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Nonlinear parabolic SPDEs involving
Dirichlet operators

by

Tomasz KriMsIAK (Warszawa and Torun) and
ANDRZEJ R0OzKOSZ (Torun)

Abstract. We study the problem of existence, uniqueness and regularity of proba-
bilistic solutions of the Cauchy problem for nonlinear stochastic partial differential equa-
tions involving operators corresponding to regular (nonsymmetric) Dirichlet forms. In the
proofs we combine the methods of backward doubly stochastic differential equations with
those of probabilistic potential theory and Dirichlet forms.

1. Introduction. In the present paper we are concerned with the prob-
lem of existence, uniqueness and regularity of probabilistic solutions of
stochastic partial differential equations (SPDEs for short) of the form

(1.1) du(t) = (Awu + f(t,z,u)) dt + g(t,z,u) dB, u(0) = ¢.

In , B is some Q)-Wiener process and Ay, t € [0,T], are operators associ-
ated with some family of regular (nonsymmetric) Dirichlet forms satisfying
mild regularity assumptions. These assumptions are automatically satisfied
if Ay = A, t € [0,T]. Therefore our results apply in particular to equations
(1.1) with A; replaced by any operator A corresponding to a regular Dirich-
let form. The class of such operators is quite wide. It contains both local
operators, whose model example is the Laplacian A, and nonlocal opera-
tors, whose model example is the fractional Laplacian A%/2? with a € (0, 2).
Other interesting examples are to be found for instance in [§, 13} 14, [16]. An
important example of the family of operators depending on ¢ and satisfying
our regularity assumptions is the family of uniformly elliptic operators of
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the form
d
(1.2) Ayu = Z (aij(t, ©)ua, )z,
ij=1

with ellipticity constant not depending on . Actually, in case A; are of the
form , we consider equations more general than with coefficients
f, g depending on u and its gradient Vu.

As for ¢, f, g, we assume that ¢, f(-,+,0),4(+,-,0) are square-integrable,
f(t, x,-) is continuous and monotone (no assumption on the growth of f(¢, x, -)
isimposed) and g(t, x, -) is Lipschitz continuous. In the case where f, g depend
on u and Vu, we also assume that they are Lipschitz-continuous with respect
to Vu.

To study we develop the approach used successfully in [12, [13], [14]
to investigate Sobolev space solutions of semilinear PDEs with operators
corresponding to Dirichlet forms. In those papers PDEs are studied by the
methods of the theory of backward stochastic differential equations (BSDEs
for short) combined with those of probabilistic potential theory and Dirich-
let forms. In the present paper the strategy for studying SPDEs is similar.
The major difference is that now we use backward doubly stochastic differ-
ential equations (BDSDEs for short) instead of BSDEs. The idea of studying
nonlinear SPDEs via BDSDEs goes back to [20]. In [20] classical solutions of
equations involving nondivergence form operators with regular coefficients
are considered. Our approach to (1.1)) was also motivated by the desire to
develop the ideas of [20] to encompass a broader class of operators and to
study Sobolev space solutions.

As a matter of fact, we study the following Cauchy problem with terminal
condition:

(1.3) du(t) = —(Awu+ f(t,z,u)) dt — g(t,z,u)d B, u(T) = .

Here g = (gx) is a sequence of real functions on {2 x (0, 7] x E xR determined
by g and @, 8 = (Bk) is a sequence of one-dimensional mutually independent
standard Wiener processes defined on some probability space ({2, F, P) and
gdip, = Y rey Gk d'BF, where gj, d'BF denotes the backward Ito integral.
The results for can be easily translated into results for . However,
since we heavily rely on the theory of BDSDESs, problem ([1.3]) is much more
convenient to deal with.

Roughly speaking, our strategy for investigating consists of two
steps. Suppose that the operators A; are associated with some family { B (t)}
of Dirichlet forms on L?(E;m) with common domain V and let £ be the
time-dependent Dirichlet form determined by {B®}. Denote by M =
{(X,P;);z € R x E} a time-space Markov process with life time ( asso-
ciated with £. In the first step we prove that there exists an exceptional set
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N C Eyr :=(0,T] x E and a pair (Y, M) of processes such that for every
z € Eyg \ N the process M is a martingale under P ® P, and (Y, M) is a
unique solution of the BDSDE

CNT, CNT,
(1.4) Vi=oXp)+ | fXY)dr+ | (X, Y,)d'B:
t t
CAT,
— | daM., t€[0,(AT)], P® P.as,
0

where T, = T'—¢(0). Here ¢ is the uniform motion to the right (in particular,
¢(0) = s under P, with z = (s,z)) and 8{ = B;4,(0), t > 0. In fact, we show
that

Yi=u(Xy), te€[0,(AT)]

for some u : £2x Ey 1 — R such that u(w; -) is quasi-continuous (with respect
to the capacity associated with &£). Therefore setting ¢ = 0 in and
taking expectation with respect to P, we see that u satisfies the nonlinear
Feynman—-Kac formula

(AT, CNT,
(15) ()= E:(o(Xn) + | FXeuX)di+ | (X u(X0)d'55).
0 0

In fact, a quasi-continuous u satisfying (|1.5)) is unique and we call it the
(probabilistic) solution of (1.1). The second step is to use (|1.5) to derive
regularity properties of u. Our main result says that there is ¢ > 0 such that

T
(16)  sup Elu(t)|2a(gm + B | [u(@)Il} dt
o<t<T 0

T 0o
< B (16132 zam § (17 0)32(m) + D I8t 032y ) ).
0 k=1

The problems of existence and uniqueness of solutions of have been
the subject of numerous papers. Here let us mention important papers [21],
22] dealing with mild solutions of equations of the form with 4; =
A and B being a spatially homogeneous Wiener process. We also refer to
[21] 22] for many bibliographic comments on with Ay = A. Note that in
[21] 22] the “semigroup approach” to is used. For results on (with
A; being local operators) which can be obtained by using the “variational
approach”, see [I5], 25] and the references therein. Solutions in the sense
defined by Walsh [29] are considered for instance in [I, O] (see also the
expository paper [9]).
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The approach of [20], via BDSDE, was developed in several papers. In
[2, B, B0, B1] it is assumed that the operators A; are the same as in [20], i.e.
second order operators in nondivergence form with coefficients having some
regularity properties. In [2, B1] under the assumption that f,§ are Lips-
chitz continuous a stochastic representation of weak solutions of the Cauchy
problem for SPDEs in terms of BDSDE is given. In [30] the assumption
that f is Lipschitz continuous in u is weakened to monotonicity combined
with the linear growth condition on w. In [3] a stochastic representation is
given for SPDEs with nonlinear boundary Neumann conditions. Paper [31]
also deals with stationary solutions of a SPDEs and related BDSDEs with
infinite horizon. In [7] the semigroup method is used to prove that if f, g are
Lipschitz continuous then there exists a unique mild solution of a SPDE in-
volving a general nonnegative self-adjoint operator A (not depending on t)
and finite-dimensional noise. Then this analytical result is used to get a
stochastic representation of the solution in case A is a diffusion operator.
It is also worth noting that in [I 9], in case B is a space-time white noise,
Ay = 0?/02? and g is nondegenerate, existence and uniqueness results for
with irregular f are proved (f is merely measurable and satisfies some
integrability condition in case g is constant, or f is measurable and locally
bounded and ¢ is nondegenerate and satisfies some regularity conditions).

The novelty of our paper lies in the fact that we prove in a unified way
the existence and uniqueness of solutions of for much wider classes of
operators than those considered in previous papers or under less restrictive
assumptions on f (see, however, the one-dimensional results proved in [1},9]).
In particular, in contrast to [7], in our paper the operators A; may depend
on time and we only assume that f is continuous and monotone in u (with
no restrictions on the growth of f with respect to u). Secondly, we show in a
unified way that the solutions of belong to some Sobolev spaces and we
prove energy estimates. Moreover, we obtain a stochastic representation of
solutions of the form for quasi-every (and not just m-a.e.) point in Ey 7.
Let us stress once again, however, that except for some special cases, we have
to assume that B is a Q-Wiener process with () of trace class. Therefore our
results do not cover the existence and uniqueness results of [21] 22] obtained
for SPDEs with a spatially homogeneous Wiener process.

Our methods of proofs are also new. We think that of particular inter-
est is our method for deriving from regularity properties of u. The
method is probabilistic in nature. As already mentioned, the general idea
comes from our previous papers [12, 13, 4] on PDEs and BSDEs. Here,
however, new difficulties and subtleties arise. The idea is as follows. We
show that given a solution u of , i.e. a quasi-continuous function u sat-
isfying (L.5)), one can find a process M such that (Y, M) = (u(X), M) is a
solution of BDSDE . Thus, in fact, and are equivalent. It is
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also worth mentioning here that the regularity of trajectories of the process
u(X) (i.e. the fact that u(X) is cadlag and [u(X)]- = u(X_)) do not follow
directly from the deterministic potential theory, because in general the nest
for the quasi-continuous function u(wj;-) depends on w € 2. From we
immediately get

(1.7) A = (X)) —u(Xe) = My + Ny, t€0,T),

with

(1.8) N = =\ F(Xp u(X,)) dr — [ (X, u(X,)) d' By
0 0

The process A" in is a random additive functional (AF) of the part
M%7 of the process M on Eo . We show that M is a random martingale
AF of M%7 of finite energy and N is a random continuous AF of M%7 of
finite energy (we introduce these notions in Section . However, in most
interesting cases IV is not of zero energy, because from it follows that

Be() = LB gt .0t ) de ).

0F

1
2

Therefore ([1.7) cannot be viewed as Fukushima’s decomposition of Al
Nevertheless, we are able to prove the following formula for the energy of M:

(1.9) .
Ee<M>=E<||u<o>||ig(E;m)+§B<t><u<t>,u<t>>dt—; 5 |u<z>|2k<dz>>,

0 Eo,T

where k is some killing measure. Roughly speaking, we obtain the energy es-
timate for u by combining a priori estimates for the solution (u(X), M)
of with the estimate (L.9). The estimates for (u(X), M) are proved by
using BSDE methods. We also prove that if Fe(/N) > 0 then

ov
ot
which shows the difference between the regularity theory for (1.1) and for
usual PDEs.

In the last section of the paper we show a connection between proba-
bilistic and mild solutions of (|1.3]) in case f is Lipschitz continuous in u and
A = A, t € [0,T]. Roughly speaking, changing the order of integration in
(1.5) and using the fact that

E.f(X:) = Pf(z), f€L*E;m), mae. z¢ckE,

where {P;, t > 0} is the semigroup on L?(E;m) generated by A, we find

(1.10) ugW= {v € L2 x (0,T);V): — € L*(0,T; V') P-as. }
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after some direct calculation that

T T
u(s) = Pr_sp+ | P_oF(t,u(t)) dt + | P_G(t,u(t)) d' B,

where F' and G are the Nemytskil operators corresponding to f and g.

Finally, note that unlike [12] 13} 14], in the case where A; are defined by
, we treat regularity of equations with coefficients f, g depending both
on the solution and its gradient.

2. General BDSDEs. In this section we consider general (nonMarko-
vian) BDSDEs with final condition ¢ and coefficients f,g (BDSDE(, f, g9)
for short) of the form

T T T
21) V=4 fn V) dr+ \g(r, ) diB, - | dM,, te(o,T).
t t t

To formulate the definition of a solution of we need some notation.
In what follows, 8 = (8¥)ren is a sequence of mutually independent one-
dimensional standard Wiener processes defined on some probability space
(02, F,P), and (2,G, (Gt)refo,r), P') is some filtered probability space such
that (G;) is right continuous and complete. We set

Flr=o(Bf—BE re[t, T ke N)VN, FP=F, teloT),

where N ={A C 2:3B ¢ ]:g such that A C B, P(B) = 0}, and then we
set
Fo=FrVG. teloT).

Note that (F;) is not increasing, so it is not a filtration. We also set
P=PxP

and we denote by E (resp. E, E’) the expectation with respect to the measure
P (resp. P, P'). Let X be a process defined on (2, and Y be a process on {2’
Throughout what follows, without explicit mention we shall freely identify
them with processes on {2 x 2’ defined as

(2.2) X(w,w) =X(w), Y(wuw)=Y(W).
We will need the following spaces.

e M is the space of measurable processes X = {(X;)ic[o,77} defined on
(2 x 2, F ®G,P) such that for a.e. ¢ € [0, T] the random variable X}
is Fj-measurable. M? is the subspace of M consisting of all processes
X such that (E SoT | X¢|2 dt)/? < oo,

e 8% is the space of cadlag processes Y € M such that [|Y]3, =
Esupg<,<r |Yi|* < oc.
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e M? is the space of cadlag processes X € M such that X is an (]—"ﬁ\/gt)—
martingale with Xo = 0 and E[X]|r < oo, where [X] denotes the
quadratic variation process of X.

