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MULTILINEAR FOURIER MULTIPLIERS
WITH MINIMAL SOBOLEV REGULARITY, I

BY

LOUKAS GRAFAKOS and HANH VAN NGUYEN (Columbia, MO)

Abstract. We find optimal conditions on m-linear Fourier multipliers that give rise
to bounded operators from products of Hardy spaces HP*, 0 < pr < 1, to Lebesgue
spaces LP. These conditions are expressed in terms of L2-based Sobolev spaces with sharp
indices within the classes of multipliers we consider. Our results extend those obtained
in the linear case (m = 1) by Calder6n and Torchinsky (1977) and in the bilinear case
(m = 2) by Miyachi and Tomita (2013). We also prove a coordinate-type Hormander
integral condition which we use to obtain certain endpoint cases.

1. Introduction. Let o be a bounded function on R". We denote by T,
the linear Fourier multiplier operator, whose action on Schwartz functions
is given by

~

(1.1) T, (f)(x) = | o(&)F(§)e*™ ™ dg.

R

Mikhlin’s [I4] classical result states that T, admits an LP-bounded extension
for 1 < p < oo, whenever

(1.2) 080 (&)] < Cale] T, €0,
for all multi-indices o with |o| < [n/2] + 1. This result was refined by
Hormander [12] who proved that (|1.2)) can be replaced by the Sobolev-norm
condition
(1.3) sup [|lo(27(-))[lws < oo
JEZ

for some s > n/2, where ¢ is a smooth function supported in 1/2< ¢ <2
that satisfies

Y v =1

JEZ
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2 L. GRAFAKOS AND H. V. NGUYEN

for all £ # 0. Here ||g||ws = ||(I —A)*/%g|| 2, where I is the identity operator
and A =370, &7 is the Laplacian on R".

Calderén and Torchinsky [I] showed that the Fourier multiplier operator
in admits a bounded extension from the Hardy space H? to HP with
O<p<l1if

sup [l () dllw= < oo
t>0

and s > n/p —n/2. Here the index s = n/p —n/2 is critical in the sense
that the boundedness of T,, on H? does not hold if s < n/p—n/2. This was
pointed out later by Miyachi and Tomita [15].

The bilinear counterpart of the Fourier multiplier theory has been rather
similar in the formulation of results, but substantially more complicated in
their proofs. The theory of multilinear operators, and in particular that
of multilinear multiplier operators, originated in the work of Coifman and
Meyer [2], [3], [I3] and resurfaced in the work of Grafakos and Torres [11].
Multilinear Fourier multipliers are bounded functions ¢ on R™* = R" x - - -
x R™ associated with the m-linear Fourier multiplier operator in the follow-
ing way:

(14) Ta(fla-”vfm)(x)
= | o (e, 6n) i) Fn(€n) dE,

Rmn

where f; are in the Schwartz space of R" and dg =d&; - - dép,.

Tomita [I7] obtained LP! x ---x LPm — LP boundedness (1 < p1, ..., Pm,
p < oo) for multilinear multiplier operators under a condition analogous
to ([1.3). Grafakos and Si [10] extended Tomita’s results to the case p < 1 by
using L"-based Sobolev norms for o with 1 < r < 2. Fujita and Tomita [4]
provided weighted extensions of these results, but also noticed that the
Sobolev space W* in can be replaced by a product-type Sobolev space
W(stu8m) when p > 2. Grafakos, Miyachi and Tomita [§] extended the
range of p in [4] to p > 1 and obtained boundedness even in the endpoint
case where all but one indices p; are equal to infinity. Miyachi and Tomita
[15] provided extensions of the Calderén and Torchinsky results [1] for Hardy
spaces in the bilinear case; note that in [I5] it was pointed out that the con-
ditions on the indices are sharp, even in the linear case, i.e., in the Calderén
and Torchinsky theorem.

Following this stream of work, we are interested in finding conditions
analogous to those in [I5] in the multilinear setting, i.e., when m > 3.
Our work is inspired by that of Calderén and Torchinsky [I], Grafakos and
Kalton [7], and certainly of Miyachi and Tomita [15]. As in [15], we find
necessary and sufficient conditions, which coincide with those in [I5] when
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m = 2, that imply boundedness for multilinear multiplier operators on prod-
ucts of Hardy spaces. One important aspect of this work is an appropriate
regularization of the multilinear multiplier operator which allows the inter-
change of its action with infinite sums of HPi-atoms (see Section 3). In this
article we restrict attention to the case where the domain is a product of
Hardy spaces. In a subsequent article we study the case where the domain
is a mix of Lebesgue and Hardy spaces.

We introduce the Sobolev spaces that will be used throughout this paper.
First, for x € R™ we set () = /1 + |z|2. For s1,..., s, > 0, we denote by
W (s1-5m) the Sobolev space (of product type) consisting all functions f on
R™" such that

- 1/2
1 i or o) == ( | !f<y1,~--,ym)<y1>51--~<ym>5’"\2dy1~--dym> < o0
Rmn

Notice that W(1-5m) i a subspace of L2,
Let ¢ be a smooth function on R"™" whose Fourier transform  is sup-
ported in 1/2 < |¢] < 2 and satisfies

YT =1, ¢#0.

JEL
For 0 < p < oo we denote by HP the Lebesgue space LP if p > 1 and the
Hardy space HP if p < 1. The following is the main result of this paper.

THEOREM 1.1. Letn/2 < $1,...,8m < 00,0 < p1,....,pm <1,0<p<1

be such that
1 1 1

— 44— =,

4! Pm p
and that

Sk 1 1

(1.5) Z< - ) > —=

AN 2
for every subset J C {1,...,m}. If a function o defined on R™" satisfies
(1.6) A= sup [[0(27 )|yt smy < 00,

JEZ

then T, is bounded from HP' x --- x HP™ to LP with constant at most a

multiple of A. Moreover, the set of 2™ — 1 conditions (1.5 is optimal.

REMARK 1.2. Conditions imply that s > n/2 whenever 0 < p;, <1
for all 1 < k£ < m. Moreover, the condition in is sufficient to guarantee
that o lies in L*°(R™"). Indeed, suppose that o is a function on R™" that
satisfies (L.6). It is easy to see that @(%x) + 12(:(:) + 12(236) = 1 for all
1 <z < 2. Now we want to verify that |o(2/0x)| is uniformly bounded in
Jo € Z for a.e. 1 < |z| < 2. Applying the Cauchy—Schwarz inequality and
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using the conditions s > n/2, we write

0@ = |3 o@vmyie)] < 30| | (o@ i) i e

<1 i<1 Rmn
m
<>V IJa+ &)=
[|<1Rm™ k=1

-~

$TTA+ 1Py 2@ )0 €, o) déa - dn
k=1

< Z C(s15- s 8ms ) || Tjo—1U |l (s1,om)
=1

< 30(515-”351717”) SupHo-jqu)HW(ﬁ vvvvv sm)
JEL

for almost all z satisfying 1 < |z| < 2. Here we set o; (€) = o(2/€). Thus

o]l oo mmny < 3C(s1, ..., 5m,n) slelg o5y s1senmrsm) < 0O.
J

The structure of this paper is as follows: Section 2 contains preliminaries
and known results. In Section 3, we regularize the multiplier to be able to
work with a nicer operator and thus facilitate the passage of infinite sums
in and out of the operator in the proof of the main result given in Section 4.
In Section 5, we construct examples to justify the minimality of conditions
(1.5) claimed in the main theorem. Section 6 presents some results about
the boundedness of our operator in the endpoint cases where we need the
coordinate-type Hormander integral conditions. The last section contains
the detailed proofs of some technical lemmas used through the paper.

