≤ m).

Thus, we are left with showing that ‖Tσ(f1, . . . , fm)‖Lp ≈ 1. Notice that

φ̂k(ξ) = 1 on the support of f̂k for 2 ≤ k ≤ m. Therefore,

Tσε(f1, . . . , fm)(x)

=

(
ϕ̂

(
· − a
ε

)
εn/p1−nϕ̂

(
· − a
ε

))∨
(x)(φ̂2f̂2)

∨(x) · · · (φ̂mf̂m)∨(x)

=

(
ϕ̂

(
· − a
ε

)
εn/p1−nϕ̂

(
· − a
ε

))∨
(x)(f̂2)

∨(x) · · · (f̂m)∨(x)

= εn/p1+···+n/pme2πi[(m−1)a+b]·x(ϕ ∗ ϕ)(εx)[ϕ(εx)]m−1

= εn/pe2πi[(m−1)a+b]·x(ϕ ∗ ϕ)(εx)[ϕ(εx)]m−1,

which obviously gives ‖Tσε(f1, . . . , fm)‖Lp ≈ 1. So far, we have proved that
s1 ≥ n/2; hence, by symmetry, we have sk ≥ n/2 for all 1 ≤ k ≤ m.

It now remains to show (5.2). By symmetry, we only need to prove

(5.3)

r∑
k=1

(
sk
n
− 1

pk

)
≥ −1

2

for some fixed 1 ≤ r ≤ m. To achieve our goal, we construct a multiplier σε

such that

sup
j∈Z
‖σε(2j ·)ψ̂‖W (s1,...,sm) . εn/2−s1−···−sr

for 0 < ε� 1, and functions fk satisfying ‖fk‖Hpk ≈ 1 for 1 ≤ k ≤ m and

‖Tσε(f1, . . . , fm)‖Lp ≈ εn−n/p1−···−n/pr .
Then the inequalities

εn−n/p1−···−n/pr ≈ ‖Tσε(f1, . . . , fm)‖Lp

≤ sup
j∈Z
‖σε(2j ·)ψ̂‖W (s1,...,sm)

m∏
k=1

‖fk‖Hpk . εn/2−s1−···−sr ,

for all small positive numbers ε, yield (5.3).
We construct functions that give us enough ingredients to establish the

multiplier σε and functions fk (1 ≤ k ≤ m) as above. Take smooth functions
ϕ, φ such that ϕ(0) 6= 0, ϕ̂ is supported in

{
ξ ∈Rn : |ξ| ≤ 1

19mr

}
and ϕ̂(ξ) = 1

for all |ξ| ≤ 1
30mr , and φ̂ is supported in the annulus 1

23m ≤ |ξ| ≤
1

19m and

φ̂(ξ) = 1 for all 1
22m ≤ |ξ| ≤

1
20m . Fix a, b ∈ Rn such that |a| = r−1/2,

|b| = 1
21m .



MULTILINEAR FOURIER MULTIPLIERS 17

For 0 < ε < 1
462m , define

σε(ξ1, . . . , ξm) = ϕ̂

(
1

rε

r∑
l=1

(ξl−a)

)
ϕ̂

(
1

r

r∑
l=1

(ξl − ξ2)
)
· · · ϕ̂

(
1

r

r∑
l=1

(ξl − ξr)
)

× φ̂(ξr+1) · · · φ̂(ξm).

Once again, suppσε ⊂ {ξ ∈ Rn : 2−1/4 ≤ |ξ| ≤ 21/4}, which, as in the
previous case, implies that

sup
j∈Z
‖σε(2j ·)ψ̂‖W (s1,...,sm) = ‖σε‖W (s1,...,sm) .

By changing variables, the inverse Fourier transform of σε is

(σε)∨(x1, . . . , xm)

= re2πia·
∑r
l=1 xlεnϕ

(
ε

r∑
l=1

xl

)
ϕ(x1 − x2) · · ·ϕ(x1 − xr)φ(xr+1) · · ·φ(xm).

Taking Sobolev norm leads to

‖σε‖W (s1,...,sm)

= Cεn
( �

Rnr

∣∣∣ϕ(ε r∑
l=1

xl

) r∏
l=2

ϕ(x1 − xl)
∣∣∣2 r∏
l=1

(1 + |xl|2)sl dx1 · · · dxr
)1/2

,

where C = r‖φ‖W sr+1 · · · ‖φ‖W sm .