We will look for solutions of (2.1)) in the space S? x M?. Note that S?
equipped with the norm || - ||s2 is a Banach space. Similarly, M? equipped
with the norm || M||y2 = (E[M]7)"/? is a Banach space.

REMARK 2.1. By a standard argument, if M € M? then for P-a.e.
w € {2 the process M (w,-) is a square integrable (G;)-martingale.

Assume that we are given an Fp-measurable random variable £ and

two families {f(t,y),t > O}yer, {gr(t,y),t > 0}yecr ren of processes f(-,y),
k(- y) : 2x 2" x[0,T] = R of class M (for brevity, in our notation we omit
the dependence on (w,w’) € 2 x ). Let g(-,y) = (91(-,¥), g2(-,y), ... ) and
let ||z]| = (322, |z&|?)!/? denote the usual norm in I2,

DEFINITION. We say that a pair of processes (Y, M) € S? x M? is a
solution of BDSDE(¢, f, g) if
(a) §o 1F(t,YD)]dt < 00, §y llg(t. Yo)||? df < o0 P-as.,

(b) Equation is satisfied P-a.s. (Note that in , StT g(r,Y,)d B, =
ppaty StT gr(r,Y,)d'BF and the integrals involving the processes 3*
are backward Ito integrals; observe that under (a) the series con-
verges in L%(§2,F, P) for P'-a.s. o' € ().

REMARK 2.2. Set
B = (Bk)keNa Bf = Béfg’—t - 6{/27 te [07T]’
and define ftﬁ i ]-"tﬁ to be ff T .7-"5 but with S replaced by B Then B
is a sequence of mutually independent standard Wiener processes. If n; is
]-'t’B p-measurable, then np_; is Ff -measurable and one can check that if n =

(nt,n?,...)is an (]-fT)te[OvT]-adapted process such that P(SOT 1m¢]|? dt < o0)
=1 then

T T—t A
\ned'Bs=— | nr_odBs, tel0T]
t 0

(see [31L p. 176]).

We are going to show that there exists a unique solution of (2.1)) under
the following assumptions.

(A1) E[¢]% < o0, E{j |£(t,0)]>dt + E [ [|g(t, 0)||? dt < oc.

(A2) For every y € R, SoT |f(t,y)| dt < oo P-a.s.

(A3) There exist constants [, L > 0 and functions Ly : 2 x [0,7] — R4
such that sup,cp > o2 L2(t) < I P-a.s. and for a.e. t € [0, 77,



222 T. Klimsiak and A. Rozkosz

(a) (f(t,y) — f(t,y)(y—y) < Lly —¢/|? for all y, ¢ € R, P-as.,

(b) |gk(t,y) — gx(t, )| < Li(t)|y — ¢/| for all y,y’ € R, P-a.s.
(A4) For a.e. t € [0,T] the mapping R > y — f(¢,y) is continuous.
The uniqueness for (2.1)) follows from the following comparison result.

PROPOSITION 2.3. Let g satisfy (A3b) and either f or f' satisfy (A3a).
Let (Y, M) be a solution of BDSDE(E, f,g) and (Y',M') be a solution of
BSDE(E', f',g). If € < & P-a.s. and f'(t,y) < f(t,y) for a.e. t € [0,T] and
every y € R then

Y/ <Y, te€]0,T],P-as.
Proof. We assume that f satisfies (A2). In case f’ satisfies (A2) the proof
is analogous. By the It6—Meyer formula,
T
(Y = Y) TP+ S Liyssy,y d[M' — M],
t
T

<2\(V) =Y (f(r,Y)) = f(r,Yy) dr

T
t

T
+2 (V=Y ) (g(rY)) — g(r,Y7)) d1 B,
t
T
—2 (v - v, )t d’ - M),
t
oo T
+ >V Ly low(r, YY) — gi(r, Y) P dr-
k=1t
By the assumptions of the proposition,
T T
VO =Y (F(rY)) = f O Yo))dr < LY (Y] = Yo) P dr
t t
and
oo T
> N 1ysvyloe(r YY) = gr(r, Vo) dr
k=1t
oo T T
<N VB0 1payy IV, = Vi Pdr <1 |(Y] = V) F
k=1t t
Hence

T
E|(Y, —Yi) " P <2L+DE||(Y) =Y Pdr, t€]0,T),
t
so applying Gronwall’s lemma we get the desired result. m



Nonlinear parabolic SPDEs 223

COROLLARY 2.4. Let assumption (A3) hold. Then there exists at most
one solution of BDSDE(E, f,g).

PROPOSITION 2.5. Assume that (Al), (A3) are satisfied. Let (Y, M) be
a solution of BDSDE(¢, f,g). Then there exists ¢ > 0 depending only on T,
[, L such that

~

T
2
E(Sup!Yt\QJrS d[M]; + sup Hf(ﬁYr)dT" )
t<T 0 0<t<T |

T

< cE(J¢f + § (17t 0)P + llg(t, 0 dt )

0
Proof. By the It6—Meyer formula and (A3),

T T T
Vi? + \ d[M], = (€7 + 2\ £, Y)Y dr +  llg(r, Y2)|1* dr
t t t
T T
+2\Yig(r,v,)d'8, — 2\ Y. dM,
t t
T T
<P+ @+ 2L+ 20) { [V, P dr + ((1£(r,0)]* + 2]l g(r,0)]|?) dr
t t
T T
+2\Yig(r,v,)d'8. — 2\ Y,_dM,, t€[0,T], P-as.
t t

From this and Gronwall’s lemma,

T T
EY[? +E | d[M], < oL, L TIE(I€P + (£, 0 + lot,0)[1%) d ).
0 0

Therefore applying the Burkholder—Davis—Gundy inequality we get the de-
sired result. m

THEOREM 2.6. Let assumptions (A1l)-(A4) hold. Then there exists a
solution (Y, M) of BDSDE(E, f,g).

Proof. STEP 1. Assume that g(¢,Y:) = g(t), f(t,Y:) = f(¢), t € [0,T].
We first prove that there exists a solution (Y, M) of the linear equation

T T T
(2.3) Yi=¢+ \ fr)dr+ \g(r)dip, — | dM,, te0,T], P-as.
t t t

To this end, set A; = }"ﬁ V Gy, t € [0,T], and define Y, M by
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T T
Vi =E(¢+ [ f(r)dr+ [g(r)d'B, | 4), tel0,T],
t t
and
T T
My =E(¢+ | f(r)dr+ § g(r) dB] | Ar) = Yo
T o
_E<§+§f( dr+ | g(r) >—Yg, te[0,7].
0

0
One can check that the pair (Y, M) satisfies . To show that Y, M are
(Fi)-adapted, set

T T
(2.4) Ay=&+\ fr)dr+ \g(r)diB., tel0,T).
t t
With this notation we have
(2.5) Y, = E(A | A) =E(A |GV FL) = B(A | GV Fip V FY)

=E(A | Fe v D).
Since f, g are measurable processes that are (QT\/]:tﬂ r)-adapted, they have
modifications which are (Grp \/}f 1)-progressively measurable. Therefore

the integrals on the right-hand side of 1 are (Gr \/ftﬁ r)-adapted.
Hence

o(A) CQTV(QTVftT) gT\/]:tT

It follows in particular that o(A;) V F is independent of .7-}{3 . From this, [10]
Proposition 5.6] and (2.5)),
=E(A | F vV F) = E(A | F).

Thus Y is (F;)-adapted. That M is (F;)-adapted now follows from the equal-
ity

t t

My =Y, = Yo+ f(r)dr + {g(r) d'B,.
0 0

STEP 2. Assume that f is Lipschitz continuous in y with Lipschitz con-
stant L. Let (YY, M%) = (0,0) and let (Y™, M™*1) be a solution of the
equation

T T
(2.6) Y =4+ fon Yy dr + { g(r, V) dT B,
t t
T

+ | dmptt te o, 1], Pas.
t
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The sequence {(Y™, M™)} is well defined, i.e. if (Y™, M") € S? ® M? then
(YL ML) exists and belongs to S? ® M2, To see this, assume that
(Y™, M") € §? ® M?. Then

T T T
E\ |, Y[ dr < 2L7E | |[Y"|*dt + 2B | | £(£,0)|* dt < oo,
0 0 0
T T T
E | lg(t, ;")) dt < 2L2E§ V7" dt + 2B | [|g(¢, 0)||* dt < o.
0 0

Therefore by Step 1 there exists a solutlon (Yl M) € S2e M2 of (2.6).
By the It6-Meyer formula and the assumption on f,
T
(27) |}/tn+1 o }/tn|2 + S d[MnJrl - Mn]r
t
T

=2\ (v Y (F(r, V) = £ YY) dr

T
_9 S Yn+1 d(Mn+1 Mn)r
t
T
+2 (V= Y) (g, V) — g(r, Y1) dF B,
t
T

+ Vlg(r, v = g(r, Y2 )P dr
t

N

T
S D/:rn-i-l o )/Tn‘2 dr + L2 S D/;n _ an—l‘? dr
t t

IN

T T

12 S Y — Y 1 2 dr — S(Y;nj-l —Y") d(Mn—H - M"),
t
T

+

t
ﬂxmﬂ Y ) g(r, V") — g(r, Y1) d' B,

Taking the expectatlon of both sides of the above inequality and using Gron-
wall’s lemma we get
T T
EY ' =Y P +E| dM T — M7, < CE\ Y =Y Pdr, e[0T,
t ¢
for some C' depending only on T, L, . Hence
T

sup E|Y v 24+ E | dM™ — M), < C(T—t) sup B[y -V, 2
t<r<T : t<r<T
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Write
T

I(Y, M)|]} = sup EY,|*+E | d[M],.
t<r<T t

With this notation we have
(Y™ M) — (Y7, M),

<O -2y, M) — (Y - MY, n>1,te [0,T).
From this one can deduce that

I8, M) — (v M)y < 27D MYy

for t; € [0,7) such that C(T — t;) = 271, Therefore dividing the interval
[0, 7] into small intervals and using a standard argument one can show that

lim ||((Y™,M™)— (YY" —=M")|lo=0.

n,Mm—00

Using the Burkholder-Davis—Gundy inequality we conclude from the above
convergence and (2.7) with (Y"1 M"*1) replaced by (Y™, M™) that

T
lim E( sup |Y;" —Y™? + S d[M™ — Mm]t> =0.
n,Mm—00 OStST 0
Let (Y, M) be the limit of {(Y™, M™)} in §? x M2, Letting n — oo in (2.6)
shows that (Y, M) is a solution of BDSDE(, f, g).

STEP 3. Now we assume that f satisfies the assumptions of the theorem
and moreover there exists A € R such that f(¢,y) > X for a.e. t € [0,T] and
every y € R. Set

fn(tﬁy) - Hel(g{n‘y - IE‘ + f(t,l‘) - LI‘} + Lya te [OvT]a Yy e R.
x
It is an elementary check that f, has the following properties: for a.e.
te[0,7],

(@) [fult,y) = fu(t,y) < (L +n)ly —y| for all y, 4’ €R,

(b) A < fult,y) < f(t,y) for every y € R,

(¢) fa(t,-) 7 f(t,-) uniformly on compact subsets of R,

() (falt,y) = falt,y))(y —y) < Lly — '] for all y, ¢’ € R.
By Step 2, for each n > 1 there is a solution (Y™, M") € S? @ M? of
BDSDE(¢, fr, g). By Proposition [2.3]

(2.8) Y <Yt te|0,T], P-as., n > 1.
Set Y; = sup,,>; ¥;". By Proposition and (b),
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T

(29)  Esup [y +E[M"]p < CE(I¢2 + [(fa(t, O + g(t,0)|2) dt)
t<T 0

T
< CE(J& + 22 + [(1(,0)2 + llg(¢, 0)[1?) ).
0

For every €, > 0 we have
T

P( It Y — F(t. YD)l dt > )

0

T

< P(§1fat,¥7") = £(8, YD)l dt > e, supsup|Y"| <)
0 n>1t<T

P

+ (supsup\Yt"] > 77)

n>1t<T
T
< P(§1fat,¥7") = £, YD)l dt > e, supsup|Y"| <)
0 n>1t<T

+n7? (E sup ;'] + Esup \Y§:|2>,
t<T t<T

the last inequality being a consequence of (2.8)) and Chebyshev’s inequality.
By (b), (c) and (A2) the first term on the right-hand side of the above
inequality tends to zero as n — oo. The second one tends to zero as n — co

thanks to (2.9)). Hence

(2.10) sup H(fn(r, Y") = f(r,Y;)) dr‘ —0
0<t<T |

in probability P as n — co. By (2.8)), (2.9) and (A3) we also have

; 2
(211)  E sup |{(g(r¥") - g0 ) d8,

o<t<T ! §
oo T T

S4B Vlge(t, V) — gu(t, Vo) de < 41E | V7~ Vi dr,
k=10 5

which converges to zero as n — oco. By Proposition [2.5
¢

supE sup an(n Y,")dr
n>1 0<t<T!Q

2
‘<oo.