We use the notation A < B to indicate that A < C'B, where the constant
C is independent of any essential parameters, and A ~ B if simultaneously
A< Band B < A

2. Preliminaries and known results. Now fix 0 < p < oo and a
Schwartz function @ with ¢(0) # 0. Then the Hardy space H? contains all
tempered distributions f on R™ such that

[l := || sup [@ex 1| < oo
0<t<oo Ly

It is well known that the definition of the Hardy space does not depend on
the choice of @. Note that H? = LP for all p > 1. When 0 < p < 1, one of nice
features of Hardy spaces is the atomic decomposition. More precisely, any
function f € HP (0 < p < 1) can be decomposed as f = Zj Ajaj, where a;’s

are L*-atoms for H? supported in cubes @Q; such that ||a ||z~ < |Qj|_1/p
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and {z7aj(z)dx = 0 for all |y| < [n(1/p —1)] + 1, and the coefficients \;
satisfy 33 [ A" < 2P| f -

The following two lemmas are essentially contained in [15] modulo some
minor modifications.

LEMMA 2.1 ([I5]). Let k, 1 be positive integers, 0 < s1,..., Sk < 00, and
let 1 < p < co. Assume that o is a bounded function defined on RF" x R™,
supported in {(z,y) € RF* x R™ : |z|* + |[y|* < 4}, where © = (x1,...,x1),
y=(y1,...,y) withx1,..., 2k, 91,...,y € R", and set K = o, the inverse
Fourier transform of o. Then there exists a constant C' > 0 such that

1{yn)™ - (o) K (@, y) | poo (rin gy < CllYn)™ - (o) K (@, 9) | 2o min ay)
for all x € RF™,

Proof. Take ¢ a Schwartz function on R™ such that @(y) = 1 for all
y € R |y| < 2. Then o(z,y) = o(x,y)P(y). Using the inverse Fourier
transform we have

K(z,y) = (Kx@o@¢)(ny)= | K@—uy—0)sue()dud
REn xRIn
= | K(@y—v)e(v)dv,
Rin

where §y is the Dirac distribution. Therefore,

(y1)*t - () K (z,y)|

= (y1)™ - <yz>sl‘ | K21, mmyn — v, u — w)e(v) do
Rin
I

| (H<yj *Uj>sj)
Rin  j=1
X |K(x1,y ..oy Ty Y1 — U1,y — o) (01) % -+ (0) % o (v) | do
< Cill{y)™ - ()™ K (2, )l Lo @in ayy 101" - ()™ ()| Lor min )
< Col[{y1)™ - ()" K (@, y) || Lo min ay)
where we used Holder’s inequality in the second to last line. m

LeMMA 2.2 ([I5]). Let sp > n/2 for 1 < k < m, and let ¢ be a smooth
function which is supported in an annulus centered at zero. Suppose that @
is a smooth function away from zero that satisfies the estimates

0¢B(€)| < Cale] ™™

forall§ € R™ x # 0 and all multi-indices . Then there exists a constant C
such that

sup [[o/(27 (-))B(27 ())C lyptorniom) < C 8P [(27 (D)% lypror,om-
JEZ JEL

N
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Adapting the Calderén and Torchinsky interpolation techniques in the
multilinear setting (for details on this we refer to [8, p. 318]) allows us to
interpolate between two endpoint estimates for multilinear multiplier oper-
ators from a product of some Hardy spaces to Lebesgue spaces.

THEOREM 2.3 ([8]). Let 0 < p1,p2, p1k, ok < 00 and n/2 < Syp, Sop < 00
and 1 < k < m. For0 < 0 <1, set 1/p = (1—=0)/p1 + 0/p2, 1/px =
(1 —0)/p1x +0/pag, and sk = (1 —0)s1 + Oso. Assume that the multilinear
operator T, defined in (1.4) satisfies the estimates

| T || 211 ... x Pt — 220 < Cpsup ||O'(2j )@Z}H]/V(Sn vvvvv Sim) (1=1,2).
JEZ
Then

||T ||HP1>< X HPm — [P < CSupHU(Q] )T/JHW(SI ,,,,, sm) -
jez
The following result is due to Fujita and Tomita [4] for 2 < p < oo, while
the extension to p > 1 and the endpoint case where all but one indices are
equal to infinity is due to Grafakos, Miyachi and Tomita [§].

THEOREM 2.4 ([], [8]). Let 1 < pi,...,pm < 00,1 <p<ooandl/p;+
<+1/pm = 1/p. If o satisfies (1.6), then the multilinear multiplier operator
T, is bounded from LP' x --- x LPm™ to LP with constant at most a multiple

of A.
Finally, we will need the following lemma from [7].

LEMMA 2.5 ([7, Lemma 2.1]). Let 0 < p <1 and let (fg)geg be a family
of nonnegative integrable functions with supp(fq) C Q for all Q € J, where
J is a family of finite or countable cubes in R™. Then

1> (|Q| | fo)dr) o

with the z'mplzczt constant dependmg only on p. Here Q* is a dimensional
dilate of the cube Q.

)

Lpr

3. Regularizing the multiplier. In this section, we show that the
operator defined in (|1.1)) with enough smoothness of the multiplier can be
approximated by a family of very nice operators.

THEOREM 3.1. Let o be a function on R™" satisfying (1.6 and let s >
n/2 for 1 <k < m. Then there exists a family (0)o<c<1/2 of functions such
that K€ := (0¢)V is smooth and compactly supported for every 0 < e < 1/2;
also

(3.1) sup supHUe(Qj')wHW<s1 ----- Sm),SSup||a(2j-)¢HW(s1 ..... sm)
0<e<1/2 jEZL JEZ
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and
(32) lg%”Te(flw"ufm)_TU(f17"‘7fm)”L2:O

for all functions f,, € L*™, 1 < k < m, where T, are multilinear singular
integral operators of convolution type associated to K€.