Next, we show that

(5.4)
�

Rnr

∣∣∣ϕ(ε r∑
l=1

xl

)
ϕ(x1 − x2) · · ·ϕ(x1 − xr)

∣∣∣2 r∏
l=1

(1 + |xl|2)sl dx1 · · · dxr

. ε−n−2(s1+···+sr).

In fact, changing variables in the above integral and taking into account
Lemma 5.2 we have

�

Rnr

∣∣∣ϕ(ε r∑
l=1

xl

)
ϕ(x1 − x2) · · ·ϕ(x1 − xr)

∣∣∣2 r∏
l=1

(1 + |xl|2)sl dx1 · · · dxr

=
1

r

�

Rnr
|ϕ(εy1)ϕ(y2) · · ·ϕ(yr)|2

(
1 +

1

r2

∣∣∣ r∑
l=1

yl

∣∣∣2)s1
×

r∏
l=2

(
1 +

∣∣∣∣−yl +
1

r

r∑
l=1

yl

∣∣∣∣2)sl dy1 · · · dyr
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.
�

Rnr
|ϕ(εy1)ϕ(y2) · · ·ϕ(yr)|2

r∏
l=1

(1 + |yl|2)s1+···+sr dy1 · · · dyr

.
�

Rnr
|ϕ(εy1)|2(1 + |y1|2)s1+···+sr dy1 . ε−n−2s1−···−2sr ,

where the implicit constants do not depend on ε. Inequality (5.4) gives

sup
j∈Z
‖σε(2j ·)ψ̂‖W (s1,...,sm) = ‖σε‖W (s1,...,sm) . εn/2−s1−···−sr .

To construct functions fk, we fix a smooth function ζ such that ζ̂ is sup-
ported in

{
ξ ∈ Rn : |ξ − a| ≤ 1

3m

}
and is identical to 1 on

{
ξ ∈ Rn :

|ξ − a| ≤ 3
19m

}
. Now set

f1 = · · · = fr = ζ, f̂k(ξ) = εn/pk−nϕ̂

(
ξ − b
ε

)
for r + 1 ≤ k ≤ m.

It is clear that

‖fk‖Hpk ≈ ‖fk‖Lpk ≈ 1, 1 ≤ k ≤ m.
Moreover, f̂1(ξ1) · · · f̂r(ξr) = 1 on the support of the function

ϕ̂

(
1

rε

r∑
l=1

(ξl − a)

)
ϕ̂

(
1

r

r∑
l=1

(ξl − ξ2)
)
· · · ϕ̂

(
1

r

r∑
l=1

(ξl − ξr)
)
,

and also φ̂(ξ) = 1 on the support of f̂k for all r + 1 ≤ k ≤ m. Therefore

Tσε(f1, . . . , fm)(x)

= re2πi(ra+(m−r)b)·xεnϕ(εrx)[ϕ(0)]r−1εn/pr+1+···+n/pm [ϕ(εx)]m−r.

Take Lp-norm to get

‖Tσε(f1, . . . , fm)‖Lp ≈ εn−n/p1−···−n/pr ,
which is the last thing we want to achieve. Notice that the above argument
also works for pk =∞.

6. Endpoint estimates. In this section we consider two endpoint esti-
mates for multilinear singular integral operators. In the first case all indices
are equal to infinity, and in the second case one index is 1 and the others
are infinity.

For x ∈ Rn and 1 ≤ k ≤ m, define

Γ kx = {(y1, . . . , ym) ∈ Rmn : |yk| > 2|x|}.
We say that a locally integrable function K(y1, . . . , ym) on Rmn\{0} satisfies
a coordinate-type Hörmander condition if for some finite constant A we have

(6.1)
m∑
k=1

�

Γkx

|K(y1, . . . , yk−1, x− yk, yk+1, . . . , ym)−K(y1, . . . , ym)| d~y ≤ A
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for all 0 6= x ∈ Rn. Another type of (bi-)linear Hörmander condition of geo-
metric nature appeared in Pérez and Torres [16].

Denote by Λp = {(p,∞, . . . ,∞), (∞, p,∞, . . . ,∞), . . . , (∞, . . . ,∞, p)}
the set of all m-tuples with m−1 entries infinity and one entry p. The follow-
ing result provides a version of the classical multilinear Calderón–Zygmund
theorem in which the kernel satisfies a coordinate-type Hörmander condi-
tion under the initial assumption that the operator is bounded on Lebesgue
spaces with indices in Λ2. We denote by L∞c the space of all compactly
supported bounded functions.