Therefore letting n — oo in the equation

T T
Vi =E(E+ | fulr, ¥ dr + § g0 ¥ ',
t t

]-"t), t e 0,7,
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shows that (Y, M), where
T

T
My =E(&+{ f(r. Yo dr + [ g(r,Y;) a6,
0 0

is a solution of BDSDE(¢, f, g).

F) - Yo,

STEP 4. We now show how to dispense with the assumption that f
is bounded from below. Let f, = f V (—n). By Step 3, for each n > 1
there exists a solution (Y™, M"™) of BDSDE(¢, f,,g). By Proposition
Y;* > Y/t € [0, T], P-a.s. for n > 1, whereas by Proposition
T T
Bsup Y72+ B | d[Ar") < CE(J6? + §(17(2,0) + g(2,0)|?)de).
= 0 0

Using the above properties of the processes Y™ one can show in much the
same way as in Step 3 that (2.10]) and (2.11)) hold true and then that there
exists a solution (Y, M) of BDSDE(E, f,g). =

3. SPDEs and Markov-type BDSDEs. In this section we first con-
sider Markov-type BDSDEs. Roughly speaking, these are BDSDEs of the
form with filtration (G;) generated by some Markov process M =
(X, P,) and with final condition & and coefficients f, g depending on '’ only
through X(w’). In our paper, M is a Markov process associated with a
time-dependent Dirichlet form. Using results of Section [3| we prove the exis-
tence and uniqueness of solutions of BDSDEs associated with M for &, f, g
satisfying some “markovian” analogue of conditions (A1)—(A4). Then we
use this result to prove the existence and uniqueness of solutions of SPDE
of the form with operator 0/0t + A; associated with the underlying
Dirichlet form.

3.1. Dirichlet forms and Markov processes. In what follows, F
is a locally compact separable metric space and m is an everywhere dense
Borel measure on E. We denote by A the one-point compactification of E.
If F is already compact then we adjoin A to E as an isolated point. We
set E' =R x E, Er = [0,T]| x E, Egr = (0,T] x E, m* =1 @ m, mp =
l1|[07T] ® m, where [! is the one-dimensional Lebesgue measure. We adopt
the convention that every function ¢ on E is extended to E' by setting
o(t,r) = (), (t,x) € E', and every function f on E! is extended to
E' U {A} by setting f(A) = 0. Similarly, we extend functions defined on
Eor or on Er to functions on E'U{A} by setting f(z) = 0 outside Ey 1 or
Er, respectively.

We assume that we are given a family {B®) ¢ € R} of regular Dirichlet
forms on H = L?(E;m) with sector constant independent of ¢ and common
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domain V' C H (see, e.g., [16, 27] for the definition). We also assume that

(a) R>t— B®(p,1) is measurable for every o, ¢ € V,
(b) there are ¢1, ¢ > 0 such that ¢; B0 (¢, ) <B® (g, 0) < BO) (g, ¢)
for every t € R and ¢ € V.

By assumption, (B, V) is closed, i.e. V is a real Hilbert space with respect
to B{"(,-), where BO) (¢, 1) = $(BO(g, 1)) + BO (v, p)) and B (9, 1)) =
BO) (i, ) + (¢, 1) i for p,1p € V. We denote by V' the dual space of V and

we set

V=L*R;V), V=L*RV), W= {u eV: ?;; € V’}.

We will consider two time dependent Dirichlet forms (€, D(€)) and (£%7
D(£%T)) associated with the families {B®, t € R} and {BW, t € [0,T]},
respectively. The first one we define by putting D(£) = W V)U (VW)
and

<Z§L,v>+SB(t)(u(t),U(t))dt, ueEW,ve,
E(u,v) = P R
—<u, ”> + | BO@(t), v(t) dt, ueV,vew,
ot 2

where (-, -) denotes the duality pairing between V and V'. Tt is known (see [27],
Example 1.4.9]) that (£, D(£)) is a generalized Dirichlet form on L?(E*; m!).

By [17, Theorem 4.2] (see also [19, Theorem 6.3.1]) there exists a Hunt
process M = (', (Xy) >0, (P:)sepiun, (FR)i>0) with state space E1, life
time ¢ and cemetery state A properly associated with (£, D(E)) in the re-
solvent sense. Moreover,

(31) Xt = (L(t)vXL(t))7 t>0,

where ¢ is the uniform motion to the right, i.e. «(t) = ¢(0) + ¢, ¢(0) = s,
P.-a.s. for z = (s,z). One can also check that (X, (Psz)zcr) is a time in-
homogeneous Markov process associated with the family {(B®), V), t > 0},
i.e. for every s € R, (Xqy., (Psz)zecr) is a Hunt process associated with the
form (B®), V).

Let
Wr = {u e L*(0,T;V) : ?;: e L*(0,T; V"), u(T) = 0},
2 au 2 /
Wy = {u € L°(0,T;V): a5 € L*(0,T; V"), u(0) = 0}.

We define the second form by setting D(E%T) = Wr ® L2(0,T;V)) U
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Wo @ L?(0,T;V)) and

<081; >+BOT(U v), u€ Wy, veL?0,T;V),

—<u, g?;> + BT (u,v), veWr, ue L*0,T;V),

where now (-,-) denotes the duality pairing between the space L?(0,T; V")
and L?(0,T;V), and

EWT (u,v) =

T
(3.2) BT (u,v) = | BO(u(t),v(t))dt, u,veL*0,T;V).

0
Note that by [27, Example 1.4.9], (£%T, D(€%T)) is a generalized Dirichlet
form on L?(Eo1;mr).

We set
Rof(z) = E. | e f(Xy) dt, z€ E', feB(EY), a>0,
0
T—(
RYTf(2) = E. S e f(Xy)dt, z€ Eyr, feB(Eor), >0,
0

whenever the integrals exist. Let M = (X, P,) be the dual process of M (see
[19, Section 3.3]). We set (whenever the integrals exist)

o0

Rg’T (Z) = Ez S e_atf(Xt) dt, z &€ E(),T, f S B(E(),T), a>0.
0

To shorten notation, we write R = Ry, R= ]:20, ROT = Rg’T, ROT — Rg’T.
It is well known that G, = R, G = R, on L?(E'Y;m') for a > 0, where
{Gqa,a > 0} is the resolvent and {G,, @ > 0} is the dual resolvent as-
sociated with the form (£, D(€)). Similarly, Gg’T = Rg;T, GS;T = R%T on
L2(Eo;mr), a > 0, where {Go", a > 0} is the resolvent and {Go”, a > 0}
is the dual resolvent associated with (%7, D(£07T)).

We denote by A; the operator associated with the form (B(t), V), i.e.

(3.3) (=Au,v) = BO(u,v), we D(A),veV,

where D(A;) = {u € V : v — BW(u,v) is continuous with respect to (-, -)'/?
on V} (see [16, Proposition 1.2.16]).

Let cap be the capacity considered in [I§] (see also [19], Section 6.2]). We
say that a set B is E-exceptional if cap(B) = 0. We say that some property
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is satisfied quasi-everywhere (q.e. for short) if the set of those z € E! for
which it does not hold is £-exceptional. Note that a nearly Borel set B is
E-exceptional if and only if it is M-exceptional, i.e. P, (cp < o0) = 0,
where op = inf{t > 0: X; € B} (see, e.g., [I8 p. 298]).

We say that f: Egr — R is quasi-integrable (f € gL' in notation) if f
is Borel measurable and PZ(Sg_L(O) |f(X¢)|dt < 00) =1 for q.e. z € Epr.
We denote by ¢! the set of measurable functions f : £2 x Eo7r — R such
that P({w € 2: f(w,-) € ¢L'}) = 1.

3.2. Existence and uniqueness of solutions. Let A; be the operator
defined by . Suppose we are given measurable functions ¢ : £ — R,
fiOXErXR>R gr: 2xEpxR—=>R, k€N, andletg:(gl,gg,...).
We are going to show that there exists a unique solution of the SPDE

(3.4) du(t) = —(Awu + f(t,z,u))dt — g(t, z,u)d B, u(T) =g,
under hypotheses (H1)—(H5) given below:
(Hl) l@HLQ(E;m) + EHf('aO)H%Z(EoyT;mT) + EZEL Hgk('aO)H%z(EmT;mT)
0.
(H2) For every y € R the mapping Egr 3 2z — f(z,y) belongs to L.
(H3) There exist [, L > 0 and measurable functions Ly : Ey 7 — [0, 00)
such that sup,cp, . > peq Li(2) < 1 and for every z € Eyr and
¥,y €R,
(a) (f(zy) = f(z.9)y—y) < Lly—y'f°,
(b) 19k(2,9) — gr(z,9")| < Li(2)ly — /-
(H4) For every w € {2 and z € Eypr the mapping R 3 y — f(z,y) is
continuous.
(H5) For every y € R the mappings f(-,y),9x(-,y) : 2 x Ep — R,
k € N, are (]—'t’B 1 )-progressively measurable, i.e. for every ¢ € [0, 7]
the mappings 2 x [T' - t,T] x E > (w,s,z) — f(w,s,z,y) and
AX[T—-t,TIXE > (w,s,x) — gr(w, s, z,y) are ftﬁT@)B([T—t,T])
® B(E)-measurable.
In what follows

(35)  Bt=Bu) L=T-u0), F=FrgVF, te0,T]

where ]:f ;L = o(Byar, — Bts7 € [t,T]) (see our convention )
We will say that a random function u : 2 x Eyr — R is adapted if
u(X) € M, where M is defined as in Section [2| but with respect to (F)

defined by (3.5)).

REMARK 3.1. (i) Assume (H5). Then for every y € R there exists a
P ® myp-version f(-,y) of f(-,y) and a P ® myp-version gi(-,y) of gx(-,y)
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such that the processes f(X, Y), gr(X,y) are of class M under P, for q.e.
z € Ey 1. To see this, we let h stand for f(-,y) or for gi(-,y). It is known that
any (ff 1 )-progressively measurable square-integrable h : 2 x Ep — R may
be approximated in the space L?(£2 x Ep; P ® mr) by linear combinations
of processes of the form

(36) S] (CL), t’ .fU) = 1/1j (w)]‘(T—’I“j+1,T—7"]‘} (t)b] (x)7

where 0 < r; <741 <T, Aj € fﬁfmj and {b;, j > 0} is some orthonor-
mal basis of H. It is an elementary check that the process {S;(X¢),t > 0}
is { T} -adapted. Therefore linear combinations of processes of the form
are of class M. Hence there is a sequence {h,} such that h, — h
in L2(_Q x Eor; P @ mr) and the processes hy(X) are of class M. Let
h = lim SUP;,_s00 ftn. Then h( ) is of class M and h is a P ® mp-version
of h. Let Sgo denote the set of all finite zero order integral measures v on
Eor such that v(Ep7) < oo and ||[ROTv|ls < oo. For every v € Spg we
have

E, | I(A(X0) = X dt < Bl — b2 gy 1BVl = 0.

From this and [28, Theorem 2.5] (or [I8, remark at the end of Section 4])
it follows that P,(h(X;) = h(X;) for a.c. t € [0,T]) = 1 for q.e. z € Eyr,
which shows the desired result in case h is square-integrable. The general
case is handled by approximating h pointwise by square-integrable func-
tions.

(ii) From the fact that Carathéodory functions are jointly measurable
it follows that if f, g; satisfy (H3b), (H4), (H5) and u : 2 x Epr — R is
adapted then the processes t — f(Xy, u(Xy)) and t — §p(Xy, u(Xy)) are of
class M.

We first give the definition of a solution of and related Markov-type
BDSDE with coefficients f, g. In what follows we always assume that the
coefficients f, gr, k > 1, satisfy (H5), and we always assume that we are
taking their versions having the properties listed in Remark

DEFINITION. We say that an adapted function u : 2 x Eg7 — R is a

solution of SPDE (3.4]) if

(a) for qe. z € Eor we have P.(§0"[f(Xy,u(Xy))|dt < o0) = 1 and

t T,
E. supg<i<, |§o f(Xr,u(X,)) dr* < oo, E. {3 lg(Xe, u(Xy))|[*dt
< 00, where P, = P ® P, and E, denotes the expectation with
respect to P,
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(b) for P-a.e. w € 12, u(w;-) : Egr — R is quasi-continuous and for q.e.