The following lemma, whose proof will be given in the last section, is the
first step in constructing a family of functions o€ as stated in Theorem [3.1]

LEMMA 3.2. Let ¢ be a Schwartz function. Suppose o is a function on
R™™ satisfying (L.6|) for sp > n/2. Then

sup sup || [(0e * 0) (2N erniom S SUP 027Vl o1,nom)
e>0 jEZ JEZ

—mn

with g (T1,...,Tm) =€ o(etay, ..., e tay) forallz, € R, 1 < k < m.

Proof of Theorem [3.1] Fix 0 < e < 1/2. Choose a smooth function ¢
such that @ is supported in the unit ball and (0) = 1. Set o€ = @ * (g¢°),
where ¢¢ = 0(e~!-) — f(e), and 6 is a smooth function satisfying 6(z) = 0
for all |z| <1 and 6(x) =1 for all |z| > 2. We note that these functions are
suitable regularized versions of the multiplier in Theorem Indeed, let
K¢ = (09" = (0¢°)VP(e(+)); then K€ are smooth functions with compact
support for all 0 < € < 1/2.

Using the fact that

0%0°(E)] < Caplé] ™, £#0,0<e<1/2,

Lemma [3.2] applied to the function o¢¢ combined with Lemma [2.2] gives

0<e<1/2 jEZ 0<e<1/2 jEZ

jE

which yields (3.1]). Thus, we are left with establishing (3.2). For ¢ > 0, now
recall that

Te(fl, ceey fm)(:T) = S Ke(x — Y1y T — ym)fl(yl) e fm(ym) dy
= S o(&1,. .. 7§m)]?1(§1) .. .fr\n(gm)eZM;r(glJr...Jrém) de.

Invoking estimate (3.1) with Theorem we can see that T, and T, are
uniformly bounded from L?™ x --- x L*™ to L? for all 0 < € < 1/2. By
density, it suffices to verify (3.2)) for all functions in the Schwartz class.
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Now fix Schwartz functions f; for 1 < k < m. The Fourier transform
of T,(f1,..., fm) can be written as

| a(&,...,gml,a—mz_l&)
=1

Rn(m—1)
-1
X Fi€) - Fuct (Gn-0) (6= Y &) da - dnen.

=1

3

Similarly, the Fourier transform of T¢(f1,..., fm) is
m—1
S 0_6(617.”’57”71’6_2&-[)
Rn(m—1) =1

m—1
X Fi€) - Fut Gn-0) (6= Y &) da -+~ doncn.
=1

We now claim that o¢ converges pointwise to o. Taking this claim for
granted, we have

(Te(fr, - fm))(§) = (To(fr,- -, fm))(§)  ase—0
for a.e. £ € R™. Notice that

HTE(fla s vfm) - Ta(fh .- ~7fm)HL2
= H(Te(fla .- wfm))/\_ (TU(f17 .- -afm))AHLQ'

Since ||| S ||o]l e < o0 for all € > 0, Lebesgue’s dominated conver-
gence theorem implies that

(Te(fla---afm))/\% (Ta(flw--,fm))/\ as e — 0
in L2, and this establishes (3.2)).

It remains to prove the above claim about pointwise convergence of o€
as € — 0. So fix jo € Z; we want to show that o°(x) — o(z) for a.e.
200 < |z| < 200F1 Indeed, let 0 < € < min{2%0=2 21012} he a small
positive number. Then
(@) —o(@)| < | lec@llo(@—y)  sup ¢z —y)—1]dy
lyl<ve Posa<20w!
+ | lec@)lo(@ —y) - o(x)| dy
ly|<v/e
+ | lecllo(@ —v)of(x —y) — o(x)| dy.
ly[>+/e
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The first integral vanishes since ¢(z) = 1 for all 2¢ < |z| < 1/e. To estimate
the second integral, we denote

U(r) =Y P2 ).
li]<2
Then ¥(z) = 1 for all 1/4 < |z| < 4. Therefore
(290 (z —y)) = (2 o) =1
for all 270 < |z| < 20! and |y| < 27071 Now recall oj(z) = o(2/x);

we estimate

| lecwllo(@—y) —o(x)|dy

ly|<+/e - ) ~ 4
= | lecllo(@— )@@ - y)) - o(x)(2 )| dy
ly|<v/e
< lgllpr sup [lo(- = y)F(27( —y)) — oF(2770.)
ly|<v/e
jo+2

<llelr D> sup [[(o;9)( = 279y) = (0;9) ||~
j=jo—2 lyISVe
Jo+2 N R
=llelr D> swp (o) —y) = (0,4) L~
j=jo—2 lYI<2774/e
We would like to show R R
lim  sup |[(o;9)(- —y) — (0;9)[[~ = 0.
0 |y|<2-i /e
The preceding limit is equal to 0 because inz € Whtosm) for g > n/2,
1 < k < m. The last term of the sum at the bottom of page 8]is majorized by

Cllolz= | le()ldy.

) ly|>1/v/€
which tends to 0 as € — 0.

Thus o¢(z) — o(z) as e — 0 for a.e. 200 < || < 2700+l Hence,
o€ converges to o pointwise on R™". Also ||0¢|| oo mmn) < ||| foo (mmny uni-
formly for all € > 0. The proof of Theorem is complete. m

For a Schwartz function K, denote the multilinear singular integral op-
erator of convolution type associated with the kernel K by

T (frveoifm)(@) = | K@ —y1,ee 2= ym) fr) - fonym) dyr -~ dym.
Rmn
PrOPOSITION 3.3. Let K be a smooth function on R™" with compact

support. Then
1T\ 1 s srvm v < Cre < 00

forallO <pi,....pm,p<ocand 1/p=1/p1+ -+ 1/pm.
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Proof. The boundedness of T5 can be deduced from [6, Lemma 4.2],
which provides the estimate (for some sufficiently large integer V)

(3.3) T5(froe s f) @] S T M (f) (@)

k=1
for all f, € L? N HP*, where

Mn(f)(z) = sup sup sup |[(¢s* f)(y)]

pESN t>0 yeB(x,t)
is the grand maximal function with respect to IV, and
Sy = {cp eS®M): [ (L+[ahY Y [0%(x)|dx < 1}.
R lo|<N+1

Taking the LP quasinorm, applying Holder’s inequality to (3.3]), and using
the quasinorm equivalence of some maximal functions [5, Theorem 6.4.4]
yields

T Cfrseos fallle S TTIMNGFlleee < Cre [T I fallzer- m
k=1 k=1

Working with smooth kernels K with compact support comes handy
when dealing with infinite sums of atoms, since we are able to freely inter-
change the action of T with infinite sums of atoms. Precisely, a consequence
of the boundedness of T, given in Proposition is the following result.