Theorem 6.1. Suppose that an m-linear singular integral operator of
convolution type T with kernel K is bounded from Lq1×· · ·×Lqm to L2 with
norm at most B for all (q1, . . . , qm) ∈ Λ2. If K satisfies the coordinate-type
Hörmander condition (6.1), then

(6.2) ‖T (f1, . . . , fm)‖BMO . (A+B)‖f1‖L∞ · · · ‖fm‖L∞

for all fj in L∞c . Moreover, T has a bounded extension which satisfies

(6.3) ‖T (f1, . . . , fm)‖L1,∞ . (A+B)‖fl‖L1

m∏
l=1
k 6=l

‖fk‖L∞

for all 1 ≤ k ≤ m, fl ∈ L1, and fk ∈ L∞c for k 6= l.

Proof. Fix a cube Q. To prove (6.2) we show that there exists a constant
CQ such that

(6.4)
1

|Q|

�

Q

|T (f1, . . . , fm)(x)− CQ| dx . (A+B)‖f1‖L∞ · · · ‖fm‖L∞ .

We decompose fl = f0l + f1l , where f0l = flχQ∗ and f1l = flχ(Q∗)c . Let
F be the set of the 2m sequences of length m consisting of zeros and ones.
We claim that for each sequence ~k = (k1, . . . , km) in F there is a constant
C~k such that

(6.5)
1

|Q|

�

Q

|T (fk11 , . . . , fkmm )(x)− C~k| dx . (A+B)‖f1‖L∞ · · · ‖fm‖L∞ .

Assuming the validity of this claim we obtain (6.4) with CQ =
∑

~k∈F C~k.

Next, we want to establish (6.5) for each ~k ∈ F. If ~k = (k1, . . . , km) has
at least one zero entry we pick C~k = 0. Without loss of generality, we may
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assume that k1 = 0. Since T maps L2 × L∞× · · · × L∞ to L2, we have

1

|Q|

�

Q

|T (fk11 , . . . , fkmm )(x)| dx ≤
(

1

|Q|

�

Q

|T (fk11 , . . . , fkmm )(x)|2 dx
)1/2

≤
(

1

|Q|

�

Rn
|T (fk11 , . . . , fkmm )(x)|2 dx

)1/2

≤ B|Q|−1/2‖f01 ‖L2‖fk22 ‖L∞ · · · ‖f
jm
m ‖L∞

≤ B|Q|−1/2|Q∗|1/2‖f1‖L∞ · · · ‖fm‖L∞

. B‖f1‖L∞ · · · ‖fm‖L∞ .

Now suppose that ~k = (1, . . . , 1). Set C~k = T (fk11 , . . . , fkmm )(xQ), where
xQ is the center of the cube Q. Then, by the coordinate-type Hörmander
condition (6.1), we have

1

|Q|

�

Q

|T (f11 , . . . , f
1
m)(x)− C~k| dx

≤ 1

|Q|

�

Q

�

Rnm
|K(x−y1, . . . , x− ym)−K(xQ − y1, . . . , xQ − ym)|

×
m∏
k=1

|f1k (yk)| d~y dx

≤
∏m
k=1 ‖fk‖L∞
|Q|

×
�

Q

m∑
k=1

�

Γkx−xQ

|K(y1, . . . , (x−xQ)−yk, . . . , ym)−K(y1, . . . , ym)| d~y dx

. A‖f1‖L∞ · · · ‖fm‖L∞ .

This completes the proof of (6.2) and we are left with establishing (6.3). Fix
λ > 0. It is enough to show that

|{x ∈ Rn : |T (f1, . . . , fm)(x)| > 2λ}|

. (A+B)
1

λ
‖f1‖L1‖f2‖L∞ · · · ‖fm‖L∞ .

By scaling, we may assume that ‖f1‖L1 = ‖f2‖L∞ = · · · = ‖fm‖L∞ = 1.
Let δ be a positive number to be chosen later and let f1 = g1 + b1 be the
Calderón–Zygmund decomposition at height δλ, and b1 =

∑
j b1,j , where
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b1,j are functions supported in the (pairwise disjoint) cubes Qj such that

supp(b1,j) ⊂ Qj ,
�
b1,j(x) dx = 0, ‖b1,j‖L1 ≤ 2n+1δλ|Qj |,∑

j

|Qj | ≤
1

δλ
, ‖g1‖L∞ ≤ 2nδλ, ‖g1‖L1 ≤ 1.

Now we can estimate

|{x ∈ Rn : |T (f1, . . . , fm)(x)| > 2λ}| ≤ |{x∈Rn : |T (g1, f2, . . . , fm)(x)| >λ}|
+ |{x∈Rn : |T (b1, f2, . . . , fm)(x)| > λ}|.