A E(),T,
T, T,
u(z) = B (X)) + | F(Xe,u(Xe)) dt + | g(Xe,u(Xe)) dl ;).
0 0
DEFINITION. A pair (Y?, M?) € 8% x M? is a solution of the BDSDE
T,
(3.7) Y7 =o(Xp) + | f(X,,Y7)dr
t
T, T,
+§ 9(X,, v7)d' B — | amz, te(0,T)
t 0

(BDSDE, (¢, f, g) for short) if

(a) §§ [f(Xe, Y7)|dt < o0, §§ l9(Xe, Y7) || dt < o0, Po-as.
(b) Equation (3.7) is satisfied P,-a.s.

We first prove that under (H1)-(H5) for q.e. z € Epr there exists a
unique solution of (3.7)), and moreover one can find a version of the solution
which is independent of z. In fact, the solution exists for every z € Ey 7\ N,
where

(3.8) N = N UN,
with
T,
N1 = {z € Bor  E- (le(Xa) P + [ (1 (Xe, O + 190X, 0)[[%) ) = o0
0

Ny = {z € Eor : Jyer PZ(TSL f(X,,y)| dr = oo) > 0}.
0

LEMMA 3.2. Let (H1)-(H5) hold and let N be defined by (3.8)). Then
cap(N) = 0 and for every z € Egr \ N the data

(f? .f(ta y)7 g(t7 y)) = (QO(XTL% f(Xta y)7g(Xt7 y))7 le [07 T]a yE Ra
satisfy assumptions (A1)—(A4) under the measure P,.

Proof. Let Ngy={z¢€ Eyr : E, S? |f(X4,0)|? dt = 0o}. We may assume
that Ny is compact. Let oy, be the first hitting time of Ny. Then
T,

Po(0n, < ) = Pa(Greq, X1 € No) < P (Bx,, | 1/(X0,0)2dt = o0)
0



234 T. Klimsiak and A. Rozkosz

=P (E.( jg F(X0,0) 2 dt | FX, ) = o)

9N
< PZ<EZ<T§ (X, 0)[2 dt ’ ]?3va> - oo) =0
0

for mr-a.e. z € Ey r, because for any strictly positive Borel function 1) on
Eo 1 such that ||R%T4)]|o < oo we have

T,
| (B [ 17X 0)P dt)(z)me (d2) = E(R £2(-,0).) 12(80 15m)
Eor 0

= B(f2(,0), R) 1250 rimr) < EIFC0) 2 pamgy - 1B lloe < 0.

Hence cap(Ny) = 0. In much the same way one can show that cap(N;) = 0.
Moreover, by the definition of the space glL!, cap(N2) = 0. Thus cap(N) = 0
and (Al)—(A4) are satisfied under the measure P, for z outside the set
N=N{UNsy. =

In what follows, we use the notation
A= F) v FE

THEOREM 3.3. Assume that ¢, f,g satisfy (H1)-(H5) and define N by
(3.8). Then for every z € Eogr \ N there exists a solution (Y*,M?) of
BDSDE, (¢, f,g). Moreover, there exists a pair of cadlag (F)-adapted pro-
cesses (Y, M) such that for every z € Egr \ N,

(3.9) (Y7, M7) = (Y, My), t€[0,T),P.-a.s.

Proof. The existence of a solution (Y*, M?) follows from Theorem
and Lemma The proof of (3.9) will be divided into three steps.

STEP 1. Assume that f, g do not depend on the last variable . Then

T, T,
(3.10) M7 =E.(o(Xa) + | fOK) dr + | (X, diBy | A) - V5
0 0
and
T, T,
Vi =B (o(Xn) + | F(Xp) dr + § g(X,) dtB; | A1)
t t

By [8, Lemma A.3.5] there exists a random variable Hp such that Y§ = Hp
P.-a.s. for every z € Eor \ N, while by [8, Lemma A.3.3, A.3.5] there exists
an (A;)-adapted cadlag process M such that M; = M7, t € [0,7,] P,-a.s.
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for z € Ey \ N. Set

t t t
Y, = Hy -\ f(X)dr — \g(X,)d'B, + | dM,, te[0,T)].
0 0 0
Then Y is an (F;)-adapted cadlag process such that ¥; = Y7, ¢ € [0,7,],

P.-a.s. for every z € Egp \ N.

STEP 2. We now consider general f,g (possibly depending on y) but we
assume that f is Lipschitz continuous with respect to y uniformly in ¢. By
Step 2 of the proof of Theorem [2.6]

(3.11) (V" M5") < (Y2, M%) in 8% ® M2,
where (Y9 M*%) = (0,0) and
T, T,
Yz n+1 (XTL) S f(XT,}/;.Z’n) dr + S Q(XmY;nZ’n) dT/Br
t t
T,

— | daprtt £ e0,7), Poras.
t
for z € Eyr \ N. By Step 1, for every n > 0 there exists a pair (Y™, M")
of (F;)-adapted cadlag processes such that (3.9)) holds for (Y*, M?), (Y, M)
replaced by (Y™ M=™), (Y™ M"™). Therefore applying [8, Lemma A.3.3]
we show the existence of a pair (Y, M) satisfying (3.9).

STEP 3. The general case. From the proof of Theorem it follows that
holds for (Y™, M*™) being a solution of BDSDE, (¢, fn, g) with some
Lipschitz continuous in y function f,,. By Step 2, holds for (Y™, M*™).
Therefore applying [8, Lemma A.3.3] shows that is satisfied. =

Of course the pair (Y, M) of Theorem 3.3]is a solution of BDSDE. (¢, f, g)
for q.e. z € Ep . Our next goal is to show that the function u defined as
u(z) = E.Y) for z € Eyr \ N is a solution of SPDE . We first prove
this in Proposition for linear equations and then in Theorem in the
general case. We begin with a simple but useful lemma.

LEMMA 3.4. Assume that A € Ar, and let N be a properly exceptional
subset of Eor. If P,(A) =1 for z € Eyr \ N then for every z € Eyr \ N,
P.(071(A)) = 1 for every stopping time T with respect to (A;) such that
0<7<T,.

Proof. By the strong Markov property and proper exceptionality of N,
for every z € Ey 1\ N we have

P.(6;1(A°)) = E.Px, (49) = 0

which proves the lemma.
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REMARK 3.5. It is clear that if 7 is an (\A;)-stopping time then 7(w;-)
is an (FX)-stopping time for every w € £2.

Now we extend the shift operator 6 to 2 x 2’ by setting
Or(w,w) = (w, 0¢(w")).
It is clear that 6; *(Ag) C Ay

PROPOSITION 3.6. Assume that ¢, f, g satisfy (H1), (H2), (H5) and f,g
do not depend on the last variable y. Define N by (3.8) and set

T, T,
(312)  u(z) = B((Xn) + § f(X)dt + | g(X0)dT5)
0 0

forz € Eg 7\ N and u(z) = 0 otherwise. Then for P-a.s. w € {2 the function
u(w;-) is quasi-continuous and for every z € Eg \ N,

(3.13) Y; =u(Xy), te[0,T,],P,-a.s.,
where Y is the process of Theorem [3.3]

Proof. By [8, Theorem 4.1.1] we may and will assume that N is properly
exceptional. Let (Y, M) be the pair of processes of Theorem (3.3 We shall
show that for every z € Ey7r \ N,

(3.14) Yoob0,=Y, P,a.s.

for every (A;)-stopping time 7 such that 0 < 7 < 7,. To this end, first
observe that P.-a.s. we have

T, T,
(3.15) (§rxoat) o6, = § rxpat,
- T
(3.16) (§oX0)d5;) 0. = | g(X,)d'5:;.
0 T

Indeed, {i holds since A; = Sé f(X,)dr is a continuous AF of M for
fixed w € £2. Equality (3.16]) can be deduced from the identity

Z g(Xt'H»l)(BtLH.l - Btbl)) o 97’ = Z g(Xti+1+T)(/Béi+1+T - BL%/,"_T)’
0<t;<T. 0<t;<T.—7

which holds P,-a.s. Here we have used the fact that ¢(0) 0 6, = ¢+(0) + 7. It
is also clear that

(3.17) ¢(X1,) 0 0r = p(X1,).
By [26, Theorem 50.19], (Nt = (M7 0 07 — Mo 0 07)1 (7 o) (t), F&,t > 0) is
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a martingale for fixed w € 2. Hence

T,

E(((S) th) o0,

E.(Np 4 | FX) = 0.

Ar)

(3.18) E. ( < TS th) o0, f})
0

We know that for every z € Ey 7\ N,

T, T, T,
Yo =@(Xg) + | F(Xp)dr — | g(X,)d'B: — | dM, P.-as.
0 0 0
By Lemma and (3.15)—(3.17)), for every z € Ey 1 \ N,
T, T, T,
Yoo, = ¢(Xg) + | f(X)dr — | g(X,)d' i — (] dbt,) o 6.
T T 0

Since Yj is Ap-measurable, Yy o 0, is A,-measurable. Therefore by (3.18)),

T, T,
Yoo, =E.(p(Xr) + | f(X,)dr = | g(X,)dTBL | A;) Po-as.
Thus (3.14) is satisfied for z € Ey 7\ N. Since u(z) = E.Yp, using the strong
Markov property and (3.14)) we see that for every z € Eyr \ N,

w(X,;)=Fx Yo=E.(Yy 00, | F)=E. (Y, | FX)=E.(Y;| A;)=Y; P.-as.

A standard approximation argument shows that the process u(X) is optional
(with respect to (A¢)). Therefore the above equality implies by the
Section Theorem. To prove quasi-continuity of u(w;-) for P-a.s. w € (2, fix
w € £ such that (3.13) holds Py, -a.s. Let 7 be a predictable (FX)-stopping
time such that 0 < 7 < T,. Since X is a Hunt process, X, = X, P,-a.s. for
every z € Egr, and moreover the filtration (FX) is quasi-left continuous, so
M,._ = M, P,-as. for every z € Ey 1 (see [8, Theorems A.3.2, A.3.6]). By

this and (3.13)),
u(Xro) =u(Xr) =u(X)—  Pp-as.
Of course the process {u(X);—, t > 0} is predictable. Since the function
u(w;-) is nearly Borel, the process {u(X;—),t > 0} is predictable, too.
Therefore applying the Section Theorem yields
w(Xeo) =u(X)—, te€][0,T,], Pp,y-as.,
which together with (3.13)) and [16, Theorem IV.5.29] shows that u(w;-) is

quasi-continuous. =

THEOREM 3.7. Assume that o, f, g satisfy (H1)—(H5). Let N be defined
by (3.8) and letY be the process of Theorem . Then for P-a.s. w € {2 the
function u(w;-) : Egr \ N — R defined as
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T, T,
(3.19) u(z) = B (o(Xr,) + | £(Xe, Vi) dt + | 9(X0, 1) dl )
0 0

is quasi-continuous and for every z € Eyr \ N,
(3.20) Y =u(Xy), tel0,1,], Psa.s.
In particular, u is a solution of (3.4)).

Proof. By [8, Theorem 4.1.1] we may and will assume that N is properly
exceptional. Let (Y, M) be the pair of processes of Theorem By the
proof of Theorem for every z € Egr \ N the pair (Y, M) is under P, a
limit in S% ® M? of solutions (Y™, M™) of some linear BSDEs. In particular,
un(2) = E.Y]" = E.Yy = u(z) for every z € Ey 7\ N, which when combined
with the fact that N is properly exceptional implies that w,(X;) — u(Xy),
t € [0,T,], P,-a.s. for every z € Egr \ N. Since we know from Proposition
that holds for solutions of linear equations, we conclude that it
holds in the general case. Quasi-continuity of u follows now from Proposition

Since by (3.19), (3.20) and Theorem conditions (a) and (b) of the
definition of a solution of SPDE ([3.4)) are satisfied, u is a solution of (3.4)). =

REMARK 3.8. Assume (H1)-(H5).

(i) From Theorems |3.3| and [3.7| we know that there exists a pair (Y, M)
(not depending on z) of (F;)-adapted cadlag processes such that (Y, M) is a
solution of BDSDE, (¢, f, g) for q.e. z € Epr and that the solution (Y, M)
provides a stochastic representation of the solution u of SPDE (3.4). The
representation has the form , or equivalently,

u(z) =Yy P,-as. for ge. z € Eyp.