PROPOSITION 3.4. Let 0 < p1,...,pm < 1 and let K be a smooth func-
tion with compact support. Then for every fi € HPF with atomic rep-
resentation f = ij Ak jn Ok, g, Where ay j, are L>-atoms for HP% and
D i [P < 2P| fiel iy, for 1 < k < 'm, we have

K(fl’“-vfm Z Z)‘l,ﬁ A K(al,ﬁw“,am,jm)(x)

]1 1 ]'m*l
for a.e. x € R".

Proof. Let 0 < p < oo be such that 1/p =1/p1 +---+ 1/pp. For any
positive integers Nl, .. Nm, Proposition gives the estimate

HTK(fhﬂf Z Z Alv]lu m]m K(a17j17"'7am7jm)’

Ji=1 Jm=1

<Ck Z ka - Z Ak g Ok, jy,

Je=1

Lr

. H 1 fill s

Now passing to the limit, we obtain the asserted equality. =
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4. The proof of the main result. We first consider the case where
o is smooth and its Fourier transform is compactly supported; then, by
regularization, we prove the result for any o.

Proof of Theorem [1.1 By regularization, we may assume that the in-
verse Fourier transform of ¢ is smooth and compactly supported. If this case
is established, then Theorem (3.1]yields the existence of a family (7)o<c<1/2
of multilinear multiplier operators associated with a family of multipliers
(09)0<e<1/2 such that K¢ = (aﬁ)v are smooth functions with compact sup-

ports for all 0 < e < 1/2, and (3.1), (3.2) hold. Fix f, € HPx n L>™
(1 < k < m). The L? convergence in implies that we can find a
sequence (¢€;); of positive numbers convergent to 0 such that

i T, (fry oo fn) (@) = Ta (i fun) (@)
for a.e. z € R™. Fatou’s lemma together with (3.1]) gives
ITo(frs- s fnllze < Wminf | T (fr ooy fm)le S sup I Te(fis-- o fin)lze

0<e<1/2
< sup sup |02 )|y rison |1 llen - || fonl o
0<e<1/2 jEZ
< sup |02 lyyrconomy |1l izor = | ol o
JEZ

thus establishing the claimed estimate for a general multiplier o.
In view of this deduction, we suppose ¢" is smooth and compactly sup-
ported. The aim is to show that

(4.1)  NTo(fr,--s f)llr S Sup||0(2j YO lyronrom L1l e = | fonll o
jeL

Fix fi € HP+. Using atomic representations for HP* functions, write
JK€EZ
where ay, ;, are L atoms for HP* satisfying

—1
supp(ar i) C Qe Narg e < Qs ™™, | 2y (x)dr =0
Qk,jy,
for all |a| large enough, and 37, [Nk j, [P < 2P% || fi.[l i -
For a cube @, denote by Q* the dilation with factor 2/n. Since K = oV
is smooth and compactly supported, Proposition [3.4] yields

TO’(fla"*vfm) —Z ZAlﬁ" m,jm (aljl""7am7jm)(x)

Ji Jm
for a.e. z € R™. Now we can split T,(f1,. .., fm) into two parts and estimate

To(f1,- -5 fm)(@)] < G1(2) + Ga(2),
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where

Gi() =) gl gl 1To (@1, amyi)IxQ
im

Ji

L@ (@),

Go@) =3 S il Ponin T @i, ) xas, ens, e (2):
Jm

m,jm
J1

First we estimate the LP norm of Gi, in which we repeat the argu-
ments in [7] for the sake of completeness. Without loss of generality, suppose
that Q1 ,, N---NQy, ; # (0 and let Q1 j, have the smallest length among
Q11s- - Qm - Since Q7 FIRR IS k < m, have nonempty intersection, we
can pick a cube Rj, ;.  such that

* * o * ¢ . ¢
Qlajl AR vajm - R-717"'7-7m - lev"'vj?ﬂ - Ql:jl N N Qm»jm

and |Q1,,| S |Rj,,....jm |, Where the implicit constant depends only on n, and
Qi’jk denotes for a suitable dilation of Qy, ;. For s > n/2, it was showed
in [8] that

|’T0HL2><L°°><---><L°°~>L2 S A

Therefore, by the Cauchy—Schwarz inequality,
S |T0(a17j17' : "am,jm)(x”dx

1/2
<N To(argys- - s amjo)l 22| R g

m
1/2
S ARy, P llarg e [T okl
k=2

m m
1/2 1/2 -1 -1
g A|Rj17---7jm‘ / |Q17j1’ / H ’Qk,]k’ /pk S./ A’lea---7jm| H |Qk:]k| /pk'
k=1 k=1

The last inequality implies that

1 o _
— | Ta g, @) de S AT Qg 77

‘R.]17"'7.7m’ R]l kzl
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combined with Lemma [2.5] yields
1Galer < |32 32 il -+ P T s, |
Ji j

Lp
Al m(H Qesel” /“)XR; ..... ol
S DI LTS ,Jm|H Qual ™ xgs I,
m
— , _=1/p
=A H (Z |>\k,jk’ |Qk,]k| kXQ?c,;k) ‘ Ip
k=1 = Jk
m m
4 _|=1/p
< ATT [ Msl@ual ™ xgs |, < ATL el
k=1" jk k=1
Thus
(4.2) 1G1llze S All fillzes - | fmll e
For the harder part, Ga2(z), we first restrict z € (ﬂkgj Q) \Ukes @k j,
for some nonempty subset J C {1,...,m}. To continue, we need the follow-

ing lemma whose proof will be given in the last section.

LEMMA 4.1 (The key lemma). Let n/2 < $1,...,8m <00, 0<D1,y...,Pm,
p <1 and let o be a function satisfying (1.5 and (1.6). Suppose ay are atoms
supported in a cube Qi (k=1,...,m) such that

lakll e <1Qkl™7, | 2%ai(z)dz =0
Qk
for all || < Ny with Ny, = [n(1/pr — 1)] + 1. Fiz a nonempty subset Jy C
{1,...,m}. Then there exist positive functions by, ..., b, such that
(4.3) To (a1, ... am)(x)] < Aby(x) - - by ()

for all x € (Nygz, Q%) \ Uges, @ and [[bgllox S 1 for all1 <k <m.