Since T maps L2×L∞× · · · ×L∞ to L2, the first part can be controlled by

|{x∈Rn : |T (g1,f2, . . . , fm)(x)|>λ}|≤ 1

λ2

�

Rn
|T (g1, f2, . . . , fm)(x)|2 dx

≤ B
2

λ2
‖g1‖2L2‖f2‖2L∞ · · ·‖fm‖2L∞≤

2nB2δ

λ
.

To estimate the second part, we set G =
⋃
j Q
∗
j . Then

|{x ∈ Rn : |T (b1, f2, . . . , fm)(x)| > λ}|
≤ |G|+ |{x ∈ Gc : |T (b1, f2, . . . , fm)(x)| > λ}|

≤ |G|+ 1

λ

∑
j

�

(Q∗j )
c

|T (b1,j , f2, . . . , fm)(x)| dx.

Notice that

|G| ≤
∑
j

|Q∗j | .
∑
j

|Qj | ≤
1

δλ
.

Denote by cj the center of the cube Qj . Invoking condition (6.1) yields

�

(Q∗j )
c

|T (b1,j , f2, . . . , fm)(x)| dx

≤
�

(Q∗j )
c

∣∣∣ �K(x− y1, . . . , x− ym)b1,j(y1)f2(y2) · · · fm(ym) d~y dx
∣∣∣

≤
�

(Q∗j )
c

∣∣∣ � [K(x− y1, y2, . . . , ym)−K(x− cj , y2, . . . , ym)]

× b1,j(y1)
m∏
k=2

fk(x− yk) d~y dx
∣∣∣
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≤
m∏
k=2

‖fk‖L∞

×
�

(Q∗j )
c

�
|K(x− y1, y2, . . . , ym)−K(x− cj , y2, . . . , ym)| |b1,j(y1)| d~y dx

≤
�

Qj

{ �

Γ 1
y1−cj

|K(y1 − z1, z2 . . . , zm)−K(z1, z2, . . . , zm)| d~z
}
|b1,j(y1)| dy1

≤ A‖b1,j‖L1 .

Therefore
1

λ

∑
j

�

(Q∗j )
c

|T (b1,j , f2, . . . , fm)(x)| dx ≤ A

λ

∑
j

‖b1,j‖L1 ≤
2n+1A

λ
.

Choosing δ = B−1 and combining the preceding inequalities we obtain

|{x ∈ Rn : |T (f1, . . . , fm)(x)| > 2λ}|

≤ 1

λ
(2nB +B + 2n+1A) ≤ 2n+1(A+B)

1

λ
,

which yields (6.3).

This result allows us to obtain intermediate estimates between the results
in [4] (in which 2 < pk, p <∞) and the results in [8] (in which 1 < pk ≤ ∞
and 1 < p ≤ 2).

Corollary 6.2. Let 1 < pk ≤ ∞ and 1 < p < ∞ satisfy 1/p1 +
· · · + 1/pm = 1/p. Assume that (1.6) holds for a function σ on Rmn where
sk > n/2 for all k. Then the multilinear Fourier multiplier operator Tσ maps
Lp1 × · · · × Lpm to Lp.

Proof. Note that the Sobolev condition (1.6) for σ implies the Hörmander
condition (6.1) for K = σ∨. The proof is standard in the linear case, and in
the m-linear case, it follows by freezing all but one variable (in the bilinear
case it is contained in [15]). We are now able to apply Theorem 6.1 to Tσ, and
hence Corollary 6.2 follows: Interpolating between (6.2) and (6.3) implies
that Tσ maps Lp×L∞×· · ·×L∞ to Lp for all 1 < p <∞. By symmetry, we
deduce that Tσ is bounded from Lq1×· · ·×Lqm to Lp for all (q1, . . . , qm) ∈ Λp
and 1 < p < ∞. Once again, by interpolation, we find that Tσ maps from
Lp1 × · · · × Lpm to Lp for all 1 < p1, . . . , pm ≤ ∞ and 1<p<∞ such that
1/p1 + · · ·+ 1/pm = 1/p with norm at most a multiple of A.

Corollary 6.3. Let σ be a bounded function on Rmn \ {0} which sat-
isfies (1.6) with sk > n/2 for all k = 1, . . . ,m. Then

(6.6) ‖Tσ(f1, . . . , fm)‖BMO . A‖f1‖L∞ · · · ‖fm‖L∞

for all fk ∈ L∞c .
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Proof. As before, condition (1.6) for σ implies (6.1) for K = σ∨. Apply-
ing Theorem 6.1 to Tσ yields the assertion.