(ii) On the other hand, if w is a solution of then there is an (F)-
adapted cadlag process M (not depending on z) such that for q.e. z € Eg 1
the pair (u(X), M) is a solution of BDSDE, (¢, f, g). Indeed, given a solution
u let us define fy, gy as fu(2,y) = f(z,u(2)), gu(z,y) = g(z,u(2)), z € Eor.
Let (Y, M) be the pair of processes of Theorem such that (Y, M) is a
solution of the linear BDSDE, (¢, fu, g.) for q.e. z € Ey . By Proposition
Y = u(X), so the pair (u(X), M) is a solution of BDSDE, (¢, fu,gu),
which means that it is a solution of BDSDE, (¢, f,g). Thus starting from u
we can construct a solution (u(X), M) of the BSDE

T,
(321)  w(Xy) = o(Xp) + | F(Xr,u(X,)) dr
t
T, T,
+ | 9(Xr u(X,))digL - | dM,, te[0,T)], P.-as.
0 t
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PROPOSITION 3.9. Under (H1)-(H5) there exists at most one solution
of .

Proof. Let uy,us be two solutions of . By Remark for q.e. z €
Eo 1 the processes uj(X), ug(X) are the first components of solutions of
BDSDE., (¢, f,g). Therefore by Corollary and Lemma for q.e. z €
Eo 1 we have u1(2) = ug(2) P-a.s. m

In the next section we prove some results on regularity of the solution u
of SPDE (3.4). Here let us only note that our proofs are based on equation

(3.21). Clearly (3.21) implies that for q.e. z € Ey 7,
(3.22) A = u(Xy) —u(Xo) = My + Ny t€][0,7,], Py-as.,

with NV defined by . We shall see that M is a random martingale AF of
finite energy and N is a random continuous AF of finite, but in most cases
nonzero energy. This means that cannot be viewed as Fukushima’s de-
composition of A. Nevertheless, we will prove some estimates for the energy
e(M) of M, which when combined with a priori estimates for (u(X), M)
obtained in Proposition lead to energy estimates for wu.

4. Regularity of solutions. Let H be some Hilbert space equipped
with the norm | - |4, let B(H) denote the Borel o-field of subsets of ‘H and
let

e M?%(0,T;H) be the space of all F ® B([0,T])/B(#H) measurable pro-
cesses v : §2 x [0,T] — H such that for a.e. t € [0,7] the random

variable v(t) is ftﬁ r-measurable and

T
E\|o(t)3; dt < oo,
0
e S2(0,T;H) be the subspace of M2(0,T;H) consisting of all processes
v such that
sup Elv(t)]3; < oo.
0<t<T
Let u be a solution of of Theorem [3.7]and let u(t) = u(t,). In this
section we show that ¢ — u(t) belongs to the space S%(0,T; H)NM?(0,T;V)
with H,V defined in Section and we prove energy estimates for u, i.e.
estimates of u in the norm || - ||gor defined as ||ul|%, - = B% (u,u), where
BT (u,u) is defined by . Note that by assumption (b) in Section
the norm || - ||go.r is equivalent to the usual norm in L?(0,T; V). We begin
with linear equations.

PROPOSITION 4.1. Assume that f,g do not depend on the last variable
y and (H1) is satisfied. Then u defined by (3.12)) belongs to M?(0,T;V) and
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there is ¢ > 0 such that
o0
EH“H%&T < CE(HSDH%%E;m) + ||f||%2(EO,T§mT) + Z ||9k||%2(E0,T;mT)>'
k=1
Proof. Set

T,

w(z) = E, (go(XTL) + | rx dt), € Eor.
0

From [I2] Theorem 3.7] and standard energy estimates for solutions of PDEs
it follows that w € M?(0,T;V) and

lwligor < IelZz(zm) + 1122 rime)-

Set
T,
v(z) = E, S 9(X4) dTBtL, z € Eyr.
0
We are going to show that v € M2(0,T;V) and
(4.1) EHUH%OT < CZEH%H%%EO,TWT)-
k>1

To this end, first observe that by the stochastic Fubini theorem and the
Markov property,
T,
e’a’"EXT< | g(x0) dw;) dr
0
T,

e B | g(X) d' sy

r

I
&

(Ra"v)(2)

FX) dr

T

e §oxo B;) dr

r

Il Il
= &)
w w
ce—mN oe—m oe—m1

T,
E. [ (1-e*)g(X;)d' 5.
0

R+

Hence
T,

(4.2) v(z) — a(RYTv)(2) = E, S e g(Xy)diBt, 2z € For.
0

For given a > 0 and v,u € M?(0,T;V) write

E(Q)’O’T(U, U) = a(u - O‘Rg;Tu’ U)LQ(EO,TQWT)'
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By (4.2),
EE@OT (y )
TL TL
—a | B(E. [ e g(X)d'6; - E. | (X)) d'B;) mr(dz).
Eo, 1 0 0

Using It6’s isometry and the fact that a9 is a contraction on L2 (Eo.;mr)
we conclude from the above that

T,
(4.3) EE@OT(p0) < | E(sze’aﬂg(Xt)]Zdt) me(dz)
EO,T 0

) )
= Z EHQR%TQI%HLl(EO,T;mT) < Z E”gk H%?(EO,T;mT)‘
k=1 k=1

By [19, (6.1.28)],
EB>T(aR%Tv, aR%Tv) < BE@OT (y v).

When combined with (4.3) and [16, Theorem 1.2.13], this shows that v €
M?(0,T;V). Therefore letting a — oo in (4.3)) yields (4.1)). =

LEMMA 4.2. Letu: 2 x Egr — Ry and let uy = ozRg’Tu, a > 0.

(i) If u € M*(0,T; H) then E||luy — uH%Q(EO’T;mT) — 0 as o — 0.
(i) If u € M?(0,T;V) then EB%T (uy — u,uq —u) — 0 as a — oo.
(iii) If u(z) = E, S;‘)FL g(Xy)d' By for some g satisfying (H1) and not de-
pending on y, then for every t € [0,T), E||uqa(t) — u(t)H%Q(E;m) —0
as o — 00.

Proof. (i) Since {RY"} is a strongly continuous contraction resolvent on
L*(Eor;mr), uq — win L2(Eg7; mr) and ”UaHL2(E0,T;mT) < HUHLZ(EO,T;mT)
for P-a.e. w € 2. Therefore applying the Lebesgue dominated convergence
theorem we get (i).

(ii) By [16, Theorem 1.2.13], BT (uq — u, uq —u) — 0 for P-a.e. w € £2.
Moreover, by [16, Lemma 1.2.11], there exists ¢ > 0 (independent of w) such
that BOT (ug,ua) < BT (u,u) for P-a.e. w € £2. Therefore (ii) follows by
the Lebesgue dominated theorem.

(iii) By (2),
T,
2 —2ar 2
Elua(t) = u(t)| 32 gy < Erm | € [lg(X0)|1? dr,
0

so it suffices to show that the integral on the right-hand side is finite for



242 T. Klimsiak and A. Rozkosz

every t € [0,T). But

T, T oo

Evn | 19X 2 dr = BBy § S g, X2 dr < Elgl2a 5y oy
0 t k=1

which implies the desired conclusion. =

Let us recall that the energy e(A) of an AF A of the process M%T
associated with the form £%7 is defined as

T,
L 2 ot 42
e(A) = falgroloa En., (S] e YAy dt,

whenever the integral exists (see, e.g., [I7, 19]). Also note that if M is
a martingale AF of M%7 then the sharp bracket (M) of M is a posi-
tive continuous AF of M%T. Let fary denote the Revuz measure of (M).
Then

. 1
(4.4) oy (Eoir) =l 5 By (M) = 2¢(M)

(see [19, Section 5.1.2]).
In what follows we will be interested in AF's of the form

(4.5) A =a(Xy) —a(Xp), te0,T)],

where @ is a quasi-continuous myp-version of u € Wyp. Such AFs admit a
unique decomposition (called Fukushima’s decomposition)

Ay =MM + NM teo, T,

into a martingale AF M of M%T of finite energy and a continuous AF
N of MOT of zero energy (see [I7, Theorem 6.4]).

LEMMA 4.3. Let k? = B(1 — ﬁRg’Tl) -mg. Then there exists a smooth

Radon measure k such that k° — k in the vague topology as B — oo, and
for every u € Wr,

(@6) (M) = [(0) gy + B () — 5§ [l k),
Eo, T

where 4 1s a quasi-continuous mp-version of u.

Proof. Let A be defined by (4.5). By an elementary computation we
get

T,
B2 Em, | 7P (u(Xy) — u(Xo))? dt = 28(u,u — BR%’TU) — B(u?1— 5R%’T1)-
0
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Hence
T,

(4.7) B2Ep, S e PtAZ dt = 26@0T (4 u) — (u?, kD).
0

By (£.7),
(u?, k7Y < 26B0T (4 u).
From this we conclude that the sequence {kﬁ } is tight in the vague topology.

Therefore if w € Wp N Co(E7) then letting 8 — oo in the above inequality
we get

(48)  (u%k) <267 () = [[u0) 2y + 28°7 ().

Since there is a continuous embedding of Wr into C([0,T]; H), from (4.8])
it follows that there is ¢ > 0 such that

(4.9) (u? k) < eflullwy

for all u € Wr N C.(Er). From and [23, Theorem 1] it follows that k
is a smooth measure. Furthermore, since each quasi-continuous u € Wy can
be approximated q.e. and in Wy by functions from the space Wp N C.(E7),
holds true for every quasi-continuous u € Wr. Let {u,} CWp N C.(ET)
be such that u,, — v in Wyp. Then

(4.10)  |(@? K2 = (P ) V2] < J(up, K92 = (un, k)
+ [[(un = u)(0)] g2 + (2EDOT (un — i, un — w))'/?
+ (2B (wy, — w, up — )2,

Since Wr C C(0,T; L?(E;m)) and the embedding is continuous, letting
B — oo and then n — oo in (4.10]) shows that for every u € Wr,

| w?dk? — | W?dk
Eo,1 Eo,r
as 8 — co. By [I7, Theorem 6.4], e(A) = e(M"). Therefore letting 3 — oo
in (4.7) yields 2e(M™) = 2897 (u, u) — (u?, k), which implies (4.6). =
DEFINITION. We say that an (F;)-adapted process A is a random ad-
ditive functional (random AF for short) of M%7 if for P-a.e. w € 2 the
process A(w;-) is an AF of M%T. Similarly, we say that a process A is a

random martingale (continuous, positive) AF of MOT if for P-a.e. w € £2
the process A(w;-) is a martingale (continuous, positive) AF of M%7,

LEMMA 4.4. Let {A"} be a sequence of random AF's such that

E, sup |A} — A7*| = 0 for mrp-a.e. z € Eyr as n,m — oo.
t<T,
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Then there exists a subsequence (ny) C (n) such that for P-a.s. w € {2,

E, silp\An’“ Al =0 for g.e. z € Egr as k,l — oo.
t

Proof. Let p € Ll(EovT;mT) be a strictly positive function chosen so
that SEOT pdmr =1 and

E, sup |A} — A"l -0 asn,m — oo,

where v = p-myp. Let (ng) C (n) be a subsequence such that
(4.11) E, sup |[A;*F — APF| < 27F k> 1,
t<T,

and let B = {z € Egr : E.sup,<r, |A}* — A}"'| - 0 as k,l — oo}. Let us
stress that B depends on w. Write 7 = op. By the Markov property and
additivity of A,

P,(r<T,)< S P, (ElngL E'z( sup |A"ofs— A*
t<T,004

p ) -+ O) dv(z)

.7-"8X> - O) dv(z)

- ( s<t, B ( f;lfT | AL — AL — At + A
§ ( s<T, 2F, <8371? |AYT — A% .7:3() > 0) dv(z)
< S Pz( sup (Ez <sup |AJt — AT .7-"3X))q - O) dv(z)

0<s<T, t<T,

0,T
for every ¢ € (0,1). Let I = P® (v ® K), where K(z,dw’) = P,(dw’). By
(4.11)) and [4, Lemma 6.1],

o
Z S sup (E (sup | A7 — ATF|
k=1 02xEqy xS s<T. t<T

f?))qdﬂ(w,z,w’)
< i L (E sup |4} — A?’ﬂ)q < 0.
el A

Since I1(£2 x Eyr x £2') = 1, the Borel-Cantelli lemma shows that

sup (E (sup |AJE — A
s<T, 1<T,

f}))q —0 ask,l — oo, I[lT-a.e.