Lemma guarantees the existence of positive functions b1 YERE ,b;f% i
depending on @1 j,, ..., @m,j, respectively, such that

(44) ’TO—(CLL]‘l, <oy am Jm)’ ~ Abl J1 bJ

m,Jm

for all € (Mg Qrj) \ UkeJ @y ;, and ||bk7ijka < 1. Now set

J
0#£JC{1,....m}
Then

4.5)  [Tolarg, - amgn)lx@r, nnQ;, )0 S Abijy - b
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and ||bg j, || zre S 1. Estimate ( @ 4.5)) yields

) S AH (Z | Ak bk gy (T )
k=1 jk

Then we apply Holder’s inequality to deduce that
(4.6) 1G2llzr S AHleHm o Ll e
Combining (4.2)) and ( - yields (4 . The proof of Theorem is now

complete. m

5. Minimality of conditions. In this section we will show that con-
ditions and s, > n/2 are minimal in general that guarantee bounded-
ness for mulmhnear multiplier operators. We fix a smooth function 3 whose
Fourier transform is supported in {273/% < |¢| < 23/4}, satisfies w(f) 1
for all 271/4 < |¢| < 21/4, and for some nonzero constant c,

Y@ =c, £#£0.
JEZL
THEOREM 5.1. Let 0 < pp <00, 0 <p<oo, and s >0 for1 <k <m.
Suppose that

1Zo (s F)llie S supllo(2: L] [P H 1l o

Jje k=1

for all fi, € HP* and o € L™ such that supjey HO’(2J)¢HW(91
Then

,,,,,,

(5.1) skzg, V1< k<m,
and

1 1

o (21

kes Nt PR 2

for every nonempty J C {1,...,m}.

The following lemma is obvious by changing variables, so its proof is
omitted.

LEMMA 5.2. Let ¢ be a nontrivial Schwartz function and s > 0. Then

2
(S [p(ey)*(1+ |y\2)sdy) ~ /2
forall 0 < e<1.

Proof of Theorem[5.1, We first show (5.1]) for 1 < k < m. Without loss of
generality, we will show s; > n/2. To do this, we need to construct functions



MULTILINEAR FOURIER MULTIPLIERS 15

0¢ (0 <e<x 1) and fr € HP* such that || fx|[gee =1 for all 1 <k < m, and
| Toe(f1s-- -, fm)llLe & 1, and further that

sup [|o (2)0 |y gy S €270

jez

Once these functions are constructed, one observes that

LA Toe(froes fm)llze SSUP 10°(27 )b |y o1 H | fill e < €72
k=1

for all 0 < € < 1. Therefore we must have s; > n/2.
Let ¢ be a nontrivial Schwartz function such that @ is supported in the

unit ball, and let ¢po = -+ = P11 be a Schwartz function whose Fourier
transform, gi)g, is supported in an annulus T < [¢] < 13, and identical
to 1 on 16 <] < 5= Slmllarly, fix a Schwartz funct1on ¢m with qg;
{€¢eR": 2 <[ < } and ¢, = 1 on the annulus 2 < |¢] < 2L Take
a,beR” Wlth |a| 15— and |b| = 1.

For 0 <e< 240m’ set

i) = (&

It is easy to check that supp o€ C {271/ < |¢| < 21/4}; hence, 0(27-)1) = o¢
for j = 0 and o¢(27- )zp = 0 for j # 0. This directly implies that

&1 —

)@(@) GnlEm).

sup [|0°(27 V0 | ypron oy = 110 yprcersom -
jez

Taking the inverse Fourier transform of o€ gives

() (21, ..., Tp) = € 2™V p(exy)da(22) - - - D (Trm)-
Now apply Lemma [5.2] to obtain

||O-EHW(81 ,,,,, sm) < 677,/2 1

Thus
Sup (|0 (27 ) |y cor oy S €270

Now choose
) = g

We will show that these functions are as desired.

In the following estimates, we will use the fact, whose proof can be done
by using the Littlewood—Paley characterization for Hardy spaces, that if f is
a function whose Fourier transform is supported in a fixed annulus centered
at the origin, then || f|| 5 = || fll;» for 0 < p < oo (cf. [4, Remark 7.1]).

g_

€

a> for1<k<m-—1, J/C;L(f) — en/pm—n@<£_b)‘

€



16 L. GRAFAKOS AND H. V. NGUYEN

Indeed, using the above fact and checking that each ﬁ is supported in
an annulus centered at zero and not depending on € allow us to estimate
HP-norms via LP-norms, namely

Ifellee = ([ felle =1 (1 <k <m).
Thus, we are left with showing that | T5(f1,-- -, fm)llLr = 1. Notice that
¢k(§) =1 on the support of f; for 2 < k < m. Therefore,

Toe(f1,-- -5 fm)(T)
- (@ (7>€”/p1_“¢<?l))v(w)@ﬁ)w G (@)
= (A )rmra(57)) i e

_ en/p1+---+n/pmeZﬂ'i[(mfl)aer]-x((p % QD)(G.Z')[QD(G.’L')}mfl
= e/Pe2millm= Dot (o i ) (ex)[p(ex) ™,
which obviously gives | Ty<(f1,-- ., fm)|lzr = 1. So far, we have proved that
s1 > n/2; hence, by symmetry, we have sy > n/2 for all 1 <k < m.
It now remains to show (5.2)). By symmetry, we only need to prove

T

(5.9 > (E-0) 23

1 Pk
for some fixed 1 < r < m. To achieve our goal, we construct a multiplier o*
such that R
sup HO—E(QJ')")bHW(Slw-»Sm) S 671/2—51—“-—87"
JEL
for 0 < e < 1, and functions fi satisfying || fx||ger = 1 for 1 < k < m and
|Toe(frs s fon)llw e €77 Prmmnlon,

Then the inequalities

en—n/pl—m—n/pr ~ ”TU6 (fb SRRR) fm)HLP
m

< Sup ||0- (2] )w”W(Sl 7777 oom) H ||kaHPk < 6n/2 s1=sr
je k=1
for all small positive numbers ¢, yield .

We construct functions that give us enough ingredients to establish the
multiplier 0¢ and functions fr (1 <k < m) as above. Take smooth functions
@, ¢ such that go( ) # 0, ¢ is supported in {{ eR™:|¢] < 19mr} and @ gp & =1
for all |¢] < 30mr, and gb is supported in the annulus T <[] < 19, and

(&) = 1 for all 75— < |¢| € 53— Fix a,b € R such that |a| = r_1/2

bl = 1
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1
For 0 <e< a6om’ define

7 €reee o) = 7 52 ZZ GEE lrl &)5(; lZ(&—a))

X $(r1) - BEm)-

Once again, suppo® C {& € R* : 274 < |¢| < 2'/4}, which, as in the
previous case, implies that

supHaE(Qj-)@bHW(sl ,,,,, om) = |0l estsom) -
JEL

By changing variables, the inverse Fourier transform of o€ is

(@) (@1, m)
,
= 2T (30 ) s — ) ol — )6 () - Ol
=1
Taking Sobolev norm leads to

o Ny ts1md
r

= Ce”( S ’gp(e a:l) f[go(xl — a:l)’2 ﬁ(l + |xl\2)sl dxy - da:r) 1/2,

R =1 1=2 =1

where C' = 7(|¢|[yysrs1 - - [|B]lwsm .
Next, we show that

(5.4) S ‘gp(ei$l>cp(x1 —x9) - p(r1 — zy)

Hl—i—]ml\ ) dxy - - - da,
R =1 =1

< e 2(s1++sr) )