7. Proofs of some technical lemmas. In this section, we will give
the detailed proofs of some lemmas that were used in previous sections.

7.1. The proof of Lemma 3.2. For ρ ∈ Z, ρ ≥ 2, denote

Fρ = {y ∈ Rmn : 2ρ−1 − 2 ≤ |y| ≤ 2ρ+1 + 2}.

Fix x = (x1, . . . , xm) ∈ Rmn. Then

(ϕε ∗ σ)(2jx)ψ̂(x) =
{ �

ε−mnϕ(ε−1y)σ(2jx− y) dy
}
ψ̂(x)

=
{ �

ε−mn2jmnϕ(ε−12jy)σ(2j(x− y)) dy
}
ψ̂(x)

=
∑
ρ∈Z

{ �
ϕε2−j (y)σ(2j(x− y))ψ̂(2−ρ(x− y)) dy

}
ψ̂(x)

=
∑
ρ≤−3

{ �
ϕε2−j (x− y)σ(2jy)ψ̂(2−ρy) dy

}
ψ̂(x)(7.1)

+
∑
|ρ|≤2

�
ϕε2−j (y)σ(2j(x− y))ψ̂(2−ρ(x− y))ψ̂(x) dy(7.2)

+
∑
ρ≥3

{ �
ϕε2−j (x− y)σ(2jy)ψ̂(2−ρy) dy

}
ψ̂(x).(7.3)

The W (s1,...,sm) norm of the term (7.2) can easily be estimated by∑
|ρ|≤2

�
|ϕε2−j (y)| ‖σ(2j(· − y))ψ̂(2−ρ(· − y))ψ̂‖W (s1,...,sm) dy

≤
∑
|ρ|≤2

�
|ϕε2−j (y)| ‖σ(2j(· − y))ψ̂(2−ρ(· − y))‖W (s1,...,sm)‖ψ̂‖W (s1,...,sm) dy

.
∑
|ρ|≤2

‖σ(2j+ρ·)ψ̂‖W (s1,...,sm)

�
|ϕε2−j (y)| dy

. sup
j∈Z
‖σ(2j ·)ψ̂‖W (s1,...,sm) ,

in which the second last inequality follows from the fact [4, Proposition A.2],
[9] that

‖fg‖W (s1,...,sm) . ‖f‖W (s1,...,sm)‖g‖W (s1,...,sm)

when f, g ∈W (s1,...,sm) for s1, . . . , sm > n/2.
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Now fix integers Nk ≥ sk (1 ≤ k ≤ m) and set N = N1 + · · ·+Nm. Since
‖f‖W (s1,...,sm) ≤ ‖f‖WN , the Sobolev norm of the term (7.1) is bounded by∑
ρ≤−3

∥∥∥{ �
ϕε2−j (· − y)σ(2jy)ψ̂(2−ρy) dy

}
ψ̂
∥∥∥
WN

.
∑
ρ≤−3

∑
|α|+|β|≤N

∥∥∥{ �
(ε2−j)−|α|(∂αϕ)ε2−j (· − y)σ(2jy)ψ̂(2−ρy) dy

}
∂βψ̂

∥∥∥
L2

=
∑
ρ≤−3

∑
|α|+|β|≤N

∥∥∥∥{ �

1/4≤|y|≤9/4

(∂αϕ)ε2−j (y)

(ε2−j)|α|

× σ(2j(· − y))ψ̂(2−ρ(· − y)) dy

}
∂βψ̂

∥∥∥∥
L2

.
∑
ρ≤−3

∑
|α|≤N

�( |y|
ε2−j

)|α|
|(∂αϕ)ε2−j (y)| ‖σ(2j(· − y))ψ̂(2−ρ(· − y))‖L2 dy

.
∑
ρ≤−3

2ρn/2‖σ(2j+ρ·)ψ̂‖L2

∑
|α|≤N

�( |y|
ε2−j

)|α|
|(∂αϕ)ε2−j (y)| dy

.
∑
ρ≤−3

2ρn/2‖σ(2j+ρ·)ψ̂‖W s

∑
|α|≤N

�
|y||α||(∂αϕ)(y)| dy

. sup
j∈Z
‖σ(2j ·)ψ̂‖W (s1,...,sm) .