In particular, for v-a.e. z € Ey 7 and P-a.e. w € {2,
sup <EZ (sup |AJE — A
s<T, t<T,

Hence P,(r < T,) = 0, which implies that cap(B) = 0 P-a.e. (see [I8]

p. 298]). =

<\ \ ¢
F; —0 ask,l — oo, P,-a.e.
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For a given set A C Egr X {2 and (z9,wp) we write A,, = {w € 2
(20,w) € A} and A,y = {z € Eo 1 : (2,wo) € A}.

LEMMA 4.5. Let A C Eo 1 X {2 be a measurable set. If cap(Ay) = 0 for
P-a.e. w e £2, then P(A;) =0 for cap-q.e. z € Ey 1.

Proof. Let v be a smooth bounded measure. Then F SEO - La(w, 2) v(dz)
= 0 by the assumption on A. Therefore using Fubini’s theorem we obtain

0= S El,(w,2)v(dz) = S P(A,)v(dz).
Eo,1 Eo,1
Since v was arbitrary, it follows from [28, Theorem 2.5] (or [I8, remark at

the end of Section 4]) that P(A,) = 0 for cap-q.e. z € Ey 7. =

PROPOSITION 4.6. Assume that u is given by (3.19). Then u(X;) =Y,
t €[0,1,], for q.e. z € Ey, where (Y, M) is a solution of BDSDE, (¢, f, g).
Moreover, M is a random martingale AF of M%T and

(412)  Be(M) = B(Ju(0) gy + B () — 5 | Ju(=)? k(d2),
Eo,r

where k is the killing measure of the form (£9T, D(E%T)) defined in Lemma.
Proof. The first assertion follows from Theorem If g = 0 then (4.12)

follows from [I7, Lemma 6.1]. Therefore we may and will assume that ¢ = 0,
f=0. Let uq = aR%Tu. Then
¢ t

ua(Xe) = {o(u — ua)(Xp) dr + | dM™), ¢t e o, T)).
0 0
By It6’s formula,
T, T,
(413)  E. | d[M — Ml <E. [ (=20]u - ua*(Xs) + [|9(X0)[1?) dt.
0 0

By Ito’s isometry, for q.e. z € Eyr we have

TL T[, TL 2
OF. | |u—uaA(X;)dt = aF. | (Bx, | e g(X,)d'6;) dt
0 0 0
T, T,
= aE. | Bx, | e g(X,)|| dr dt
0 0
T,

1
= 5B | 20R57 g (X) dt.
0
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This implies that
T, T,

(4.14) 20, | [u—ual*(Xe)dt — E. | [|g(X,)|[ dt,
0 0
because
T,
E. | 2085 |lgl*(X,) dt = BROT 205 g]*)(2)
0
= ER*T|\g|*(2) — Ry 9] (2)
T, T,
=E. | lg(Xo)|?dt — E. | 72 g(Xy)|* dt
0 0

and by Lemma E, SOTL 19(Xy)||? dt < oo for q.e. 2 € Eyr. By 1) and
(#.14),

T,
(4.15) E. | d[M — Ml -0

0
for q.e. z € Ey . From (4.15)), the Burkholder-Davis-Gundy inequality and
Lemma we conclude that there exists a process M such that, up to a
subsequence, for P-a.e. w € {2,

(4.16) E, sup |Mt[u°‘] — M;| =0
t<T,

for q.e. z € Epr. By a standard argument (see the reasoning following
(5.2.23) in [8, proof of Theorem 5.2.1]), M (w;-) is a martingale AF of M%”
for P-a.e. w € {2. By Lemma (4.15) and (4.16), M is a P,-modification
of M for q.e. z € Epp. By Proposition and Lemma Uy — U in
M?2(0,T;V) and E|ua(t) — u(t)\%Q(E;m) — 0 for every t € [0,T) as a — o0.
Write M = MUl Let o, — 00. By Lemma

EE(MO‘R_MO‘m) S E” (uan_uam)(o) ||i2(E;m)+EBO’T(uan_uam’ uan_uam)’
which converges to zero as n,m — oo. From this and (4.15]) it follows that

li_}rn Ee(M®") = Ee(M).

By Lemma [4.3]
(4.17) Ee(M®) = Elta(0) 2, 5y + EB (tta, 1)

1B ()P k(d2).

2
Eo, 1
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Observe now that
(4.18) E | Jua(2)?k(dz) = E | |u(2)]k(d2).
Eo,r Eo,r

Indeed, since from the proof of Lemma we know that (4.8]) holds for
quasi-continuous elements of Wr, there exists v € L?(Egr;k) such that
(Elua|?)Y/? — v in L?(Eo1; k). Therefore the proof of (4.18) is completed
by showing that v? = Eu? k-a.e. By (4.2),

T,

Elu(z) — ua(2)* <E. | e g(Xe|?dt, =z € Eop.
0

By Lem]rnam7 E, S;‘)FL lg(X¢)||? dt < oo for q.e. z € Eyr. Hence Eu2 — Fu?
q.e. Consequently, Eu? — Eu? k-a.e. since k is smooth. Thus v? = Eu?,

which completes the proof of (4.18]). Letting & — oo in (4.17) and using
(4.18) we get (4.12). =

REMARK 4.7. Let N be defined by (1.8)). A direct calculation shows that

1
(4.19) e(N) = §||gu||ig(E0’T;mT).
From this one can conclude that v ¢ W, where W is defined by ([1.10)).
Indeed, suppose that u € W. We may assume that ¢ =0, f = 0 and g does
not depend on y. Let Al be defined by 1D and u, be as in the proof
of Proposition Then by the proof of [8, Theorem 5.2.2] (see also [28,
Theorem 4.5]), N = N [ and Nl converges to N uniformly on compacts
in probability P,,,.. Since N = N [l we have
Ee(N) < 2Ee(N — Nltely 4 2pe(Altel) = 2Be(N — Nlual)
< 4Be(AM — Alvely L age(pl — pylvaly,
Since u € W, we have
Ee(AM — Alvaly < BE(ug — u, ug — u)
= Blua(0) — u(0) |32y + EB (e — u, 10 — )
(see, e.g., [28, (13)]). When combined with the previous inequality and
Lemma [£.3] this shows that e(N) = 0, which contradicts (4.19).

In what follows we denote by M™ the set of all positive Borel mea-
sures on Eyr and by Mar,b the subset of M™ consisting of all bounded
measures which charge no set of zero capacity associated with the form
(9T, D(E%T)). The total variation norm of p € ./\/la“,b will be denoted by
| |lTv. To shorten notation, for u € M™ we write P,(-) = SEOT P.(-) u(dz)

and denote by E, (resp. E,) the expectation with respect to P, (resp.
P®P,).
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DEFINITION. We say that p: 2 x B(Eyr) = R is a random measure if
p(w; ) is a positive Radon measure on Ey 7 for P-a.s. w € £2 and p(w; B) is

f?—measurable for every B € B(Ey ).

Given a random measure p such that u(w;-) € ./\/lafb for P-a.e. w € {2 we
denote by A* the random positive AF of M%T such that for P-a.e. w € 2
the measure p(w;-) is the Revuz measure of the AF A(w;-). We call A* the
random AF associated with p. Note that if the random AF associated with
1 exists, then it is uniquely determined.

In the rest of the paper, writing A* for some random measure p we
tacitly assume that this random AF exists.

LEMMA 4.8. Assume that p,v are random measures such that p,v €
M (Eor) P-a.s. If for some v € M*(0,T;V)NC([0,T]; L*(2 x E; P&m)),

T, T,
Ev(z) +E, | dAl' <E. | dA}
0 0
for mr-a.e. z € Eor then
(4.20) E | w(2)k(dz2) + Elplrv < E|v|rv.

[0,T)xE

Proof. Since Ev(z) + ER®Tu(z) < ER%Tv(z) for mp-a.e. z € Eg 7, we
have
E(U, (X(l - CVRSJTI))L%EO!T;WLT) + E(RQT/JH a(l - aRg7T1>)L2(E0,T;mT)
S E(RO’TV, a(l — OCRSZTl))LQ(EO’T;mT)'

Hence
E(U7 06(1 - @R37T1))L2( + E(OZ(I - aRg7T)RO7TIU/7 1)L2(E0’T;mT)

< E(a(I — aR%T)RYTy, D)

Eo,7ymr)

Eg rymr)-

It is an elementary check that

T,
ol — aRYRYT () = E, S ae M dAY, 2 € Eyr.
0
Therefore
T,
(421)  E(v, (1 = aRYT1)) 125y rimp) + Emp | ce™ dAY
0

T,
< By | ae™t dAY.
0
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Letting a — oo in we get . Indeed, directly from the definition of
the Revuz duality it follows that the integrals involving A* and AY converge
to E||p|lrv and E|lv|Tv, respectively. To show the convergence of the first
term on the left-hand side of (4.21]), assume first that v(T") = 0. Set v, =

Bm Ry v. Then by (]4.10[),

limsup (v, k%) Y2 = (0%, k)] < 4] (0 — 0,0 — 0) ()] Lam5m)

n—oo

+ 4(BT (0 — v, 0y — 0))Y/2.

Since vy, (t) — wv(t) in L*(E;m) for every t € [0,T) and v, — v in
M?(0,T;V), this shows the desired convergence of the first term. In gen-
eral, if v(T) # 0, we consider a sequence {v,} C M?(0,T;V) N C([0,T7;
L?(f2 x E; P ®m)) such that v, < v, v,(T) =0 and v, /v on [0,T) x E.

Of course, v, satisfies the assumptions of the lemma, so by what has already
been proved, (4.20) is satisfied with v replaced by v,. Letting n — oo we

get (4.20) for v. m

THEOREM 4.9. Assume (H1)-(H3). Let u be a solution of SPDE (3.4).
Then u € S?(0,T; L*(E;m)) N M?(0,T;V) and there is ¢ > 0 depending
only on T, L,l such that

(422) sup EHu(t)H%Q(E,m) + EB(LT(”? u)

0<t<T
o
< CE(HSDH%?(EJTL) + Hf(7 O)H%Z(EO,TW”T) + Z Hgk(7 0)"%2(E07T;m71)) :
k=1
Proof. By Proposition
T,
E. sup |u(X)]® +E, S d[M],
0<t<T, 0
T,
< B (X2 + [ (1£(X1 0) + |9(X, )| dt ).
0
Hence
T, T,
Elu(z)* + E. | d(M), < cE. | dAy,
0 0

where

v(dz) = (6rry @ lol* - m)(d2) + (|£(2,0)]* + [lg(=,0)[|*) mr(dz).

Let p(pry denote the random smooth measure associated with the random
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continuous AF (M) of M. By Lemma[4.8]

(4.23) E | |u(z)]?k(dz) + Ellpan v < eyl

EoT

Since by (4.4), |lpanllTv = 2e(M) P-a.s., it follows from Proposition
and (4.23) that

El[u(0)[72(gymy + EB™ (u,u) < c|[v]|Tv.

Since the same estimate can be obtained on any interval [¢t,T] with ¢ €
(0,7), and c||v||Tv is equal to the right-hand side of (4.22)), the theorem is
proved. =

5. BDSDEs with Brownian filtration. In the present section and
in Section [6] we assume that the filtration (G;) of Section [2] is generated
by a d-dimensional Wiener process W on §2'. This will allow us to treat in
Section [0] equations dependent on the gradient of a solution.

We also assume that we are given an Fp-measurable random variable &
and two families {f(ta Y, Z)? > O}yER 2€R> {gk(t7 Y, Z)) t> O}yGR,zeRd,keN
of processes of class M (as in Section [2} in our notation we omit the depen-
dence on (w,w') € 2 x 2'). We set g(-,y,2) = (91(-,¥,2),92(-, ¥, 2), ... ).

Let us consider the following hypotheses:

T T

(B1) Elg*+Ef, |£(t,0,0)*dt +Ef; ||g(t,0,0)]* dt < oc.

(B2) SE)F |f(t,y,0)|dt < co P-a.s. for every y € R.

(B3) There exist {,L >0, m € (0,1) and My, Ly, : £2 x [0,T] — Ry such
that supgcicr D opeq La(t) < 1 supgcicr Y opeq ME(t) < m P-as.
and for a.e. t € [0,T7,

(a) (f(t,y,2) = f(t,y',2))(y —y') < Lly—y/|* for all y, ' € R and
z € R4,

() |f(t,y,2) — f(t,y,2')| < L|z — 2’| for all y € R and 2,2’ € R?,

(C) ‘gk(tvyv Z) - gk(ta y/7 Z/)| < Lk(t)|y - y/| + Mk(t)|z - Z,‘ for all
v,y € R and z, 2 € R%,

(B4) For a.e. t € [0,T] and every z € RY the mapping R > y — f(t, 7, 2)
is continuous.