~

In fact, changing variables in the above integral and taking into account
Lemma 5.2l we have

r

S ’@(EZZUZ)(P(ZE - .1'2) .. -(P(wl - xr) 2H(1 n ’$l‘2)sl dry---dz,
Rnr

=1 =1

2(1 s, 7))
= | leley)e(yz) - o (ur)] (HAZM\)
Rnr l:].
T 1 T 2
X 14— -
lrg( +] BRIN

s
)
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SV lete)e@) - o) PTTA + [l dyy - - dy,

Rnr 1:1
5 S ’go(eyl)|2(1 + |y1|2)81+-..+8r dyy 5 e_n_2sl_"'—25r’
RTLT‘
where the implicit constants do not depend on e. Inequality (5.4]) gives
sup 029l o = 0 ooy S €257
je

To construct functions fi, we fix a smooth function ¢ such that E is sup-
ported in {f eR": [£—al < %} and is identical to 1 on {f e R" .
€ —a] < 12} Now set

fi=-=f=¢ fk(f):e”/pk_"@({;b> forr+1<k<m.

It is clear that
[ fellzee = | fullre =1, 1<k <m.
Moreover, ﬁ(él) e ]?,n(fr) = 1 on the support of the function
(23 a-0)e(t @) (1 @),
=1 =1 =1
and also <$(§) =1 on the support of fi for all r + 1 < k < m. Therefore
Tae(fly ) fm)(.’E)

= pe2mirat(m=r)b)z n oy (erp)[p(0)] LW/ Pt Pm ()
Take LP-norm to get
HTa'e(fla SRR fm)HLp ~ en_n/pl—'~'—n/pr7

which is the last thing we want to achieve. Notice that the above argument
also works for pp = 0c0. =

6. Endpoint estimates. In this section we consider two endpoint esti-
mates for multilinear singular integral operators. In the first case all indices
are equal to infinity, and in the second case one index is 1 and the others
are infinity.

For x € R"™ and 1 < k < m, define

We say that a locally integrable function K (y1, ..., ym) on R™™\ {0} satisfies

a coordinate-type Héormander condition if for some finite constant A we have

m

(61) Z S ’K(yla"'7yk—lvx_yk>yk+1>"'7ym)_K(ylv'-'aym)‘ngA
k=1rk
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for all 0 # z € R™. Another type of (bi-)linear Hérmander condition of geo-
metric nature appeared in Pérez and Torres [16].

Denote by A, = {(p,o0,...,00),(00,p,00,...,00),...,(00,...,00,p)}
the set of all m-tuples with m —1 entries infinity and one entry p. The follow-
ing result provides a version of the classical multilinear Calderén—Zygmund
theorem in which the kernel satisfies a coordinate-type Hormander condi-
tion under the initial assumption that the operator is bounded on Lebesgue
spaces with indices in As. We denote by L2° the space of all compactly
supported bounded functions.

THEOREM 6.1. Suppose that an m-linear singular integral operator of
convolution type T with kernel K is bounded from LI x ---x LI to L? with
norm at most B for all (q1,...,qm) € Aa. If K satisfies the coordinate-type
Hormander condition , then

(6.2) 1T(f1s-- s fm)llBMO S (A+ B) | fillzee - - | fmll oo

for all f; in L°. Moreover, T has a bounded extension which satisfies

(6.3) T (f1,- - f)llpree S (A+ B fillpa [ I fell e
=1
o)

forall1 <k <m, fi € L', and f, € L for k # .

Proof. Fix a cube Q. To prove ([6.2]) we show that there exists a constant
Cg such that

1
64) & VIT(fr - ) (@) = Colde S (A+ B[l fillzoe -« || fnll e
Q

We decompose f; = f) + f, where f) = fixo- and f} = fix(@#)e- Let
I be the set of the 2™ sequences of length m consisting of zeros and ones.
We claim that for cach sequence k = (ki,..., k) in F there is a constant
Cy such that

1

(6.5) 0]

VITC o fam) (@) = Crlde S (A+ B)|| fillzos -+ || fnll -
Q

Assuming the validity of this claim we obtain (6.4)) with Cg = ZEE 7 Cr

Next, we want to establish (6.5 for each ke F Itk = (k1,...,km) has
at least one zero entry we pick Cp; = 0. Without loss of generality, we may
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assume that k; = 0. Since T maps L? x L®x --- x L™ to L?, we have

1/2
o VU i) e < <|Q, T i) )
Q
1 1/2
(|Q, TG g de)
< BIQI™2( g2l £52 o - L £ [l o
< BIQIV2IQ V2| fillee - |l fonll oo
S Bl fillzoe - [l fimllzoe-
Now suppose that k = (1,...,1). Set Cr=1T( fl, ooy fEm) (), where

xq is the center of the cube Q. Then, by the coordinate -type Hormander

condition (6.1]), we have

Bl S (oo fh) (@) = Ol dae
Q
Sag S (—y1,.. . —ym) — K(xQ — Y1, .-, 2Q — Ym)|
QR
< [T 14 (yw)l dijdz
k=1
< iz I alle~
- !Q\
YT IR r0) ) — K| 7
Qk=1rk

S Allfillzee - [ fmll 2o

This completes the proof of (6.2]) and we are left with establishing (6.3)). Fix
A > 0. It is enough to show that

Hr € R" : |T(f1,..., fm)(x)] > 2)\}]
1
S (A4 B) Sl il fallzee - [l fonll poc.
By scaling, we may assume that ||fi]|z1 = [[f2llze = -+ = |[fmllze = 1.

Let ¢ be a positive number to be chosen later and let f; = g1 4+ b1 be the
Calderon—Zygmund decomposition at height dA, and b = Zj by, where
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by ; are functions supported in the (pairwise disjoint) cubes @); such that

supp(br;) C Qj,  \buj(@)de =0, byl < 2"ONQy],

1
SRl 55 lolee <276, larllp < 1.
J

Now we can estimate

{z e R":|T(f1,.... fm)(@)] > 20} < {z €R™ : [T(g1, fo, - -, fm) (@) > A}
+ HJJER” : |T(b17f27 s 7fm)($)| > )‘}|

Since T maps L? x L™ x --- x L™ to L?, the first part can be controlled by

[ R [Tlgn, oo ) @) M E 35 § TG0 for o fon) )P
Rn”

B2 2" B2§
Spllgllléllfal\%w- | fml|Fee < :

A

To estimate the second part, we set G = Uj @} Then

{z € R™ [T (b1, fo, ..., fm) ()] > A}
<G+ Kz e G2 [T (b1, fa, - fn) (@) > A}

1
7@

Notice that
N 1
G <311 S Y1 < 5
J J
Denote by c; the center of the cube @);. Invoking condition (6.1)) yields