Finally, we deal with the term (7.3). We have∥∥∥∑
ρ≥3

{ �
ϕε2−j (· − y)σ(2jy)ψ̂(2−ρy) dy

}
ψ̂
∥∥∥
W (s1,...,sm)

≤
∑
ρ≥3

∥∥∥{ �
ϕε2−j (· − y)σ(2jy)ψ̂(2−ρy) dy

}
ψ̂
∥∥∥
WN

.
∑
ρ≥3

∑
|α|+|β|≤N

∥∥∥{ �
(ε2−j)−|α|(∂αϕ)ε2−j (· − y)σ(2jy)ψ̂(2−ρy) dy

}
∂βψ̂

∥∥∥
L2

=
∑
ρ≥3

∑
|α|+|β|≤N

∥∥∥{ �

Fρ

(ε2−j)−|α|(∂αϕ)ε2−j (y)

× σ(2j(· − y))ψ̂(2−ρ(· − y)) dy
}
∂βψ̂

∥∥∥
L2

.
∑
ρ≥3

∑
|α|+|β|≤N

�

Fρ

(
|y|

2ρε2−j

)|α|
|(∂αϕ)ε2−j (y)|

× ‖σ(2j(· − y))ψ̂(2−ρ(· − y))∂βψ̂ ‖L2 dy
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=
∑
ρ≥3

∑
|α|+|β|≤N

�

Fρ

(
|y|

2ρε2−j

)|α|
|(∂αϕ)ε2−j (y)|

× ‖σ(2j ·)ψ̂(2−ρ·)(∂βψ̂)(·+ y)‖L2 dy

≤
∑
ρ≥3

∑
|α|+|β|≤N

�

Fρ

2ρn/2
(
|y|
ε2−j

)|α|
|(∂αϕ)ε2−j (y)|

× ‖σ(2j+ρ·)ψ̂(∂βψ̂)(2ρ ·+y)‖L2 dy

≤
∑
ρ≥3

∑
|α|≤N

�

Fρ

2ρn/2
(
|y|
ε2−j

)|α|
|(∂αϕ)ε2−j (y)| ‖σ(2j+ρ·)ψ̂‖L2(B(−2−ρy,21−ρ)) dy

.
∑
|α|≤N

∑
ρ≥3
‖σ(2j+ρ·)ψ̂ ‖L∞

�

Fρ

(
|y|
ε2−j

)|α|
|(∂αϕ)ε2−j (y)| dy

≤
∑
|α|≤N

∑
ρ≥3
‖σ(2j+ρ·)ψ̂ ‖W (s1,...,sm)

�

Fρ

(
|y|
ε2−j

)|α|
|(∂αϕ)ε2−j (y)| dy

. sup
ρ∈Z
‖σ(2j+ρ·)ψ̂ ‖W (s1,...,sm)

∑
|α|≤N

∑
ρ≥3

�

Fρ

(
|y|
ε2−j

)|α|
|(∂αϕ)ε2−j (y)| dy

. sup
j∈Z
‖σ(2j ·)ψ̂ ‖W (s1,...,sm) .

The proof of Lemma 3.2 is now complete.

7.2. The proof of Lemma 4.1. Before verifying the lemma, we men-
tion approaches that were used by other authors. First, with the assumption
on the kernel

|∂αy0,...,ymK(y0, . . . , ym)| ≤ A
( m∑
k,l=0

|yk − yl|
)−mn−|α|

for all |α| ≤ N, Grafakos and Kalton [7] showed that estimate (4.3) holds
for the corresponding multilinear singular integral operator with

bk(x) =
|Qk|1−1/pk+(N+1)/(mn)

(|x− ck|+ `(Qk))n+(N+1)/m
.

Miyachi and Tomita [15] constructed functions bk satisfying Lemma 4.1 in
the bilinear case. We adapt these techniques to prove the key lemma in the
multilinear setting.
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Now we start the proof of Lemma 4.1. We may assume that J0 =
{1, . . . , r} for some 1 ≤ r ≤ m. Fix

x ∈
( m⋂
k=r+1

Q∗k

)
\

r⋃
k=1

Q∗k

(when r = m, just fix x ∈ Rn \
⋃m
k=1Q

∗
k). Now we rewrite Tσ(a1, . . . , am)(x)

as
Tσ(a1, . . . , am)(x) =

∑
j∈Z

gj(x),

where

gj(x) =
�

Rmn
2jmnKj

(
2j(x−y1), . . . , 2j(x−ym)

)
a1(y1) · · · am(ym) dy1 · · · dym

with Kj =
(
σ(2j ·)ψ̂

)∨
. Let ck be the center of the cube Qk (1 ≤ k ≤ m).