DEFINITION. We say that a pair of processes (Y,Z) € S? x M? is a
solution of BDSDE(, f, g) if

(a) P(§(1f(t,Ys, 0)| + [lg(t, Y2, 0)[|?) dt < o0) =1,
(b) Y; = £+Sf f(r, Y, Z,) dr+§tTg(r,Yr, Zy) dTBr—StT ZydW,, t €10,T],
P-a.s.
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REMARK 5.1. If the coefficients f, g do not depend on z and (Y, Z) is a

solution of BDSDE(E, f, g) then the pair

t

(%, M) = (Y2 Zeawy), e (0,T),

0
is a solution of BDSDE(E, f,g) in the sense of Section [3| The difference
between Section [3] and Section [f] is that in the present section we have
additional information on the filtration (G;), which gives us additional in-
formation on the component M of the solution.

PROPOSITION 5.2. Let g satisfy condition (B3c) and either f or f' satisfy
(B3a), (B3b). If £ < ¢ P-a.s. and f'(t,y,2) < f(t,y,z) for a.e. t € [0,T)
and every y € R and z € R? then

Y/ <Y, tel0,T],P-a.s.,
where (Y, M), (Y', M'") are solutions of BDSDE(, f, g) and BSDE(¢', f/, g),
respectively.

Proof. Assume that f satisfies (B3a), (B3b). By It6’s formula,

T
() = Y) " + 1y 20 — 2,2 dr
t
T

§2S(YTI_Y) (f (rvYT/’Z/) f(T,Y;«,Zr))dT

T
—2\(v/ -v)" (2 - Z,) aw,
t

oo T
+ Z S 1{Y’>Y }|gk T, }/r’ Zr) (Tv Y, Zr)’2 dr.
t

k=1
By the assumptions of the proposition,
T T
[V = V) (1, Y, 20) — F(r, Yo Z2)) dr < 2L | (Y] — Vo) * 2 dr
t t

and

oco T
Z S 1{Y’>YT}|gk T)Y;H Zr) gk(ra Y., ZT‘)|2 dr
k=1t

Mg

T
S (M Lpyrsyy |V = Yo ? + ME(r)1yisyy| 2 — Ze|?) dr
t

b
Il

1
T

(Y - V) P dr+m S 1{Y,{>YT}|Z; — Z:|*dr.
t

IN

+ —

l
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By the above estimates,
T
E|(Y/ = YO [ < 2(L + DE|(¥] = Y;)*[2dr, t€[0.7],
t
so Gronwall’s lemma yields the desired result. m

COROLLARY 5.3. Let assumption (B3) hold. Then there exists at most
one solution of BDSDE(E, f,g).

THEOREM 5.4. Let assumptions (B1)—(B4) hold. Then there exists a so-
lution (Y, Z) of BDSDE(, f,g).

Proof. Let M, ,3 denote the set of k-dimensional processes X = (X!,...,
X*) such that X* € M2, i =1,...,k. Define the mapping & : M} ® Mg —
M? ® M3 by letting (U, V) be the solution (Y, Z) of the BSDE

T T T
Vi =&+ | fr Y Vi) dr + { g(r, Y2, V2)d'B. = | Z.dW,, te0,T).
t t t

From Corollary Theorem [2.6] and the representation theorem for Brow-
nian filtration it follows that @ is well defined. Let (U Lvh,(U?,v?) €
M? ® M? and (Y?,Z%) = ®(U',V?), i = 1,2. By Itd’s formula,

T T

Ee®|Y;' — ¥2]? + BE | 77|V, — Y2 dr + E | 7|2} — 222 dr
t t
T

=2E | 7 (f(r, Y1 V) = f(r, Y2 VD) = Y2) dr

T

+E | e lg(r, Y, V) = g(r, V2V dr
t
T

2B\ (V) =YV + [V = V2| [ = Y2 dr

t
T T

+IE\ Y 2P dr+ mE\ [V} = V2P dr.
t t

Hence, for every o > 0,
T T

E\ e’y —v?Pdr+E S 1z} - Z2Pdr < (a+m)E ||V — V2P dr
t t t
with ¢ = 8 — 2L — (2L)2a~! — 1 > 0. Let o, 3 be chosen so that ¢ > 0 and
a+m < 1. Then @ is a contraction if we equip MZ x My 2 with the norm
T
(5.1) 1Y, 2)12 = E | 7 (e, ? + 12, ?) dr
0
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By Banach’s contraction principle, ¢ has a fixed point. Of course, it solves
BDSDE(E, £, 9). =

6. SPDEs with a divergence form operator. In this section we
consider equations of the form with A being a uniformly elliptic di-
vergence form operator. We allow, however, the coefficients f, g to depend
on the gradient of a solution. More precisely, we assume that £ = D is an
nonempty bounded open subset of R? and

d

B(t) (Qpa ¢) = Z S aij(tvx)()pmi (fﬂ)%J (.’B) dl‘, P, ¢ eV= H(%(D)a
i,j=1D
where a;; : [0,7] x D — R are measurable functions such that for every
(t,z) € [0,T] x D,
d
aij = aji, MNP <D ai(t,0)&68 < AEP, R
ij=1
for some 0 < A < A. In this case the operator A; associated with (B®), V) is
given by . Suppose we are given measurable functions ¢ : D — R and
frgr: 2 x[0,T] x D xR x R — R. We consider equations of the form
(6.1) du(t) = —(Awu+ f(t,z,u,0Vu)) dt—g(t,z,u,oVu)d' B, u(T) =g,
where o is such that o-07 = a. We are going to show that has a unique
solution under the following assumptions:

(1) 02 HEIFC 002 S0 190, 0) 2 51
< 0.

(D2) For all y € R and e € R? the mapping Eqr > 2z — f(z,y,e)
belongs to gL'

(D3) There exist [, L > 0, m € (0,1) and functions My, Ly, : Egr — R4
such that sup.cp, , > Le(r) < I, sub.eg, ,» 2op Mi(r) < m and
for every z € Ey 1 we have
(a) (f(zy.e) = f(z9,e))(y—y) < Lly—y'|* for all y, 5’ € R and

e € RY,
(b) |f(2,y,€) — f(z,y,€')| < Lle — €| for all y € R and e, ¢’ € R,
(©) lgr(z,y,€) = gr(z,y/, )| < Li(2)|y — y/'| + Mi(2)|e — €| for all
v,y € R and e, e’ € R,

(D4) For every z € Egr and e € R? the mapping R > y — f(z,y,¢) is
continuous.

(D5) For every y € R and e € R? the mappings f(-,v,¢), gx(-,y,€) :
N x Er - R, keN, are (.Ff 1 )-progressively measurable.

The process M%7 associated with the operator /0t — A; has the fol-
lowing unique Fukushima decomposition:
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Xt = XO + Mt + At, te [O,E], PZ—&.S., A E(]}T,
where M is a martingale AF of M%7 of finite energy and A is a continuous
AF of M%T of zero energy. It is well known that W defined as

t
Wy =\o"1(X,)dMT, >0,

0
where M™ = 7(M) and 7(z1,...,24+1) = (22,...,2441) for z; € R, i =
1,...,d+1, is a standard (G;)-Brownian motion under P,.

PROPOSITION 6.1. Assume that ¢, f, g satisfy (D1)—(D5) and f, g do not
depend on the last variable e. Let (Y, M) be the pair of processes of Theorem
and let u be the function defined by (3.19). Then u € M?(0,T; H}(D))
and for g.e. z € Eyr,

t
(u(Xt),SaVu(Xr)dWT) — (Ys,My), tel0,T)], Ps-a.s.
0

Proof. That Y; = u(Xy),t € [0,T,], follows from Theorem Observe
that M = M+ M?, where M, M? are the processes of Theorem associ-
ated with the data (¢, f(-,u),0) and (0,0, g(-,u)), respectively. The desired
representation for M follows from [I1, Proposition 3.6]. Therefore we may
and will assume that ¢ = 0, f = 0 and g does not depend on y. By Theorem
u € M?(0,T; H}(D)). Let u, be defined as in the proof of Proposition
Then by and the Burkholder-Davis—Gundy inequality,

(6.2) lim E, sup |M;— Mt[ua]\Q =0.
a—r00 0<t<T,

On the other hand, it is well known (see |28, Theorem 5.6]) that

t
M = {oVua(X,) aW,, te[0,T.].

0
Hence
t 2
E, sup )M}“a] —{oVu(X,)dw,
0<t<T, 0
T,
<AAE, | |Vu - Vuo|*(Xy) dt < 4AE(|Vu = Via| 725, gomp) BT Vlloo

0

for every v € 5’00 (for the definition of 5’00 see Remark. Since u, — u in
M?(0,T; H}(D)) (see Lemma , using standard arguments (see the rea-
soning in [8, proof of Theorem 5.2.1]) we conclude from the above inequality
and [28, Theorem 2.5] (see also [I8, remark at the end of Section 4]) that,
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up to a subsequence,

2

t
lim E, sup )Mt[u“]—SUVu(X,,)dWT _0

=00 0<t<T, 0
for g.e. z € Ep . When combined with , this completes the proof. m
DEFINITION. We say that a measurable function v : Eg7 — R is a
solution of if
(a) for q.e. z € Eor we have P.({[" |f(Xs, u(Xe),0)[dt < o0) = 1

T,
and E. (supg<,<r, | o £(Xr, (X,),0) dr[? + §5" [lg(Xe, u(X1), 0)]|? dt)
< o0,
(b) u is quasi-continuous, u € M?(0,T; H} (D)) and for q.e. z € Eg 1,

T,

(63)  u(z) = Ex((Xr) + § F(Xp u(Xe), oVu(Xy) dt
0 T
+ | 9(Xs, u(Xp), o Vu(Xy)) df Br).
0
DEFINITION. A pair (Y?, Z%) € §2 x M? is a solution of the BDSDE

T,
(64) Y7 =p(Xp)+ | S(X Y7, Z7) dr
t

T, T,
+{ o(X,, Y7, 27y d' gL - | ZZaw,, te0,T)),
t 0

if P,(§0 (1F(Xe, Y7, 0) + [lg(Xe, Y7, 0)[|2) dt < 00) = 1 and (6.4) is satisfied
P,-a.s.

In much the same way as in the proof of Lemma [3.2] one can show that
if (D1)-(D5) are satisfied then for q.e. z € Ep 1 the data

(57 f(t’ Y, 6)7 g(ta Y, 6)) = (QP(XTL)a f(Xty Y, 6)7 Q(Xt, Y, 6)),
where t € [0,T], y € R, e € R%, satisfy assumptions (B1)-(B4) under the
measure P,. Therefore by Corollary and Theorem for q.e. z € Egr
there exists a unique solution (Y#, Z%) of (6.4).

THEOREM 6.2. Assume that (D1)—(D5) are satisfied. Then there exists
a unique solution u of SPDE . Moreover, for g.e. z € Eg,
Y =u(Xy), tel0,1,], P:-a.s.,
oVu(X)=2% 1'@P,-a.e. on [0,T}] x 2 x 2,
where (Y#,Z%) is a solution of (6.4).

Proof. The proof of uniqueness is similar to the proof of Proposition
[3:9) with obvious modifications in Remark Therefore we only show the
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existence of a solution. Let (Y, Z%) = (0,0) and for n > 0 let (Y"1 Znt1)
be a solution of the BDSDE
T, T,
Y = o(Xg) + | X Y 20y dr + | g(X,, Y 2 di B,
t t
T,
—\zttaw,, te(0,7), P.-as.
t
By Proposition

(6.5) V" =u"(Xy), tel0,1,], P,-as.,
and
(6.6) oVu"(X) = 2" ' ®P,-a.e. on [0,T,] x 2 x 2’

for q.e. z € Eo, where u? = 0 and u™, n > 1, is a solution of the SPDE

8 n

%—I—Atu —f(t,z,u™, o VU — gtz u™, oVu Y dT B, uN(T) = .
We know that for q.e. z € Ey g there exists a unique solution (Y#, Z%) of

(6.4) and from the proof of Theorem it follows that
(6.7) lim [|(Y",2") = (Y*,Z7)|lg = 0,
n—oo
where the norm || - ||, is defined by (5.1) with E replaced by E,. Apply-

ing the Burkholder-Davis—Gundy inequality and standard arguments we
get

T,
(6.8) lim IEZ( sup [Y7 - Y72+ (|20 - Zf\z‘dt) —0
n—oo OStSTL 0

for g.e. z € Eg . Set u(z) = limy, o0 up(z) for those z € Eyp for which the
limit exists in probability ., and u(z) = 0 otherwise. Then from (|6.5)) and
we conclude that for q.e. z € Eo 7,

V7P =u(Xy), tel0,1,], P,-as.