V171, fore e fn) (@) d

@)
< HK(@’—yla---7x—ym)bl,j(y1)f2(y2)"'fm(ym)dﬂd$’
(@)°
S S )S[K(x_ylﬂyQP"aym)_K(x_cjayQP"ay’m)]
@)

% by () T e — ) dijda
k=2
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m

< IT Il
k=2

< VK@ =gy, um) = Kz = cjyy2,- - ym)| b ()] di da
(@)

< S { S |K(y1—21,2’2-..72’m)—K(217227-~72m)|d5}\bl,j(y1)’dy1
I
< Al[by 4|1
Therefore
A
*Z S bljaf?a---van)(w”de)\;Hbl,jHng

Jo(Q7)e

2n+1A

Choosing 6 = B~! and combining the preceding inequalities we obtain

H{z € R™" [T (f1,..., fm)(x)] > 2}
< %(2"3 F B4 2A) < omtl(A 4 B)%,

which yields (6.3]). =

This result allows us to obtain intermediate estimates between the results
in [4] (in which 2 < pg,p < 00) and the results in [§] (in which 1 < p; < 00
and 1 <p<2).

COROLLARY 6.2. Let 1 < pp < oo and 1 < p < oo satisfy 1/p1 +
<+ +1/pm = 1/p. Assume that holds for a function o on R™" where
s > n/2 for all k. Then the multilinear Fourier multiplier operator T, maps
LPY X - oo X LPm to LP.

Proof. Note that the Sobolev condition for o implies the Hormander
condition for K = ¢V. The proof is standard in the linear case, and in
the m-linear case, it follows by freezing all but one variable (in the bilinear
case it is contained in [I5]). We are now able to apply T heorem-to T, and
hence Corollary 6.2 follows: Interpolating between and (6.3) implies
that T, maps LP X L® x - - - x L to LP for all 1 < p < 0. By symmetry, we
deduce that T, is bounded from L9 x. .. x LI to LP for all (q1,...,qm) € Ap
and 1 < p < oo. Once again, by interpolation, we find that T, maps from
LPY x oo x LPm to LP for all 1 < p1,...,pm < 00 and 1 <p < oo such that
1/p1+ -+ 1/pm = 1/p with norm at most a multiple of A. =

COROLLARY 6.3. Let o be a bounded function on R™" \ {0} which sat-
isfies (1.6) with s > n/2 for allk =1,...,m. Then
(6.6) 1T5(f15-- - fm)llBMO S Allfullzoe - - [ frmll £oe
for all fr, € L.
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Proof. As before, condition ((1.6)) for o implies (6.1]) for K = ¢V. Apply-
ing Theorem [6.1] to T, yields the assertion. m

7. Proofs of some technical lemmas. In this section, we will give
the detailed proofs of some lemmas that were used in previous sections.

7.1. The proof of Lemma [3.2] For p € Z, p > 2, denote
F,={yeR™: 2P*1 —2< |yl <207 2}
Fix x = (z1,...,2y) € R™. Then

(pe x ) @la)d(@) = { [ ™ol y)o@lx — y) dy ()
= {{emmamo( 1Yo (@~ y) dy [ (@)
> {§eas e @ - )b (@ - y) dy i)

PEZ
(7.1) = > {Jas@ - n)o@y)iery) dy}b()
p<—3
(7.2) + 3 b W)o @@ — )b (@ — 1)) dy
lp|<2
(7.3) + 3 { Ve (@ = )o@y b2 "y) dy ().
>3

The W(15m) norm of the term (7.2) can easily be estimated by

Y Ve @l lo@ (- =)@ ¢ =) lyermem dy

lpl<2

< > Ve s @I o@ ¢ =)@ = )l om [ Gl om dy

[pI<2

S Me@P )l r,sm | |05 ()] dy
lp|<2

S sup |o0(27 )Y |y s s »
JEZ

in which the second last inequality follows from the fact [4, Proposition A.2],
[9] that

1 gl srsm) S I F lprersm 9]l emsm)

when f,g € W1m) for s1,... s > n/2.
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Now fix integers Ny > s, (1 < k <m) and set N = Ny +---+ N,,. Since
| fllwsiomsm) < || fllywn, the Sobolev norm of the term (7.1)) is bounded by

> [{Seast —po@pierya}i|

p<-3

S>> {S@ )@ 0)n — pe@iyiery) dy o'

p<=3|al+|BI<N .
E E (0%¢)ea-i(y)
i ) e
p<—3al+|B|<N H 1/4<|y|<9/4 (€2-7)le]
X J(2j(. _ y))qz;(g—p(, — ) dy}@@;
L2

|ot] , ~
DD S('Qy') (@ Peas (0)| o2 =)D = ) 2 dy
p<—3|al<N
. ~ |atf
S X e Ploerile ¥ {(25) 10 el
p<—3 la|<N
S D 2o @) lwe Y § Iyl @) ()] dy
p<—3 la|<N
< sup [[0(27) Py oy -
JEZL

Finally, we deal with the term ([7.3]). We have

HZ { [ oers (- — w)o(@y)b(2*y) dy}@ H

W(sl,...,sm)
p>3

(St - rani],

p>3

s Y [{T@) @ e - yeeyiery d o’

P23 |al+[BI<N v
=3 Y | T@) ewem
p>3|al+|BI<N F,
x o2 (-— )b —y)dy}oy | |

lot]
Y Y 1 (ohs) 1@9e0)

p=3 |al+|B|<N F)p
X (2 (- = )27 (- = )9 | 2 dy
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|ot]
=2 > S<2pLy2'j) (0°9)a-5(v)]

p>3 |al+||<N F,

x o (27 )92 (0 P) (- + )2 dy

lot]
3 y (0%
<Y X () 1e0esw
P23 |al+|BI<N F,
<@ )0 ) @2 - +) 12 dy
|| , ~
< T () 100l 1o )l d
p>3]al<N F,
< S Ylo@ )l S( Y111
|a|<N p>3
lot]
. —~ Y o
< X Sl 90l § () 100 0] do
Jal<N p=3 I
lot]
S sp o (2P [y om (L) 1) sl
PEL la|<N p=3 F,

N SupHO'(?J )72 P—
jEZ

The proof of Lemma 3.2 is now complete.