For 1 ≤ k ≤ r, since x /∈ Q∗k and yk ∈ Qk, we have |x− ck| ≈ |x− yk|. Fix
1 ≤ l ≤ r. Lemma 2.1 with sk > n/2 and the Cauchy–Schwarz inequality
yield

(7.4)
r∏

k=1

〈2j(x− ck)〉sk |gj(x)|

. 2jmn
�

Q1×···×Qm

( r∏
k=1

〈2j(x− yk)〉sk
)

× |Kj(2
j(x− y1), . . . , 2j(x− ym))|

m∏
k=1

‖ak‖L∞ d~y

≤ 2jmn
�

Q1×···×Qm

( r∏
k=1

〈2j(x− yk)〉sk
)

× |Kj(2
j(x− y1), . . . , 2j(x− ym))|

m∏
k=1

|Qk|−1/pk d~y

≤ 2jrn
m∏
k=1

|Qk|−1/pk
�

Q1×···×Qr×R(m−r)n

( r∏
k=1

〈2j(x− yk)〉sk
)

× |Kj(2
j(x− y1), . . . , 2j(x− yr), yr+1, . . . , ym)| dy1 · · · dyr dyr+1 · · · dym

≤ 2jrn
r∏

k=1

|Qk|1−1/pk
m∏

k=r+1

|Qk|−1/pk
�

R(m−r)n

�

Ql

|Ql|−1〈2j(x− yl)〉sl

×
∥∥∥( r∏

k=1
k 6=l

〈yk〉sk
)
Kj(y1, . . . , yl−1, 2

j(x− yl), yl+1, . . . , ym)
∥∥∥
L∞(dy1···d̂yl···dyr)

× dyl dyr+1 · · · dym
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. 2jrn
r∏

k=1

|Qk|1−1/pk
m∏

k=r+1

|Qk|−1/pk
�

R(m−r)n

�

Ql

|Ql|−1〈2j(x− yl)〉sl

×
∥∥∥( r∏

k=1
k 6=l

〈yk〉sk
)
Kj(y1, . . . , yl−1, 2

j(x− yl), yl+1, . . . , ym)
∥∥∥
L2(dy1···d̂yl···dyr)

× dyl dyr+1 · · · dym

. 2jrn
r∏

k=1

|Qk|1−1/pk
m∏

k=r+1

|Qk|−1/pk
�

Ql

|Ql|−1〈2j(x− yl)〉sl

×
∥∥∥( m∏

k=1
i 6=k

〈yk〉sl
)
Kj(y1, . . . , yl−1, 2

j(x−yl), yl+1, . . . , ym)
∥∥∥
L2(dy1···d̂yl···dym)

dyl

= 2jrn
( r∏
k=1

|Qk|1−1/pk
)
h
(l,0)
j (x)

m∏
k=r+1

bk(x)

for all x ∈ (
⋂m
k=r+1Q

∗
k) \

⋃r
k=1Q

∗
k, where

h
(l,0)
j (x) =

1

|Ql|

�

Ql

〈2j(x− yl)〉sl

×
∥∥∥( m∏

k=1
k 6=l

〈yk〉sk
)
Kj(y1, . . . , yl−1, 2

j(x− yl), yl+1, . . . , ym)
∥∥∥
L2(dy1···d̂yl···dym)

dyl

and bk(x) = |Qk|−1/pkχQ∗k(x) for r+ 1 ≤ k ≤ m. A direct computation gives

‖h(l,0)j ‖L2 ≤ 2−jn/2‖σ(2j ·)ψ̂‖W (s1,...,sm) = A2−jn/2.

Using the vanishing moment condition of ak and Taylor’s formula, we write

gj(x) = 2jmn
∑
|α|=Nl

Cα
�

Rmn

{ 1�

0

(1− t)Nl−1

× ∂αylKj

(
2j(x− y1), . . . , 2j(x− cl − t(yl − cl)), . . . , 2j(x− ym)

)
× (2j(yl − cl))αa1(y1) · · · am(ym) dt

}
dy1 · · · dym.