By , for any v € goo (for the definition of Soo see Remark we
have

T,
| (oY (un —um)(2) P AR v(2) dz = B, {(12] — Z"? A1) dt
Eo, 1 0

which by converges to zero as n, m — 0o. Therefore using [28, Theorem
2.5] (see also [18, remark at the end of Section 4]) and applying a standard
argument (see [§, proof of Theorem 5.2.1]) shows that there is a measurable
v:§2 x Eyr — R and a subsequence, still denoted by n, such that for q.e.
z € Eyr, oVun(z) = v(z) in probability P. From this and it follows
that

v(X) =2 I' ®P,-a.e.on [0,T,] x 2 x
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for g.e. z € Ey . Hence (u(X),v(X)) is a solution of for q.e. z € Ep 7.
Consequently, (6.3) with cVu replaced by v is satisfied for q.e. z € Ey 7.
Proposition W shows that u € M?(0,T;H}(D)) and for q.e. z €
Eor,

: T,

0= Ez< [ (oVu —v)(X0) th>T =E. | [(0Vu —v)(Xo) [ dt,

0 ‘ 0

which completes the proof of the theorem. m

7. Probabilistic and mild solutions of SPDEs. In this section we
adopt the following notation.

e U is a separable real Hilbert space, {et}r>1 is an orthonormal basis
of U, and @ is a symmetric nonnegative trace class operator on U
such that Qe = Aeg, k > 1. We assume that U ¢ H = L?(E;m).
Then Uy = QY 2(U) C U is a separable Hilbert space with inner
product (u,v)y, = (Q~?u, Q~?v)y (note that {fr = VA ex} is an
orthonormal basis of Up).

e L(Uy,R) is the Banach space of all bounded operators from Uy into R
endowed with the supremum norm and Lo(Up, R), La(Uy, H) are the
spaces of Hilbert—Schmidt operators from Uy into R and H, respec-
tively.

e B is a Q-Wiener process defined on some complete probability space
(2, F, P) with values in U.

It is known (see, e.g., [6l Chapter 4]) that B has the expansion
oo o, ¢]

(71) Bt:ZVAkﬁfek:Zﬂtkfk? tzoa
k=1 k=1

where F = )\,;1/ 2<Bt, er)u are real valued mutually independent standard
Wiener processes on (§2, F, P) (the series above converges in L?(§2, F, P;U)
and P-a.s. in C([0,T];U)).
Suppose we are given §: 2 x Ep x R = R and Ay, ¢, f as in Section
In this section we consider SPDE of the form
(7.2) du(t) = —(Awu + f(t,z,u))dt — §(t,z,u)d' By, w(T) = .
In what follows,
(73) g= (917927"')7 gk(ﬂ%y):g(t79573/)‘fk(x)a (t,l’) €Er,yeR
7.1. Probabilistic solutions of (7.2)). We assume that ¢, f, g satisfy
(H1)-(H5). We denote by u the unique solution of SPDE (3.4) of Theo-
rem 3.7
Let t — G(Xy, u(X¢)) be the process with values in L(Up, R) defined as
G(Xe, u(Xe))Y = (X, w(Xe)) - P(Xe), >0,
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for ¢ € Up. Since g satisfies (H3b), (H4), (H5), and u(X) is of class M, it
follows from Remark that the process t — g (X, u(Xy)) is of class M.
Since the family {f; ® 1, k > 1}, where (fr ® 1)(¥) = (¥, fx)v,, ¥ € Up, is
linearly dense in Lo (Up, R) and

<G(t>Xt7u(Xt))v Je ® 1>L2(U0,IR) = Z G(ta Xt>u(Xt))fi fk® 1(f1>
=1

= g(t, X, u(Xe)) - fe(Xe) = gr(t, X, u(Xt)),
it follows from [6l Lemma 4.8] that t — G(X;,u(X;)) is of class M. In
particular, for every w’ the process t — G(Xy,u(Xy)) is (ftﬁ ;L)—adapted.
Moreover,

T, T,
(74) B | IG(Xe, ulX0)|Z 0, 4t = Ex | ll9(Xe, u(X)) | dt < o0,
0 0

so for every ', t = G(Xy,u(Xy)) is an (ff%)—adapted Ls(Up; R)-valued
process. One can also check (see [5, Proposition 3.4]) that if we set

Bi = Zﬁfﬂm)fk = Bir0), t€0,T—(0)],
k=1

then
t t
(7.5) |G(X,, u(X,))d' By = | g(X,, u(X,)) d' B
0 0
for every ¢ € [0, T]. Therefore u of Theorem is a probabilistic solution of
(7.2) in the sense that for q.e. z € Eyr,

(7.6)

T, T,

u(z) :EZ(¢(XTL)+ | rxeu(X,)dt + G(Xt,u(xt))dTB;) P-as.

0 0

By (3.1)), this can be written in the form
T—s
(7.7)  uls,z) = Esq (<p(XT) + | S5+t X uls + 8, Xorr)) dt
0
T—s
+ § Gls+ b Xapa,uls + 1, Xopr) de;) P-as.
0

REMARK 7.1. By [19 (6.2.24)] and [I8, (4.4)], if m(B) > 0 for some
Borel set B C E then cap({s} x B) > 0 for every s € R. From this and the
fact that ((7.7) holds for q.e. (s,z) € Ep r it follows that for every s € (0,7
equality (|7.7)) holds true for m-a.e. z € E.
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7.2. Mild solutions of - In this subsection we assume addition-
ally that B® = B for all t € [0,T], and that f is Lipschitz continuous
with respect to y, i.e. we assume (H1), (H2), (H3)(a), (H4), (H5) and the
following condition: there exists L > 0 such that for every z € Ey 7,

(7.8) [f(z.y) = fz9)| < Lly—y'|  for y,y’GR

Let A denote the operator corresponding to the form B© {Pt, t > 0}

denote the semigroup of linear operators on H associated Wlth B0 and let
F:02x[0,T]xH—H, G:02x[0,T]xH — Ly(Up,H)

be operators defined by

F(w,t,0)(z) = f(w,t,2,0(z)), (Glw,t,v)P)(z) =gw,t, z,v(z))- P(z)
fort € [0,T],v € H, ¢y € Uy, x € E. We shall show that u is a mild solution
of equation ([7.2)) interpreted as an abstract evolution equation of the form

(7.9) u(s) = ¢ + [(Au(t) + F(t,u(t)) dt + | G(t,u(t))d' By, u(T) = ¢,

on the Hilbert space H, i.e. if we set u(s)(z) = u(s,x) for (s,z) € Ep then
T T
(7.10) u(s) = Pr_sp + | P oF(t,u(t)) dt + g P,_G(t,u(t))d'B,.
S
Here the integral involving F' is a Bochner mtegral. To see this, first note
that from and (H3b) it follows that F(t,-) and G(t,-) are Lipschitz
continuous. Using this and [0, Lemma 4.8] one can show that F' (resp. G)
is an (]—"f 1 )-progressively measurable mapping from {2 x [0,T] x H into
(H,B(H)) (resp. into (L?(Uy, H), B(L?(Uy, H))). Since {P;} is a contraction
on H, it follows from (H1), (H3)(b) and that there is ¢ > 0 such that
‘PtF(t7v)|H < C(1+’v|H)7 ‘PtG(tav)‘LQ(Uo,H) < C(1+’v|H)7 le [O7T]‘

T
Asu € M?*(0,T; H) we have E SS (|PLF(t,u(t))| g + ‘PtG(t7u(t))‘%2(Uo,H)) dt
< 00, so the integrals in (|7.10)) involving F' and G are well defined. By [24,
Proposition A.2.2], for h € H we have

T T
<§Pt,3F(t,u(t))dt,h> = (P F(t,u(t)), h)g dt
T—s

= | (B fls+t, Xorr,uls + 1, X)), h)r dt
0

T—s

= < (S) Es,- f(S + ta Xs+ta U(S + t? Xert)) dta h>H



260 T. Klimsiak and A. Rozkosz

By the above and Fubini’s theorem,

T
(7.11) < | P_oF (2, ult)) dt, h>H

s
T—s
= <Es,~ S f(S + t, X5+t, U(S + t, X5+t) dt, h>H
0

Similarly, by [24, Lemma 2.4.1] and the fact that the process X is time-
homogeneous,

T oo T
(V PGttt d' B >H—;§ PGt (t)) () b 5

S

Z S S gk S+t X8+t7 (S+t7XS+t)7h>HdTBf+s
k=1 0

—S

3 < | Eoguls +t, Xowruls +t, Xore) d'BF, h>H
k=1 0

By the above and the stochastic Fubini theorem (see [0, Theorem 4.18]),

T
(7.12) < | P_sat,u(t) d'B,, h>H
gk(S + t? X8+t7 U(S + tv XS-H) dTIBerS? h>H

gk(s +1, X8+t7 U(S +1, XS-H)) dTB§+t7 h>H
=1
s

:< g s+t,XS+t,u(s+t,Xs+t))dTBf,h>H

From Remark [7.1] and (7.11), (7.12)) it follows that (u(s),h)u = (v(s),h)u
for h € H, where v(s) is deﬁned by the right-hand side of ([7.10]). This shows

that u satisfies ((7.10)). Thus we have proved the following proposition.

PROPOSITION 7.2. Assume that B®) = BO) for all t € [0,T], and
(H1)-(H5), (7.8)) are satisfied. Let u be the unique solution of SPDE (3.4).
Then (7.10) holds true for every s € (0,T].

REMARK 7.3. Let
B, =Bp_y— By, tel0,T].
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On can check that
T s

| Por_oG(t,u(t)d'By = -\ P yG(T — t,u(T — t))dB;, s €[0,T).
T—s 0
Therefore from it follows that @ defined by u(t) = u(T —t), t € [0, T],
is a mild solution of the problem
du(t) = (Au + f(T —t,z,0)) dt — §(T — t,z,u) dB;, @(0) = .

REMARK 7.4. Note that in case A, is defined by one can generalize
to equations of the form with f, g also depending on the gradient
of a solution (see (6.1))) and satisfying (D1)—(D5). If, in addition, A; = Ay
for t € [0,T], and we replace (D3)(a) by Lipschitz continuity in y, then in
much the same way as in the proof of one can prove that u of Theorem
is a mild solution of with the mappings F : 2x[0,T]x H}(D) — H
and G : 2 x [0,T] x HY(D) — La(Uy, H) defined by

F(w,t,v)(z) = f(w,t,2,0(z),0Vv(z)),
(G(w, t,0)¥)(2) = g(w, t,2,v(x), 0 Vv(2)) - P(2)

for t € [0,T], v € H}(D), 1 € Uy, x € D.

7.3. Examples. Assume that e, € L>°(FE;m) and ey, are bounded uni-

formly in k, or, more generally,
o

(7.13) supZ)\k\ek(:c)IQ < 00.
zeE T

Below we show that under (7.13)) the results of Sections and apply
to equation ([7.2]) with ¢ Lipschitz continuous such that g(-,0) is bounded or
square integrable. For simplicity we assume that g does not depend on w.
EXAMPLE 7.5. Assume that

3(-,0) € L*(Bor; mr) U L (Eo,r; )

and ¢ is Lipschitz continuous in y with some constant L', i.e.
‘g(ta s yl) - g(ta L, y2)’ < L,‘yl - y2’
for all (t,x) € Eor and y1,y2 € R. Then g defined by ([7.3)) satisfies (H1)
and (H3). Indeed, we have
196 001225, ramry = M 0)ek ()12 5 g

and

|gk(t> €z, y) - gk(tv Zz, y/)| < r V )‘k|ek($)‘
By the last inequality, (H3) is satisfied with Ly (z) = L'v/Aglex(x)]. In case
§(+,0) € L?(Eyr;my) assumption (7.13) immediately forces g to satisfy
hypothesis (H1). If g(-,0) € L*(Eyr;mr) then Hg(-,O)ek(-)H%g(EO’T;mT) <
T2)|3(-,0)|lso|lex ||, so g satisfies (H3), because Tr @ < oo and we assume
that U C H.
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EXAMPLE 7.6. Let D be a nonempty bounded open subset of R% and let

g:Dor xRxR% — R be a measurable function. If §(-,0,0) € LQ(DO,T; mp)U
Lee (D07T; mT) and

|§(t7x7y1761) - g(tuxayQ)GQ)‘ < L/(|y1 - y2| + |61 - €2|)

for every (t,z) € Eor and y1,92 € R, e1,ea € R? then g = (g1, 99,...)
defined by gi(t,z,y,e) = g(t,z,y,e) - fr(z) satisfies (D1) and (D3) with
Li(z) = My(z) = L'V Axleg(z)|, z € D.
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