7.2. The proof of Lemma Before verifying the lemma, we men-
tion approaches that were used by other authors. First, with the assumption
on the kernel

—mn—|al

m
| Y0 s-sYm, (3/0773/m>‘§14<z ’yk_yl|>
k,l=0

for all || < N, Grafakos and Kalton [7] showed that estimate (4.3) holds
for the corresponding multilinear singular integral operator with

|Qk|1—1/pk+(N+1)/(mn)
(J& — ci| + 0(Qp))ntN+1)/m

Miyachi and Tomita [I5] constructed functions b, satisfying Lemma in
the bilinear case. We adapt these techniques to prove the key lemma in the
multilinear setting.

br(x) =
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Now we start the proof of Lemma We may assume that Jy =

{1,...,7} for some 1 <r < m. Fix
( ﬂ Qk) \ U Qr
k=r+1
(when r = m, just fix x € R"\ UL, Q%)- Now we rewrite T, (ai, ..., am)(z)
as
T,(ar,....am)(x) = D g;(x)
JEZ
where
gi(x) =\ 2K (2 (x—w1),. ... 2 (2 —ym))ar(y1) - A (Ym) dY1 - - - Ay
Rmn

with K; = (0(2j-)1z)v. Let ¢ be the center of the cube Q. (1 < k < m).
For 1 < k < r, since z ¢ Q and y, € Q, we have |z — ¢;| = |z — yi|. Fix
1 <[ < r. Lemma with s > n/2 and the Cauchy-Schwarz inequality
yield

r

(74)  [[@ @ = en))*lgi(@)]
k=1

s (TR = ™)

Q11X XQm k=1

m
< K (2 (2 = 1), . 2 (2 — y))| [ ] Nlawll oo dF
k=1
'

<om (T — ™)

Q1XXQm k=1

X ’Kj@j(ﬂf — 1)y 2 (z = ym))| H |QM*1/10;c i

< 2 T 1Qul /7" | (TI'@ = ™)
k=1

Q1 X XQpxR(m—)n k=1

X ‘Kj(2j($ - yl)a .. "zj(l. - yr)7yr+1a ce aym)‘ dyl o 'dyr dyr+1 : "dym

<2 [Tea ™ T i} Jle e/ )

k=r+1 R(m=r)n Q;

H( ) (y17"‘7yl7172j(x_yl)7yl+17"’7ym)H
k;él

Lo (dyy-+-dyr-~~dyy )

X dyy dyry1 -+ dym
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S 2jrn H ‘Qk‘lfl/pk H |Qk|71/pk S S ‘Ql|71<2j(aj - yl)>81
k=1

k=r+1 R(m—r)n @

'
X H ( H<yk>5k>K](y17 o 7yl—172j(x - yl)7yl+1) .. Jym)‘

.2 oo
Py (dy1---dy;--dyr)

X dyp dyr41 - dym

s 2 [LiRel ™ T 1@l ™/ §1Qu™ 2 (@ — g

k=1 k=r+1 Q1
m
X H(H<yk>8l)Kj(y17"'7yl—172](x_yl)>yl+la"'7ym) 12(d T dyl
i) (dyr---dy;---dym)
ik
72]7“71(1_[’@ ’1 l/pk>hl0) H bk
k=r+1

for all 2 € (ML, QF) \ Up—1 @, where

B (z) = L S (2 (x — )™
\Qz’

dy

m
)k Y1, 2 (= ‘ _
H(l;[l yk ) y17 yYi—-1, ( yl)7yl+17 7ym) L2(dyydgi---dym)
k+#l

and by (z) = \ril/p’“XQ* () for r+1 < k < m. A direct computation gives

,,,,,

Using the vamshlng moment condition of a; and Taylor’s formula, we write

1
gi(x) =2 3" Oy | {5(1—t)Nﬁ1

la|l=N; Rmn 0
Xaa ( (90—1/1) 2j(x_cl_t(yl_Cl))v"'72j(x_ym))
X (20 (g = ) ar (1) -+~ @) dt p dyn -+ -y,
Repeat the preceding argument to obtain
(75) 10— c)*lg; ()] < 2]7""(H Q) @) T] e
k=1 k=r+1

forall z € (M-, Q0)\Uj_; Qj, where bi(z) = [Qu] /P xq; (2) for r-4+1 <
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k <m and

1,1
hY (@)

-3 ({je,

la|=N; Q1 O

k=1
k£l

X H (H<yk>8k>a;K](yla Yl 1’2‘$Cl ylayl-‘rla 7ym)‘

L2(dys--dy;dym)

X (200(Qu)M|Qul " dt} dy,
with x =z — ¢ — t(y; — ¢;). Applying Minkowski’s inequality together
with Lemma implies that

Hh“’l 12 < 427922 0(Qu)™
Combine inequalities ((7.4)) and ({ . ) to get

T

(7.6)  [[(@ (@@= ex))**lg; ()]
k=1

<2 (TT1Qk" 7 ) min{n ) (@), b
k=1

m
1,1
SRCO N ) INE)
k=r+1
for all 1 <[ < r. The inequalities in (|7.6|) imply that
(7.7)

l9;(@)|
<2 T1Qel 7 [T (@ — )™
k=1

** min {h; lo)( h(l b
1<i<r
k=1
for all x € (ﬂZL 1 QZ) \ UZ 1 Q%

}ku

k=r+1

Now we need to construct functions u (1 <k <r) such that

2) AT w@) [T o)
k=1 k=r+1
for all = € (ML, 11 Q) \ Up—y @ and |3 ué?Hka Slforalll <k<r
Then the lemma follows by taking by = >, uéf (1 <k < r)and b
Q| Pexg: (r+1 <k <m)

Indeed, we can choose 0 < A\, < min{1/2,sx/n — 1/px + 1/2} such that

k=1
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This is suitable since conditions ((1.5)) imply that
Zml 1 Sk 1 — 4 1 > r—1
2’n pp 2 2
Set a = 1/pg — 1/2 + A and S = 2(1/pr — ax). Then
T ' 1 1
Sa-y -
k=1 e
Br >0and f1 +---+ B = 1. Now define

u] — A~ ﬁk2]n‘Q |1 1/pk<2j( — o)) Ry X© )cmln{h (k,0) h(k 1)}5k
for 1 < k <r. Then, from , it is easy to see that

2) A @) [T o)
k=1

k=r+1

for all 2 € (ML, @}) \ Up—1 @ It remains to check that
(7.8) S k@) de S 1
Jj R»
Since 1/py = o+ PBr/2, setting 1/p;, = 1—1/py,, from Holder’s inequality
we get
k]| o < A=Pr2I™|Qy | /P
, _ ) k,0) o (k1
X (427 (- = ex)) ™ x(@pell /e [Imind A AYED Y5
for all 1 < k < r. Notice that n < si/ag, so we have
127 (- = er)) " x(@ye l e, S 277" minf1, (270(Qp)) ™"~ *},
. [ 30) (k,0) k1
(in{RSO, R s, <min || 5, [RED)7

<(A2792 min{1, (270(Qy))N}) ™

”LQ/ﬁk

Therefore
[ || o < 277 | Q[ /PR 27T PE min {1, (270(Qy)) <™} min{1, (27 £(Qy)) NPk}

S (276(Qr))" P minf1, (276(Qx))™"~} min{1, (276(Qx)) N}
This inequality is enough to establish (7.8). The proof of Lemma is
complete.
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