Repeat the preceding argument to obtain

(7.5)
r∏

k=1

〈2j(x− ck)〉sk |gj(x)| . 2jrn
( r∏
k=1

|Qk|1−1/pk
)
h
(l,1)
j (x)

m∏
k=r+1

bk(x)

for all x ∈ (
⋂m
k=r+1Q

∗
k)\
⋃r
k=1Q

∗
k, where bk(x) = |Qk|−1/pkχQ∗k(x) for r+1 ≤
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k ≤ m and

h
(l,1)
j (x) =

∑
|α|=Nl

�

Ql

{1�

0

〈2jxtcl,yl〉
sl

×
∥∥∥( m∏

k=1
k 6=l

〈yk〉sk
)
∂αylKj(y1, . . . , yl−1, 2

jxtcl,yl , yl+1, . . . , ym)
∥∥∥
L2(dy1···d̂yl···dym)

× (2j`(Ql))
Nl |Ql|−1 dt

}
dyl,

with xtcl,yl = x − cl − t(yl − cl). Applying Minkowski’s inequality together
with Lemma 2.2 implies that

‖h(l,1)j ‖L2 ≤ A2−jn/2(2j`(Ql))
Nl .

Combine inequalities (7.4) and (7.5) to get

(7.6)
r∏

k=1

〈2j(x− ck)〉sk |gj(x)|

≤ 2jrn
( r∏
k=1

|Qk|1−1/pk
)

min{h(l,0)j (x), h
(l,1)
j (x)}

m∏
k=r+1

bk(x)

for all 1 ≤ l ≤ r. The inequalities in (7.6) imply that

(7.7) |gj(x)|

≤ 2jrn
r∏

k=1

|Qk|1−1/pk
r∏

k=1

〈2j(x− ck)〉−sk min
1≤l≤r

{h(l,0)j (x), h
(l,1)
j (x)}

m∏
k=r+1

bk(x)

for all x ∈ (
⋂m
k=r+1Q

∗
k) \

⋃r
k=1Q

∗
k.

Now we need to construct functions ukj (1 ≤ k ≤ r) such that

gj(x) . A

r∏
k=1

ukj (x)

m∏
k=r+1

bk(x)

for all x ∈ (
⋂m
k=r+1Q

∗
k) \

⋃r
k=1Q

∗
k and ‖

∑
j u

k
j ‖Lpk . 1 for all 1 ≤ k ≤ r.

Then the lemma follows by taking bk =
∑

j u
k
j (1 ≤ k ≤ r) and bk =

|Qk|−1/pkχQ∗k (r + 1 ≤ k ≤ m).

Indeed, we can choose 0 < λk < min{1/2, sk/n− 1/pk + 1/2} such that

r∑
k=1

λk =
r − 1

2
.
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This is suitable since conditions (1.5) imply that
r∑

k=1

min

{
1

2
,
sk
n
− 1

pk
+

1

2

}
>
r − 1

2
.

Set αk = 1/pk − 1/2 + λk and βk = 2(1/pk − αk). Then
r∑

k=1

αk =

r∑
k=1

1

pk
− 1

2
,

βk > 0 and β1 + · · ·+ βr = 1. Now define

ukj = A−βk2jn|Qk|1−1/pk〈2j(· − ck)〉−skχ(Q∗k)
c min{h(k,0)j , h

(k,1)
j }βk

for 1 ≤ k ≤ r. Then, from (7.7), it is easy to see that

gj(x) . A
r∏

k=1

ukj (x)
m∏

k=r+1

bk(x)

for all x ∈ (
⋂m
k=r+1Q

∗
k) \

⋃r
k=1Q

∗
k. It remains to check that

(7.8)
∑
j

�

Rn
|ukj (x)|pk dx . 1.

Since 1/pk = αk+βk/2, setting 1/p′k = 1−1/pk, from Hölder’s inequality
we get

‖ukj ‖Lpk ≤ A−βk2jn|Qk|1/p
′
k

× ‖〈2j(· − ck)〉−skχ(Q∗k)
c‖L1/αk‖min{h(k,0)j , h

(k,1)
j }βk‖L2/βk

for all 1 ≤ k ≤ r. Notice that n < sk/αk, so we have

‖〈2j(· − ck)〉−skχ(Q∗k)
c‖L1/αk . 2−jnαk min{1, (2j`(Qk))αkn−sk},

‖(min{h(k,0)j , h
(k,1)
j })βk‖L2/βk ≤min{‖h(k,0)j ‖βk

L2 , ‖h
(k,1)
j ‖βk

L2}

.
(
A2−jn/2 min{1, (2j`(Qk))Nk}

)βk .
Therefore

‖ukj ‖Lpk≤2jn|Qk|1−1/pk2−jn/pkmin{1,(2j`(Qk))αkn−sk}min{1,(2j`(Qk))Nkβk}

.(2j`(Qk))
n−n/pk min{1, (2j`(Qk))αkn−sk}min{1, (2j`(Qk))Nkβk}.

This inequality is enough to establish (7.8). The proof of Lemma 4.1 is
complete.
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